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Abstract

In this report, we explore the use of a quantum optimization algorithm for obtaining low en-

ergy conformations of protein models. We discuss mappings between protein models and opti-

mization variables, which are in turn mapped to a system of coupled quantum bits. General

strategies are given for constructing Hamiltonians to be used to solve optimization problems of

physical/chemical/biological interest via quantum computation by adiabatic evolution. As an ex-

ample, we implement the Hamiltonian corresponding to the Hydrophobic-Polar (HP) model for

protein folding. Furthermore, we present an approach to reduce the resulting Hamiltonian to

two-body terms gearing towards an experimental realization.

PACS numbers: 87.15.Cc, 03.67.Ac, 05.50.+q, 75.10.Nr
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I. INTRODUCTION

Finding the ensemble of low-energy conformations of a peptide given its primary sequence

is a fundamental problem of computational biology, commonly known as the protein folding

problem [1, 2, 3, 4, 5, 6, 7]. The native fold conformation is usually assumed to correspond to

the global minimum of the protein’s free energy (according to the so-called thermodynamic

hypothesis [8]), although some exceptions have been proposed [9, 10]. Thus, the protein

folding problem can be described as a global optimization problem. Algorithms for quan-

tum computers have been developed for many applications such as factoring [11] and the

calculation of molecular energies [12]. In this report, we investigate the approach of using

an adiabatic quantum computer for folding a highly simplified protein model.

The HP (H: hydrophobic, P: polar) lattice model [13] is one of the simplest protein models

implemented. Still its accuracy in predicting some of the folding behaviour of real proteins

has made it a useful benchmark for testing optimization algorithms such as simulated an-

nealing [14], genetic algorithms [15, 16, 17, 18, 19], and ant colony optimization [20]. Other

heuristic methods such as hydrophobic core threading [21], chain growth [22, 23], contact

interactions [24], and hydrophobic zippers [25] have also been considered. The HP model

has also been useful for a qualitative investigation of the nature of the folding process and

the interactions between proteins. The HP model depicted in Fig. 1 is defined by three

assumptions: 1) There are only two kinds of amino acids or residues, hydrophobic (H) and

polar (P); 2) residues are placed on a grid (typically a square grid for the 2D model and

a cubic grid for the 3D model); 3) the only interaction among amino acids is the favorable

contact between two H residues that are not adjacent in the sequence. The energy of this

interaction is defined as -1 in arbitrary units, representing a hydrophobic effect which tends

to fold the protein in a way that aggregates the H residues in a predominantly hydrophobic

core, and leaves the P residues at the surface of the protein. The search for the native

conformation of the protein is represented by a self-avoiding walk on the grid.

An important property of the model is that the number of possible conformations is

roughly proportional to 2.7N [13], where N is the length of the polypeptide chain. Proofs

of the NP-completeness of both the 2D and 3D HP models have been given [26, 27]. Due

to this exponential growth, global optimality proofs become impractical when N reaches

approximately 50 residues. For longer sequences, heuristics and stochastic algorithms have
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FIG. 1: (Color online) The lattice protein hydrophobic-polar (HP) model, showing the global energy

minimum conformation for a sequence of 24 amino acids, HHPHPPPHHHHPPHHHHPPPHPHH

(E = −12). Blue (dark grey) beads represent hydrophobic residues (H) and orange (light grey)

beads represent polar residues (P). The model consists of a self-avoiding chain with favorable

(E = −1) energetic interactions among hydrophobic residues in contact. Contact between nearest

neighbors in the primary sequence are unavoidable, and their contribution is not added to the

calculated energy. Black dots represent lattice sites. Dotted lines represent favorable energetic

interactions, solid lines represent the self-avoiding chain.

been employed for N up to 136 for the 3D HP model [24].

This report is structured as follows. Sec. II presents the general quantum algorithm and

the terms of the Hamiltonian necessary to obtain the folded structure of the protein, and

describes how to map the problem to arrays of coupled quantum bits [28, 29]. Sec. III

explains the construction of the core component of the algorithm, the Hamiltonian that

encodes the lowest energy conformation of the protein. In Sec. IV we solve in detail the four

amino acid sequence HPPH in a two-dimensional grid. In Sections V and VI we discuss

the resources necessary to carry out the reduction from a general k-body Hamiltonian to a

two-body Hamiltonian, as a function of the size of the protein.

II. AN ADIABATIC QUANTUM ALGORITHM FOR THE HP MODEL

We begin this section by describing the mapping of a sequence of N amino acids into

binary variables, which will in turn be mapped to spin variables in the quantum mechanical

version of the algorithm.
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A. Mapping amino acids onto a lattice

The mapping of the coordinates of a sequence of N amino acids to a given grid of size

N × N is developed as follows. We assume, without loss of generality, that the number of

amino acids is a power of 2. A binary representation for the labels of the grid requires log2N

binary variables to specify the position of an amino acid in each dimension, as shown in Fig. 2.

The position of each of N amino acids in a D-dimensional lattice may thus be encoded by

a bit string q composed of exactly DN log2N binary variables qi. For example, for N = 4,

D = 2, the length of the bit string q is 16 and therefore the number of configurations that

can be explored is 216. Let q denote a particular configuration of the protein in the grid,

written in the form

q = q16q15
︸ ︷︷ ︸

y4

q14q13
︸ ︷︷ ︸

x4

q12q11
︸ ︷︷ ︸

y3

q10q9
︸︷︷︸

x3

q8q7
︸︷︷︸

y2

q6q5
︸︷︷︸

x2

q4q3
︸︷︷︸

y1

q2q1
︸︷︷︸

x1

, (1)

where xi and yi are the x and y coordinate of the i-th amino acid. Fig. 2 shows an example

of the coordinate mapping given a specific sequence of residues or amino acids.

In the quantum version of the problem, these configurations span a Hilbert space of

dimension 216. The state vectors can be written as

|q〉 ≡ |q16〉 |q15〉 · · · |q2〉 |q1〉 . (2)

We wish to implement a Hamiltonian which encodes the ground state of the protein on a

spin-1/2 quantum computer [30], or, in particular onto an Ising-like Hamiltonian with a

transverse magnetic field [31] (see Sec. II B). To do so, we realize the 16-qubit Hilbert space

as a system of 16 spin-1/2 particles, with |qi = 0〉 mapped to the spin state |σz
i = +1〉 and

|qi = 1〉 mapped to |σz
i = −1〉, with these spin states as the computational basis. In other

words, the quantum version of the configuration states is related to spin variables through

the transformation

q̂i ≡
1

2
(I − σ̂z

i ), (3)

with I =
(

1 0
0 1

)
and σz =

(
1 0
0 −1

)
, the identity operator and the σz Pauli matrix represented

in the computational basis, respectively.
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FIG. 2: (Color online) Grid-labeling conventions for a sequence of 4 amino acids, HPPH. (a)

Amino acids 2 and 3 are fixed in the center of the grid to eliminate translational degeneracy. (b)

One of the possible invalid configurations that might arise in the search and that would need to be

discarded by the optimization algorithm. (c) Lowest-energy conformation for this example. The

dotted line between amino acids 1 and 4 represents the hydrophobic interaction favored by the

HP model. The configurations to optimize assume the form q = q16q15q14q13 0110 0101 q4q3q2q1,

where the set of variables q16q15q14q13 and q4q3q2q1 determine the position of amino acids 4 and 1,

respectively. For the particular case in (b), q = 1100 0110 0101 1011.

