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ABSTRACT The traditional Dynamic Window Approach (DWA) with constant weight values of the 

evaluation function leads to the inability of obstacle avoidance for the Automated Guided Vehicles (AGV) 

to perform obstacle avoidance and path planning in the complex environment. Effective avoidance of 

complex obstacles requires adaptive weight adjustment to address the evaluation function's challenges. This 

paper proposes an adaptive DWA (ADWA), which introduces neural network training on the basis of the 

Mamdani DWA (MDWA). Firstly, the Mamdani type fuzzy controller is designed, and then the adaptive 

neuro-fuzzy controller is obtained by neural network training. Then, experiments are carried out through the 

MATLAB simulation environment. The simulation experiment results show that the improved DWA 

compared to traditional DWA can make the AGV pass the obstacle environment with a better trajectory and 

reduce the time. The improved DWA improves the autonomous obstacle avoidance capability of AGVs, 

which not only perfectly fits our task requirements, but also has apparent scientific and practical 

significance in developing AGV autonomous obstacle avoidance technology. 

INDEX TERMS fuzzy control, dynamic window approach, neural network, automatic guided vehicle 

I. INTRODUCTION 

Today’s automatic guided vehicle (AGV) plays a 

significant role in medical evacuation and medical service 

support in disaster rescue. The application of the automatic 

guided vehicle can significantly reduce the risk of the 

operation and improve the operational efficiency in disaster 

rescue and military medical support. Especially in the 

complex field environment, the obstacle situation is 

unknown, and AGV urgently needs a reliable obstacle 

avoidance method. Obstacle avoidance is the critical 

technology for the AGV to get to the desired position [1-

10]. Autonomous obstacle avoidance is a critical issue in 

the field of AGV research. 

Recently, different obstacle avoidance methods have been 

proposed by researchers for AGV autonomous obstacle 

avoidance. Based on the artificial potential field method for 

obstacle avoidance, AGV can avoid obstacles to reach the 

target point [11]. An autonomous obstacle avoidance 

framework based on a combination of sensor coupling and 

artificial potential field method is proposed for AGV in 

complex environments, in which the controller carries out 

obstacle avoidance by obtaining the environmental 

information using sensors of the AGV [12-14]. However, the 

artificial potential field method does not consider the 

kinematic performance of the AGV itself, resulting in the 

AGV not moving according to the planned path in the virtual 

environment. The dynamic window approach (DWA) is a 

strategy that Dieter Fox and Sebastian Thrun proposed and 

applied to mobile robots for obstacle avoidance in 1997 [15-

23]. The DWA builds a preselected set of velocities based on 

the kinematic equations of the robot, and then the optimal 

speed is obtained by an evaluation function. There have been 

some adequate studies on DWA by researchers. A dynamic 

path planning method consisted of the A* algorithm and 

DWA by extending the number of explorable neighborhoods 

and introducing a security cost factor in the evaluation 

function. The security and efficiency of the dynamic path 

planning method are improved [24]. But its algorithm 

increases the obstacle avoidance time. For dynamic changes 

in the environment, the fuzzy control DWA automatically 

adjusts the weights of the objective function according to the 

distance from the AGV to the target point and the size of the 

velocity space. The problem of dangerous AGV path is 

avoided, but it is ineffective in complex environments [25]. 

Reinforcement learning is introduced in the literature [26] to 

enhance applicability. Reinforcement learning is used to 

learn the objective function weights, which can output the 

appropriate weights in different environments. To address the 

problem of insufficient evaluation functions, the literature 

[27] proposes an improved DWA with two additional 

evaluation functions to enhance the accuracy of the 

navigation path but with increased evaluation time. 

Although the methods in the above literature can solve 

some of the problems of traditional DWA, some are fusions 
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of DWA with other algorithms, which increase the 

complexity of the algorithms. Some do not consider the 

evaluation function weight value, which leads to problems 

such as poor obstacle avoidance path and a long time of 

AGV. So, this paper proposes adaptive fuzzy control DWA, 

which enables AGV to acquire environmental information 

and then adaptively output the evaluation function weight to 

complete autonomous obstacle avoidance efficiently. 

