
Construction of Novel Semi-Empirical Tire Models for Combined Braking and
Cornering

Gäfvert, Magnus; Svendenius, Jacob

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gäfvert, M., & Svendenius, J. (2003). Construction of Novel Semi-Empirical Tire Models for Combined Braking
and Cornering. (Technical Reports TFRT-7606). Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5fa40e76-4d89-4910-9e63-9592605e2438


ISSN 0280–5316

ISRN LUTFD2/TFRT--7606--SE

Construction of

Novel Semi-Empirical

Tire Models for Combined

Braking and Cornering

Magnus Gäfvert

Jacob Svendenius

Department of Automatic Control

Lund Institute of Technology

April 2003





4



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 The Tire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Tire Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Behaviour at Pure Braking or Cornering . . . . . . . . . . . . 10

1.4 Behaviour at Combined Braking and Cornering . . . . . . . . 11

1.5 Tire Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Practical Tire Models . . . . . . . . . . . . . . . . . . . . . . . 12

2. The Brush Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Combined-Slip Adhesion Forces . . . . . . . . . . . . . . . . . 17

2.2 Combined-Slip Slide Forces . . . . . . . . . . . . . . . . . . . . 20

2.3 Effects of Combined Slips . . . . . . . . . . . . . . . . . . . . . 23

2.4 Self-Aligning Torque . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Analysis of the Brush-Model . . . . . . . . . . . . . . . . . . . 26

3. Brush-Model Relations Between Pure- and Combined-Slip

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Separation of Adhesion and Slide Forces . . . . . . . . . . . . 29

3.2 Combined-Slip Forces as a Scaling of Pure-Slip Forces . . . . 30

4. Semi-Empirical Combined Slip Model . . . . . . . . . . . . . . 38

4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Slip Parameterization . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Magic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Utilizing Braking Data to Generate Driving Data . . . . . . . 42

5. Validation and Discussion . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Measurement data . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Relations to Other Models . . . . . . . . . . . . . . . . . . . . . 46

6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B. Slip translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C. Derivation of non-singular expressions . . . . . . . . . . . . . 61

D. Validation plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

E. Pseudo-Code Implementations . . . . . . . . . . . . . . . . . . . 65

5



6



1. Introduction

The forces generated in the contact between the tires and the road are of major

importance for the dynamic behavior of a road vehicle. Hence, accurate tire models

are necessary components of complete vehicle models aimed at analyzing or simu-

lating vehicle motion in real driving conditions. There are many previous models

which describe the tire-forces generated at conditions of pure braking, driving, or

cornering, as well as models which describe the tire forces resulting from mixed

conditions of simultaneous braking (or driving) and cornering. Some models are
theoretical in the sense that they aim at modeling the physical processes that

generate the forces. Other models are empirically oriented and aim at describing

observed phenomena in a simple form. Theoretical models are generally based on

simplifying assumptions which limit their practical use. They often involve pa-

rameters which are difficult to identify. Empirical models are, in general, based

on functional approximations of experimental data. Pure-condition tire-forces may

be described well by rather compact and simple empirical models that are widely

accepted. Pure-slip tire data from test-bench experiments are often available for

calibration. The situation for mixed conditions is somewhat different. The tran-

sition from one to two dimensions makes it more difficult to apply functional

approximation. Empirical models tend to be either rough approximations or quite

complex and difficult to understand. Accurate models rely on parameters that

need to be calibrated with mixed-condition experimental data. This is a drawback

since such data are only rarely available for a specific tire.

The main result in this report is the derivation of a mixed-condition model

that is based on pure-condition models and do not rely on available combined-

slip data for calibration. The idea behind the proposed model is to extract enough

information from pure-condition empirical models to construct the mixed-condition

tire-forces. The procedure is based on the standard brush-model for tire mechanics

in which the rubber layer of the tire is modeled as elastic bristles. The proposed

model has several attractive features:

• It reduces exactly to the empirical model at pure-slip.

• It gives a smooth transition from small-slip to large-slip behaviour which
agrees with empirical observations.

• Only few parameters are needed which all have clear physical interpreta-
tions.

• Nominal parameter values may be derived automatically from the empirical
pure-slip models.

• The model does not include any singular expressions.

• Differences between driving and braking conditions are accounted for.

• Velocity dependence is included even when using velocity-independent pure-
slip models.

The remaining part of this section describes the qualitative behaviour of pneu-

matic tires. Definitions commonly used in tire modeling are introduced. A brief

survey of previous models for tire-force generation then completes the introduc-

tion. In Section 2 the theoretical brush-model is presented. Section 3 presents

a procedure to decompose empirical pure-condition tire-forces into components

of adhesive forces and sliding forces. It is described how mixed-condition forces

may be constructed from these components. In Section 4 semi-empirical models of

mixed-condition tire-forces are described. Practical implementation of the models

is discussed. Results and validation of the models are then presented in Section 5.

The report concludes with a summary in Section 6.

For convenience the following notations will be used: Vectors are used to de-

scribe planar entities and are therefore assumed to have two components unless

7
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Figure 1 Schematic of a radial truck tire. (Reprinted from [3].)
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Figure 2 Forces and moments acting on a tire [27].

stated otherwise. Vectors are denoted by a bar as in v̄, and the corresponding

components and magnitude are denoted by vx, vy, and v.

1.1 The Tire

The now predominating radial tire [3] is built on a carcass of steel cords running
radially from bead to bead. The beads clamp the tire to the wheel rim. A stabiliz-

ing belt of crossed steel-cords surrounds the carcass. The rubber tread is bonded

on the belt and sculpted with a tread pattern. See Figure 1. In the contact patch

between the tire and the road the rubber is partly gripping and partly sliding on

the road surface, resulting in adhesive and sliding forces. The adhesive force is

generated by elastic deformation of the tire and the sliding force from sliding fric-

tion. Hence, different physical processes are present simultaneously in different

regions of the contact patch. The generated forces under different driving con-

ditions depend on the motion of the tire carcass relative to the road. There are

various ways to describe this motion depending on choice of reference systems

and normalizations. The choice of reference system in this work largely follows

the SAE standard [27], with the longitudinal x-axis aligned with the wheel head-
ing, the lateral y-axis perpendicular to the wheel, and the vertical z-axis pointing

downwards, as of Figure 2. The forces of interest in vehicle-handling studies are

the planar lateral and longitudinal forces, Fx and Fy, and the self-aligning mo-
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ment Mz. The longitudinal tire force Fx is generated when braking or driving
1 , and

the lateral force Fy and the torque Mz when cornering. The self-aligning moment

results from the fact that the planar forces have a point of action which is not

positioned exactly under the wheel center. The rolling-resistance and overturning

moment are not of primary interest for vehicle handling and will not be regarded

in the following. Likewise, it will be assumed that the camber angle γ is zero. For
heavy vehicles this is normally a reasonable approximation.

1.2 Tire Kinematics

This section describes the relevant tire kinematics and definitions that are used

in the following. Refer to Figure 3 for illustration of the described entities.

xx

y z

F̄

Mz

−Fx

−Fx

−Fy

v̄

vx

vx

vy

v̄s

vsx

vsy

α

Ω
Re

Figure 3 Kinematics of an isotropic tire during braking and cornering. Force vectors are

also included. (Left: top view; Right: side view)

The wheel travel velocity v̄ = ( vx,vy ) deviates from the wheel heading by the
slip angle α

tan(α ) =
vy

vx
(1)

The circumferential velocity of the wheel is

vc = ΩRe (2)

where Ω is the wheel angular velocity, and Re the effective rolling radius of the
tire. The slip velocity, or the relative motion of the tire in the contact patch to

ground, is

v̄s = ( vx − vc,vy ) (3)

The direction of the slip velocity is denoted by

tan(β) =
vsy

vsx
(4)

In tire modeling the slip velocity is often normalized with a reference velocity, to

yield a dimensionless tire-slip entity. Common slip definitions are

σ̄ =
v̄s

vc
(5a)

κ̄ =
v̄s

vx
(5b)

s̄ =
v̄s

v
(5c)

1In the following, when the word “braking” is used in the context of longitudinal tire force genera-

tion, this will actually mean “braking or driving” unless stated otherwise.
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Note that the slips are collinear with the slip velocity v̄s. It is the custom to describe

tire-forces as functions of the slip rather than the slip velocity. This convention is

followed also in this work. Implicitly, this assumes that the forces do not depend

on the magnitude of the slip velocity, vs. In general, this is not true since at least

the sliding friction normally depends on the velocity.

There are several conventions on how to define the tire slips, e.g. the ISO

and SAE standards [17, 27] use −100κ x to represent longitudinal slip, and α for
lateral slip. In this report the slips are defined such that signs are consistent for

the different slip definitions, and such that a generated tire force has opposite

sign to the slip. This means that braking or left cornering will result in positive

slip and negative force. For convenience λ will be used to denote longitudinal slip
as

λ = κ x (6)

The slip definitions of (5) have the drawbacks of singularities at wheel lock
(vc = 0), zero longitudinal speed (vx = 0), and zero wheel travel speed (v = 0),
respectively. Usually σ̄ is used at driving and κ̄ at braking conditions, since they
are then upper bounded in magnitude by unity. The slip s̄ may be convenient to

use since it behaves properly for all nonzero vehicle speeds. It is straightforward

to translate between the different slip representations

σ̄ = ( λ , tan(α ) ) /(1− λ ) =
κ̄

1− κ x
=

s̄
√

1− s2y − sx
(7a)

κ̄ = ( λ , tan(α ) ) =
σ̄

1+ σ x
=

s̄
√

1− s2y

(7b)

s̄ = ( λ cos(α ), sin(α ) ) =
σ̄

√

(1+ σ x)2 + σ 2y
=

κ̄
√

1+ κ 2y
(7c)

1.3 Behaviour at Pure Braking or Cornering

At pure braking the lateral translational velocity is zero, vy = 0, and therefore also
the lateral slip is zero, α = 0. Hence, the resulting tire-force is determined solely
by the longitudinal slip λ . Normally the longitudinal force F0x is parameterized
in λ . In Figure 4 (left) the normalized longitudinal tire force F0x/Fz at different
slips λ in pure braking is shown for a typical truck tire on a steel surface. As can

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ

−
F

x
/F

z

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

α [deg]

−
F

y
/F

z

Figure 4 Normalized measured tire forces of a standard truck tire on steel surface at Fz
= 20 (“o”), and 40 (“*”) kN.3 Left: Normalized longitudinal force at pure braking/traction.
Right: Normalized lateral force at pure cornering. (Data from [10].)

be seen, the characteristics are highly non-linear. For small λ the longitudinal
force appears to be approximately linear to the slip. Then a peak appears around

3Deficiencies in measured data have eliminated the dependence of the longitudinal-force Fx on the

normal load Fz.
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Figure 5 As the tire is partly gripping and partly sliding on the road surface the total tire

force is composed of adhesive and sliding forces.

λ = 0.2. After the peak the force level out and decreases with increasing slips.
The shape of the curve is due to the adhesive region of the contact patch getting

smaller with increasing slips. At a certain slip there is no adhesion at all, and the

force is generated entirely by sliding friction. The transition to full sliding occurs

in the neighborhood of the peak value.

In pure cornering the circumferential velocity equals the longitudinal transla-

tional velocity, vx = vc, and therefore the longitudinal slip is zero, λ = 0. Hence,
the resulting tire-force F0y depends only on the lateral slip and is therefore nor-

mally parameterized in α . Figure 4 (right) shows the normalized lateral tire force
F0y/Fz for different slip angles at pure cornering. The shape is qualitatively the
same as for the longitudinal force and reflects the transition from adhesion to

sliding in the contact patch. The force peak is found around α = 15 deg. The
lateral friction is normally only measured for slip angles up to about 25 deg. Note

that the force depends nonlinearly on the normal force Fz. This dependence is,

e.g., due to changes in the pressure distribution of the normal force in the contact

patch and changes of friction characteristics. In general the initial slope and peak

value of F0y/Fz decrease with increased load.

In Figure 5 is it illustrated how the total tire force has components resulting

from the adhesive and sliding parts of the contact region.

The behavior described so far concerns steady-state conditions. For varying

slips there are transient effects resulting from carcass deformation. Simply put,

the tire act as a complex rolling spring when attached to a vehicle. The main

observed effect of transient behavior is that it takes a specific rolling distance, the

relaxation length σC, for the lateral slip to build up, and hence, the lateral force.

1.4 Behaviour at Combined Braking and Cornering

At combined braking and cornering the magnitude and direction of the resulting

tire force depends on the magnitude and direction of the total slip vector. Figure 6

shows the resulting tire forces for two sets of total slips where the lateral slip is

held fixed and the longitudinal slip is varied from free rolling (λ = 0) to locked
wheel (λ = 1). The resulting lateral force decreases, compared to the pure corner-
ing case, as the applied longitudinal slip increases. This effect may be explained

by the decreasing size of the adhesive contact region as the total slip magnitude

increases, and the projection of the friction force generated by the sliding region

in both the longitudinal and lateral directions. The maximum available tire forces

F∗
0x and F

∗
0y at pure braking or cornering reflects the maximum available tire/road

adhesion. Since the road adhesion provide a bound also on combined forces, the

envelope of all possible curves as in the figure describes an ellipse-like shape,

with corresponding major and minor axes defined by F∗
0x and F

∗
0y. This envelope

is commonly denoted as the friction ellipse.

11
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Figure 6 Measured combined tire forces of a standard truck tire on steel surface at Fz =
40 kN and λ ∈ [0,1] for α = −4.7○ (“o”), and α = −9.8○ (“*”). The triangles denote the
maximum achievable pure longitudinal and lateral forces (F ∗

x , F
∗
y) and defines the friction

ellipse (dashed). (Data from [10].)

1.5 Tire Measurements

Measurements of tire characteristics are performed with test facilities where pa-

rameters such as the tire slips, normal load, and wheel travel velocity are con-

trolled precisely while forces and moments are recorded. A common setup is to

apply the loaded tire on a large rolling drum [16]. Another configuration is to
translate a flat steel bar under the loaded tire [22]. Testing under real road-
surface conditions may be performed with a test rig attached to a vehicle [25].
Some test facilities are limited to pure-slip or steady-state conditions, while oth-

ers may be used to measure combined-slip conditions and transient behavior. Tests

are normally performed by holding one slip constant, while sweeping the other.

In general, the applied side-slip angles are smaller than around 15 degrees, and

empirical tire-force data is normally only available up to this limit. Resulting data

are of the type shown in Figures 4 and 6.

Generation of driving data requires more advanced test equipment than gen-

eration of braking data, since a motor for developing the traction torque then is

necessary.

1.6 Practical Tire Models

The basic demand of a practical tire model is the ability to reproduce tire forces

from compact and comprehensible mathematical expressions, using parameters

that are easily obtainable and inputs that are measurable. Since the physical pro-

cesses occuring in the contact region are difficult to model theoretically, practical

tire models often describe resulting forces and moments in terms of empirical

data, tire slips, and total normal forces. The empirical data inherently include the

complex effects of friction, roughness, lubrication, deformation, etc.

Pure-slip models The braking stiffness Cλ and cornering stiffness Cα are de-

fined as the linearization of the friction curves in Figure 4 at λ = 0 and α = 0

12



[30]

Cλ = −
dF0x

dλ

∣

∣

∣

∣

λ=0

(8a)

Cα = −
dF0y

dα

∣

∣

∣

∣

α =0

(8b)

The negative signs in (8b) is due to the fact that according to conventions the
cornering and braking stiffnesses are defined to be positive. The stiffnesses may

be used to model tire forces at pure braking or pure cornering for small tire slips

as:

F0x(λ ) = −Cλ λ (9a)

F0y(α ) = −Cα α (9b)

In some cases it is convenient to use the normalized stiffness coefficients:

CN,λ =
1

Fz
Cλ (10a)

CN,α =
1

Fz
Cα (10b)

A common way to include the transient effects resulting from the flexible carcass

is to replace Equation (9b) with the linear time-variant differential equation

σC
vc

dF0y

dt
+ F0y = Cα α (11)

where the time constant depend on the circumferential velocity vc [23].