In Sec. III we will derive an energy function in terms of the ND log2N binary variables

used to describe all of the possible configurations for the N amino acids in a D-dimensional

lattice. This energy function is constructed so that its minimum will yield the lowest-energy

conformations of the protein. Eq. 3 provides the rule for the mapping of this energy function

to a quantum Hamiltonian. Each qi in the energy function will be replaced by an operator q̂i.

The operator q̂i is to be understood as a short hand notation for a quantum operator acting

on the i-th qubit of the ND log2N multipartite Hilbert space, HNDlog2N ⊗ HNDlog2N−1 ⊗
· · · ⊗ Hi ⊗ · · · ⊗ H1. The explicit form of q̂i is given by I ⊗ I ⊗ · · · ⊗ q̂i ⊗ · · · ⊗ I. Notice

that the operator q̂i as defined in Eq. 3 has been placed in the i-th position, and the identity

operator acts on the rest of the Hilbert space. Products of the form qiqj will be replaced by
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a quantum operator q̂iq̂j, which is a shorthand notation for the operators q̂i and q̂j acting

on the i-th and the j-th qubits, respectively. As an illustrative example, consider an energy

function dependent on four binary variables,

E(q1, q2, q3, q4) = 1 − q1q2 + q1q3 + q2q3q4,

which will be mapped to a Hamiltonian acting on a four qubit Hilbert space, H4 ⊗ H3 ⊗
H2 ⊗H1. In the instance of this particular energy function the Hamiltonian will assume the

form

Ĥ = I ⊗ I ⊗ I ⊗ I − I ⊗ I ⊗ q̂ ⊗ q̂ + I ⊗ q̂ ⊗ I ⊗ q̂ + q̂ ⊗ q̂ ⊗ q̂ ⊗ I

≡ I − q̂1q̂2 + q̂1q̂3 + q̂2q̂3q̂4. (4)

Following this mapping, transformation of any energy function to the quantum Hamilto-

nian is straightforward.

In order to eliminate redundancy due to translational symmetry, we fixed the two middle

amino acids in a central position (see Fig. 2). This reduces the number of binary variables

in the bit string from sixteen to eight. The variables corresponding to amino acids 1 and

4: q4q3q2q1 and q16q15q14q13, respectively, become the variables of interest, and the variables

q8q7q6q5 and q12q11q10q9 corresponding to amino acids 2 and 3, become constant throughout

the optimization process. In general, the (N/2)th amino acid is assigned to the (N/2)th grid

point in all D dimensions. The (N/2+1)th amino acid is fixed to the (N/2+1)th grid point

in the x direction and to the (N/2)th grid point in all other D− 1 dimensions. As shown in

Fig. 2, the final configuration we will try to optimize for the case of four amino acids takes

the form |q〉 = |q16q15q14q13〉 |0110〉 |0101〉 |q4q3q2q1〉.
B. Adiabatic Quantum Computation

The goal of an adiabatic quantum algorithm is to transform an initial state into a final

state which encodes the answer to the problem. A quantum state |ψ(t)〉 in the 2n-dimensional

Hilbert space for n qubits, evolves in time according to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (5)

where Ĥ(t) is the time-dependent Hamiltonian operator. The design of the algorithm takes

advantage of the quantum adiabatic theorem [32], which is satisfied whenever Ĥ(t) varies
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slowly throughout the time of propagation t ∈ [0, τ ]. Let |ψg(t)〉 be the instantaneous ground

state of Ĥ(t). If we construct Ĥ(t) such that the ground state of Ĥ(0), denoted as |ψg(0)〉, is

easy to prepare, the adiabatic theorem states that the time propagation of the quantum state

will remain very close to |ψg(t)〉 for all t ∈ [0, τ ]. One way to choose Ĥ(0) is to construct

it in such a way that |ψg(0)〉 is a uniform superposition of all possible configurations of the

system, i.e.

|ψg(0)〉 =
1√
2n

∑

qi∈{0,1}

|qn〉 |qn−1〉 · · · |q2〉 |q1〉 (6)

summing over all 2n vectors of the computational basis. Notice that an initial Hamiltonian

of the form

Ĥ(0) =
n∑

i=1

q̂i
x =

n∑

i=1

1

2
(I − σ̂x

i ) (7)

would have as a non-degenerate ground state the vector |ψg(0)〉 defined in Eq. 6.

Similarly to the operator q̂ from Eq. 3, we define

q̂i
x ≡ 1

2
(I − σ̂x

i ), (8)

with I =
(

1 0
0 1

)
and σx =

(
0 1
1 0

)
, the identity operator and the σx-Pauli matrix represented

in the computational basis, respectively.

For example, for the case of four qubits, n = 4, Ĥ(0) is given by,

Ĥ(0) =
4∑

i=1

q̂i
x = q̂1

x + q̂2
x + q̂3

x + q̂4
x (9)

= I ⊗ I ⊗ I ⊗ q̂x + I ⊗ I ⊗ q̂x ⊗ I + I ⊗ q̂x ⊗ I ⊗ I + q̂x ⊗ I ⊗ I ⊗ I. (10)

To find the lowest energy conformation of the protein, one defines a Hamiltonian, Ĥprotein,

whose ground state encodes the solution. Adiabatic evolution begins with Ĥ(0) and |ψg(0)〉,
and ends in Ĥprotein = Ĥ(τ). If the adiabatic evolution is slow enough, the state obtained

at time t = τ is |ψg(τ)〉, the ground state of Ĥ(τ) = Ĥprotein. The details about the

construction of Ĥprotein will be provided in Sec. III. A possible adiabatic evolution path can

be constructed by the linear sweep of a parameter t ∈ [0, τ ],

Ĥ(t) = (1 − t/τ)Ĥ(0) + (t/τ)Ĥprotein. (11)

Even though Eq. 11 connects Ĥ(0) and Ĥprotein, determining the optimum value of τ is an

important and non-trivial problem in itself. In principle, the adiabatic theorem states that
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over sufficient adiabatic time τ , the state |ψ(τ)〉 will converge to the solution to the problem

|ψg(τ)〉. The magnitude of τ dictates the ultimate usefulness of the quantum algorithm

proposed in this work. Farhi et al. [33, 34] showed promising numerical results for random

instances of the Exact Cover computational problem.

Notice that the parameter τ determines the rate at which Ĥ(t) varies. Following the

notation from Farhi et al [33], consider Ĥ(t) = H̃(t/τ) = H̃(s), with instantaneous values

of H̃(s) defined by

H̃(s) |l; s〉 = El(s) |l; s〉 (12)

with

E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s) (13)

where N is the dimension of the Hilbert space. According to the adiabatic theorem, if the

gap between the two lowest levels, E1(s)−E0(s), is greater than zero for all 0 ≤ s ≤ 1, and

taking

τ ≫ ε

g2
min

(14)

with the minimum gap, g2
min, defined by

gmin = min
0≤s≤1

(E1(s) − E0(s)), (15)

and ε given by

ε = max
0≤s≤1

|〈l = 1; s|dH̃
ds

|l = 0; s〉 |, (16)

then we can make

|〈l = 0; s = 1|ψ(τ)〉| (17)

arbitrarily close to 1. In other words, the existence of a nonzero gap guarantees that |ψ(t)〉
remains very close to the ground state of Ĥ(t) for all 0 ≤ t ≤ τ , if τ is sufficiently large.