Furthermore, the proposed adaptive fuzzy control DWA not 

only optimizes the local obstacle avoidance path of the AGV, 

but also conduct the global path optimization of the AGV by 

automatically adjusting the angle between the AGV and the 

target point. 

The main contributions of this paper are summarized as 

follows: 

⚫ We propose an adaptive DWA based on a fuzzy neural 

network, which aims to solve the problem of real-time 

and efficient obstacle avoidance for the AGV in 

dynamic environments. 

⚫ We use a neural network to train the input-output 

relationship between environmental information and the 

coefficients of the DWA evaluation subfunction to 

obtain an adaptive fuzzy control DWA. The adaptive 

fuzzy control DWA acquires real-time environmental 

information to output the corresponding coefficients. 

⚫ Our experiments demonstrate that adaptive fuzzy 

control DWA can achieve real-time dynamic obstacle 

avoidance for the AGV. Compared with the 

conventional DWA and the Mamdani DWA, the 

adaptive fuzzy control DWA has a shorter obstacle 

avoidance time. 

The rest of the paper is organized as follows: Chapter 2 

describes the basic principles of DWA. Chapter 3 analyzes 

the problems of traditional DWA. Chapter 4 achieves the 

DWA improvement. Chapter 5 conducts simulation 

experiments and a discussion of the results. Finally, Chapter 

6 gives the conclusion of the study. 
II. DYNAMIC WINDOW APPROACH 

DWA can be summarized as three steps: 

(1) The velocity sampling space is restricted to a specific 

range based on the performance limitations and 

environmental constraints of the AGV. A series of 

discrete values of velocity are then obtained based on 

the dynamics and kinematic properties of the AGV. 

(2) The AGV kinematic equations introduce the velocities 

obtained in the first step and then use these velocities to 

simulate the trajectory of the AGV over the next period. 

(3) The evaluation function evaluates these trajectories, and 

the trajectory with the highest score is selected as the 

optimal trajectory of the AGV. 

A. KINEMATICS MODELING OF AGV 

The basic motion structure of AGV is divided into two 

kinds. One is a non-omnidirectional structure, and the other 

is an omnidirectional structure. The main difference between 

these two structures is whether the main direction of motion 

of the AGV is restricted. The omnidirectional AGV can 

move in any direction, while the non-omnidirectional AGV 

can only move forward and backward. Since the AGV in this 

paper is an omnidirectional structure, the kinematic model is 

established for the case of AGV omnidirectional 

(longitudinal presence of velocity component). The motion 

behavior of the AGV includes straight travel, traverse, turn, 

and rotation. Let 𝑥(𝑡) and 𝑦(𝑡) represent the coordinates in 

the world coordinate system at the time. The heading angle is 

described by 𝜃(𝑡) at the time. Then (𝑥, 𝑦, 𝜃) represents the 

kinematic posture. As shown in Fig. 1, it is the AGV 

kinematic model. 

 
FIGURE 1. AGV kinematic model 

Let 𝑣𝑥𝑡  and 𝑣𝑦𝑡 be the lateral and longitudinal velocities of 

the AGV at moment t, respectively, and 𝜔(𝑡)  be the 

rotational velocity. Considering the trajectory of adjacent 

moments as uniform linear motion, the increment of AGV's 

positional posture can be expressed as: 

{

∆𝑥 = 𝑣𝑥𝑡 × ∆𝑡 × 𝑐𝑜𝑠 𝜃𝑡 − 𝑣𝑦𝑡 × ∆𝑡 × 𝑠𝑖𝑛 𝜃𝑡
∆𝑦 = 𝑣𝑥𝑡 × ∆𝑡 × 𝑠𝑖𝑛 𝜃𝑡 + 𝑣𝑦𝑡 × ∆𝑡 × 𝑐𝑜𝑠 𝜃𝑡

∆𝜃𝑡 = 𝜔𝑡 × ∆𝑡

 (1) 

Therefore, the equation for calculating the positional 

attitude at the moment t+1 is expressed as: 