For larger slips the nonlinear characteristics of the friction curves need to be

modeled. The now predominating model is the “Magic Formula” [1], which is a
functional approximation of the lateral and longitudinal tire forces, as well as

aligning torque, on the form

y(x) = D sin(C arctan((1− E)x + (E/B) arctan(Bx))) (12)

where (x, y) is (λ , F0x), (α , F0y), or (α ,M0z). The four coefficients have interpre-
tations as stiffness factor (B), shape factor (C), peak factor (D), and curvature
factor (E), and are unique for each of Fx, Fy, and Mz. Approximate normal load
dependence may be introduced as D = a1F

2
z + a2Fz, BCD = (a3F

2
z + a4Fz)/e

a5Fz ,

and E = a6F
2
z + a7Fz + a8, or with the slightly modified expressions of [2]. Fit

to experimental data is performed by parameter optimization of B,C,D,E (for a
fixed normal load), or a1...8 (for varying normal load). Another related model is
the Burckhardt approach [18], in which another functional approximation is used.

Combined-slip models Based on the mechanics of the tire and the available

empirical data, a number of criteria for combined models may be stated (in the
spirit of [7]):

1. The combined force F̄(λ ,α ) should preferably be constructed from pure slip
models F0x(λ ) and F0y(α ), with few additional parameters.

2. The computations involved in the model must be numerically feasible and

efficient.

3. The formulas should preferably be physically motivated.

13



4. The combined force F̄(λ ,α ) should reduce to F0x(λ ) and F0y(α ) at pure
braking or cornering:

F̄(λ ,0) = [ F0x(λ ),0 ]

F̄(0,α ) = [ 0, F0y(α ) ]

5. Sliding must occur simultaneously in longitudinal and lateral directions.

6. The resulting force magnitudes should stay within the friction ellipse.

7. The combined force should be F̄ = −Fzµv̄s/vs for locked-wheel skid for tires
with isotropic friction characteristics.

The most simplistic model of combined forces is based on the friction ellipse

concept [30, 11, 21]. While the friction ellipse is the envelope of the maximum
achievable forces, the ellipse is here used also for modeling intermediate forces. It

is used to compute a combined lateral force Fy(α , λ ) at a given longitudinal force
Fx, and is based on the assumption

(

Fx

F∗
0x

)2

+

(

Fy(α , λ )

F0y(α )

)2

= 1 (13)

where F∗
0x is the maximum achievable longitudinal force, and F0y(α ) the corre-

sponding lateral force at pure slip

Fy(α , λ ) = F0y(α )

√

1−

(

Fx

F∗
0x

)2

(14)

An objection to this model is the assumption (13), which is not true, since adhesion
limits are not necessarily fully reached for combined forces in the interior of the

friction ellipse.

Another simple model is the Kamm Circle [18], where the resultant force mag-
nitude is described as a function of the total slip magnitude. The force and slip

vectors are then assumed to be collinear, possibly with a corrective factor ks:

Fx = F(s)
sx

s
and Fy = ksF(s)

sy

s
(15)

A drawback with this model is that longitudinal and lateral characteristics are

assumed to be the same, modulo the corrective factor.

Some early efforts to model tire forces under combined-slip conditions are de-

scribed and compared in [19]. One of the most well-known models is first presented
in [20]:

Fx(λ ,α ) =
Fx(λ )Fy(α )λ

√

λ 2F2y (α ) + tan2(α )F2x (λ )
(16a)

Fy(λ ,α ) =
Fx(λ )Fy(α ) tan(α )

√

λ 2F2y (α ) + tan2(α )F2x (λ )
(16b)

In [7] this model is shown to give incorrect result for small slips and a modified
version is presented.

In [1], a procedure for computing combined forces for the Magic Formula is
presented. It is essentially a refinement of the Kamm Circle for non-isotropic tire

characteristics and a normalization of the slips to guarantee simultaneous sliding.

The normalized slip

σN =

√

(

σ x
σ ∗
x

)2

+

(

σ y
σ ∗
y

)2

(17)
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is an entity that is less then one for non-sliding conditions. It is based on an

elliptic assumption where σ ∗
x and σ ∗

y are the longitudinal and lateral slips that

corresponds to full sliding for pure slips, normally taken as the slips at the peak

values F∗
0x, and F

∗
0y. Now the combined forces are computed as

Fx = − cos(β ∗ )F0x(σ ∗
xσN) and Fy = −εd(σN) sin(β ∗ )F0y(σ ∗

yσN) (18)

with tan(β ∗ )
*
=

σ y/σ ∗
y

σ x/σ ∗
x
. For large slip conditions the factor εd(σN) must be included

to give correct direction of the resulting forces. The reason is the fact that for

small slips real tire-forces are essentially produced by elastic deformation, and

for large slips by sliding friction. Therefore slip vectors of the same orientation

but different magnitudes may result in forces with different orientation. It is not

clear how to determine εd(σN), and in [2] a modified procedure was presented:

Fx = cos ((1− ϑ )β ∗ + ϑ β ) F′
0x and Fy = sin ((1− ϑ )β ∗ + ϑ β ) F′

0y (19)

with ϑ *
= 2

π arctan(q1σ 2N) and

F′
0x

*
= F0x(σN) − sat(σN) (F0x(σN) − F0y(σN)) sin2(β ∗ ) (20a)

F′
0y

*
= F0y(σN) + sat(σN) (F0x(σN) − F0y(σN)) cos2(β ∗ ) (20b)

The variables ϑ , F′
0x, and F

′
0y describe the gradual change of orientation of the

resulting force from adhesion to sliding. At large slip-magnitudes the force is

collinear with the slip vector. In this new model only one parameter, q1, is used.

In [4] a model for combined braking and cornering is presented, which is based
on functional representation. The model is much inspired by the Magic Formula

and uses functions based on arc tangents to describe forces under combined-slip

conditions.

The recent COMBINATOR model [28, 26] is still a variation on the Kamm
Circle. Here the tire force magnitude is described by

F = F0x(s) cos
2(β) + F0y(s) sin

2(β) (21a)

and the combined forces as

Fx = F cos(β) and Fy = F sin(β) (21b)

The model assumes collinearity between resulting force and the slip vector.

In [4] a model is presented that is based on functional representation much
inspired by the Magic Formula. Functions based on arc tangents are used to

describe forces under combined-slip conditions. In principle, these represent purely

empirical weighting functions that are multiplied with pure-slip forces obtained

with the Magic Formula. The latest formulation may be found in [24] and is
also commercially available in the “DelftTyre” product series of TNO Automotive,

Netherlands. The model needs to be calibrated with combined-slip data.

There are also less empirical models based on brush-type mechanics like e.g.

[12, 13, 14]. They are derived from first principles under simplifying assumptions
and rely on basic entities such as tire stiffness, normal load, slips, and road friction

coefficients. The potential main advantage with first-principles models are their

applicability on different road surface conditions. In practice, this is difficult since

the physical processes are different on e.g. gravel, dry or wet asphalt, ice, etc.

Also, the assumptions made will remove effects of unmodeled properties.

Another class of models that have gained much attention recently are those

that include also transient behavior. The Magic Formula, and other similar mod-

els, are approximations of experimental steady-state tire characteristics. Dynamic
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AdhesionSlide

vsx

Fz

a−a xs

δx(x)

δ y(x)y

x

Figure 7 The deformation of the rubber layer between the tire carcass and the road accord-

ing to the brush model. The carcass moves with the velocity vsx relative the road. The contact

zone moves with the vehicle velocity vx . (Top: side view; Bottom: top view)

transients were investigated in [29] and some recent tire models aim at including
dynamic behavior [5, 8, 9]. The main dynamic effect is due to the flexible carcass,
which may be modeled by (11).
Much research has been devoted to tire modeling and the brief survey above

does by no means cover the area. Further references may be found in e.g. [6]
and [24].

2. The Brush Model

The brush-model is a well-known approach to model tire forces, see e.g. [23], [24]
or [30]. In this section the brush-model concept is applied to combined slips, much
like the approach of [13]. The brush model describes the generation of tire forces
based on partitioning of the contact patch into an adhesion and a slide region.

Forces in the adhesive region are assumed to be caused by elastic deformation in

the rubber volume that is between the tire carcass and the ground. The carcass is

assumed to be stiff, which means that effects of carcass deformation are neglected.

In the sliding region forces are caused by sliding friction.

The model is obtained by dividing the rubber volume in the contact region into

infinitesimal elements. Each element stretches laterally over the entire contact

region. The elements are regarded as elastic rectangular blades, or bristles, see

Figure 7. Even though rubber in general is not linearly elastic, this assumption

is made in the brush model. Positions in the contact region are expressed in a

reference system attached to the carcass, with the origin located in the center of

the contact region. The length of the contact region is 2a. Each bristle is assumed

to deform independently in the longitudinal and lateral directions. In the adhesive
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Figure 8 The deformation of a bristle element in the contact patch. Compare with Figure

7.

region the bristles adhere to the road surface and the deformation force is carried

by static friction. In the the sliding region the bristles slide on the road surface

under influence of sliding friction. Hence, in the sliding region the resulting force

is independent of the bristle deformations.

2.1 Combined-Slip Adhesion Forces

Bristle forces Regard the specific infinitesimal bristle which is attached to the

carcass at position x relative an origo in the center of the contact patch. Assume

that this bristle belongs to the adhesive region. The bristle is in contact with the

road surface at position xr(x), yr(x), see Figure 8. Since there is no sliding in the
adhesive region the contact-point position may be described by

xr(x) = a−

∫ tc(x)

0

vx dt (22a)

yr(x) = −

∫ tc(x)

0

vy dt (22b)

where tc(x) is the time elapsed since the bristle entered the contact region. The
velocities vc, vx and vy are assumed to be constant as a bristle travels through the

adhesive region of the contact patch, i.e., during the integration interval [0, tc(x)].
Hence, the bristle position is x = a−vctc(x), and tc(x) = (a−x)/vc. The deformation
of the bristle is

δx(x) = xr(x) − x (23a)

δ y(x) = yr(x) (23b)

Insertion of (22) and the expressions for tc(x) yields

δx(x) = −
vx − vc
vc

(a− x) = −σ x (a− x) (24a)

δ y(x) = −
vy

vc
(a− x) = −σ y (a− x) (24b)

where the slip definition (5a) is used in the last equality. With the assumption of
linear elasticity, the deformation force corresponding to (23) is

dFax(x) = cpx dxδx(x) (25a)

dFay(x) = cpy dxδ y(x) (25b)
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dF

µax dFz(x)

µay dFz(x)

dFx(x)

dFy(x)

Figure 9 Illustration of the elliptic static friction constraint at anisotropic friction and rub-

ber characteristics. Note that the direction of dF̄(x) and σ̄ is equal only if cpx/cpy = µax/µay.

where cpx and cpy are the longitudinal and lateral bristle stiffnesses per unit

length. The assumption of constant vc, vx, vy in the interval [0, tc(x)] is relaxed to
the assumption of slow variations in σ x and σ y with respect to the duration 2a/vc,
which is the time for a bristle to travel through the adhesion region. The total

adhesive tire force is computed by integration of (25) over the adhesive region.
With (24) this gives

Fax =

∫ a

xs

dFax(x) = −cpxσ x
∫ a

xs

(a− x) dx (26a)

Fay =

∫ a

xs

dFay(x) = −cpyσ y
∫ a

xs

(a− x) dx (26b)

where xs is the position in the contact patch which divides the adhesive and sliding

regions. To compute total adhesive force it is necessary to know xs.

The Size of the Adhesion Region The size of the adhesive region is de-

termined by the available static friction. The deformation will be limited by the

largest force that can be carried by the static friction between the tire and the

road. The static friction is assumed to be anisotropic with the friction coefficients

µax and µay, respectively. With a normal force dFz(x) acting on the infinitesimal
bristle at position x, the available static friction force is described by the elliptic

constraint
(

dFax(x)

dFz(x)µax

)2

+

(

dFay(x)

dFz(x)µay

)2

≤ 1 (27)

As a result, the magnitude of the available static friction force is dependent of

the direction of the deformation force dF̄a(x), defined by (25). The static friction
constraint is illustrated in Figure 9. When dF̄a(x) exceeds the static friction con-
straint the bristle will leave the adhesive region and start to slide. Introduce the

pressure distribution qz(x), with dFz(x) = qz(x) dx. By combining (24) and (25)
with (27) the static friction constraint may be written as

√

(

cpxσ x
µax

)2

+

(

cpyσ y
µay

)2

(a− x) ≤ qz(x) (28)

The position xs in the contact area is the break-away point where the static friction

limit is reached and the bristles starts to slide. If the pressure distribution qz(x)
is known then xs can be calculated by setting equality in (28) with x = xs.
A common assumption is to describe the pressure distribution in the contact

patch as a parabolic function:

qz(x) =
3Fz

4a

(

1−
( x

a

)2
)

(29)
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This is proposed, for example, in [23] and has shown to give a good agreement
with experimental longitudinal force-slip curves for real tires. Inserting (29) in
(28) with equality gives

√

(

cpxσ x
µax

)2

+

(

cpyσ y
µay

)2

(a− xs) =
3Fz

4a3
(a− xs) (a+ xs) (30)

The solution for the break-away point xs is then

xs(σ x,σ y) =
4a3

3Fz

√

(

cpxσ x
µax

)2

+

(

cpyσ y
µay

)2

− a (31)

Since xs is a point in the contact patch it must belong to the interval [−a,a].
If xs = a the entire contact patch is sliding. In the case of pure slip, i.e. either σ x
or σ y is zero, this will occur at the slips σ x = σ ○

x or σ y = σ ○
y with σ ○

x and σ ○
y given

by the following definition.

Definition 1 (Limit slips). Define the limit slips as

σ ○
x

*
=
3Fzµax
2a2cpx

(32a)

σ ○
y

*
=
3Fzµay
2a2cpy

(32b)

Introduction of normalized slips with respect to the limit slips will simplify the

notation in the following.

Definition 2 (Normalized slip). Define the normalized slip as

ψ (σ x,σ y)
*
=

√

(

σ x
σ ○
x

)2

+

(

σ x
σ ○
x

)2

(33)

and the normalized-slip angle as

tan(β○)
*
=

ψ (0,σ y)
ψ (σ x,0)

(34)

Equation (31) may now be rewritten as

xs(σ x,σ y) = (2ψ (σ x,σ y) − 1)a (35)

It is clear that partial sliding occurs when ψ (σ x,σ y) < 1. At full sliding then
(ψ (σ x,σ y) ≥ 1) and Fax(σ x,σ y) = Fay(σ x,σ y) = 0. In the following the construc-
tion of adhesive and sliding forces at partial sliding will be determined.

Total Adhesion Force With the size of the adhesive region, xs(σ x,σ y), given
by (35), the adhesive forces are obtained by solving the integrals (26) yielding:

Property 1 (Adhesion forces). At partial sliding (ψ (σ x,σ y) < 1) the adhesive
forces are

Fax(σ x,σ y) = −2a2cpxσ x (1−ψ (σ x,σ y))2 (36a)

Fay(σ x,σ y) = −2a2cpyσ y (1−ψ (σ x,σ y))2 (36b)

and at full sliding (ψ (σ x,σ y) ≥ 1) then Fax(σ x,σ y) = Fay(σ x,σ y) = 0.
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Fax(σ x,0)

σ ○
xcpxσ xcpx

0 x−a axs(σ x,0)

µaxqz(x)

Figure 10 Illustration of the adhesive tire-force for pure longitudinal slip. The elastic defor-

mation force for an element at x in the adhesive region depends linearly on x as cpxσ x(x− a),
where the slope is proportional to the slip σ x. The transition from adhesion to slide occurs
at the cut of the lines at the break-away point xs. For slips σ x > σ ○

x full sliding occur in the

contact area since there is then no intersection.

Special notations for the forces at pure slip are introduced as

F0ax(σ x)
*
= Fax(σ x,0) (37a)

F0ay(σ y)
*
= Fay(0,σ y) (37b)

Remark 1. Note that it follows from (25) and (24) that the produced adhesive
force per unit length in the adhesion region is not affected by combined slips:

dFax(σ x, x)
dx

= −cpxσ x (a− x) (38a)

dFay(σ y, x)
dx

= −cpyσ y (a− x) (38b)

The adhesive forces thus grow linearly with slopes cpxσ x and cpyσ y as the contact
element moves into the adhesion region.