In the following sections, we derive the expression for an energy function which is mapped

to Ĥprotein using the procedure explained in Sec IIA. The final expression for Ĥprotein cor-

responds to an array of coupled qubits. We use H to denote both the Hamiltonians and

the energy functions given that the mapping is straightforward as explained at the end of

Sec. IIA.
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III. CONSTRUCTION OF THE LATTICE PROTEIN HAMILTONIAN FOR ADI-

ABATIC QUANTUM COMPUTATION

Our goal in this section is to find an algebraic expression for an energy function in

which the ground state represents the lowest energy conformation of a protein. Ideally, this

energy function should contain the least possible number of terms. In order to optimize

the computational resources, we desire terms with low locality, defined as the number of

products of qi’s that appear in a certain term (e.g., a term of the form h = q1q3q4q6 is

4-local).

A. Small computer science digression

Encoding positions of the amino acids in the grid in terms of Boolean variables makes it

very convenient to use tools from computer science and basic Boolean algebra [35]. In this

section, we will review these tools before using them to contruct arbitrary Hamiltonians that

encode the spectrum of statistical mechanical models. We begin with some simple relations

that are useful in the derivation of the Hamiltonian terms.

Consider two Boolean variables x and y. Expressions for the operations and, or, not

can be written algebraically as:

fand(x, y) = xy and operation (x ∧ y)

for(x, y) = x+ y − xy or operation (x ∨ y)

fnot(x) = 1 − x not operation (¬x)

An additional useful Boolean operator for the construction of Hamiltonian terms is xnor.

The output of the xnor function is 0 unless all its arguments have the same value. The

two-input version xnor operation is also known as logical equality, here denoted as EQ,

feq(x, y) = 1 − x− y + 2xy xnor operation(x eq y)

The xnor operator can be used to construct a very useful term for statistical mechanics

Hamiltonians, an on-site repulsion penalty (described in Sec. III B and illustrated in Fig. 3).
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FIG. 3: (Color online) Illustrative example of one of the uses of the xnor Boolean function in our

scheme for the construction of Hamiltonians. Consider two particles 1 and 2 that are restricted

to occupy either position 0 or 1 in the dimension shown, and let x1 and x2 encode the position

particle 1 and particle 2 respectively. The Boolean function fEQ can be interpreted as an onsite

repulsion Hamiltonian which penalizes configurations where x1 = x2. The possible configurations

are encoded in the bit string x = x1x2.

B. Hamiltonian terms for protein folding: the HP model

Most of the configurations represented by the bit strings q of Eq. 1 are invalid protein

states. We seek a Hamiltonian that energetically favors valid configurations of the HP

model by eliminating configurations in which more than one amino acid occupy the same

grid point, and discarding configurations that violate the primary sequence of amino acids.

This Hamiltonian can be written as

Hprotein = Honsite +Hpsc +Hpairwise, (18)

where Honsite is an onsite repulsion term for amino acids occupying the same grid point,

Hpsc is a primary sequence constraint term, and Hpairwise is a pairwise interaction term that

represents favorable hydrophobic interactions between adjacent hydrophobic amino acids.

Each protein configuration can be described by a string of ND log2N bits, where D is

the number of dimensions and N is the number of amino acids. Without loss of generality,

N is here contrained to be a power of two. Below, we describe each term in Eq. 18.
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1. Onsite term, Honsite

The first term in Eq. 18, Honsite, prevents two or more amino acids from occupying the

same grid point. For a given protein, at least one position variable must differ between

each pair of amino acids for Honsite to evaluate to zero. As an illustrative example, a simple

one-dimensional two-site Hamiltonian is shown in Fig. 3 using the xnor operation described

in Sec. IIIA.

The general term for D dimensions and N amino acids is

Honsite(N,D) = λ0

N−1∑

i=1

N∑

j=i+1

H ij
onsite(N,D) (19)

with

H ij
onsite(N,D) =

D∏

k=1

log2 N
∏

r=1

(

1 − qf(i,k)+r − qf(j,k)+r

+2 qf(i,k)+r qf(j,k)+r

)

(20)

and

f(i, k) = D(i− 1) log2N + (k − 1) log2N. (21)

The terms enclosed by the parentheses in Eq. 20 are xnor functions. The double product

of these terms tests that all of these conditions are considered simultaneously by using and

relations. If all the binary variables describing the coordinates of the i-th and j-th amino

acids are equal, then the series of products of xnor functions is evaluated to +1. In this

case, the energy penalty λ0 with λ0 > 0 is enforced. There will be no energy penalty,

however, if even one of the binary variables for the i-th and j-th amino acids is different.

The function f(i, k) is a pointer to the bit substring describing the coordinates of a

particular amino acid. The index i points to the i-th amino acid and the index k points

to the first bit variable of the k-th spatial coordinate. Here, k = 1 corresponds to the x

coordinate, k = 2 to the y coordinate, and k = 3 to the z coordinate. For example, consider

the case with N = 4 and D = 2. If we are interested in referring to the first binary variable

describing the y coordinate (k = 2), for the third amino acid (i = 3), a direct substitution in

Eq. 21 would yield f(3, 2) = 10, which is indeed the variable we are interested in according

to the convention established in Eq. 1.
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2. Primary structure constraint, Hpsc

The term Hpsc in Eq. 18 evaluates to zero when two amino acids P and Q that are

consecutive sequence-wise must be nearest neighbors on the lattice. Nearest-neighbors are

defined as those points with a rectilinear (L1) distance of dPQ = 1 between them. We define

a distance function that gives the base 10 distance squared between any two amino acids P

and Q on the lattice,

d2
PQ(N,D) =

D∑

k=1

(log2 N
∑

r=1

2r−1(qf(P,k)+r − qf(Q,k)+r)
)2

(22)

with f(i, k) defined as in Eq. 21.

A simple way of defining Hpsc is

H ′
psc(N,D) = λ1

N−1∑

m=1

(1 − d2
m,m+1)

2 (23)

Or, preferably,

Hpsc(N,D) = λ1

[

−(N − 1) +
N−1∑

m=1

d2
m,m+1

]

. (24)

Unlike Eq. 23, the improved Hamiltonian in Eq. 24 is always 2-local regardless of the number

of amino acids or the dimensionality of the problem, since d2
PQ(N,D) is always 2-local.

First, notice that for valid configurations, all (N−1) terms in the sum will equal one, and

Hpsc(N,D) evaluates to zero. If any of the d2
m,m+1 terms is zero, meaning that two amino

acids occupy the same location, then Honsite will be drastically raised by the energy penalty

λ0. This can be achieved by setting λ0 > λ1, and λ1 = N . After excluding configurations

in which any d2
m,m+1 are zero, only configurations with values of d2

m,m+1 > 1 are left. In

these instances, Hpsc(N,D) > 0 and λ1 will play the role of an energy penalty since λ1 > 0.

Choosing λ1 = N and λ0 = N + 1 > λ1 constrains unwanted or penalized configurations to

eigenstates of Hprotein with energies greater than zero, while plausible configurations of the

protein correspond to energies less than or equal to zero. Note that the minimum energy

of the HP model, in the case of all hydrophobic sequences with the maximum number of

favorable contacts, is always greater than −N . This is satisfied in general for N amino acids

in either two or three dimensions.
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3. Pairwise hydrophobic interaction term, Hpairwise

The HP model favors hydrophobic interactions by lowering the energy by 1 whenever

non-nearest neighboring hydrophobic amino acids are a rectilinear distance of 1 away.

This kind of interaction is represented by the following general expression:

Hpairwise(N,D) = −
N∑

i=1

N∑

j=1

GijH
ij
pairwise (25)

Here G is an N × N symmetric matrix with entries Gij equal to +1 when amino acids i

and j are hydrophobic and non-nearest neighbors, and 0 otherwise. Note that Gij is set to

zero for amino acids that are neighbors in the protein sequence. Notice also that alternate

definitions of Gij could allow us to define lattice protein models that are more complex than

the HP model. One of these models is the more realistic Miyazawa-Jernigan model [36]

which includes interactions between 20 types of amino acids.