{

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑥𝑡 × ∆𝑡 × 𝑐𝑜𝑠 𝜃𝑡 − 𝑣𝑦𝑡 × ∆𝑡 × 𝑠𝑖𝑛 𝜃𝑡
𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑥𝑡 × ∆𝑡 × 𝑠𝑖𝑛 𝜃𝑡 + 𝑣𝑦𝑡 × ∆𝑡 × 𝑐𝑜𝑠 𝜃𝑡

𝜃𝑡+1 = 𝜃𝑡 +𝜔𝑡 × ∆𝑡

 (2) 

B. AGV SPEED SAMPLING 

Depending on the AGV and environmental factors, the 

speed sampling space can be limited to a reasonable range to 

achieve dynamic speed sampling.  

(1) AGV is limited by its maximum speed and minimum 

speed: 

(𝑣，𝑤) = 𝑣 ∈ [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥], 𝑤 ∈ [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥] (3) 

(2) AGV is limited by drive motor performance 

(maximum and minimum acceleration): 

{
𝑣 ∈ [𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑣𝑏 ∗ 𝛥𝑡, 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑣𝑎 ∗ 𝛥𝑡]

𝑤 ∈ [𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑤𝑏 ∗ 𝛥𝑡, 𝑤𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑤𝑎 ∗ 𝛥𝑡]
 (4) 

(3) AGV is limited by safety protection: 
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𝑣 ≤ √2 ∗ 𝑑𝑖𝑠𝑡(𝑣, 𝑤) ∗ 𝑣𝑏 , 𝑤 ≤ √2 ∗ 𝑑𝑖𝑠𝑡(𝑣, 𝑤) ∗ 𝑤𝑏  (5) 

In the above equation, 𝑣  is the linear velocity, 𝑤  is the 

angular velocity, 𝑣𝑏 indicates the minimum acceleration, and 

𝑣𝑎 indicates the maximum acceleration. 

The AGV velocity set needs to satisfy three constraints, 

which can plan a collision-free and possible trajectory 

combination. Then all the velocities are substituted into the 

evaluation function, and the optimal trajectory is selected as 

the next moment AGV trajectory. 

C. EVALUATION FUNCTION 

In order to select the speed of the final execution trajectory 

from the trajectory, the evaluation function is as follows: 

𝐺(𝑣,𝑤) = 𝜎[𝛼 × ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤) + 𝛽 × 𝑑𝑖𝑠𝑡(𝑣, 𝑤) +
𝛾 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝑤)] (6) 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤)  measures the angular difference θ 

between the AGV orientation angle and the target orientation 

angle at the end of the trajectory during the simulation period 

driven by the selected sampling speed. 

𝐷𝑖𝑠𝑡(𝑣, 𝑤) represents the minimum distance between the 

AGV and the obstacle on a simulated trajectory. The smaller 

the distance, the more likely the AGV will collide with the 

obstacle. 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝑤)is the forward speed of the AGV, which is 

used to evaluate the speed of the AGV during its travel to the 

target point. 

The 𝛼、𝛽、𝛾  are the coefficients of evaluation sub-

functions, representing the weight of each evaluation sub-

function in the evaluation function. The 𝛼 affects the angle 

between the AGV and target direction. The β affects the 

distance between the AGV and obstacle. The 𝛽 is the most 

important for obstacle avoidance. In the obstacle avoidance, 

when the 𝛽  is larger, the distance of the AGV from the 

obstacle is larger. When the 𝛽 is smaller, the distance of the 

AGV from the obstacle is smaller. The 𝛾 affects the speed of 

the AGV. The 𝛼、𝛽、𝛾 jointly affect the evaluation function 

to achieve obstacle avoidance of the AGV. 