To illustrate the generation of the adhesive force the case of pure longitudinal

slip is regarded, i.e. σ y = 0. From (28) the size of the contact region is determined
by the point where cpxσ x (a− x) = µaxqz(x). That is, where the straight line de-
scribing the produced force per unit length cuts µaxqz(x), as is shown in Figure 10.
The striped area under the line corresponds to the total adhesion force. The slope

corresponding to full sliding, i.e. σ x = σ ○
x is also shown. The case of pure lateral

slip is analogous.

2.2 Combined-Slip Slide Forces

The normal force acting on the sliding region at partial sliding may be computed

from (29) and (35) as

Fsz(σ x,σ y) =

∫ xs(σ x ,σ y)

−a

qz(x) dx = Fzψ 2(σ x,σ y) (3− 2ψ (σ x,σ y)) (39)

In case of isotopic sliding friction with the friction coefficient µs, the friction
force is collinear with the slip velocity with the magnitude Fsz(σ x,σ y)µs and its
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components are given by

Fsx(σ x,σ y) = − cos (β)µsFsz(σ x,σ y) (40a)

Fsy(σ x,σ y) = − sin (β)µsFsz(σ x,σ y) (40b)

where β is defined by (4). Assumptions on isotropic sliding friction are common
in tire modeling, see e.g. [28].

If the sliding-friction is anisotropic with the different friction coefficients µsx
and µsy, there are several ways to calculate the magnitude and the direction of
the resulting force. Three different methods are presented in the following and

which one to choose depends on the assumptions made on the friction behavior

for the actual case.

Collinear Slide Forces This method should be used if the friction between two

surfaces is supposed to be isotropic, but the values of µsx and µsy are unequal.
A reason for that could for example be measurement errors. The friction forces

given by

Fsx(σ x,σ y) = − cos (β−)µsxFsx(σ x,σ y) (41a)

Fsy(σ x,σ y) = − sin (β−)µsyFsy(σ x,σ y) (41b)

where β− is defined as

tan(β−)
*
=

(

µsy
µsx

)−1
vsy

vsx
. (42)

will act in the opposite direction to the sliding motion, with a friction cofficient

that is somewhere in the interval [µsx, µsy] depending on the sliding angle β .

Maximum Dissipation Rate The correct way to treat anisotropic friction ac-

cording to the literature is to apply the Maximum Dissipation-Rate (MDR) princi-
ple. This theory which is further presented in [15] says that the resulting sliding-
friction force F̄′′

s is the one which maximizes the mechanical work W = −v̄s ⋅ F̄′′
s

under the constraint
(

F′′
sx

Fszµsx

)2

+

(

F′′
sy

Fszµsy

)2

≤ 1. (43)

This results in the sliding forces

F′′
sx(σ x,σ y) = −

µ2sxvsx
√

(µsxvsx)2 + (µsyvsy)2
Fsz(σ x,σ y) = −µsx cos (β ′)Fsz (44a)

F′′
sy(σ x,σ y) = −

µ2syvsy
√

(µsxvsx)2 + (µsyvsy)2
Fsz(σ x,σ y) = −µsy sin (β ′)Fsz (44b)

where β ′ is defined as

tan(β ′)
*
=

µsy
µsx
vsy

vsx
(45)

The angle of the resulting force F̄′′
s is denoted by β ′′ and is given by

tan(β ′′) =

(

µsy
µsx

)2
vsy

vsx
(46)
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Figure 11 Illustration of methods to describe kinetic friction in case of different longitudial

and lateral friction coefficients.

Slip-projection Method An intermediate approach to model anisotropic sliding

friction is to simply replace µs in (40) with µsx and µsy in the corresponding
directions:

F′
sx(σ x,σ y) = − cos (β)µsxFsz(σ x,σ y) (47a)

F′
sy(σ x,σ y) = − sin (β)µsyFsz(σ x,σ y) (47b)

This means a projection of the pure-slip sliding-forces on the slip vector. The angle

of the resulting force is then equal to β ′. From the definitions of β (4), β ′ (45)
and β ′′ (46), it is clear that the direction of F̄′

s will lie between the directions of

F̄s and F̄
′′
s , see Figure 11. In the following F̄s will denote the sliding force of (48).

To summarize:

Property 2 (Slide forces). The sliding forces are described by

Fsx(σ x,σ y) = − cos(β f)µsxFsz(σ x,σ y) (48a)

Fsy(σ x,σ y) = − sin(β f)µsyFsz(σ x,σ y) (48b)

with

Fsz(σ x,σ y) = Fzψ 2(σ x,σ y) (3− 2ψ (σ x,σ y)) (49)

and β f is any of β− (collinear), β (slip-projection) or β ′ (MDR) depending on

choice of friction model:

tan(β−)
*
= (

µsy
µsx

)−1
vsy

vsx
tan(β)

*
= (
vsy

vsx
) tan(β ′)

*
= (

µsy
µsx

)
vsy

vsx
(50)

Remark 2. In the special case of pure-slip the sliding-forces are

F0sx(σ x) = −µsxFsz(σ x,0) sgn(σ x) (51a)

F0sy(σ y) = −µsyFsz(0,σ y) sgn(σ y) (51b)

In Figure 12 the case of pure longitudinal slip is again regarded, now with

also the sliding force introduced. Since qz(x) is the normal force per unit length,
the sliding force per unit length is simply µsxqz(x), as marked in the figure. The
horizontally striped area corresponds to the total sliding force.
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Fsx(σ x ,0)
Fax(σ x ,0)

σ xcpx

0 x−a axs(σ x ,0)

µaxqz(x)

µsxqz(x)

Figure 12 Illustration of partition of the contact area into a sliding and an adhesive region

for the case of pure longitudinal slip. The slide force for an element at x is determined by the

pressure distribution µsxqz(x) dx. The horizontally striped area is the total slide force.

2.3 Effects of Combined Slips

The total tire force is given by adding the adhesive forces of (36) and the sliding
forces of (48):

Fx(σ x,σ y) = Fax(σ x,σ y) + Fsx(σ x,σ y) (52a)

Fy(σ x,σ y) = Fay(σ x,σ y) + Fsy(σ x,σ y) (52b)

To illustrate the effect of combined slips Figure 13 shows the production of lon-

gitudinal force in the case of combined longitudinal and lateral slip (σ x,σ y) with
σ x �= 0, σ y �= 0. From (35) it is clear that the adhering region shrinks compared
to the case with pure slip (σ x,0). The sliding region grows accordingly. From (38)
it is clear that the adhesive force per unit length is the same for the combined

slip (σ x,σ y) as for the pure-slip (σ x,0). Hence, the slope is the same, but the area
corresponding to the force is smaller since the adhering region is smaller. The

corresponding adhesive-force slope derived from (38) is cpxσ ○
xψ (σ x,σ y). The corre-

sponding expression applies for the lateral force. It is therefore clear that sliding

will occur simultaneously in both directions as ψ (σ x,σ y) approaches unity. It is
important to note that the indicated area under the pressure distribution no longer

corresponds to the resulting sliding force. Instead it describes µsxFsz(σ x,σ y), which
is the force that would result for pure longitudinal sliding with the sliding region

xs(σ x,σ y). This force must be limited by a friction constraint according to Sec-
tion 2.2.

The braking and cornering stiffnesses are the linearizations of the pure-slip

friction curves at small slips and may be computed by derivation of (52):

Cx = −
VFx(σ x,0)

Vσ x

∣

∣

∣

∣

∣

σ x=0

= 2cpxa
2 (53a)

Cy = −
VFy(0,σ y)

Vσ y

∣

∣

∣

∣

∣

σ y=0

= 2cpya
2 (53b)

Note that the stiffnesses Cλ and Cα defined in Section 1.6 are described in λ and
α . Therefore Cx = Cλ while Cy = Cα ⋅ π/180 since α is normally expressed in
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µsxFsz(σ x,σ y) Fax(σ x,σ y)

σ xcpx σ ○
xψ (σ x ,σ y)cpx σ ○

xcpx

0 x−a axs(σ x,0) xs(σ x,σ y)

µaxqz(x)

µsxqz(x)

Figure 13 Illustration of the effect of combined slip. The combined-slip has the effect of

decreasing the size of the adhesive region, compare with Figure 12.

degrees. The effect of combined slips on the stiffnesses are likewise computed as

VFx(σ x,σ y)
Vσ x

∣

∣

∣

∣

∣

σ x=0

=























−2cpxa
2(1−ψ (0,σ y))2 − µsxFz(3− 2ψ (0,σ y))

ψ (0,σ y)
σ ○
y

if ψ (0,σ y) ≤ 1

µsxFz
σ y

otherwise

(54)

VFy(σ x,σ y)
Vσ y

∣

∣

∣

∣

∣

σ y=0

=



















−2cpya
2(1−ψ (σ x,0))2 − µsyFz(3− 2ψ (σ x,0))

ψ (σ x,0)
σ ○
x

if ψ (σ x,0) ≤ 1

µsyFz
σ x

otherwise

(55)

Note that these expressions are valid when the sliding friction is described by the

slip-projection method (47).

2.4 Self-Aligning Torque

The self-aligning torque consists of two parts. The main part is M ′
z, which is the

torque developed by the non-symmetric distribution of the lateral force Fy. An

additional part M ′′
z comes up because of the deformation of the tire.

The torque dM ′
z developed at position x in the contact region is

dM ′
z(x) = dFy(x) x (56)

In the adhesive part of the contact region the expression for dFy(x) is given by (25)
together with (24). In the sliding zone it is instead given by differentiating (48)
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using dFz(x) = q(x) dx. Integration over the adhesive and sliding area separately
gives

M ′
az(σ x,σ y) = −cpyσ y

∫ a

xs(σ x ,σ y)
x (a− x) dx

= −cpya
3σ y
2

3
(1−ψ (σ x,σ y))2(4ψ (σ x,σ y) − 1) (57)

M ′
sz(σ x,σ y) = −µsy sin (β)

∫ xs(σ x ,σ y)

−a

x qz(x) dx

= −3µsx sin (β)aFzψ 2(σ x,σ y)(1−ψ (σ x,σ y))2 (58)

M ′
z(σ x,σ y) = M ′

az(σ x,σ y) + M ′
sz(σ x,σ y) (59)

When there is a lateral slip the tire deflects laterally and the point of action

for the longitudinal force will have an offset from the central plane of the wheel.

This produces an additional deformation torque in the z-direction. A longitudinal

deflection together with a lateral force has the same effect. Since it is assumed

that the carcass is stiff the deformation is here described by bristle deflections. The

deformation torque developed at position x in the contact region is then described

by

dM ′′
z (x) = dFy(x)δx(x) − dFx(x)δ y(x) (60)

In the same way as above, integration over the adhesive and the sliding regions is

performed separately. The deformation δx(x) is computed from (24) in the adhesive
region and from (25) using the infinitesimal sliding force in the sliding region.
Hence

M ′′
az(σ x,σ y) =

∫ a

xs(σ x,σ y)
cpyσ y(a−x)σ x(a−x) dx−

∫ a

xs(σ x ,σ y)
cpxσ x(a−x)σ y(a−x) dx

=
4

3
(Cy − Cx)aσ xσ y(1−ψ (σ x,σ y))3

=
4

3

(

1

Cx
−
1

Cy

)

a

(1−ψ (σ x,σ y))
Fax(σ x,σ y)Fay(σ x,σ y) (61)

M ′′
sz(σ x,σ y) =

∫ xs(σ x ,σ y)

−a

µsy sin (β f)qz(x)µ2sx cos (β f)
1

cpx
qz(x) dx

−

∫ xs(σ x ,σ y)

−a

µsx cos (β f)qz(x)µsy sin (β f)
1

cpy
qz(x) dx

=
6

5

(

1

Cx
−
1

Cy

)

µsxµsya sin (β f) cos (β f)F2z

⋅ψ 3(σ x,σ y)(10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y))

=
6

5

(

1

Cx
−
1

Cy

)

a(10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y))
ψ (σ x,σ y)(3− 2ψ (σ x,σ y))2

⋅ Fsx(σ x,σ y)Fsy(σ x,σ y) (62)

where (36) and (48) have been used in the last step.

M ′′
z (σ x,σ y) = M ′′

az(σ x,σ y) + M ′′
sz(σ x,σ y) (63)

Finally,

Mz(σ x,σ y) = M ′
z(σ x,σ y) + M ′′

z (σ x,σ y) (64)
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A commonly used parameter is the pneumatic trail, which denotes the distance

between the center of the tire and point of action for the lateral force. It is defined

as t(σ x,σ y) = Mz(σ x,σ y)/Fy(σ x,σ y). The coordinate for the point of action for the
adhesive force is denoted by ta(σ x,σ y) and for the sliding force by ts(σ x,σ y). By
using (57) and (36) respective (58) and (48) the contributions from M ′

z(σ x,σ y) to
the pneumatic trail, t′a(σ x,σ y) and t′s(σ x,σ y), are given by

t′a(σ x,σ y) =
M ′
az(σ x,σ y)
Fay(σ x,σ y)

=
a

3
(4ψ (σ x,σ y) − 1) (65a)

t′s(σ x,σ y) =
M ′
sz(σ x,σ y)
Fsy(σ x,σ y)

= −3a
(1−ψ (σ x,σ y))2

(3− 2ψ (σ x,σ y))
(65b)

The contributions from M ′′
z (σ x,σ y) can be read directly from (61) and (62).

In the same way as for the braking and cornering stiffness, the aligning stiff-

ness is defined as

Cz = −
VMz

Vσ y

∣

∣

∣

∣

∣

σ x,σ y=0

= cpya
32

3
= Cy

a

3
(66)

2.5 Analysis of the Brush-Model

In Figures 14 and 15 the brush model is compared with the Magic Formula fitted

to a truck tire. For the brush model also combined-slip behavior is shown. The

parameters are choosen so that the pure-slip curves have the same braking and

cornering stiffnesses and the same peak force as of the Magic Formula. For the

pure longitudinal slip the coherence between the brush model and the reference

curve is good. For the pure lateral slip there are descrepancies in the lateral force

and the self-aligning torque. The main reason for this is the assumption of a stiff

carcass. This is realistic in the longitudinal direction, but for the lateral case where

the carcass is weaker the effects of this simplification is noticable. There exists

more accurate models which include carcass flexibility based on assumptions on

stretched string or beam behavior [23]. These, however, result in quite complicated
expressions.

A deficiency with the brush model is the assumption on velocity-independent

sliding friction resulting in constant tire-forces at full sliding, which is obviously

not correct as seen in e.g. Figure 14. At partial sliding the approximation normally

has small effects.
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Figure 14 Tire forces as function of λ with α = [0,5,10,20] deg. The dotted line shows the
force from the adhesive region, the dashed line shows it from the sliding region. The solid line

is the total force and the dashed dotted line is the reference curve created from the magic

formula. For the self aligning torque the dotted line denotes the deformation torque M ′′
z and

the dashed line M ′.
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Figure 15 Tire forces as function of α with λ = [0,5,10,20] deg. The dotted line shows the
force from the adhesive region, the dashed line shows it from the sliding region. The solid line

is the total force and the dashed dotted line is the reference curve created from the magic

formula. For the self aligning torque the dotted line denotes the deformation torque M ′′
z and

the dashed line M ′.
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Figure 16 Plot of the lateral force as a function of the longitudinal force. The curves are

derived with the brush model for λ ∈ [0,1]% and α = 5, 10 and 20 deg.

28



3. Brush-Model Relations Between Pure- and Combined-Slip

Conditions

In this section a number of properties are stated which describe relations between

pure-slip and combined-slip forces for the brush model. In Section 4 they are com-

bined with empirical data to form semi-empirical tire-force models for combined

slips. The basic idea is to treat sliding and adhesive forces separately. Since empir-

ical pure-slip data normally only regard total tire-forces it is therefore necessary

to have a procedure to separate the sliding and adhesive forces.