The form of H ij
pairwise depends on the spatial dimensionality of the problem. In two

dimensions, we have

H ij
pairwise = H ij,2D

pairwise(N) = xij,2D
+ (N) + xij,2D

− (N)

+yij,2D
+ (N) + yij,2D

− (N) (26)

and in three dimensions,

H ij
pairwise = H ij,3D

pairwise(N) = xij,3D
+ (N) + xij,3D

− (N)

+yij,3D
+ (N) + yij,3D

− (N) + zij,3D
+ (N) + zij,3D

− (N) (27)

The terms on the right hand side of Eq. 27 are independent; each one serves to query

whether the j-th amino acid is located, with respect with the i-th amino acid, to the right,

left, above, below, in front, or behind as represented by xij,3D
+ , xij,3D

− , yij,3D
+ , yij,3D

− , zij,3D
+ ,

and zij,3D
− terms, respectively. If the j-th amino acid is located at a distance of exactly

one in any direction, H ij
pairwise is set to +1; otherwise it is set to zero. There is a subtle

but important condition embedded in these terms: they all vanish if the rightmost binary

variable describing the i-th residue’s coordinate of interest (say x for xij,3D
+ and xij,3D

− or y

for yij,3D
+ and yij,3D

− or z for zij,3D
+ and zij,3D

− ) does not end in 0, i.e., the coordinate has to

correspond to an even number. This is why we intentionally double count each pair of amino

acids in Eq. 25 by allowing both indexes i and j iterate from 1 to N . No special treatment
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is provided for the case where i = j, since the diagonal terms of Gij are all zero due to the

lack of amino acid self interaction. Finally, because we want the interaction to be attractive

rather than repulsive, we use the minus sign in Eq. 25.

The case of N amino acids in a two dimensional grid for N = 2M and M ≥ 3:

The terms listed below correspond to the pairwise interaction Hamiltonian terms described

above. The expressions below were constructed for M ≥ 3. The four amino acid case

(M = 2) is much simpler and will be discussed in Sec. IV. The expression for xij,2D
+ (N) is

xij,2D
+ (N) = (1 − qf(i,1)+1)qf(j,1)+1

log2 N
∏

s=2

(1 − qf(j,1)+s

−qf(i,1)+s + 2 qf(j,1)+s qf(i,1)+s)

log2 N
∏

r=1

(1 − qf(i,2)+r

−qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r) (28)

The first two factors of xij,2D
+ (N) (Eq. 28) treat the rightmost binary digit of the x position

of the i-th and j-th amino acid. The first factor guarantees that the i-th residue is in an

even position on the x-axis. For an interaction to be considered, the position of the j-th

residue on the x-axis must be odd, as required by the second factor qf(j,1)+1. The remaining

factors of xij,2D
+ are xnor functions that ensure that the rest of the binary digits that encode

the x position are equal for the i-th and j-th amino acids. Finally, all the digits encoding

the y position have to be equal, so that the i-th and j-th amino acids are nearest neighbors

displaced only in the x-directionforcing the two residues to be in the same row. If all these

conditions are satisfied, xij,2D
+ evaluates to +1; otherwise it evaluates to 0. These conditions

rely on the fact that adding 1 to an even number only changes the rightmost binary digit

from 0 to 1.

The construction of yij,2D
+ follows the same procedure as that of xij,2D

+ , namely,

yij,2D
+ (N) = (1 − qf(i,2)+1)qf(j,2)+1

log2 N
∏

s=2

(1 − qf(j,2)+s

−qf(i,2)+s + 2 qf(j,2)+s qf(i,2)+s)

log2 N
∏

r=1

(1 − qf(i,1)+r

−qf(j,1)+r + 2qf(i,1)+rqf(j,1)+r) (29)
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The construction of xij,2D
− ,

xij,2D
− (N) = (1 − qf(i,1)+1)qf(j,1)+1

[

1 −
log2 N
∏

k=1

(1 −

qf(i,1)+k)
]

(qf(j,1)+2 + qf(i,1)+2 − 2 qf(j,1)+2 qf(i,1)+2)

log2 N
∏

r=3

[

1 − (qf(j,1)+r +
r−1∏

u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)

−qf(i,1)+r + 2qf(i,1)+r(qf(j,1)+r +
r−1∏

u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)
]

log2 N
∏

s=1

(1 − qf(i,2)+s − qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s) (30)

involves several considerations. As in the expression for xij,2D
+ , the first factor (1− qf(i,1)+1)

tests if the i-th amino acid is in an even position along the x-axis. Here, we are interested in

querying whether the j-th amino acid is directly to the left of the i-th, and apply a different

procedure than that of Eq. 28. We add 00 · · · 01 to the x coordinate of the j-th residue,

thus moving “right” by one unit, and use the xnor function to check if the result matches

the x coordinate of the i-th amino acid. The problem is not as trivial as the case of xij,2D
+ .

Setting i at an even coordinate value along the axis of interest forces j to be in an odd

coordinate. However, adding 00 · · · 01 to an odd binary number in general will change more

digits than just the last digit due to carry bits. We used the circuit presented in Fig. 4

and the Boolean algebra introduced in Sec. IIIA to obtain the general expression for the

addition of 00 · · · 01 to an n-bit number. If we take x = xnxn−1 · · ·x2x1 and y = 00 · · · 01,

then the result z = zn+1znzn−1 · · · z2z1 for the addition z = x + y is the recursive algebraic

expression,

z1 = 0

z2 = 1 − x2

zk = xk +
k−1∏

u=2

xu − 2
k∏

u=2

xu for 3 ≤ k ≤ n

zn+1 =
n∏

u=2

xu

As in the case of xij,2D
+ , we impose conditions that guarantee that the y coordinate is the
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FIG. 4: Half-adder and full-adder components for the addition circuit implemented in the pairwise

interaction Hamiltonian. We show the implementation of these two components for the addition

of two 4-bit numbers yielding z = z5z4z3z2z1. The addition of n-bit numbers can be generalized

trivially.

same for both amino acids (that they are in the same row).

A special case arises when the j-th amino acid is at the rightmost position in the grid,

with an x coordinate value of 11 · · · 11. When 00 · · · 01 is added to this coordinate, zn+1

evaluates to 1 and the n bits z1 to zn evaluate to 0. Since only the first n bits are used

to compare coordinates, this z would be an undesirable match with an i-th amino acid

positioned at x = 00 · · · 00. Notice that a value of x = 00 · · · 00 positions the i-th amino acid

positioned at the minimal/leftmost position in the grid, for which xij,2D
− should not even be

considered. The factor [1 − ∏log2 N

k=1 (1 − qf(i,1)+k)] in Eq. 30 sets the term xij,2D
− to 0 if the x

coordinate of the i-th amino acid is 00 · · · 00, taking care of both of these concerns.
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The construction of yij,2D
− follows the same procedure as that of xij,2D

− , namely,

yij,2D
− (N) = (1 − qf(i,2)+1)qf(j,2)+1

[

1 −
log2 N
∏

k=1

(1 −

qf(i,2)+k)
]

(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2 qf(i,2)+2)

log2 N
∏

r=3

[

1 − (qf(j,2)+r +
r−1∏

u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)

−qf(i,2)+r + 2qf(i,2)+r(qf(j,2)+r +
r−1∏

u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)
]

log2 N
∏

s=1

(1 − qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s) (31)

The three-dimensional extension of these equations is presented in the Appendix.