The evaluation function needs to be normalized to ensure 

that the three metrics have a combined effect on the 

algorithm and prevent the evaluation function from becoming 

discontinuous due to the high rating of one metric. The 

calculation formula is as follows: 

{
 
 

 
 𝑛𝑜𝑟𝑚𝑎𝑙ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖) =

ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖)

∑ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖)𝑛
𝑖=1

𝑛𝑜𝑟𝑚𝑎𝑙𝑑𝑖𝑠𝑡(𝑖) =
𝑑𝑖𝑠𝑡(𝑖)

∑ 𝑑𝑖𝑠𝑡(𝑖)𝑛
𝑖=1

𝑛𝑜𝑟𝑚𝑎𝑙𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) =
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖)

∑ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖)𝑛
𝑖=1

 (7) 

Where: i is the current trajectory to be evaluated, n is the 

number of combinations of linear and angular velocities that 

satisfy the velocity constraint at the time of velocity sampling. 

III. PROBLEMS OF TRADITIONAL DWA 

By analyzing the literature [28-35], AGV using conventional 

DWA can complete obstacle avoidance and reach the target 

point in a facile environment. However, the AGV usually 

works in complex and variable environments. As the density 

of obstacles increases, the success rate of conventional DWA 

in finding a path decreases. In order to analyze the effect of 

conventional DWA on obstacle avoidance in different 

environments, this paper conducted a simulation experiment 

of obstacle avoidance for the AGV using the conventional 

DWA through MATLAB. As shown in Fig. 2, it is the result 

of the simulation experiment. 

  
（a）𝛼 = 0.2，𝛽 = 0.5，𝛾 = 0.3    （b）𝛼 = 0.05，𝛽 = 0.65，𝛾 = 0.3 

  
（c）𝛼 = 0.05，𝛽 = 0.65，𝛾 = 0.3     （d）𝛼 = 0.2，𝛽 = 0.5，𝛾 = 0.3 

FIGURE 2. Results of conventional DWA simulation experiments 

The combination of evaluation function weights shown in 

Fig. 2(a) leads to the inability of the AGV to complete 

obstacle avoidance for straight-line obstacles. The 

combination of evaluation function weights shown in Fig. 

2(b) leads to redundant rotation of the AGV near the target 

point. The different evaluation function weight combinations 

shown in Fig. 2 (c, d) lead to different paths and times for the 

AGV to reach the target point under the same obstacle 

environment. The above simulation experimental results 

show that the evaluation function weights 𝛼、𝛽、𝛾  are 

critical factors in determine the performance of the DWA 

obstacle avoidance. There are problems with AGV stopping 

in front of obstacles, redundant rotation near the target point, 

and poor AGV obstacle avoidance paths because of the 

constant evaluation function weight. Therefore, the 

evaluation function weights 𝛼、𝛽、𝛾 need to be adaptively 

outputted with the environment to achieve autonomous 

obstacle avoidance for AGV. 

IV. DWA IMPROVEMENT 

This paper proposes an improved DWA, which combines the 

traditional DWA with the fuzzy theory. Through the fuzzy 

theory, the DWA adaptively outputs the weight coefficient of 

the evaluation function with the environment. To obtain the 

training data for the Adaptive-Network-Based Fuzzy 

Inference System (ANFIS), it is first necessary to design the 

Mandani-type fuzzy controller to avoid obstacles effectively. 
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Then the evaluation function weight data of the AGV 

obstacle avoidance process is extracted and used to train the 

fuzzy neural network [36]. 

A. MANDANI-TYPE FUZZY CONTROLLER 

1) FUZZIFICATION 

In the evaluation function, 𝛼  is mainly related to the 

distance between the AGV and the target point and the angle, 

and 𝛽 and 𝛾 are mainly influenced by the distance between 

the AGV and the obstacle. According to the study context, 

there are three inputs: 

(1) The distance 𝐷𝑂  between the AGV and the obstacle 

with the theory of domain for [0,10m] describe in vague 

language as {near (N), middle (M), far (F)}. 

(2) The distance 𝐷𝑡  between AGV and the target point with 

the theory of domain for [0,70m] describe in vague 

language as {near (N), middle (M), far (F)}. 

(3) The angle 𝜃 between the AGV direction and the target 

point with the theory of domain for [0°,180°] describe 

in vague language as {small (S), medium (M), large 

(L)}. 

The affiliation functions of 𝐷𝑂, 𝐷𝑡 , and 𝜃 use trapezoidal 

and Gaussian functions. As shown in Fig. 3, this is a diagram 

of their affiliation functions. 