3.1 Separation of Adhesion and Slide Forces

Definition 3 (Pure-slip adhesive and sliding fractions). Define θx(σ x) and
θ y(σ y) as the relative amount of the tire force that is generated by sliding friction
at partial sliding (ψ (σ x,0) < 1 and ψ (0,σ y) < 1)

θx(σ x)
*
=

F0sx(σ x)
F0ax(σ x) + F0sx(σ x)

(67a)

θ y(σ y)
*
=

F0sy(σ y)
F0ay(σ y) + F0sy(σ y)

(67b)

Then the sliding components of F0x(σ x) and F0y(σ y) at partial sliding are

F0sx(σ x) = θx(σ x)F0x(σ x) (68a)

F0sy(σ y) = θ y(σ y)F0y(σ y) (68b)

and the adhesive components are

F0ax(σ x) = (1− θx(σ x)) F0x(σ x) (69a)

F0ay(σ y) = (1− θ y(σ y)) F0y(σ y) (69b)

For the brush-model the following property then holds:

Property 3 (Pure-slip adhesive and sliding fractions). At pure-slip partial

sliding (ψ (σ x,0) < 1 or ψ (0,σ y) < 1) then

θx(σ x) =
ψ (σ x,0) (3− 2ψ (σ x,0))

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
(70a)

θ y(σ y) =
ψ (0,σ y) (3− 2ψ (0,σ y))

3ρ y(σ y) (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y))
(70b)

and

1− θx(σ x) =
3ρx (1−ψ (σ x,0))2

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
(71a)

1− θ y(σ y) =
3ρ y (1−ψ (0,σ y))2

3ρ y (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y))
(71b)

where the parameters ρx
*
= µax/µsx > 0 and ρ y

*
= µay/µsy > 0 describe the ratio

between the adheseive and sliding-friction coefficients. At full sliding (ψ (σ x,0) ≥ 1
orψ (0,σ y) ≥ 1) then θx(σ x) = 1 or θ y(σ y) = 1 since then F0ax(σ x) = F0ay(σ y) = 0.

Proof. See Appendix A.1.

Remark 3. Note that (70) and (71) are non-singular for all 0 ≤ ψ x ≤ 1 and

0 ≤ ψ y ≤ 1, since the polynomial p(x) = 3ρ(1 − x)2 + x(3 − 2x) not has any real
roots in the interval [0,1] for ρ > 0.
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3.2 Combined-Slip Forces as a Scaling of Pure-Slip Forces

With expressions for the adhesion and slide forces the combined forces may be

written as

Fax(σ x,σ y) = F0ax(σ0x)
Fax(σ x,σ y)
F0ax(σ0x)

(72a)

Fay(σ x,σ y) = F0ay(σ0y)
Fay(σ x,σ y)
F0ay(σ0y)

(72b)

and

Fsx(σ x,σ y) = F0sx(σ0x)
Fsx(σ x,σ y)
F0sx(σ0x)

(72c)

Fsy(σ x,σ y) = F0sy(σ0y)
Fsy(σ x,σ y)
F0sy(σ0y)

(72d)

The last factors in these expressions may be regarded as scaling factors relating

forces at the combined slip σ x and σ y with forces at arbitrarily chosen pure slips
σ0x, and σ0y. On the basis of the brush model the factors may be expressed as
functions of σ x, σ y, σ0x, and σ0y. Four different choices of σ0x and σ0y are re-
garded in the following, each having different interpretations and emphasizing on

different properties:

• The deformation invariant pure-slips σ0x = σ def0x and σ0y = σ defy preserve the
combined-slip bristle-deformation.

• The region invariant pure-slips σ0x = σ reg0x and σ0y = σ reg0y preserve the sizes
of the combined-slip adhesive and sliding regions.

• The slip-velocity invariant pure-slips σ0x = σ velx and σ0y = σ vely preserve the
magnitude of the slip-velocity of the combined-slip.

• The slip-velocity component invariant pure-slips σ0x = σ velcx and σ0y = σ velcy
preserve the respective components of the slip-velocity of the combined-slip.

Property 4 (Deformation invariant pure-slips). The deformation invariant

pure-slips σ def0x and σ def0y simply are

σ def0x
*
= σ x (73a)

σ def0y
*
= σ y (73b)

and the pure-slips (σ def0x ,0) and (0,σ def0y ) result in the same bristle deformation as
the combined slip (σ x,σ y).

Proof. See Appendix A.2.

Property 5 (Deformation invariant adhesion-forces). The

combined-slip adhesion forces at partial sliding (ψ (σ x,σ y) < 1) are related to the
deformation-invariant pure-slip adhesion forces as

Fax(σ x,σ y) =
3ρx (1−ψ (σ x,σ y))2

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
F0x(σ x) (74a)

Fay(σ y,σ y) =
3ρ y (1−ψ (σ x,σ y))2

3ρ y (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y))
F0y(σ y) (74b)

Proof. See Appendix A.3.
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Fax(σ x ,0)

Fax(σ x,σ y)

σ xcpx

0 x−a axs(σ x ,0) xs(σ x,σ y)

µaxqz(x)

µsxqz(x)

Figure 17 Deformation-invariant scaling of the adhesion force. The line with the slope σ xcpx
describes dFa(x) and the indicated areas the pure-slip (sparsely striped) and combined-slip
(densely striped) total adhesion forces. The break-away point for the deformation-invariant
pure-slip lies where dFa(x) cuts µaxqz(x).

Remark 4. The produced adhesion force per unit length in the contact region

is equal for pure and combined slips. The difference in total adhesion force is

due to the decreasing contact region for combined slips. This is illustrated in

Figure 17, where it can be seen that Property 5 reflects a scaling of the pure-slip

adhesion force (sparsely striped area) to agree with the combined-slip adhesion
force (densely striped area).

Property 6 (Deformation invariant slide-forces). The combined-slip slide

forces are related to the deformation-invariant pure-slip slide forces as

Fsx(σ x,σ y) = F0x(σ x) ⋅ Γ x (75a)

Fsy(σ x,σ y) = F0y(σ y) ⋅ Γ y (75b)

with

Γ x
*
=







































































ψ (σ x,σ y) (3− 2ψ (σ x,σ y))
3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))

⋅σ ○
x

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

)

, if ψ (σ x,σ y) < 1

1

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
σ ○
x

√

σ 2x + σ 2y
,

if ψ (σ x,σ y) ≥ 1 and ψ (σ x,0) < 1

cos(β), if ψ (σ x,σ y) ≥ 1 and ψ (σ x,0) ≥ 1

(76a)
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µsxFsz(σ x,σ y)
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µaxqz(x)
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Figure 18 Deformation-invariant scaling of the slide force. The line with the slope σ xcpx
describes dFa(x). The break-away point for the deformation-invariant pure-slip lies where
dFa(x) cuts µaxqz(x). The indicated areas show the pure-slip (sparsely striped) and combined-
slip (densely striped) total slide forces, since dFsx(x) = µsxqz(x) dx. Note that Fsx(σ x,σ y) is
obtained by multiplying µsxFsz(σ x ,σ y) by cos(β).

and

Γ y
*
=







































































ψ (σ x,σ y) (3− 2ψ (σ x,σ y))
3ρ y (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y))

⋅σ ○
y

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

)

, if ψ (σ x,σ y) < 1

1

3ρ y (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y))
σ ○
y

√

σ 2x + σ 2y
,

if ψ (σ x,σ y) ≥ 1 and ψ (0,σ y) < 1

cos(β), if ψ (σ x,σ y) ≥ 1 and ψ (0,σ y) ≥ 1

(76b)

Proof. See Appendix A.4.

Remark 5. In Figure 18 it can be seen that Property 6 reflects a scaling of the

pure-slip slide-force (sparsely striped area) to agree with the combined-slip slide-
force (densely striped area). The deformation invariant scaling is restricted to
slip-projection sliding friction.

Property 7 (Region invariant pure-slips). Define the region invariant slips

σ reg0x and σ reg0y as

σ reg0x
*
= σ ○

xψ (σ x,σ y) sgn(σ x) (77a)

σ reg0y
*
= σ ○

yψ (σ x,σ y) sgn(σ y) (77b)

The pure-slips (σ reg0x ,0) and (0,σ reg0y ) then results in an adhesive and sliding re-
gions of the size size as the combined slip (σ x,σ y).

Proof. See Appendix A.5.
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Figure 19 Region-invariant scaling of the adhesion force. The line with the slope σ reg0x cpx
describes dF0a(x) for the region-invariant pure-slip and the indicated areas the pure-slip
(sparsely striped) and combined-slip (densely striped) total adhesion forces. Note that
the break-away point is identical for the combined slip and the region-invariant pure-slip

xs(σ x,σ y) = xs(σ reg0x ,0).

Property 8 (Region invariant adhesion-forces). The combined-slip adhe-

sion forces at partial sliding (ψ (σ x,σ y) < 1) are related to the region invariant
pure-slip adhesion forces as

Fax(σ x,σ y) = (1− θx(σ reg0x ))F0x(σ reg0x ) cos(β○) (78a)

Fay(σ y,σ y) = (1− θ y(σ reg0y ))F0y(σ reg0y ) sin(β○) (78b)

with β○ given by (34).

Proof. See Appendix A.6.

Remark 6. The region invariant pure-slip result in an adhesive region of the

same size as the combined slip, as illustrated in Figure 19. However, the produced

adhesive force per unit length is larger. Property 8 thus reflects a scaling of the

region-invariant pure-slip adhesion force (sparsely striped area) to agree with the
combined-slip adhesion force (densely striped area).

Property 9 (Region invariant slide-forces). The combined-slip slide forces

are related to the region-invariant pure-slip slide forces as

Fsx(σ x,σ y) = θx(σ reg0x )F0x(σ reg0x )hcos(β f )h (79a)

Fsy(σ x,σ y) = θ y(σ reg0y )F0y(σ reg0y )hsin(β f )h (79b)

Proof. See Appendix A.7.

Remark 7. The sliding region at the combined slip (σ x,σ y) is equal to the slid-
ing region at the region-invariant pure-slips σ reg0x and σ reg0y . This is illustrated in
Figure 20.
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Figure 20 Region-invariant scaling of the slide-force. Since the sliding regions are equal

for the combined slip and the region-ivariant pure-slip then Fsz(σ x,σ y) = Fsz(σ reg0x ,0). The
combined slide-force Fsx(σ x ,σ y) is obtained by multiplying µsxFsz(σ x,σ y) by cos(β f ).

Property 10 (Slip-velocity invariant pure-slips). Define the slip-velocity in-

variant pure-slips as

σ vel0x
*
=

√

σ 2x + σ 2y sgn(σ x)

v0

v

√

(1+ σ x)2 + σ 2y −
√

σ 2x + σ 2y sgn (σ x)
(80a)

σ vel0y
*
=

√

σ 2x + σ 2y sgn(σ y)
√

√

√

√

(

v0

v

)2
(

(1+ σ x)2 + σ 2y
)

− (σ 2x + σ 2y)

(80b)

Then the pure slips (σ vel0x ,0) and (0,σ vel0y ) at the velocity v0 give the same slip
velocity, vs, as the combined slip (σ x,σ y) at velocity v.

Proof. See Appendix A.8.

Property 11 (Slip-velocity invariant slide forces).

The combined-slip slide forces are related to the slip-velocity invariant pure-slip

slide forces as

Fsx(σ x,σ y) = F0x(σ vel0x )θx(σ vel0x )hcos (β f )h ⋅ Γvelx (81a)

Fsy(σ x,σ y) = F0y(σ vel0y )θ y(σ vel0y )hsin (β f )h ⋅ Γvely (81b)
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with

Γvelx
*
=



























































































(3− 2ψ (σ x,σ y))
(3− 2ψ (σ vel0x ,0))

(

σ ○
x

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

))2

⋅

(

v0

v

√

(1+ σ x)2 + σ 2y −
√

σ 2x + σ 2y sgn(σ x)

)2

,

if ψ (σ x,σ y) < 1 and ψ (σ vel0x ,0) < 1

1

ψ 2(σ vel0x ,0)(3− 2ψ (σ vel0x ,0))
, if ψ (σ x,σ y) ≥ 1 and ψ (σ vel0x ,0) < 1

ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y)), if ψ (σ x,σ y) < 1 and ψ (σ vel0x ,0) ≥ 1

1, if ψ (σ x,σ y) ≥ 1 and ψ (σ vel0x ,0) ≥ 1

(82a)

and

Γvely
*
=































































































(3− 2ψ (σ x,σ y))
(3− 2ψ (0,σ vel0y ))

(

σ ○
y

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

))2

⋅





(

v0

v

)2
(

(1+ σ x)2 + σ 2y
)

− (σ 2x + σ 2y)



 ,

if ψ (σ x,σ y) < 1 and ψ (0,σ vel0y ) < 1

1

ψ 2(0,σ vel0y )(3− 2ψ (0,σ vel0y ))
, if ψ (σ x,σ y) ≥ 1 and ψ (0,σ vel0y ) < 1

ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y)), if ψ (σ x,σ y) < 1 and ψ (0,σ vel0y ) ≥ 1

1, if ψ (σ x,σ y) ≥ 1 and ψ (0,σ vel0y ) ≥ 1

(82b)

Proof. See Appendix A.9.

Remark 8. There is no clear graphical interpretation of the slip-velocity invariant

pure-slips. Note that to obtain the same slip-velocity for combined and pure slips

it is necessary to take into account the corresponding wheel-center velocities, v

and v0, which may be different.

Property 12 (Slip-velocity component invariant pure-slips).

Define the slip-velocity component invariant pure-slips as

σ velc0x
*
=

σ x
v0

v

√

(1+ σ x)2 + σ 2y − σ x
(83a)

σ velc0y
*
=

σ y
√

√

√

√

(

v0

v

)2
(

(1+ σ x)2 + σ 2y
)

− σ 2y

(83b)

Then the pure slips (σ velc0x ,0) and (0,σ velc0y ) at the velocity v0 gives the same slip
velocity components (vsx,vsy) as the combined slip (σ x,σ y) at velocity v.
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Proof. See Appendix A.10.

Property 13 (Slip-velocity component invariant slide forces).

The combined-slip slide forces are related to the pure-slip slide forces as

Fsx(σ x,σ y) = F0x(σ velc0x ) ⋅ Γvelcx (84a)

Fsy(σ x,σ y) = F0y(σ velc0y ) ⋅ Γvelcy (84b)

with

Γvelcx
*
=































































































































ψ (σ x,σ y)(3− 2ψ (σ x,σ y))

3ρx
(

1−ψ (σ velc0x ,0)
)2

+ψ (σ velc0x ,0)
(

3− 2ψ (σ velc0x ,0)
)

⋅σ ○
x

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

)

⋅

(

v0

v

√

(1+ σ x)2 + σ 2y − σ x

)

if ψ (σ x,σ y) < 1 and ψ (σ velc0x ,0) < 1

(

v0

v

√

(1+ σ x)2 + σ 2y − σ x

)

3ρx
(

1−ψ (σ velc0x ,0)
)2

+ψ (σ velc0x ,0)
(

3− 2ψ (σ velc0x ,0)
)

σ ○
x

√

σ 2x + σ 2y
,

if ψ (σ x,σ y) ≥ 1 and ψ (σ velc0x ,0) < 1

ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y))hcos (β)h, if ψ (σ x,σ y) < 1 and ψ (σ velc0x ,0) ≥ 1

hcos (β)h, if ψ (σ x,σ y) ≥ 1 and ψ (σ velc0x ,0) ≥ 1

(85a)

and

Γvelcy
*
=



























































































































ψ (σ x,σ y)(3− 2ψ (σ x,σ y))

3ρ y
(

1−ψ (0,σ velc0y )
)2

+ψ (σ velc0y ,0)
(

3− 2ψ (0,σ velc0y )
)

⋅σ ○
y

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

)

⋅
√

(v0

v

)2
(

(1+ σ x)2 + σ 2y
)

− σ 2y, if ψ (σ x,σ y) < 1 and ψ (0,σ velc0y ) < 1

√

(

v0
v

)2 (
(1+ σ x)2 + σ 2y

)

− σ 2y

3ρ y
(

1−ψ (0,σ velc0y )
)2

+ψ (0,σ velc0y )
(

3− 2ψ (0,σ velc0y )
)

σ ○
y

√

σ 2x + σ 2y
,

if ψ (σ x,σ y) ≥ 1 and ψ (0,σ velc0y ) < 1

ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y))hsin (β)h, if ψ (σ x,σ y) < 1 and ψ (0,σ velc0y ) ≥ 1

hsin (β)h, if ψ (σ x,σ y) ≥ 1 and ψ (0,σ velc0y ) ≥ 1

(85b)

Proof. See Appendix A.11.