C. Maximum locality and scaling of the number of terms in Hprotein

In this section, we estimate the number of terms included in the total HamiltonianHprotein

and present procedures required to reduce the locality of the terms to 2-local. These esti-

mates assess the size of a quantum device necessary for eventual experimental realizations

of the algorithm. The reduction of the locality of the terms involves ancillary qubits.

Each amino acid requires D log2N qubits to specify its position in the lattice. Since our

algorithm fixes the position of two amino acids, the number of qubits needed to encode the

coordinates of the (N − 2) remaining amino acids is (N − 2)D log2N . From the expressions

given forHonsite, Hpsc and Hpairwise, one can deduce that the maximum locality is determined

by 2D log2N — the number of qubits corresponding to two amino acids. As described in

Sec. III B 2, the Hpsc term is always 2-local in nature regardless of the number of amino

acids. For scaling arguments, it is crucial to point out that all possible 1-local and 2-

local terms, that account for (N − 2)D log2N and
(
(N−2)D log2 N

2

)
total terms, repectively,

appear in the expansion, but that not all possible 3-local or higher locality terms will be

present. For example, the terms qiqjqk, where the indexes i, j and k are associated with

three different amino acids, are not part of the expansion, since every term should only

involve products of qubits describing two amino acids, regardless of its locality. Table I

summarizes the number of k-local terms required to construct the protein Hamiltonian,
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Hprotein = Honsite+Hpsc+Hpairwise. The alternative count from the combinatorial expressions

of Table I scales as N6 for D = 2 and as N8 for D = 3. Table I provides the exact term

count.

TABLE I: The number of k-local terms obtained in the final expression for Hprotein as a function

of the number of amino acids N , N = 2M , and dimensions (D) of the lattice.

locality Number of terms, Tk

k = 0 1

k = 1 (N − 2)D log2N

2 ≤ k ≤ D log2N
(
N−2

2

) ∑k−1
i=1

(
D log2 N

i

)(
D log2 N

k−i

)
+ (N − 2)

(
D log2 N

k

)

D log2N < k ≤ 2D log2N
(
N−2

2

) ∑D log2 N

i=k−D log2 N

(
D log2 N

i

)(
D log2 N

k−i

)

Total number of terms
∑2Dlog2N

k=0 Tk ∼ N2D+2

IV. CASE STUDY: HPPH

With the goal of designing an experiment for adiabatic quantum computers with small

numbers of qubits, we concentrate on the simplest possible instance of the HP-model – a

four amino acid loop that contains a favorable interaction and therefore “folds”.

In Sec. IV A we present the protein Hamiltonian, followed by the partitioning of the N -

local Hamiltonian terms to 2-local. Finally, we present numerical simulations which confirm

the local minimum through the use of the proposed algorithm.

A. Hamiltonian terms for the case of four amino acids in 2D

The onsite Hamiltonian for this example takes the form

1. Onsite term, Honsite

Honsite(N = 4, D = 2) = λ0(H
12
onsite +H13

onsite +

H14
onsite +H24

onsite +H34
onsite) (32)
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with

H ij
onsite(N = 4, D = 2) =

2∏

k=1

2∏

r=1

(

1 − qf(i,k)+r −

qf(j,k)+r + 2 qf(i,k)+r qf(j,k)+r

)

(33)

and

f(i, k) = 4(i− 1) + 2(k − 1). (34)

Note that H23
onsite does not appear in Eq. 32 since, as described in Sec. IIA, the two central

amino acids are fixed in position and guaranteed not to occupy overlapping gridpoints that

would contribute an energy penalty to the onsite term a priori . On the other hand, other

terms involving amino acids 2 and 3 cannot be discarded, since these amino acids will affect

their other neighbors through Hpsc and they can participate in hydrophobic interactions

through Hpairwise.

2. Primary structure constraint term, Hpsc

The pairwise term

d2
PQ(N = 4, D = 2) =

2∑

k=1

( 2∑

r=1

2r−1(qf(P,k)+r − qf(Q,k)+r)
)2

(35)

with

Hpsc(N = 4, D = 2) = λ1

(
−3 + d2

12 + d2
23 + d2

34

)

= λ1

(
−2 + d2

12 + d2
34

)
(36)

takes advantage of the fact that d2
23 = 1 by construction.

3. Pairwise term, Hpairwise

Finally, a pairwise interaction term is required to impose an energy stabilization for

non-nearest neighbor hydrophobic amino acids that occupy adjacent sites in the lattice.

For the sequence HPPH,

G =










0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0










(37)
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and therefore,

H2D
pairwise(N = 4, D = 2) = −(H14,2D

pairwise +H41,2D
pairwise). (38)

For this particular case of interest

H ij,2D
pairwise(N = 4) = xij,2D

+ (N = 4) + xij,2D
− (N = 4) +

yij,2D
+ (N = 4) + yij,2D

− (N = 4). (39)

The explicit forms of these functions are:

xij,2D
+ (N = 4) = (1 − qf(i,1)+1)qf(j,1)+1(1 − qf(j,1)+2 −

qf(i,1)+2 + 2 qf(j,1)+2qf(i,1)+2)
2∏

s=1

(1 − qf(i,2)+s − qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s), (40)

yij,2D
+ (N = 4) = (1 − qf(i,2)+1)qf(j,2)+1(1 − qf(j,2)+2 −

qf(i,2)+2 + 2 qf(j,2)+2 qf(i,2)+s)
2∏

s=1

(1 − qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s), (41)

xij,2D
− (N = 4) = (1 − qf(i,1)+1)qf(j,1)+1qf(i,1)+2

(qf(j,1)+2 + qf(i,1)+2 − 2qf(j,1)+2qf(i,1)+2)
2∏

s=1

(1 −

qf(i,2)+s − qf(j,2)+s + 2 qf(i,2)+sqf(j,2)+s), (42)

yij,2D
− (N = 4) = (1 − qf(i,2)+1)qf(j,2)+1qf(i,2)+2

(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2qf(i,2)+2)
2∏

s=1

(1 −

qf(i,1)+s − qf(j,1)+s + 2 qf(i,1)+sqf(j,1)+s). (43)

After expanding all of the terms in Honsite, Hpsc and Hpairwise, we fix amino acids 2 and

3 as described in Sec. IIA, substituting the variables q12q11q10q9 q8q7q6q5 by the constant

values 0110 0101 as shown in Fig. 2. The final expression for Hprotein now depends on the 8

binary variables encoding the coordinates of amino acids 1 and 4, q4q3q2q1 and q16q15q14q13,

respectively. For convenience in notation, we relabel the coordinates of amino acid 4 from
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q16q15q14q13 to q8q7q6q5. After these substitutions, the final expression for the energy function

Hprotein will be dependent on products involving the variables q1 through q8. Following the

mapping explained at the end of Sec. IIA, the quantum expression for Ĥprotein is a 28 × 28

matrix. This Hamiltonian matrix defines the final Hamiltonian Ĥ(t = τ) of the adiabatic

evolution. The initial Hamiltonian representing the transverse field whose ground state is a

linear superposition of all 28 states in the computational basis can be written as

Ĥ0 ≡ Ĥ(t = 0) =
8∑

i=1

q̂i
x =

8∑

i=1

1

2
(I − σ̂x

i ) (44)

with

|ψg(t = 0)〉 =
1√
28

∑

qi∈{0,1}

|q8q7q6q5q4q3q2q1〉 (45)

Finally, we can construct a time dependent Hamiltonian as shown in Eq. 11,

Ĥ(t) = (1 − t/τ)Ĥ0 + (t/τ)Ĥprotein (46)

This time dependent Hamiltonian is also a 28 × 28 matrix as well. The instantaneous

spectrum can be obtained by diagonalizing at every t/τ without need to specify τ . Since τ

is the running time, we are interested in 0 ≤ t/τ ≤ 1. The spectrum of the corresponding

Ĥ(t) for this four amino acid peptide HPPH is given in Fig. 5.