 

FIGURE 3. 𝑫𝑶, 𝑫𝒕, 𝜽 affiliation functions diagram 

There are three output parameters: heading weight 𝛼 

theory of domain for [0,0.4]. The obstacle avoidance weight 

𝛽 and the velocity weight 𝛾 theory of domain for [0,1]. The 

descriptive fuzzy language is {XS (very small), S (small), M 

(medium), L (large), XL (very large)}. Affiliation functions 

𝛼、𝛽、𝛾 are Gaussian functions. As shown in Fig. 4, it is 

their affiliation function. 

 
FIGURE 4. 𝜶、𝜷、𝜸 affiliation functions diagram 

2) FUZZY RULE 

The formulation of fuzzy rules is the core step to complete 

fuzzy control. Based on the principle of DWA and 

considering the practical application of DWA to outdoor 

AGV path planning, five rules are used according to fuzzy 

rule design principles as follows: 

(1) When the 𝐷𝑡  is large, the 𝐷𝑂 is large, and the 𝜃 is small, 

the AGV gives priority to fast forward toward the target 

position and is not in a hurry to avoid obstacles. So it is 

determined that the 𝛼 is smaller, the 𝛽 is smaller, and 

the 𝛾 is larger. 

(2) When the 𝐷𝑡  is large, the 𝐷𝑂 is large, and the 𝜃 is large, 

the AGV gives priority to adjusting the heading and 

turning to the direction of the target position without 

rushing to avoid the obstacle. So it is determined that 

the 𝛼 is larger, the 𝛽 is smaller, and the 𝛾 is moderate. 

(3) When the 𝐷𝑡  is small and the 𝜃 is large, the AGV needs 

to adjust the heading to the direction of the target 

position and reduce the forward speed. So it is 

determined that the 𝛼 is larger, the 𝛽 is smaller, and the 

𝛾 is smaller. 

(4) When the 𝐷𝑂 is small, the AGV must prioritize obstacle 

avoidance, reduce the travel speed, and explore near the 

obstacle to avoid collision accidents. So it is determined 

that the 𝛼 is smaller, the 𝛽 is larger, and the 𝛾 is smaller. 

(5) Regardless of any situation, when close to an obstacle, 

the AGV must prioritize obstacle avoidance and then 

consider the impact of the 𝐷𝑡  and the 𝜃. 

As shown in Table 1, it is a Mamdani-type fuzzy rule 

design. 
TABLE 1 

MAMDANI-TYPE FUZZY RULE 

Numbers 
Input Output 

Do Dt 𝜽 𝜶 𝜷 𝜸 

1 N N S XS XL XS 

2 N N M S XL XS 

3 N N L S XL XS 

4 N M S XS XL S 

5 N M M S XL S 

6 N M L M XL S 

7 N F S XS L S 

8 N F M S L S 

9 N F L M L S 

10 M N S S M S 

11 M N M M M S 

12 M N L L M S 

13 M M S S M M 

14 M M M M M M 

15 M M L L M M 

16 M F S XS M M 

17 M F M S M M 

18 M F L M M M 

19 F N S S XS M 

20 F N M M M M 

21 F N L L XS M 

22 F M S S S XL 

23 F M M L S L 

24 F M L XL S M 

25 F F S S XS XL 

26 F F M L XS L 

27 F F L XL XS M 

According to the design of the above fuzzy rules, there are 

four representative fuzzy rule surfaces, as shown in Fig. 5. 
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FIGURE 5. Fuzzy rule surfaces 

As shown in Fig. 5, it can be found that the fuzzy rule 

surface is not smooth, and the evaluation function weight 

output is jumpy. The parameters and rules of the Mamdani-

type fuzzy controller cannot be modified after they are 

determined, and the adaptability is poor. The path planning 

effect will be defectively facing a complex and changing 

environment. Therefore, the ANFIS is applied to solve the 

above problems. 

B. ANFIS FUZZY CONTROLLER 

1) ANFIS PRINCIPLE 

ANFIS is a fuzzy inference system based on the Takagi-

Sugeno model. The learning mechanism of the neural 

network is used to automatically extract rules from the input 

and output sample data to form the ANFIS controller. As 

shown in Fig. 6, it is a typical ANFIS system architecture 

[37]. 