Remark 9. There is no clear graphical interpretation of the slip-velocity compo-

nent invariant pure-slips. Note that to obtain the same slip-velocity components

for combined and pure slips it is necessary to take into account the correspond-

ing wheel-center velocities, v and v0, which may be different. The slip-velocity

component invariant scaling is restricted to slip-projection sliding friction.
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Property 14 (Region-invariant aligning torque). The combined-slip self-

aligning torque is related to the region-invariant pure-slip lateral force and align-

ing moment as

M ′
z(σ x,σ y)

= M0z(σ reg0y )hsin(β)h + (1− θ y(σ reg0y ))t0a(σ reg0y )F0y(σ reg0y )(sin(β○) − hsin(β)h) (86)

where

t0a(σ reg0y )
*
= ta(0,σ reg0y ) =

Cz

Cy
(4ψ (σ x,σ y) − 1) (87)

Proof. See Appendix A.12.

Property 15 (Region-invariant additional aligning torque). The com-

bined-slip deformation torque is related to the region-invariant pure-slip lateral

force and aligning moment as

M ′′
az(σ x,σ y) =

12 aρxρ y (1−ψ (σ x,σ y))3

Γ zxΓ zy

(

1

Cx
−
1

Cy

)

F0x(σ reg0x )F0y(σ reg0y ) (88a)

at partial sliding (ψ (σ x,σ y) < 1), otherwise M ′′
az(σ x,σ y) = 0, and

M ′′
sz(σ x,σ y) =

6Γ z
5Γ zxΓ zy

a

(

1

Cx
−
1

Cy

)

F0x(σ reg0x )F0y(σ reg0y )hcos(β f )hhsin(β f )h (88b)

where

Γ zx
*
= 3ρx (1−ψ (σ x,σ y))2 +ψ (σ x,σ y) (3− 2ψ (σ x,σ y)) (89a)

Γ zy
*
= 3ρ y (1−ψ (σ x,σ y))2 +ψ (σ x,σ y) (3− 2ψ (σ x,σ y)) (89b)

Γ z
*
=
(

10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y)
)

ψ (σ x,σ y) (89c)

at partial sliding (ψ (σ x,σ y) < 1), otherwise Γ zx = Γ zy = Γ z = 1.

Proof. See Appendix A.13.

Property 16 (Slip-velocity invariant additional aligning-torque).

The combined-slip deformation torque is related to the slip-velocity invariant pure-

slip lateral force and aligning moment as

M ′′
az(σ x,σ y) = 12 aρxρ y (1−ψ (σ x,σ y))3

(

1

Cx
−
1

Cy

)

F0x(σ x)F0y(σ y)
Γ zxΓ zy

(90a)

at partial sliding (ψ (σ x,σ y) < 1), otherwise M ′′
az(σ x,σ y) = 0, and

M ′′
sz(σ x,σ y) = Γ ′′

z

6

5
a

(

1

Cx
−
1

Cy

)

F0x(σ vel0x )Γvelx F0y(σ vel0y )Γvely hcos(β)h (90b)

where

Γ zx
*
=

{

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0)) , if ψ (σ x,0) < 1

1, otherwise
(91a)
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Γ zy
*
=

{

3ρ y (1−ψ (0,σ y))2 +ψ (0,σ y) (3− 2ψ (0,σ y)) , if ψ (0,σ y) < 1

1, otherwise
(92a)

and

Γ ′′
z

*
=



























































































































(

10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y)
)

θx(σ vel0x )(3− 2ψ (0,σ vel0y ))

(3− 2ψ (σ x,σ y))2
(

3ρ y
(

1−ψ (0,σ vel0y )
)2

+ψ (0,σ vel0y )
(

3− 2ψ (0,σ vel0y )
)

)

⋅
sin(β○)

√

√

√

√

(

v0

v

)2

((1+ σ x)2 + σ 2y) − (σ 2x + σ 2y)

,

if ψ (σ x,σ y) < 1 and ψ (0,σ vel0y ) < 1

θx(σ vel0x )θ y(σ vel0y )hsin(β)h, if ψ (σ x,σ y) ≥ 1 and ψ (0,σ vel0y ) < 1

10− 15ψ (σ x,σ y) + 6ψ 2(σ x,σ y)
(3− 2ψ (σ x,σ y))2ψ (σ x,σ y)

θx(σ vel0x )hsin(β)h,

if ψ (σ x,σ y) < 1 and ψ (0,σ vel0y ) ≥ 1

hsin(β)h, if ψ (σ x,σ y) ≥ 1 and ψ (0,σ vel0y ) ≥ 1

(93a)

with Γvelx , Γvely , σ velx and σ vely from Property 11 and θx and θ y from Property 3.

Proof. See Appendix A.14.

4. Semi-Empirical Combined Slip Model

The idea of the proposed model is to use the properties of Section 3 with F0x(σ x),
F0y(σ y), and M0z(σ y) described by empirical data F̂0x, F̂0y, and M̂0z. In essence,
this means that (70) and (71) are used to estimate sliding and adhesive force
components from the empirical pure-slip data. Thereafter, combined forces are

constructed using scaling factors based on the brush model.

Model for combined-slip tire-forces. A semi-empirical combined-slip model

based on pure-slip scaling is obtained by using empirical pure-slip models F̂0x,

F̂0y, and M̂0z in combination with:

• Property 5 or 8 to compute the semi-empirical adhesion force F̂ax,

• Property 6, 9, 11, or 13 to compute the semi-empirical slide force F̂sx,

• Property 14 together with 15 or 16 to compute the semi-empirical aligning-
moments M̂ ′

z and M̂
′′
z .

The total semi-empirical combined forces are then F̂x = F̂ax + F̂sx, F̂y = F̂ay + F̂sy
and the total semi-empirical aligning-moment is M̂z = M̂ ′

z + M̂ ′′
z .

The empirical pure-slip data include several effects which are not present in

the theoretical brush-model. The most prominent are the mismatch of the lateral

stiffness at partial sliding due to carcass flexibility and the apparent velocity

dependence of the sliding friction. Still, the effects will be included in the proposed

combined-slip models as they essentially are scalings of the empirical data. In the

special case of pure-slip, these effects will be correctly reproduced. Otherwise, the

different choices of invariant pure-slips σ0x and σ0y of Properties 4, 7, 10, and 12
aim at reproducing particular effects correctly in combined-slip.
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Figure 21 Separation of pure-slip longitudinal adhesion and slide forces using Property 3

for ρx = µax/µsx ∈ {0.5,1.0,1.5}. Left: pure-slip empirical data (’*’), corresponding Magic
Formula model (solid line), adhesion force-fraction (dotted line), slide force-fraction (dashed
line). Right: θx. The curves are located lower with increasing value of the ratio.

It is clear that adhesive forces originate in deformation of the tire, and are

therefore best described as a function of σ̄ which translates directly to deformation.
The sliding forces, on the other hand, are better decribed as a function of the slip-

velocity v̄s. When translating empirical pure-slip data to combined-slip forces using

the properties of Section 3 it therefore makes sense to use different pure-slips for

adhesive and sliding forces. For the adhesive force the pure-slips that preserve

deformation or adhesive-region size seem appropriate, while the pure-slips that

preserve slip-velocity seems more natural for the sliding force.

4.1 Parameters

Only four parameters are involved in the models: σ ○
x, σ ○

y, ρx, and ρ y, all with
clear physical interpretations. The parameters σ ○

x and σ ○
y describe the pure slips

where transition from partial to full sliding occur and are needed to compute

ψ (σ x,σ y). A common assumption is that these transitions occur at the friction
peak. Hence, they may simply be set to the slip value corresponding to the force

peaks in F0x(σ x) and F0y(σ y). The remaining parameters ρx, and ρ y reflects the
ratio between the adhesive and sliding friction coefficients. It is not uncommon

to assume equal adhesive and sliding friction, i.e. ρx = ρ y = 1, and this will
normally result in satisfactory results. On friction curves with very pronounced

force peaks then ρx > 1 and ρ y > 1 may give more accurate results. In general,
the adhesive-friction coefficient is larger than the sliding-friction coefficient, and

ρx > 1, ρ y > 1.
If only pure-slip empirical data is available then the nominal values given

above are natural choices. If combined-slip empirical data is available, then the

parameters may be optimized for best fit.

Figure 21 illustrates the effect of the parameter ρx = µax/µsx on the estimation
of adhesive and sliding forces from empirical data using (70). With larger ρ the
estimated adhesive fraction of the total force becomes larger, as expected.

4.2 Slip Parameterization

The brush-model and, consequently, the proposed model are based on the slip σ̄
defined by (5a). This slip has the disadvantage of growing to infinity at wheel-
lock. When implementing the proposed model σ̄ needs to be translated to a more
practical slip. It is assumed that the empirical pure-slip models are parameterized

in λ and α as F̂0x(λ ), F̂0y(α ) and M̂0z(α ), which is common, and also that λ
and α are used as inputs to the combined-slip model. Translations of the model
expressions to λ and α are given in Appendix B.

4.3 Magic Formula

The proposed model is convenient to use with Magic Formula pure-slip models.
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In this case F̂0x(λ ), F̂0y(α ) and M̂0z(α ) are described by the Magic Formula equa-
tions (12) with the corresponding parameters (B,C, D, E)x,y,z. Since the force-peak

values are given by Magic-Formula parameters as F̂∗
0x = (D)x, F̂∗

0y = (D)y and

the cornering and braking stiffnesses as Ĉλ = (BCD)x, Ĉα = (BCD)y then the
parameters σ ○

x and σ ○
y may be conveniently estimated as

σ̂ ○
x =

3

(BC)x
(94a)

σ̂ ○
y =

3 ⋅ 180
(BC)yπ

(94b)

This follows from (32) using (53) under the assumption that ρx = ρ y = 1. Then
the peak forces are F∗

0x = Fzµax = Fzµsx and F∗
0y = Fzµay = Fzµsy. The factor

180/π is due to α being expressed in degrees.

Compensation for flexible carcass As mentioned previously the brush model

described in Section 2 is based on the assumption of a stiff carcass. In reality the

carcass is flexible and exhibits significant deformation laterally. One effect of the

flexible carcass is that Equation (32), and therefore also (94b), no longer hold. It
is, however, possible to adjust (94b) to compensate for the carcass flexibility.

Let F′
y(σ y) denote the lateral tire-force for a tire with flexible carcass. Regard

again how the deformation of an infinitesimal bristle element at position x in the

adhesive region, δ y(x), is described by (24). This is a purely kinematic relation
which holds also in the case of flexible carcass. However, in the case of flexible

carcass then δ y(x) is the sum of the bristle and carcass deflections δ yb(x) and
δ yc(x)

δ y(x) = δ yb(x) + δ yc(x) (95)

There are several theories on how to describe the carcass deformation and here

the simplest one is used

δ yc(x) = −
F′
y(σ y)
Cc

(a− x) (96)

where Cc is the carcass stiffness. From (95), (96) and (24) it holds that

δ yb(x) = −(σ y −
F′
y(σ y)
Cc

)(a− x) (97)

The force acting on the bristle element at x will then be

dF′
y(x) = cpyδ yb(x) dx = −cpy(σ y −

F′
y(σ y)
Cc

)(a− x) dx (98)

Equation (27) at pure lateral slip together with the expression (29) for the pres-
sure distribution is used to calculate the break-away point

cpy (σ y −
F′
y(σ y)
Cc

) =
3µayFz
4a3

(a+ xs) (99)

When the entire contact patch slides then xs = a, σ y = σ ○
y
′, and F′

y(σ ○
y
′) = µsyFz.

Solving (99) for σ ○
y
′ under these conditions gives

σ ○
y
′ =
3Fzµay
2a2cpy

+
µsyFz
Cc

= Fz

(

3µay
2a2cpy

+
µsy
Cc

)

(100)
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Figure 22 Brush-model forces (solid) and magic-formula empirical data (dash-dotted). Left:
Longitudinal force with α ○ corresponding to σ ○

x given by (94a). Right: Lateral force with σ ○
y

given by (94b) (lower solid line) or (105) (upper solid line). Note that the adjustment for
flexible carcass results in significantly better fit.

Next step is to derive an expression for the relation between Cc and the cornering

stiffness Cy. At very small slips σ y � 0 there is no sliding in the contact patch
and the tire force only consists of adhesive force. Therefore,

C′
y =

dF′
y(σ y)
dσ y

∣

∣

∣

∣

σ y=0
= −

d

dσ y

(∫ a

−a

cpyδb(x) dx
)∣

∣

∣

∣

σ y=0

= 2a2cpy

(

1−
1

Cc

dF′
y(σ y)
dσ y

∣

∣

∣

∣

σ y=0

)

= Cy

(

1−
C′
y

Cc

)

(101)

where 2a2cpy = Cy according to (53). Hence,

C′
y =

Cy

1+
Cy

Cc

(102)

Further, the rubber will be assumed to behave isotropicly, Cy = Cx, which is a
realistic assumption. (In Section 2 the carcass deformation was included in the
lateral rubber stiffness.) Then the carcass stiffness can be calculated from (102)
as

Cc =
CxC

′
y

Cx − C′
y

(103)

Using (103) then the limit-slip adjusted for carcass deformation of (100), σ ○
y
′, can

be written as

σ ○
y
′ = Fzµay

(

2

Cx
+
1

C′
y

)

(104)

Using F∗
y = Fzµay and F̂∗

y = Dy, Ĉx = (BCD)x, and Ĉ
′
y = (BCD)y ⋅ 180/π then

σ ○
y
′ = Dy

(

2

(BCD)x
+

π
180 ⋅ (BCD)y

)

(105)

In Figure 22 the effect of adjusting the lateral limit-slip to compensate for flex-

ible carcass is illustrated. Note that the original expression for σ ○
y, (94b), over-

estimates the limit-slip, resulting in poor fit with the brush-model. With the mod-

ified expression, (105), the fit is equally good as in the longitudinal direction.

41



4.4 Utilizing Braking Data to Generate Driving Data

In the proposed model it is assumed that the given empirical pure-slip model

F̂0x(λ ) is valid both at braking (λ > 0) and driving (λ < 0). The Magic Formula is
an odd function and therefore F̂0x(λ ) = −F̂0x(−λ ). In general, this is not in accor-
dance with empirical observations. If the pure-slip model is assumed to be valid

for braking, then the following procedure suggests how to modify the argument

to the pure-slip model at driving so that a more accurate force is obtained.

The pure-slip longitudinal force consists of one adhesive part and one sliding

part. For the adhesive part the generated force is dependent on the deformation.

The brush model states that the force developed at driving with slip σ x < 0 will
have the same size and the opposite sign as the force as generated at braking

with slip −σ x, i.e.
F0ax(σ x) = −F0ax(−σ x) (106)

With σ x = λ driving/(1− λ driving) and −σ x = λ braking/(1− λ braking) this means that

λ braking = −
λ driving

1− 2λ driving
(107)

Hence, when computing adhesive forces using an empirical model for braking then

the pure-slip forces






−F̂0x
( −λ
1− 2λ

)

, λ < 0

F̂0x(λ ), λ ≥ 0

(108)

are best used for driving and braking respectively.

For the sliding case it is more natural to let the force depend on the rela-

tive velocity vs = λvx. Then −vs will simply correspond to −λ . Therefore, when
computing slide forces using an empirical model for braking then the pure-slip

forces
{

−F̂0x(−λ ), λ < 0

F̂0x(λ ), λ ≥ 0
(109)

are best used for driving and braking respectively.

In the upper plot of Figure 23 the effect of the described procedure is visible

for negative λ .