FIG. 5: (Color online) Spectrum of the instantaneous energy eigenvalues for the 8-local time

dependent Hamiltonian used in the algorithm for the peptide HPPH (left). The plot to the right

examines the lowest 15 states of the 256 states from the left.

Snapshots of the instantaneous ground state are shown in Fig. 6. Even though these

snapshots do not correspond to explicit propagation of the Schrödinger equation, they indi-

cate that the final Hprotein is correct and that it provides the correct answer if a sufficiently
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long time τ is allowed. Notice that at t/τ = 0, the amplitude for all 256 states is equal,

indicating a uniform superposition of all states; at t/τ = 1, the readout corresponds to the

two degenerate solutions of HPPH.

V. CONVERTING AN N-LOCAL HAMILTONIAN TO A 2-LOCAL HAMILTO-

NIAN

Motivated by the possibility of an experimental implementation, we explain how to reduce

the locality of a Hamiltonian from k-local to 2-local while conserving its low-lying spectrum.

We use Boolean reduction techniques [37, 38] for Hamiltonians contructed from energy

functions with structure similar to Hprotein, where all of terms are sums of tensor products

of σi
z operators. By reducing the locality of the interactions, we introduce new ancilla qubits

to represent higher order interactions with sums of at most 2-local terms. Here, we present

an illutrative example with a relative simple energy function but the methodology can be

immediately extended to higher locality energy functions such as the one resulting inHprotein.

Consider a 4-local energy function of the form

Htoy(q) = 1 + q1 − q2 + q3 + q4 − q1q2q3 + q1q2q3q4. (47)

As shown in Table II, this energy function has a unique minimum energy given by q =

q4q3q2q1 = 0010. The energy associated with this configuration is 0 in arbitrary units and

all other possible values of the binary variables q1, q2, q3 and q4 have energies ranging from

0 to 4.

The goal is to obtain an energy function H ′ that preserves these energies along with their

associated bit strings, but defines H ′ using only 1-local and 2-local terms. That is, the goal

is to obtain a substitution for Htoy with the following form,

H ′(q̃1, · · · , q̃M) = c0 +
M∑

i=1

ciq̃i +
M−1∑

i=1

M∑

j=i+1

dij q̃iq̃j. (48)

In Eq. 48 the new set of binary variables q̃ includes the original variables qi as well as

ancillary variables required to reduce locality. The extra ancillary bits raise the total number

of variables to M .
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TABLE II: Truth table for the energy function Htoy(q) = 1 + q1 − q2 + q3 + q4 − q1q2q3 + q1q2q3q4.

q4 q3 q2 q1 H(q1, q2, q3, q4)

0 0 1 0 0

0 0 0 0 1

0 0 1 1 1

0 1 1 0 1

0 1 1 1 1

1 0 1 0 1

0 0 0 1 2

0 1 0 0 2

1 0 0 0 2

1 0 1 1 2

1 1 1 0 2

0 1 0 1 3

1 0 0 1 3

1 1 0 0 3

1 1 1 1 3

1 1 0 1 4

Since the information contained within the problem and the solution we are seeking both

rely on the original set of q variables (in the case of protein folding, for example, the string

q encodes the positions of the amino acids in the lattice), we must be able to identify

values corresponding to the original q, regardless of the substitutions made to convert a

k-local function to a 2-local. The new energy function H ′ needs to have the energy values

of the original function in its energy spectrum. In addition, the values of the bit string

q̃ for these energies must match the same values of q in the original function. For the

particular example of Eq. 47, consider the substitutions, q1q2 → q̃5 and q3q4 → q̃6. These

two subtitutions introduce two new independent binary variables, q̃5 and q̃6 and regardless

of the values of q1, q2, q3 and q4, they can take any value in {0, 1}. Since we want to preserve

both the physical meaning of the original energy function, as well as its energy spectrum,
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we need to perform an action on the cases where the conditions q̃5 = q1 ∧ q2 and q̃6 = q3 ∧ q4
are not satisfied and lack any meaning in the context of the original energy function. One

way to address this problem while keeping the original spectrum intact is to add a penalty

function which enforces the conditions q̃5 = q1 ∧ q2 and q̃6 = q3 ∧ q4. For every substitution

of the form qiqj → q̃n, consider a function of the form [37]

H∧(qi, qj, q̃n) = δ(3q̃n + qiqj − 2qiq̃n − 2qj q̃n). (49)

As shown in Table III, for δ > 0, the function H∧(qi, qj, q̃n) is greater than zero whenever

q̃n 6= qi ∧ qj and it evaluates to zero whenever q̃n = qi ∧ qj.

TABLE III: Truth table for the function H∧(qi, qj , q̃n) = δ(3q̃n + qiqj − 2qiq̃n − 2qj q̃n) used for the

locality reduction procedure described in Sec. V.

q̃n qi qj H∧(qi, qj , q̃n)

0 0 0 0

0 0 1 0

0 1 0 0

1 1 1 0

1 0 0 3δ

1 0 1 δ

1 1 0 δ

0 1 1 δ

A two-local expression of the form presented in Eq. 48 can be obtained by adding one

H∧(qi, qj, q̃n) function for each substitution q1q2 → q̃5 and q3q4 → q̃6 and by making the

additional trivial substitutions q1 → q̃1, q2 → q̃2, q3 → q̃3, and q4 → q̃4, to conveniently

change in notation to the set of binary variables q̃ . For the case of the energy function of

Eq. 47, the locality reduced version is

Htoy,reduced(q̃) = 1 + q̃1 − q̃2 + q̃3 + q̃4 − q̃5q̃3 + q̃5q̃6 +H∧(q1, q2, q̃5) +H∧(q3, q4, q̃6)

= 1 + q̃1 − q̃2 + q̃3 + q̃4 − q̃5q̃3 + q̃5q̃6 + δ(3q̃5 + q̃1q̃2 − 2q̃1q̃5 − 2q̃2q̃5)

+ δ(3q̃6 + q̃3q̃4 − 2q̃3q̃6 − 2q̃4q̃6). (50)
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Recall that the additional functions H∧(q̃1, q̃2, q̃5) and H∧(q̃3, q̃4, q̃6) increase the energy of

Htoy,reduced by at least δ whenever the conditions q̃5 = q̃1 ∧ q̃2 and q̃6 = q̃3 ∧ q4 are not

satisfied. Table IV shows the one-to-one mapping between the energies of non-penalized

configurations of Htoy,reduced(q̃) and configurations presented in Table II associated with

Htoy(q). Even though there is a unique configuration {q̃6 = q̃3 ∧ q̃4, q̃5 = q̃1 ∧ q̃2, q̃4, q̃3, q̃2, q̃1}
associated with every {q1, q2, q3, q4} with the same energy, it does not necessarily hold that

the lowest 24 out of the 26 energies of Htoy,reduced consist of the 24 energies of Htoy. For

example, if we pick a small penalty δ in Table IV, say 0 ≤ δ ≤ 4, then some of the states

penalized by either H∧(q̃1, q̃2, q̃5) or H∧(q̃3, q̃4, q̃6) can still have an energy within the energy

values of Htoy. To avoid this situation, we can choose δ > max(Htoy) which will be sufficient

to remove the energies of the penalized states from the region corresponding to energies of