 
FIGURE 6. ANFIS system architecture 

2) ANFIS DESIGN 

A training dataset was built from a Mamdani-type fuzzy 

controller and trained in Neuro-Fuzzy Designer of 

Matlab2018a. The experimental environment is the 

Ubuntu18.04 operating system based on the Pytorch 

framework. CPU: Intel Core I9-10900K, GPU: NVIDIA 

RTX 3090, 24GB. 

The dataset was imported into Neuro-Fuzzy Designer. The 

input parameters are 𝐷𝑂 , 𝐷𝑡 , 𝜃 . The output parameters are 

𝛼、𝛽、𝛾 . The Generate FIS is set to Grid partition, the 

affiliation function is set to gaussmf, the output function is 

set to constant, the Optim Method is set to hybrid, the Error 

Tolerance is set to 0.005, and the Epochs is set to 500. The 

training process is shown in Fig. 7 below. The fuzzy neural 

network structure is shown in Figure 8. Because Neuro-

Fuzzy Designer can only perform single output training, the 

output results 𝛼、𝛽、𝛾 are obtained by training three times. 

 
FIGURE 7. ANFIS training process 

 
FIGURE 8. Fuzzy neural network structure 

The pairs of input variable of the training fuzzy affiliation 

functions compared with the original affiliation functions are 

shown in Figure 9. The pairs of output of the training fuzzy 

rule surfaces compared with the original rule surfaces are 

shown in Figure 10. 

 
(a) before training                                            (b) after training 

FIGURE 9. Comparison of affiliation functions 
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(a) before training                                          (b) after training 

FIGURE 10. Comparison of fuzzy regular surfaces 

As shown in Fig. 9, the Mamdani-type separation of each 

region is expected, which does not have good applicability. 

In contrast, the affiliation function obtained by ANFIS 

training is reasonable, and its distribution is consistent with 

the actual environment of DWA obstacle avoidance. As 

shown in Fig. 10, the Mamdani-type output surface plot has 

apparent steps change, which indicates that the output jumps 

more and is not conducive to AGV obstacle avoidance. 

Contrarily, the output surface after ANFIS training is smooth 

and achieves an adaptive output of evaluation function 

weights. 

V. RESULTS AND DISCUSSION 

The MDWA means the combination of the Mamdani and the 

DWA. The ADWA means the combination of the ANFIS 

and the DWA. The DWA, MDWA, and ADWA are tested 

respectively in the simulation environment. According to the 

outdoor work of AGV, this paper designs four different kinds 

of obstacle environment maps, i.e. conventional static 

obstacle environment, complex static obstacle environment, 

simple dynamic obstacle environment and fusion obstacle 

environment. Simulation experiments were performed five 

times for each algorithm. As shown in Table 2, it is AGV 

kinematic model parameters. 
TABLE 2 

AGV KINEMATIC MODEL PARAMETERS 

𝑣(min) 𝑣(max) ∆𝑣/∆𝑡 𝜔(min) 𝜔(max) ∆𝜔/∆𝑡 

0𝑚/𝑠 3𝑚/𝑠 1𝑚/𝑠2 0𝑟𝑎𝑑/𝑠 2𝑟𝑎𝑑/𝑠 1𝑟𝑎𝑑/𝑠2 

A. CONVENTIONAL STATIC OBSTACLE ENVIRONMENT 

The conventional static obstacle environment map is set up 

for the customary obstacle conditions in the outdoor 

environment. The DWA evaluation function weights are set, 

as shown in Fig. 11(a). The initial evaluation function 

weights for MDWA and ADWA are assigned to 𝛼 =
0.1，𝛽 = 0.5，𝛾 = 0.4. As shown in Fig. 11(b, c), it is the 

simulation experimental path planning results. As shown in 

Table 3, it is five simulation experimental time. 