5. Validation and Discussion

5.1 Validation

Empirical data from a truck-tire is used to exemplify the proposed combined-

slip models. The data is provided by Volvo Truck Corporation [10] and consists
of pure-slip data with corresponing Magic Formula parameters, and two sets of

combined-slip data for fixed slip-angles α = 4.7 deg and α = 9.8 deg with varying
slip-ratios λ ∈ [0,1]. The details on tire brand and model is confidential.
From the two proposed adhesive-force and eight proposed sliding-force com-

bined-slip models a total of sixteen models for total combined-slip forces are ob-

tained. All sixteen models reduce to the empirical model at pure-slip, see Fig-

ure 12. In Figures 32, 33, and 31 in Appendix D all sixteen models are com-

pared with the combined-slip empirical data. The resulting tire-forces for constant

α = 4.7 deg and α = 9.8 deg as λ is swept from 0 to 1 are plotted. The combined
force accoring to the COMBINATOR-model (21) [28] is also shown for comparison.
It can immidately be seen from the figures that all proposed models give similar

performance, and that the COMBINATOR model differs especially at α = 4.7 deg.
The difference between the models is which pure-slips, σ0x, σ0y, that are used

in the empirical pure-slip models when computing the combined-slip force. The
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Figure 23 Pure-slip forces and self-aligning moment for the empirical pure-slip model (solid
lines) and the proposed semi-empirical models (dashed lines). All proposed semi-empirical
models are identical in pure-slip. The limit slips λ ○ and α ○ are marked by “*”. The deviation at

λ < 0 in the longitudinal direction results from using the procedure of Section 4.4 for driving.
Since the Magic Formula is valid for hα h < 20 deg the aligning-torque data for α = ±20 deg
are used for larger slip-angles.

pure-slips used are the deformation invariant (“def”) and the velocity-component
invariant (“velc”) pure-slips, which are related to the components of the combined-
slip. The region invariant (“reg”) and the velocity invariant (“vel”) pure-slips,
which are related to the magnitude of the combined-slip. The pure-slips which

are related to the magnitude of the combined-slip may grow significantly larger

than the respective components of the combined slip. E.g., for a combined slip

σ̄ = (σ x,σ y) the pure-slips σ0x and σ0y that are used with the empirical pure-slip
data will both be of a size in the order of hσ̄ h. This means that even if σ x � 0 then
σ0x � σ y when σ y grows, and vice versa. This requires valid empirical data at
large slips in both directions.

It can be seen in the figures that the “def” and “velc” models differ slightly

qualitatively from the “reg” and “vel” models. This can be explained by the fact that

these models use different parts of the empirical pure-slip data in the construction

of the combined forces.

Note that if the empirical data was exactly described by the brush model, the

different proposed models would yield identical results. Otherwise, the different

models are each designed to emphasize one particular physical source of the pro-

duced force.

Adhesion models The effect of choice of adhesion model is only visible at partial

sliding, i.e. when ψ (σ x,σ y) < 1. The transition to full sliding is marked with an
asterisk in the figures.

The deformation-invariant model of Property 5 is based on the empirical pure-

slip data which correspond to the same longitudinal and lateral tread deformation

as the combined-slip. Since this deformation is assumed to be the source of the

adhesive force, this model is strongly physically motivated. The model seems to

perform well when compared to the validation data. Differences are best explained

by limitations of the empirical data as noted below.
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The adhesive-region invariant model of Property 8 is based on the empirical

pure-slip data which correspond to the same size of the adhesive region as the

combined-slip. This is in analogy with the approach of the combined-slip model

(18) proposed in [2]. The performance of this model is not distinguishable from
the deformation-invariant model.

Sliding models The effect of choice of adhesion model is visible in the full

range of slips, both at partial and full sliding.

A first general observation is that the sliding-force models which are based

on collinear or slip-projection sliding-friction seem to show best agreement with

validation data at large slips. Since the MDR friction-model shows poor agreement

it can be concluded that the friction is not really anisotropic, and that differences

in sliding forces in longitudinal and lateral directions at full sliding instead are

the result of measurement errors. If the friction characteristics are assumed to be

isotropic, the collinear model is the most natural to use.

The deformation-invariant model of Property 6 has a weak physical foundation

since the sliding forces do not depend on the deformation explicitly. Since σ̄ has
the interpretation of bristle deformation only at adhesion in partial sliding, it is

not even clear what this model means at full sliding. One reason to still examine

this model is that in combination with the deformation-invariant model for the

adhesive force, the same empirical pure-slip data will be used for adhesive and

sliding forces at a particular combined slip. Even if the physical motivation for

this model is weak, the validation results are still good. Note that this model can

only be formulated without singular expressions when using the slip-projection

sliding-friction.

The region-invariant model of Property 9 lacks physical interpretation at full

sliding, since there then is no adhesive region. Still, the agreement with validation

data is similar to that of the deformation-invariant model. The model can be

formulated using any of the collinear, beta-projection, or MDR sliding friction

models.

The slip-velocity invariant model of Property 11 is an approach based on the as-

sumption that the sliding force depends primarily on the relative velocity between

the tire and the road. Intuitively, this is the most attractive method. A feature

with this model is the possibility to take into account the velocity at which the

empirical data were measured. The model can be formulated using any of the

collinear, beta-projection, or MDR sliding friction models.

The slip-velocity-component invariant model of Property 13 is a modification of

the velocity-invariant model to obtain a pure-slip based on the components of the

combined-slip. Note that also this model can only be formulated without singular

expressions when using the slip-projection sliding-friction.

Self-aligning Moment Model Empirical data for combined-slip self-aligning

moment was not available.

5.2 Measurement data

The combined-slip validation data consists of only two measurement sets. A full

validation would require more data. The data exhibit a few obvious discrepancies.

Firstly, the pure-slip lateral forces in the combined-slip data-sets do not agree

with the corresponding forces in the pure-slip data-sets. This may be seen by

comparing the data-points for Fy at Fx = 0 in Figures 32, 33, and 31 with the
corresponding points at α = 4.7 deg and α = 9.8 deg in Figure 12. Secondly, in
the data corresponding to large slips with λ � 1 (wheel-lock) in the combined-slip
data-sets there seems to be a discontinuity. Thirdly, the direction of the tire-force

at λ = 1 seems strange. At α = 4.7 deg the resulting angular direction of −F̄
at λ = 1 should be 4.7 deg for isotropic sliding friction or 5.0 deg for anisotropic
friction according to the Maximum Dissipation-Rate principle. In the data-set it is

1.28 deg. The corresponding figures for 9.8 deg are 10.4 deg for anisotropic friction
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and 5.1 deg in the data-set. No obvious explanation has been found to this, and

it is assumed that it is the result of measurement errors.

Measurement data for the lateral force and the self-aligning moment is only

available for hα h < 20 deg and the validity of the fitted Magic Formula model is
limited to this range. For hα h > 20 deg the data for α = ±20 deg are used for the
self-aligning torque.

5.3 Discussion

Only the MDR sliding-friction model can be disqualified on the basis of the vali-

dation data. That leaves 12 candidate models to choose from, which show compa-

rable agreement with measurement data. From these the deformation-invariant

adhesion-force model (Property 5) in combination with the collinear slip-velocity
invariant sliding-force model (Property 11) is chosen as the most attractive mod-
els. This is the physically most motivated combination, and the velocity depen-

dence of the slip-velocity invariant sliding-force model is a valuable feature. This

model is further examined below and pseudo-code implementations are given in

Appendix E. The region-invariant models (Properties 8 and 9) are the simplest
to implement, but the lack of interpretation of the pure-slips at full sliding is

a disadvantage. Pseudo-code implementations of the region-invariant models are

given in Appendix E.

In Figure 24 the resulting forces and aligning-moment are shown for fixed

slip angles α and varying λ ranging from −100% (driving) to 100% (braking
with locked wheels). The adhesive and sliding contributions are shown separately
for the forces. The adhesive forces is dominating at small slip magnitudes, and

vanish at the point of full sliding. For the aligning-moment the contributions from

M ′(σ x,σ y) and M ′′(σ x,σ y) are shown separately. It is clear that M ′(σ x,σ y) is the
dominating part. Note the asymmetrical characteristics with respect to driving

(λ < 0) and braking (λ > 0). This is essentially an effect of the relation between σ̄
and (λ , tan(α )), see (5). The combined-slip forces and moment agrees qualitatively
with observations reported in e.g. [24]. Note that the main contribution to the
self-aligning torque is given by M ′

z, which is the part resulting from the non-

symmetric distribution of the lateral force. The additional part M ′′
z resulting from

tire deformation is smaller. This part is, however, probably underestimated since

only the deformation resulting from bristle deflection is accounted for. Figure 25

shows the corresponding case with fixed λ as α is swept from 0 to 30 deg. Negative
α are not shown since the characteristics are symmetrical. The comments on
Figure 24 apply also for this figure. Figure 26 is similar to Figures 32–31, and

shows the combined forces at constant α when λ is swept from −100% to 100%.

For small slips the direction of the tire-force is primarily determined by the

stiffness characteristics of the tire. Only at larger slips, when the sliding-friction

dominates, the resulting force is collinear with the slip vector. This gradual change

in orientation of the resulting tire-force with increasing slips is a main feature of

the proposed model. In Figure 27 the effect is illustrated for the three choices of

sliding-friction models. In the figures the difference between the slip-vector angle

β and the angle of the resulting tire-force β F is shown. This difference is always
zero for pure-slips (β = 0 deg or β = 90 deg). For small combined-slips when the
tire-stiffness determines the orientation of the resulting tire-force this difference

is as largest. For larger slips the difference goes to zero for the collinear model.

For the slip-projection model and the MDR model this difference approaches zero

more slowly with increasing slips.

The velocity dependence is illustrated in Figures 28 and 29. The pure-slip

Magic Formula model is calibrated with data from tire measurements with wheel

velocity v0.
4 Tire-forces are shown for wheel velocities v which are 1–4 times

the pure-slip model velocity v0. The results agree qualitatively well with what is

4The exact velocity v0 is not known for the empiral pure-slip data, but measurements on the used

test-bed are normally performed around 10 m/s.
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Figure 24 Combined-slip forces with the deformation-invariant adhesion-force model (Prop-
erty 5) in combination with the collinear slip-velocity invariant sliding-force model (Prop-
erty 11) for fixed slip angles α and varying λ ranging from −100% (driving) to 100% (braking
with locked wheels). Top: Fx (solid), Fax (dotted), Fsx (dashed). Middle: Fy (solid), Fay (dot-
ted), Fsy (dashed). Bottom: Mz (solid), M ′

z (dashed), M ′′
z (dotted).

reported in e.g. [24]. The slip-velocity at a certain combined slip (λ ,α ) is vs =

v
(

(λ cos (α ))2 + sin2 (α )
)1/2

. Corresponding pure-slips for the empirical pure-slip

model are given by vs = λ vel0 v0 and vs = sin(α vel0 )v0. From these expressions pure-

slips λ vel0 < 100% and α vel0 < 90 deg can be solved for when (λ cos (α ))2+sin2 (α ) ≤

(v/v0)
2, see Equations (155). If (λ cos (α ))2+sin2 (α ) > (v/v0)

2 then extrapolations

of the pure-slip models are necessary.

Normal-force dependence is straightforwardly included in the proposed models

by using normal-force dependent pure-slip models such as the standard Magic

Formula.

5.4 Relations to Other Models

In Figure 30 the responses of the proposed model, the Bakker model [2], and the
COMBINATOR model [28] are shown for comparison. It is clear that the proposed
model performs better than the COMBINATOR model at small slip-angles α . The
COMBINATOR model may be written as:

Fx = F cos(β) and Fy = F sin(β) (110a)

where

F = Fx0(s) cos
2(β) + Fy0(s) sin

2(β) (110b)

The resulting force is always collinear with the slip vector. In the COMBINATOR

model the lateral force initially increases as a longitudinal slip λ is applied. This
is a result of the assumption of a collinear combined-slip tire-force in the full

slip-range, in combination with the use of the combined-slip magnitude in the

empirical pure-slip models.

It is clear from the figure that the proposed region-invariant model is very

similar to the Bakker model. One major reason for this is that also the Bakker
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Figure 25 Combined-slip forces with the deformation-invariant adhesion-force model (Prop-
erty 5) in combination with the collinear slip-velocity invariant sliding-force model (Prop-
erty 11) for fixed λ as α is swept from 0 to 30 deg. Top: Fx (solid), Fax (dotted), Fsx (dashed).
Middle: Fy (solid), Fay (dotted), Fsy (dashed). Bottom: Mz (solid), M ′

z (dashed), M ′′
z (dotted).

model is based on the pure slips σ reg0x , σ
reg
0y . The Bakker equations:

Fx = cos ((1− ϑ )β○ + ϑ β ) F′
0x (111a)

Fy = sin ((1− ϑ )β○ + ϑ β ) F′
0y (111b)

where

ϑ *
=
2

π arctan(q1ψ 2(σ x,σ y))), (112)

with q1 as a parameter and

F′
0x

*
= F0x(σ reg0x ) − sat(ψ )(F0x(σ reg0x ) − F0y(σ reg0y )) sin2(β○) (113a)

F′
0y

*
= F0y(σ reg0y ) + sat(ψ )(F0x(σ reg0x ) − F0y(σ reg0y )) cos2(β○) (113b)

are clearly similar to the collinear region-invariant model:

Fx = ((1− θx) cos(β○) + θx cos(β−)) F0x (114a)

Fy = ((1− θ y) sin(β○) + θ y sin(β−)) F0y (114b)

with θ given by (70). In the Bakker model the orientation of the resultant force is
obtained by a convex combination of angles corresponding to adhesion and sliding

respectively. In the region-invariant model the resultant is obtained by a convex

combination of adhesive and sliding forces. The resultant friction magnitude for

the Bakker model at full sliding is

F = F0x sin
2(β○) + F0y cos

2(β○) (115)

For the region-invariant model the corresponding magnitude is

F0xF0y/

√

F0x sin
2(β○) + F0y cos2(β○) (116)

Compare with the COMBINATOR magnitude above.
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Figure 26 Combined-slip forces with the deformation-invariant adhesion-force model (Prop-
erty 5) in combination with the collinear slip-velocity invariant sliding-force model (Prop-
erty 11) for fixed slip angles α and varying λ ranging from −100% (driving) to 100% (braking
with locked wheels).
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Figure 27 The difference between the slip-vector angle β and the angle of the resulting
tire-force β F for the deformation-invariant adhesion-force model (Property 5) in combination
with the collinear (top), slip-projection (middle), and MDR (bottom) slip-velocity invariant
sliding-force model (Property 11). (Partial sliding (solid); Full sliding (dashed))

6. Summary

This work proposes two new models for combined-slip tire-forces and self-aligning

moment. Prerequisites of the new models are to use available empirical models

for pure-slip forces and to not introduce any additional parameters which need

calibration with combined-slip data. The proposed models are based on under-

standing of the physical sources of tire-forces as given by the theoretical rigid-

48



−100 −50 0 50 100
−40

−20

0

20

40

Truck tire, def/vel (col), F
z
 = 40 [kN]

λ [%]
−

F
x
 [

k
N

]

0 5 10 15 20 25 30
0

10

20

30

40

α [deg]

−
F

y
 [

k
N

]

Figure 28 Velocity dependence at pure-slips for the deformation-invariant adhesion-force

model (Property 5) in combination with the collinear slip-velocity invariant sliding-force model
(Property 11). Velocities: v = v0 (solid), 2v0 (dashed), 3v0 (dash-dotted), 4v0 (dotted).
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Figure 29 Velocity dependence at pure-slips for the deformation-invariant adhesion-force

model (Property 5) in combination with the collinear slip-velocity invariant sliding-force model
(Property 11). Velocities: v = v0 (solid), 2v0 (dashed), 3v0 (dash-dotted), 4v0 (dotted).

carcasss brush-model. Based on the brush-model, the combined-slip forces may

be described with a scaling of corresponding pure-slip forces. In the combined-slip

models the resulting forces are computed by multiplying empirical pure-slip forces

with theoretically derived scaling factors. All model expressions are computation-

ally feasible. The proposed models fulfill the criteria listed in the introduction.

The combined-slip models are based on a method to separate the adhesion

and slide forces in the empirical pure-slip models. Combined-slip forces for ad-

hesion and sliding are then also constructed separately. This makes sense since
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adhesion and slide forces are the result of different physical processes. Therefore,

the pure-slips corresponding to a particular combined slip are chosen differently

for adhesive and sliding forces. For adhesion forces the pure-slips which describe

the same tread-deformation as the combined slip are used. For sliding forces the

pure-slips which result in the same slip-velocity as the combined slip are used.

Models based on pure-slips which correspond to the same size of adhesive and slid-

ing regions in the contact patch are also suggested. These seem less physically

motivated, but result in simpler expressions.