Htoy, therefore conserving the low-lying spectra of the original Htoy. Using the mapping

explained at the end of Sec. IIA, the quantum version of the 4-local energy function from

Eq. 47 is:

Ĥtoy = I + ˆ̃q1 − ˆ̃q2 + ˆ̃q3 + ˆ̃q4 − ˆ̃q1 ˆ̃q2 ˆ̃q3 + ˆ̃q1 ˆ̃q2 ˆ̃q3 ˆ̃q4. (51)

The quantum version of the 2-local reduced form presented in Eq. 50 is,

Ĥtoy,reduced = I + ˆ̃q1 − ˆ̃q2 + ˆ̃q3 + ˆ̃q4 − ˆ̃q5 ˆ̃q3 + ˆ̃q5 ˆ̃q6 + δ(3ˆ̃q5 + ˆ̃q1 ˆ̃q2 − 2ˆ̃q1 ˆ̃q5 − 2ˆ̃q2 ˆ̃q5)

+ δ(3ˆ̃q6 + ˆ̃q3 ˆ̃q4 − 2ˆ̃q3 ˆ̃q6 − 2ˆ̃q4 ˆ̃q6) (52)

Notice that Ĥtoy acts on a 24 dimensional Hilbert space, span{|q̃4〉⊗ |q̃3〉⊗ |q̃2〉⊗ |q̃1〉}, while

Ĥtoy,reduced acts on a 26 dimensional Hilbert space, span{|q̃6〉⊗ |q̃5〉⊗ |q̃4〉⊗ |q̃3〉⊗ |q̃2〉⊗ |q̃1〉}.
Due to the conservation of the spectrum and bit strings described above (as reflected in

Tables II and IV), the solution obtained from an adiabatic quantum algorithm using either

Ĥtoy or Ĥtoy,reduced as Ĥfinal,

Ĥ(t) = (1 − t/τ)Ĥ(0) + (t/τ)Ĥfinal (53)

should be the same.

In the case of the 2-local Hamiltonian Ĥtoy,reduced, the solution to the optimization problem

is obtained using an adiabatic algorithm after reading the qubits associated to q̃4, q̃3, q̃2, q̃1

at t = τ from the space span{|q̃6〉 ⊗ |q̃5〉 ⊗ |q̃4〉 ⊗ |q̃3〉 ⊗ |q̃2〉 ⊗ |q̃1〉} at t = τ . Notice

that the ancillary qubits in the six qubit version do not carry any physical information, as

expected, since all of the valuable information was stored in the qubits coming from the
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original expression before the reduction. The cost of reducing the locality of a Hamiltonian

to another which contains at most two-body interactions is the increase in the number of

resources due to the additional ancillary bits.

Figure 7 shows the the eigenenergies of Eq. 53 vs. t/τ , where Ĥfinal is replaced by Ĥtoy

(see Figure 7(a)), and by Ĥtoy,reduced with δ = 5, (see Fig. 7(b)). As expected from Table II

and IV, Fig. 7 illustrates the preservation of the subsystem corresponding to the variables

q̃1, q̃2, q̃3 and q̃4 in the ground state of both the original and reduced-locality Hamiltonian.

Degeneracy and overlap of lines in the spectra in Fig. 7 make it difficult to graphically convey

that both spectra in Fig. 7 indeed have 16 states for 0 ≤ eigenenergies ≤ 4. In Fig. 7(b)

we plotted the first 19 eigenstates out of the 26 eigenstates corresponding to Ĥtoy,reduced.

At t/τ = 1, states with energy greater than 4 correspond to states which violate the and

condition introduced by the reduction process. Notice that there are two eigenstates with

eigenvalue 5 in agreement with the table presented in Appendix B after substituting δ = 5,

and one state which corresponds to the one of the four-degenerate manifold with E = 6.

FIG. 7: (Color online) Spectrum comparison of the instantaneous energy eigenvalues for the 4-

local toy Hamiltonian Ĥtoy (left) and its corresponding 2-local version Ĥtoy,reduced(right). (left) Full

spectrum of the 24 instantaneous eigenvalues for Ĥtoy(q̃,q̃2, q̃3, q̃4). (right) First 19 instantaneous

eigenvalues for the 2-local version of Ĥtoy, denoted as Ĥtoy,reduced in text. The value used for δ is 5.

The first 24 levels, 0 ≤ eigenvalues ≤ 4, are associated to the original levels from Ĥtoy. The three

remaining states with eigenvalues greater than 4 are penalized states which violate the conditions

q̃n = q̃i ∧ q̃j (see Table IV for details)

27



VI. RESOURCES NEEDED FOR A 2-LOCAL HAMILTONIAN EXPRESSION IN

PROTEIN FOLDING

For any k-local energy function, e.g., h = q1q2 · · · qk, the reduction can be carried out

iteratively, adding the penalty functionH∧(qi, qj, q̃n) for every substitution of the form qiqj →
q̃n. For a k-local term, (k − 2) substitutions are required for the reduction to 2-local, and

therefore require (k − 2) ancillary bits.

In the particular case of the protein Hamiltonian the reduction procedure needs to be

repeated (N − 2)(ND − D log2N − 1) times, as described below. All the terms in the

HP Hamiltonian include among at most interactions two amino acids, which results in

a maximum locality of 2D log2N . In the following discussion, the cluster notation [k][l]

specifies the contributions of a particular (k + l)−local term into k variable coming from

an amino acid with index i and l variables from an amino acid with index j. Since all

the terms are of this form, to obtain a 2-local Hamiltonian, all products corresponding to

each [k] and [l] of each cluster have to be converted to 1-local terms. We reduce terms

for variables describing each amino acid in turn, for a total of D log2N variables. All

possible combinations of two variables from the D log2N variables for an amino acid are

substituted. The number of ancillary bits required for this substitution is
(

D log2 N

2

)
. These

substitutions convert all terms of the form [3][0] and [2][1] to 2-local. To convert terms of

the form [4][0] or [3][1] to 2-local we need to consider
(

D log2 N

3

)
terms originally containing

three variables from one amino acid. After employing an additional ancillary bit per term

and applying the previous reduction step, all these terms collapse to 1-local with respect

to the i-th amino acid, i.e., these terms will assume the form [1][l]. Iterating over the

D log2N variables for a specific amino acid in order of increasing locality will give us the

number of substitutions or ancilla bits needed per amino acid in order to reduce a particular

cluster [k] to [1] or 1-local. The total number of substitutions per amino acid corresponds to
∑D log2 N

k=2

(
D log2 N

k

)
= ND −D log2N − 1. To carry out the procedure for all (N − 2) amino

acids the number of ancilla qubits required is (N − 2)(ND − D log2N − 1). The number

of qubits needed to represent a 2-local Hamiltonian version of the protein Hamiltonian is

given by adding the number of ancillary qubits to the number of original (N − 2)D log2N
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quantum bits,

# of total qubits for a 2-local expression = (N − 2)(ND −D log2N − 1) + (N − 2)D log2N

= (N − 2)(ND − 1) (54)

Eq. 54 provides a closed formula for the number of qubits needed to find the lowest energy

conformations for a protein with N amino acids in D dimensions in our encoding. In

particular, for the case of a four amino acid peptide HPPH in two dimensions considered in

Sec. IV requires 30 qubits.

VII. CONCLUSIONS

We constructed the essential elements of an adiabatic quantum algorithm to find the

lowest energy conformations of a protein in a lattice model. The number of binary variables

needed to represent N amino acids on an N ×N lattice is (N − 2)D log2N . The maximum

locality of the final Hamiltonian, as determined by the interaction between pairs of amino

acids using the mapping defined here, is 2D log2N .