 
（a） DWA  

  
（b） MDWA                           （c） ADWA 

FIGURE 11. Simulation path in conventional obstacle 
environment 

TABLE 3 

SIMULATION TIME IN CONVENTIONAL OBSTACLE ENVIRONMENT 

Algorithm 
Number Average 

time 1 2 3 4 5 

DWA Unsuccessful Rotate 106.14s 108.55s 107.32s 107.34s 

MDWA 91.36s 92.47s 91.20s 93.51s 92.76s 92.26s 

ADWA 87.80s 87.53s 86.39s 87.31s 85.98s 87.00s 

It can be found through the simulation experiment. When 

the initial evaluation function weights are set to 𝛼 =
0.2，𝛽 = 0.4，𝛾 = 0.4 , the AGV stops in front of the 

obstacle and cannot complete obstacle avoidance. When the 

initial evaluation function weights were changed to 𝛼 =
0.05，𝛽 = 0.65，𝛾 = 0.3, the AGV made a non-essential 

rotation near the target point. When the initial evaluation 

function weights were modified to 𝛼 = 0.1，𝛽 = 0.6，𝛾 =
0.3, the AGV reached the target point. The above three cases 

illustrate that different evaluation function weight settings 

can lead to different obstacle avoidance paths of the AGV. 

However, regardless of setting the initial evaluation function 

weights, MDWA and ADWA can achieve path planning, and 

the trajectories are the same. It indicates that the improved 

DWA can adaptively output the evaluation function weights 

to achieve autonomous obstacle avoidance of the AGV. 

From Table 4, we can see that the improved DWA avoidance 

time is much smaller than DWA. The simulation time of 

ADWA is slightly shorter than MDWA. The reason is that 

the 𝛼 is smaller, 𝛽 is larger, and 𝛾 is larger of ADWA than 

MDWA in the first avoidance. During the linear motion of 

AGV, the 𝛾 of ADWA is larger. Therefore, the AGV motion 

time is reduced, and thus the total path planning time ADWA 

is smaller than MDWA. 

B. COMPLEX STATIC OBSTACLE ENVIRONMENT 

The complex static obstacle environment map is set up for 

the more complex obstacle environments featuring the 

outdoor environment. The initial evaluation function weights 

are set to 𝛼 = 0.1，𝛽 = 0.5，𝛾 = 0.4. As shown in Fig. 12, 

it is the simulation experimental path planning results. As 

shown in Table 4, it is five simulation experimental time. 
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（a） DWA                            （b） MDWA                        （c） ADWA 

FIGURE 12. Simulation path in complex obstacle environment 

TABLE 4 

SIMULATION TIME IN COMPLEX OBSTACLE ENVIRONMENT 

Algorithm 
Number Average 

time 1 2 3 4 5 

MDWA 145.73s 143.69s 146.50s 145.81s 143.07s 144.96s 

ADWA 139.20s 137.54s 137.82s 138.69s 139.15s 138.48s 

It is found that DWA cannot complete the obstacle 

avoidance task by simulation experiments. However, both 

MDWA and ADWA can complete the obstacle avoidance 

task well, and the path planning trajectory is almost the same. 

But the simulation time of ADWA is shorter than that of 

MDWA. Because the evaluation function weight of ADWA 

output obtained by neural network training is more 

reasonable, more adaptable to the complex obstacle 

environment, and enables the AGV to pass the obstacle 

quickly while ensuring safety. 

C. SIMPLE DYNAMIC OBSTACLE ENVIRONMENT 

Obstacle avoidance performance experiments are 

conducted for conditions where dynamic obstacles exist in 

the environment. This environment map sets two dynamic 

obstacles. The first obstacle moves from position the (15,0) 

parallel to the Y-axis at a speed of 1m/s. The second obstacle 

moves from position the (40,0) parallel to the Y-axis at a 

speed of 1m/s. The initial evaluation function weights are set 

to 𝛼 = 0.1，𝛽 = 0.5，𝛾 = 0.4. As shown in Fig. 13, it is 

the simulation experimental path planning results. As shown 

in Table 5, it is five simulation experimental time. 