The brush-model includes the major physical processes which are responsible

for the build-up of tire-forces. Additional effects resulting from e.g. a flexible car-

cass are implicitly included in the combined-slip models if they are present in the

used pure-slip models. The choice of corresponding pure-slips affects how such

additional effects influence the combined-slip forces.

Four parameters with clear physical interpretations are introduced in the pro-

posed models. Two of these parameters are of central significance and can be

computed automatically from the pure-slip models. The other two are set to unity

as default and describe a freedom to adjust the model-response if desired.

The Magic Formula is a natural choice of pure-slip empirical model, and is

used in the examples. Both suggested combined-slip models give good results in

validation with empirical data. The relations to similar previous combined-slip

models are analyzed. It is concluded that the suggested models are superior to the

previously published COMBINATOR model. The combined-slip model presented

together with the Magic Formula includes similar effects as the proposed models,

but with a different approach.

Preliminary studies on extension of the models to include effects of a flexible

carcass are ongoing. The ultimate goal is to include simple models of dynamic

effects and transient behaviour resulting from carcass defomation. It is believed

that this is possible without introducing overwhelming complexity. Effects of ply-

steer, conicity, and camber have not been regarded to this point. It is expected

that also these may be included in the models.
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Figure 30 Combined-slip forces with the deformation-invariant adhesion-force model (Prop-
erty 5) in combination with the collinear slip-velocity invariant sliding-force model (Prop-
erty 11) (upper plot, solid line) and the region-invariant adhesion-force model (Property 8) in
combination with the collinear region-invariant sliding-force model (Property 9) (lower plot,
solid line) for fixed slip angles α and varying λ ranging from 0% to 100% (braking with locked
wheels). The COMBINATOR model (dotted line) and the Bakker model (dash-dotted line) are
shown for comparison.
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A. Proofs

A.1 Proof of Propery 3

Proof. Direct insertion of (36) and (48) in (67) gives

θx(σ x) =
µsxFzψ 2(σ x,0) (3− 2ψ (σ x,0))

2a2cpx(σ x)σ x (1−ψ (σ x,0))2 + µsxFzψ 2(σ x,0) (3− 2ψ (σ x,0))

=
ψ (σ x,0) (3− 2ψ (σ x,0))

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
(117)

where (32) is used in the last equality. At full sliding (σ x ≥ σ ○
x) then F0ax(σ x) = 0,

F0sx(σ x) = F0x(σ x) and hence θx(σ x) = 1 from the definition. The expressions for
θ y(σ y), 1− θx(σ x), and 1− θ y(σ y) are derived analogously.

A.2 Proof of Property 4

Proof. Follows directly from (23), which expresses that the deformations in the
longitudinal and lateral directions are independent.

A.3 Proof of Property 5

Proof. Assume σ x �= 0, then F0ax(σ x) �= 0 since ψ (σ x,σ y) < 1, and

Fax(σ x,σ y) = F0ax(σ x)
Fax(σ x,σ y)
F0ax(σ x)

= F0ax(σ x)
(

1−ψ (σ x,σ y)
1−ψ (σ x,0)

)2

= (1− θx(σ x)) F0x(σ x)
(

1−ψ (σ x,σ y)
1−ψ (σ x,0)

)2

(118)
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The second equality is due to (36) and (37). Inserting (70) and rearranging
yields (74). The scaling factor is non-singular at σ x = 0. If σ x = 0 then F0ax(σ x) =
Fax(σ x,σ y) = 0, which is fulfilled by (74). The lateral expression is derived anal-
ogously.

A.4 Proof of Property 6

Proof. Regard the longitudinal force and assume σ x �= 0, σ y �= 10, ψ (σ x,σ y) < 1,
then from (48), (51) and (49)

Fsx(σ x,σ y) = F0sx(σ x)
Fsx(σ x,σ y)
F0sx(σ x)

= F0sx(σ x)
Fsz(σ x,σ y)
Fsz(σ x,0)

cos(β)

= θx(σ x)F0x(σ x)
ψ 2(σ x,σ y) (3− 2ψ (σ x,σ y))

ψ 2x(σ x)(3− 2ψ (σ x,0))
cos(β) (119)

For small slips σ x then ψ (σ x,0) approaches zero and computing the expression
will result in numerical problems. Rewriting is therefore necessary. Insertion of

(70) and using that ψ (σ x,0)/ψ (σ x,σ y) = cos(β○) yields, after rearrangements

Fsx(σ x,σ y) = F0x(σ x)
ψ (σ x,σ y) (3− 2ψ (σ x,σ y))

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
⋅
cos(β)

cos(β○)
(120)

Using the definitions of β and β○ it is easily verified, see Appendix C, that

cos(β)

cos(β○)
= σ ○

x

(

1

σ ○
x

cos(β) cos(β○) +
1

σ ○
y

sin(β) sin(β○)

)

(121)

Insertion of this in (120) completes the proof for ψ (σ x,σ y) < 1. For ψ (σ x,σ y) ≥ 1
but ψ (σ x,0) < 1 then

Fsx(σ x,σ y) = F0sx(σ x)
Fsx(σ x,σ y)
F0sx(σ x)

= F0sx(σ x)
Fz

Fsz(σ x,0)
cos(β)

= θx(σ x)F0x(σ x)
1

ψ 2x(σ x)(3− 2ψ (σ x,0))
cos(β)

= F0x(σ x)
1

3ρx (1−ψ (σ x,0))2 +ψ (σ x,0) (3− 2ψ (σ x,0))
⋅
cos(β)

ψ (σ x,0)
(122)

Observing that cos(β)/ψ (σ x,0) = σ ○
x/
√

σ 2x + σ 2y completes the proof for this case.
For ψ (σ x,σ y) ≥ 1 and ψ (σ x,0) ≥ 1 then

Fsx(σ x,σ y) = F0sx(σ x)
Fsx(σ x,σ y)
F0sx(σ x)

= θx(σ x)F0x(σ x)
Fzµsx cos(β)

Fzµsx
= F0x(σ x) cos(β)

(123)
The lateral expression is derived analogously.

A.5 Proof of Property 7

Proof. The pure slips σ reg0x and σ reg0y result in the same normalized slip as the
combined slip (σ x,σ y)

ψ x(σ reg0x ) = ψ (σ reg0x ,0) = ψ (σ x,σ y) (124a)

ψ y(σ reg0y ) = ψ (0,σ reg0y ) = ψ (σ x,σ y) (124b)

This follows directly by inserting (77) in (33). From (124) and (35) it then follows
that the pure slips σ reg0x and σ reg0y result in adhesive regions of the same size as the
combined slip (σ x,σ y)

xs(σ reg0x ,0) = xs(0,σ reg0y ) = xs(σ x,σ y) (125)
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A.6 Proof of Property 8

Proof. Assume σ x �= 0 and ψ (σ x,σ y) < 1, then

Fax(σ x,σ y) = F0ax(σ reg0x )
Fax(σ x,σ y)
F0ax(σ reg0x )

= F0ax(σ reg0x )
σ x (1−ψ (σ x,σ y))

σ reg0x
(

1−ψ (σ reg0x ,0)
)

= F0ax(σ reg0x )
σ x (1−ψ (σ x,σ y))

σ ○
xψ (σ x,σ y) (1−ψ (σ x,σ y))

= F0ax(σ reg0x )
ψ (σ x,0)

ψ (σ x,σ y)
= (1− θx(σ reg0x ))F0x(σ reg0x ) cos(β○) (126)

If σ x = 0 then F0ax(σ x) = Fax(σ x,σ y) = 0 which is fulfilled by (78) since then
sin(β○) = 0. The lateral expression is derived analogously.

A.7 Proof of Property 9

Proof. Regard the longitudinal force. Then using (51), (49), (77), (48)

Fsx(σ x,σ y) = −cos(β)µsxFsz(σ x,σ y) = −cos(β)µsxFsz(σ reg0x ,0)
= F0sx(σ reg0x ) cos(β) = (1− θx(σ x))F0x(σ reg0x ) cos(β) (127a)

The lateral expression is derived analogously.

A.8 Proof of Property 10

Proof. The relative velocity vs at the combined slip (σ x,σ y) and the vehicle velocity
v is given by

vs =
√

v2sx + v2sy =
v
√

σ 2x + σ 2y
√

(1+ σ x)2 + σ 2y
(128)

For the pure longitudinal slip at v0x = v0 with v0sx = vs sgn(σ x) the slip definition
gives

σ vel0x =
v0sx

v0x − v0sx
=

vs sgn(σ x)
v0 − vs sgn(σ x)

=

√

σ 2x + σ 2y sgn(σ x)

v0

v

√

(1+ σ x)2 + σ 2y −
√

σ 2x + σ 2y sgn (σ x)
(129)

and for the lateral case with v0sy = vs sgn(σ y), v0x =
√

v20 − v20sy and v0sx = 0,

σ vel0y =
v0sy

v0x − v0sx
=
vs sgn(σ y)
√

v20x − v20sy

=

√

σ 2x + σ 2y sgn(σ y)
√

√

√

√

(

v0

v

)2
(

(1+ σ x)2 + σ 2y
)

− (σ 2x + σ 2y)

(130)

A.9 Proof of Property 11

Proof. Regard the longitudinal force and assume σ x �= 0. Then using (51), (49),
and (48)

Fsx(σ x,σ y) = F0sx(σ vel0x )
Fsx(σ x,σ y)
F0sx(σ vel0x )

= −cos(β)F0sx(σ vel0x )
Fsz(σ x,σ y)
Fsz(σ vel0x ,0)

sgn(σ x)

= hcos(β)hθx(σ vel0x )F0x(σ vel0x )
Fsz(σ x,σ y)
Fsz(σ vel0x ,0)

= hcos(β)hF0x(σ vel0x )θx(σ vel0x )Γvelx (131a)
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Assume that ψ (σ x,σ y) < 1 and ψ (σ vel0x ,0) < 1. Then Equation (49) gives

Γvelx =
Fsz(σ x,σ y)
Fsz(σ vel0x ,0)

=
ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y))
ψ 2(σ vel0x ,0)(3− 2ψ (σ vel0x ,0))

(132)

If ψ (σ x,σ y) ≥ 1 then (132) holds with ψ (σ x,σ y) replaced by unity and if
ψ (σ vel0x ,0) ≥ 1 then (132) holds with ψ (σ vel0x ,0) replaced with unity. Rewriting is
necessary to avoid singluar numerics at small slips since ψ 2(σ velx ,0) is present in
the denominator. When ψ (σ x,σ y) < 1 andψ (σ vel0x ,0) < 1 then using (33) and (80)

Γvelx =





(

σ x
σ ○
x

)2

+

(

σ y
σ 0y

)2




(σ ○
x)
2

(

v0

v

√

(1+ σ x)2 + σ 2y − sgnσ x
√

σ 2x + σ 2y

)2

(σ 2x + σ 2y)

⋅
(3− 2ψ (σ x,σ y))
(3− 2ψ (σ vel0x ,0))

=
(3− 2ψ (σ x,σ y))
(3− 2ψ (σ vel0x ,0))

(

cos (β)

cos (β○)

)2(

v0

v

√

(1+ σ x)2 + σ 2y − sgn(σ x)
√

σ 2x + σ 2y

)2

=
(3− 2ψ (σ x,σ y))
(3− 2ψ (σ vel0x ,0))

(

σ ○
x

(

1

σ ○
x

hcos(β)h cos(β○) +
1

σ ○
y

hsin(β)h sin(β○)

))2

⋅

(

v0

v

√

(1+ σ x)2 + σ 2y − sgnσ x
√

σ 2x + σ 2y

)2

(133)

This expression will not render any computational problems. The rewriting of

cos(β)/ cos(β○) is shown in appendix C. The factor ψ 2(σ velx ,0) in the denominator
of (132) does not pose any problem when ψ (σ x,σ y) ≥ 1. From the definition it
is easy to see that ψ (σ velx ,0) is not close to zero when ψ (σ x,σ y) ≥ 1. For σ x =
0, then cos(β) = 0 which give F0sx = 0. The lateral expressions are derived

analogously.

A.10 Proof of Property 12

Proof. The slip velocity v̄s at the combined slip (σ x,σ y) and the vehicle velocity v
is given by

vsx = v
σ x

√

(1+ σ x)2 + σ 2y
(134)

vsy = v
σ y

√

(1+ σ x)2 + σ 2y
(135)

For the pure longitudinal slip at the reference vehicle velocity v0 then v0x = v0
and v0sx = vsx, hence

σ velc0x =
v0sx

v0x − v0sx
=

vsx

v0 − vsx
=

σ x
v0

v

√

(1+ σ x)2 + σ 2y − σ x
(136)

and for the lateral case, v0sy = vsy, v0sx = 0 and v0x =
√

v20 − v2sy,

σ velc0y =
v0sy

v0x − v0sx
=

vsy
√

v20 − v2sy

=
vσ y

√

v20
(

(1+ σ x)2 + σ 2y
)

− v2σ 2y
(137)
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A.11 Proof of Property 13

Proof. Regard the longitudinal force and assume σ x �= 0. Then using (51), (49),
(77), (48)

Fsx(σ x,σ y) = F0sx(σ velc0x )
Fsx(σ x,σ y)
F0sx(σ velc0x )

= cos(β)
F0sx(σ velc0x )

Fsz(σ velc0x ,0)
Fsz(σ x,σ y) sgn(σ x)

= hcos(β)hθx(σ velc0x )F0x(σ velc0x )
Fsz(σ x,σ y)
Fsz(σ velc0x ,0)

= F0x(σ velc0x )
ψ x(σ velc0x )

(

3− 2ψ x(σ velc0x )
)

3ρx
(

1−ψ x(σ velc0x )
)2

+ψ x(σ velc0x )
(

3− 2ψ x(σ velc0x )
)

hcos (β)h

⋅
ψ 2(σ x,σ y)(3− 2ψ (σ x,σ y))
ψ 2x(σ velc0x )(3− 2ψ x(σ velc0x ))

= F0x(σ velc0x )
ψ (σ x,σ y)(3− 2ψ (σ x,σ y))

3ρx
(

1−ψ x(σ velc0x )
)2

+ψ x(σ velc0x )
(

3− 2ψ x(σ velc0x )
)

⋅
ψ (σ x,σ y)
ψ x(σ velc0x )

hcos (β)h (138)

The expression above is only valid when ψ (σ x,σ y) and ψ (σ velc0x ,0) is less than 1.
For the case that ψ (σ x,σ y) ≥ 1, ψ (σ x,σ y) is exchanged for 1 in (A.11) and if
ψ (σ velc0x ,0) ≥ 1, ψ (σ velc0x ,0) = 1 is used. Since the expression when ψ (σ velc0x ,0) < 1
includesψ (σ velc0x ,0) in the denominator, special care must be taken when this factor
goes to zero. When ψ (σ x,σ y) < 1 we have for the latter part of (A.11)

ψ (σ x,σ y)
ψ x(σ velc0x )

hcos (β)h = hcos (β)h

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ 0y

)2σ ○
x

(

v0

v

√

(1+ σ x)2 + σ 2y − σ x

)

σ x

=
hcos (β)h

cos (β○)

(

v0

v

√

(1+ σ x)2 + σ 2y − σ x

)

(139)

which will not render any computational problems. For the case whenψ (σ x,σ y) ≥
1 the following rewriting is done

hcos (β)h

ψ (σ velc0x ,0)
=

σ ○
x

(

v0

v

√

(1+ σ x)2 + σ 2y − σ x

)

σ x

σ x
√

σ 2x + σ 2y
(140)

where σ x can be cancelled and it is known that
√

σ 2x + σ 2y is not close to zero when
ψ (σ x,σY) ≥ 1. For σ x = 0, then cos(β) = 0 which give F0sx = 0. The derivation
for the forces in the lateral direction can be shown in the same way.