General strategies to construct energy functions to map into other quantum mechanical

Hamiltonians used for adiabatic quantum computing were presented. The strategies used in

the construction of the Hamiltonian for the HP model can be used as general building blocks

for Hamiltonians associated with physical systems where onsite energies and/or pairwise

potentials are present.

We also demonstrated an application of the Boolean scheme for converting a k-local

Hamiltonian into a 2-local Hamiltonian, aiming toward an experimental implementation in

quantum devices. The resulting couplings, although 2-local, do not necessarily represent

couplings among nearest neighbor quantum bits in a two-dimensional geometry. It is how-

ever known that the number of ancillary physical qubits required to embed an arbitrary

N variable problem is upper-bounded by N2/(C − 2), where C is the number of couplers

allowed per physical qubit.

The most important question remaining to be explored in future work is the scaling of

run time τ with respect to the number of amino acids N . Run time τ is dependent on

the particular instance of the problem – in our case, to different protein sequences. It has

been proposed that proteins have evolved towards a many-dimensional funnel-like potential
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energy surface [7]. The sequences that show a funnel-like structure might be easier to study

using adiabatic quantum computation, because the funnel structure may facilitate annealing

of the quantum wave function toward low energy conformations.
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APPENDIX A: EXTENSION OF THE PAIRWISE INTERACTION TO THREE

DIMENSIONS AND N AMINO ACIDS , N = 2M AND M ≥ 3

This extension follows the principles presented in Sec. III B 3 and extends the terms of

the Hamiltonian to the case of a three-dimensional lattice protein. The pairwise term for

the three-dimensional case is,

H3D
pairwise(N) = −

N∑

i,j=1

GijH
ij,3D
pairwise (A1)

xij,3D
+ (N) = (1 − qf(i,1)+1)qf(j,1)+1

log2 N
∏

s=2

(1 − qf(j,1)+s

−qf(i,1)+s + 2 qf(j,1)+s qf(i,1)+s)

log2 N
∏

s=1

(1 − qf(i,2)+s

−qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s)

log2 N
∏

r=1

(1 − qf(i,3)+r

−qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r), (A2)
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yij,3D
+ (N) = (1 − qf(i,2)+1)qf(j,2)+1

log2 N
∏

s=2

(1 − qf(j,2)+s

−qf(i,2)+s + 2 qf(j,2)+s qf(i,2)+s)

log2 N
∏

s=1

(1 − qf(i,1)+s

−qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N
∏

r=1

(1 − qf(i,3)+r

−qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r), (A3)

zij,3D
+ (N) = (1 − qf(i,3)+1)qf(j,3)+1

log2 N
∏

s=2

(1 − qf(j,3)+s

−qf(i,3)+s + 2 qf(j,3)+s qf(i,3)+s)

log2 N
∏

s=1

(1 − qf(i,1)+s

−qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N
∏

r=1

(1 − qf(i,2)+r

−qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r), (A4)

xij,3D
− (N) = (1 − qf(i,1)+1)qf(j,1)+1

[

1 −
log2 N
∏

k=1

(1 −

qf(i,1)+k)
]

(qf(j,1)+2 + qf(i,1)+2 − 2 qf(j,1)+2 qf(i,1)+2)

log2 N
∏

r=3

[

1 − (qf(j,1)+r +
r−1∏

u=2

qf(j,1)+u − 2
r∏

u=2

qf(j,1)+u)

−qf(i,1)+r + 2qf(i,1)+r(qf(j,1)+r +
r−1∏

u=2

qf(j,1)+u −

2
r∏

u=2

qf(j,1)+u)
] log2 N

∏

s=1

(1 − qf(i,2)+s − qf(j,2)+s +

2qf(i,2)+sqf(j,2)+s)

log2 N
∏

r=1

(1 − qf(i,3)+r −

qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r), (A5)
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yij,3D
− (N) = (1 − qf(i,2)+1)qf(j,2)+1

[

1 −
log2 N
∏

k=1

(1 −

qf(i,2)+k)
]

(qf(j,2)+2 + qf(i,2)+2 − 2 qf(j,2)+2 qf(i,2)+2)

log2 N
∏

r=3

[

1 − (qf(j,2)+r +
r−1∏

u=2

qf(j,2)+u −

2
r∏

u=2

qf(j,2)+u) − qf(i,2)+r + 2qf(i,2)+r(qf(j,2)+r +

r−1∏

u=2

qf(j,2)+u − 2
r∏

u=2

qf(j,2)+u)
]

log2 N
∏

s=1

(1 − qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N
∏

r=1

(1 − qf(i,3)+r − qf(j,3)+r + 2qf(i,3)+rqf(j,3)+r), (A6)

zij,3D
− (N) = (1 − qf(i,3)+1)qf(j,3)+1

[

1 −
log2 N
∏

k=1

(1 −

qf(i,3)+k)
]

(qf(j,3)+2 + qf(i,3)+2 − 2 qf(j,3)+2 qf(i,3)+2)

log2 N
∏

r=3

[

1 − (qf(j,3)+r +
r−1∏

u=2

qf(j,3)+u −

2
r∏

u=2

qf(j,3)+u) − qf(i,3)+r + 2qf(i,3)+r(qf(j,3)+r +

r−1∏

u=2

qf(j,3)+u − 2
r∏

u=2

qf(j,3)+u)
]

log2 N
∏

s=1

(1 − qf(i,1)+s − qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s)

log2 N
∏

r=1

(1 − qf(i,2)+r − qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r). (A7)
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TABLE IV: Truth table for the energy function Htoy,reduced(q̃) = 1 + q̃1 − q̃2 + q̃3 + q̃4 − q̃5q̃3 +

q̃5q̃6 + δ(3q̃5 + q̃1q̃2 − 2q̃1q̃5 − 2q̃2q̃5) + δ(3q̃6 + q̃3q̃4 − 2q̃3q̃6 − 2q̃4q̃6). The top of the table shows

the 16 non-penalized states that satisfy q̃5 = q̃1 ∧ q̃2 and q̃6 = q̃3 ∧ q̃4. These 16 states map one

to one to the states in Table II. A sample of the remaning 48 penalized states are shown after the

breaking line.

q̃6 q̃5 q̃4 q̃3 q̃2 q̃1 H′(q̃1, q̃2, q̃3, q̃4, q̃5, q̃6).

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 1 0 0 1 1 1

0 0 0 1 1 0 1

0 0 0 1 1 1 1

0 0 1 0 1 0 1

0 0 0 0 0 1 2

0 0 0 1 0 0 2

0 0 1 0 0 0 2

0 1 1 0 1 1 2

1 0 1 1 1 0 2

0 0 0 1 0 1 3

0 0 1 0 0 1 3

1 0 1 1 0 0 3

1 1 1 1 1 1 3

1 0 1 1 0 1 4

0 1 0 0 1 0 δ

0 1 0 1 1 0 δ

0 0 0 0 1 1 1 + δ

0 1 1 0 1 0 1 + δ

0 1 1 0 1 0 1 + δ

1 0 0 1 1 0 1 + δ

1 0 1 0 1 0 1 + δ

0 0 0 1 1 1 2 + δ

0 0 1 0 1 1 2 + δ

...
...

...
...

...
...

...

1 1 1 1 0 0 3 + 3 δ

1 0 0 0 1 1 1 + 4 δ

1 1 0 0 1 0 1 + 4 δ

1 1 0 1 0 0 2 + 4 δ

1 1 0 0 0 1 3 + 4 δ

1 1 1 0 0 0 3 + 4 δ

1 1 0 0 0 0 2 + 6 δ
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