   
（a） DWA                         （b） MDWA                            （c） ADWA 

FIGURE 13. Simulation path in simple dynamic obstacle 
environment 

TABLE 5 

SIMULATION TIME IN SIMPLE DYNAMIC OBSTACLE ENVIRONMENT 

Algorithm 
Number Average 

time 1 2 3 4 5 

DWA 52.31s 51.38s 52.59s 51.86s 51.91s 52.01s 

MDWA 50.01s 50.52s 50.45s 50.34s 50.40s 50.34s 

ADWA 49.50s 49.57s 49.82s 49.49s 49.72s 49.62s 

The simulation results show that the three algorithms can 

make the AGV complete obstacle avoidance and reach the 

target position. The improved DWA simulation time is 

shorter, so the improved DWA can quickly make the AGV 

complete obstacle avoidance. The simulation time of ADWA 

is slightly shorter than MDWA because ANFIS outputs more 

reasonable evaluation function weights, which demonstrated 

that the ADWA can weigh between the obstacle avoidance 

weight and speed weight during obstacle avoidance, and then 

output a larger speed weight when there is no obstacle. 

D. FUSION OBSTACLE ENVIRONMENT 

The fusion obstacle environment adds a dynamic obstacle 

in the conventional static obstacle environment map. The 

dynamic obstacle moves reciprocally from position the 

(30,30) to position the (30,50) at a speed of 1m/s. The initial 

evaluation function weights are set to 𝛼 = 0.1，𝛽 =
0.5，𝛾 = 0.4 . As shown in Fig. 14, it is the simulation 

experimental path planning results. As shown in Table 6, it is 

five simulation experimental time. 

   
（a） DWA                           （b） MDWA                       （c） ADWA 

FIGURE 14. Simulation path in fusion obstacle environment 

TABLE 6 

SIMULATION TIME IN FUSION OBSTACLE ENVIRONMENT 

Algorithm 
Number Average 

time 1 2 3 4 5 

DWA 112.47s 111.72s 113.61s 111.90s 112.35s 112.41s 

MDWA 97.14s 97.50s 96.45s 96.91s 97.03s 97.00s 

ADWA 92.54s 92.93s 93.11s 92.48s 92.66s 92.74s 

From the simulation experiment results, it is shown that 

the DWA can complete the obstacle avoidance task, but the 

planning path is poor and the AGV motion time increase. 

The improved DWA including the MDWA and the ADWA 

can complete the trajectory planning. The average simulation 

time of ADWA is 4.26s less than that of MDWA because the 

combination of evaluation function weights output from 

ANFIS makes the AGV movement faster. 

Based on the above simulation experiments, it can be 

concluded that both the DWA and improved DWA can 

achieve obstacle avoidance in the conventional static 

environment. However, the DWA cannot complete obstacle 

avoidance in a complex obstacle environment, while 

improved DWA can complete obstacle avoidance, and the 

ADWA simulation times are shorter than the MDWA in a 

complex static obstacle environment. The effectiveness and 

superiority of the improved DWA are verified by the 

experimental simulation results well verify. 

VI. CONCLUSION 

This paper proposes an improved DWA with adaptive output 

evaluation function weights to address the problems of 

stopping in front of obstacles, rotating near the target point, 

and poor obstacle avoidance path when AGV uses traditional 

DWA for obstacle avoidance. Firstly, the environmental 

information is fuzzified. The input parameters are the 

distance between AGV and obstacle, the distance between 

AGV and target point, and the angle between AGV heading 

and target point. The output quantities are the evaluation 

function weights. Then, the fuzzy controller is designed 

based on the fuzzy theory. The Mamdani type controller 
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fuzzy rule surface step change is evident, while the ANFIS 

fuzzy rule surface is relatively smooth. Finally, from the 

simulation experiments in different obstacle environments, it 

is found that the improved DWA can adaptively output the 

evaluation function weights. However, the ADWA enables 

the AGV to complete autonomous obstacle avoidance better, 

and the simulation time is shorter than the MDWA. The 

experimental results also show that ADWA has better 

environmental adaptability and obstacle avoidance 

performance in an unknown environment. The research 

results will benefit the development of the AGV autonomous 

obstacle avoidance technology. 
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