A.12 Proof of Property 14

Proof. From (65a) and 7 it is clear that the adhesive and sliding pneumatic trails
for the combined slip (σ x,σ y) is equal to the pneumatic trails for the pure slip
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σ reg0y : t′a(σ x,σ y) = t′a0(σ
reg
0y ), t′s(σ x,σ y) = t′s0(σ

reg
0y ). By using (59) and (65a)

M ′
z(σ x,σ y) = t′s(σ x,σ y)Fsy(σ x,σ y) + t′a(σ x,σ y)Fay(σ x,σ y)

= t′0s(σ
reg
0y )F0sy(σ reg0y )

Fsy(σ x,σ y)
F0sy(σ reg0y )

+ t′0a(σ
reg
0y )F0ay(σ reg0y )

Fay(σ x,σ y)
F0ay(σ reg0y )

= M0sz(σ reg0y ) sin(β) + t′0a(σ
reg
0y )F0ay(σ reg0y ) sin(β○)

= (M0z(σ reg0y ) − t′0a(σ
reg
0y )F0ay(σ reg0y )) sin(β) + t′0a(σ

reg
0y )F0ay(σ reg0y ) sin(β○)

= M0z(σ reg0y ) sin(β) + t′0a(σ
reg
0y )(1− θ y(σ reg0y ))F0y(σ reg0y )(sin(β○) − sin(β)) (141)

where Properties 8 and 9 have been used in the third equality. The contact length

a in (65a) may be computed from (66) as

a =
3Cz

Cy
(142)

A.13 Proof of Property 15

Proof. For the adhesion part M ′′
az of the deformation torque the expressions for the

adhesion forces given by Property 8 are inserted in (61). The factor (1−ψ (σ x,σ y))
present in the denominator of (61) and in the numerator of θx and θ y can then be
cancelled and no numerical problems arises for small slips in the final formula.

The slide part (M ′′
sz) is given by (62) and the slide forces by Property 9. Again, the

factorψ (σ x,σ y) present in the denominator of (62) and in the numerator of 1−θx
and 1−θ y can then be cancelled and no numerical problems arises for small slips
in the final formula.

A.14 Proof of Property 16

Proof. For the adhesive part (M ′′
az) of the deformation torque the expressions for

the adhesive forces given by Property 5 are inserted in (61). The denominator
(1 − ψ (σ x,σ y)) in (61) will then be cancelled and no numerically problems can
arise. The sliding part (M ′′

sz) is given by (62) and the sliding forces are derived
by using Property 11. The factor ψ (σ x,σ y) in the denominator of (62) can be
cancelled by breaking out ψ (0,σ reg0y ) from θ y(σ reg0y ).

B. Slip translations

This appendix deals with details regarding the practical computation of the pure-

slips in the models when λ and α are used instead of σ x and σ y. Using (7) a
combined slip (λ ,α ) is translated to the combined slip (σ x,σ y) as

σ x =
λ
1− λ

(143a)

σ y =
tan(α )

1− λ (143b)

The condition for partial sliding is then expressed in λ and α as

ψ (σ x,σ y) < 1:;

(

λ
σ ○
x

cos(α )

)2

+

(

sin(α )

σ ○
y

)2

< (1− λ )2 cos2(α ) (144)
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The pure slips (λ 0,0) and (0,α 0) are translated to the pure slips (σ0x,0) and
(0,σ0y) as

σ0x =
λ 0
1− λ 0

(145a)

σ0y = tan(α 0) (145b)

Since the limit slips are pure slips they are translated as

σ ○
x =

λ ○

1− λ ○
(146a)

σ ○
y = tan(α ○) (146b)

Also from (7) it is clear that the combined slip (σ x,σ y) corresponds to the
combined slip (λ ,α ) given by

λ =
σ x
1+ σ x

(147a)

tan(α ) =
σ y
1+ σ x

(147b)

Hence, the pure slips (σ0x,0) and (0,σ0y) correspond to the combined slips (λ 0,0)
and (0,α 0) given by

λ 0 =
σ0x
1+ σ0x

(148a)

tan(α 0) = σ0y (148b)

Note that in the following when solving for α 0 using this last expression it will be
necessary to use the function atan2(y, x) which is standard in most computer lan-
guages (e.g. C, Matlab) and returns arctan(y/x) without performing the possibly
singular division.

B.1 Deformation-invariant pure slips

σ0x = σ x =
λ
1− λ

(149a)

σ0y = σ y =
tan(α )

1− λ
(149b)

λ 0 =
σ0x
1+ σ0x

= λ (150a)

tan(α 0) = σ0y =
tan(α )

1− λ
=

sin(α )

(1− λ ) cos(α )
(150b)

ψ (σ x,0) < 1:; hλ h < σ ○
xh1− λ h (151a)

ψ (0,σ y) < 1:; hsin(α )h < σ ○
yh(1− λ ) cos(α )h (151b)

B.2 Region-invariant pure slips

σ reg0x = σ ○
xψ (σ x,σ y) = σ ○

x

√

√

√

√

(

λ
1− λ

1

σ ○
x

)2

+

(

tan(α )

1− λ
1

σ ○
y

)2

sgn (λ ) (152a)

σ reg0y = σ ○
yψ (σ x,σ y) = σ ○

y

√

√

√

√

(

λ
1− λ

1

σ ○
x

)2

+

(

tan(α )

1− λ
1

σ ○
y

)2

sgn (α ) (152b)
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λ reg0 =
σ reg0x
1+ σ reg0x

=

σ ○
x

√

√

√

√

(

λ cos(α )

σ ○
x

)2

+

(

sin(α )

σ ○
y

)2

sgn (λ )

(1− λ ) hcos(α )h + σ ○
x

√

√

√

√

(

λ cos(α )

σ ○
x

)2

+

(

sin(α )

σ ○
y

)2

sgn (λ )

(153a)

tan(α reg0 ) = σ reg0y =

σ ○
y

√

√

√

√

(

λ cos(α )

σ ○
x

)2

+

(

sin(α )

σ ○
y

)2

(1− λ )hcos(α )h
sgn (α ) (153b)

Since ψ (σ reg0x ,0) = ψ (0,σ reg0y ) = ψ (σ x,σ y) the conditions for partial sliding are
equivalent to (144).

B.3 Slip-velocity invariant pure slips

σ vel0x =
v

√

(λ cos (α ))2 + sin2 (α ) sgn (λ )

v0 − v

√

(λ cos (α ))2 + sin2 (α ) sgn (λ )
(154a)

σ vel0y =
v

√

(λ cos (α ))2 + sin2 (α )
√

v20 − v2
(

(λ cos (α ))2 + sin2(α )
)

sgn (α ) (154b)

λ vel0 =
v

v0

√

(λ cos (α ))2 + sin2 (α ) sgn (λ ) (155a)

sin(α vel0 ) =
v

v0

√

(λ cos (α ))2 + sin2 (α ) sgn (α ) (155b)

ψ (σ vel0x ,0) < 1:;

v

√

(λ cos (α ))2 + sin2 (α ) < σ ○
xhv0 − v

√

(λ cos (α ))2 + sin2 (α ) sgn (λ )h (156a)

ψ (0,σ vel0y ) < 1:;

v

√

(λ cos (α ))2 + sin2 (α ) < σ ○
y

√

v20 − v2
(

(λ cos (α ))2 + sin2(α )
)

(156b)

B.4 Slip-velocity component invariant pure slips

σ velc0x =
vλ cos (α )

v0 − λv cos (α )
(157a)

σ velc0y =
v sin (α )

√

v20 − (v sin (α ))2
(157b)

λ velc0 = λ cos (α )
v

v0
(158a)

tan (α velc0 ) =
v sin (α )

√

v20 − (v sin(α ))2
(158b)

ψ (σ velc0x ,0) < 1:; hvλ cos (α )h < σ ○
xhv0 − λv cos (α )h (159a)

ψ (0,σ velc0y ) < 1:; hv sin (α )h < σ ○
y

√

v20 − (v sin (α ))2 (159b)
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C. Derivation of non-singular expressions

In the proofs of some of the properties in Section 3 the expressions cos (β)/ cos (β○)
and sin (β)/ sin β○ appear. Computation of the expressions in this form may be

singular, but by rewriting them as follows numerically feasible expressions are

obtained. Recall that β is the angle of the slip vector

cos (β) =
σ x

√

σ 2x + σ 2y
(160)

sin (β) =
σ y

√

σ 2x + σ 2y
(161)

Also recall that β○ is the angle of the normalized slip vector

cos (β○) =
hσ xh

σ ○
x

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2
(162)

sin (β○) =
hσ yh

σ ○
y

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2
(163)

Hence,

cos (β)

cos β○
=

σ x
√

σ 2x + σ 2y

σ ○
x

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2

hσ xh

= sgn (σ x)

σ ○
x





(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2




√

σ 2x + σ 2y

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2

= sgn (σ x)

















hσ xh
√

σ 2x + σ 2y

hσ xh

σ ○
x

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2

+
σ ○
x

σ ○
y

hσ yh

σ ○
y

√

σ 2x + σ 2y

hσ yh

σ ○
y

√

√

√

√

(

σ x
σ ○
x

)2

+

(

σ y
σ ○
y

)2

















= sgn (σ x)σ ○
x

(

1

σ ○
x

hcos (β)h cos (β○) +
1

σ ○
y

hsin (β)h sin (β○)

)

(164)

and likewise

sin (β)

sin β○
= sgn (σ y)σ ○

y

(

1

σ ○
x

hcos (β)h cos (β○) +
1

σ ○
y

hsin (β)h sin (β○)

)

(165)
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D. Validation plots
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E. Pseudo-Code Implementations

Algorithm 1 Pseudo-code implementation of the semi-empirical deformation-

invariant adhesion-force model based on Property 5.

Require: λ , α , (B,C,D, E)x,y
Produces: F̂ax(λ ,α ), F̂ay(λ ,α )
if ψ (σ x ,σ y) < 1 (144) then

σ x , σ y : λ , α , (143)
σ ○
x , σ ○

y : (B,C,D)x,y, (94a), (105)
ψ (σ x ,σ y) : σ x, σ y, σ ○

x, σ ○
y, (33)

λ 0, α 0 : λ , α , (150)
F̂0x(λ 0), F̂0y(α 0) : λ 0, α 0, (B,C,D,E)x,y, (12), (108)
σ0x , σ0y : λ , α , (149)
ψ (σ0x ,0), ψ (0,σ0y) : σ0x, σ0y, σ ○

x, σ ○
y, (33)

F̂ax(λ ,α ), F̂ay(λ ,α ) : F̂0x(λ 0), F̂0y(α 0), ψ (σ x ,σ y), ψ (σ0x ,0), ψ (0,σ0y), (74)
else

F̂ax(λ ,α ) := 0 and F̂ay(λ ,α ) := 0
end if

Algorithm 2 Pseudo-code implementation of the semi-empirical slip-velocity in-

variant slide-force model based on Property 11.

Require: λ , α , (B,C,D, E)x,y, v/v0
Produces: F̂sx(λ ,α ), F̂sy(λ ,α )

λ vel0 , α vel0 : λ , α , (155)
F̂0x(λ vel0 ), F̂0y(α vel0 ) : λ vel0 , α vel0 , (B,C,D, E)x,y, (12)
σ ○
x , σ ○

y : (B,C,D)x,y, (94a), (105)
β : λ , α , (4)
if ψ (σ x ,σ y) < 1 (144) then

σ x , σ y : λ , α , (143)
ψ (σ x ,σ y), ψ (σ x ,0), ψ (0,σ y) : σ x, σ y, σ ○

x, σ ○
y, (33)

β ○ : ψ (σ x ,0), ψ (0,σ y), (34)
end if

if ψ (σ vel0x ,0) < 1 (156) then
σ vel0x : α , λ , (154a)
ψ (σ vel0x ,0) : σ vel0x (33)
θ x(σ vel0x ) : σ vel0x (70)
else

θ x(σ vel0x ) := 1
end if

if ψ (0,σ vel0y ) < 1 (156) then

σ vel0y : α , λ , (154a)

ψ (0,σ vel0y ) : σ vel0y (33)

θ y(σ vel0y ) : σ vel0y (70)
else

θ y(σ vel0y ) := 1
end if

Γvelx , Γvely : σ x, σ y, σ ○
x, σ ○

y, β , β ○, ψ (σ x ,σ y), ψ (σ vel0x ,0), ψ (0,σ vel0y ), v/v0 (82)

F̂0sx(λ vel0 ) := θ x(σ vel0x )F̂0x(λ vel0 )Γvelx
F̂0sy(α vel0 ) := θ y(σ vel0y )F̂0y(α vel0 )Γvely
β f : λ , α , F̂0sx(λ vel0 ), F̂0sy(α vel0 ), (42) using µsx/µsy = F̂0sx(λ vel0 )/F̂0sy(α vel0 ) and vsy/vsx =
sin(α )/(λ cos(α )).
F̂sx(λ ,α ), F̂sy(λ ,α ) : F̂0x(λ vel0 ), F̂0y(α vel0 ), θ x(σ reg0x ), θ y(σ reg0y ), β f , (81)
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Algorithm 3 Pseudo-code implementation of the semi-empirical region-invariant

adhesion-force model based on Property 8.

Require: λ , α , (B,C,D,E)x,y
Produces: F̂ax(λ ,α ), F̂ay(λ ,α )
if ψ (σ x ,σ y) < 1 (144) then

λ reg0 , α reg0 : λ , α , (153)
F̂0x(λ reg0 ), F̂0y(α reg0 ) : λ reg0 , α reg0 , (B,C,D, E)x,y, (12), (108)
σ ○
x , σ ○

y : (B,C,D)x,y, (94a), (105)
σ x , σ y : λ , α , (143)
ψ (σ x ,σ y), ψ (σ x ,0), ψ (0,σ y) : σ x , σ y, σ ○

x, σ ○
y, (33)

β ○ : ψ (σ x ,0), ψ (0,σ y), (34)
σ reg0x , σ reg0y : ψ (σ x ,σ y), σ ○

x, σ ○
y, (77)

θ x(σ reg0x ), θ y(σ reg0y ) : σ reg0x , σ reg0y , (70)

F̂ax(λ ,α ), F̂ay(λ ,α ) : F̂0x(λ reg0 ), F̂0y(α reg0 ), β ○, θ x(σ reg0x ), θ y(σ reg0y ), (78)
else

F̂ax(λ ,α ) := 0 and F̂ay(λ ,α ) := 0
end if

Algorithm 4 Pseudo-code implementation of the semi-empirical region-invariant

sliding-force model based on Property 9.

Require: λ , α , (B,C,D,E)x,y
Produces: F̂sx(λ ,α ), F̂sy(λ ,α )

λ reg0 , α reg0 : λ , α , (153)
F̂0x(λ reg0 ), F̂0y(α reg0 ) : λ reg0 , α reg0 , (B,C,D,E)x,y, (12)
σ ○
x, σ ○

y : (B,C,D)x,y, (94a), (105)
if ψ (σ x ,σ y) < 1 (144) then

σ x , σ y : λ , α , (143)
ψ (σ x ,σ y) : σ x, σ y, σ ○

x, σ ○
y, (33)

σ reg0x , σ reg0y : ψ (σ x ,σ y), σ ○
x, σ ○

y, (77)
θ x(σ reg0x ), θ y(σ reg0y ) : σ reg0x , σ reg0y , (70)
else

θ x(σ reg0x ) := 1 and θ y(σ reg0y ) := 1
end if

F̂0sx(λ reg0 ) := θ x(σ reg0x )F̂0x(λ reg0 )

F̂0sy(α reg0 ) := θ y(σ reg0y )F̂0y(α reg0 )

β f : λ , α , F̂0sx(λ reg0 ), F̂0sy(α reg0 ), (42) Using µsx/µsy = F̂0sx(λ reg0 )/F̂0sy(α reg0 ) and vsy/vsx =
sin(α )/(λ cos(α ))
F̂sx(λ ,α ), F̂sy(λ ,α ) : F̂0x(λ reg0 ), F̂0y(α reg0 ), θ x(σ reg0x ), θ y(σ reg0y ), β f , (79)

Algorithm 5 Pseudo-code implementation of the semi-empirical region-invariant

aligning-moment model based on Property 14.

Require: λ , α , (B,C,D,E)y,z
Produces: M̂z(λ ,α )

α reg0 : λ , α , (153)
F̂0y(α reg0 ), M̂0z(α reg0 ) : α reg0 , (B,C,D,E)y,z, (12)
σ ○
x, σ ○

y : (B,C,D)x,y, (94a), (105)
β : λ , α , (4)
if ψ (σ x ,σ y) < 1 (144) then

σ x , σ y : λ , α , (143)
ψ (σ x ,σ y), ψ (σ x ,0), ψ (0,σ y) : σ x , σ y, σ ○

x, σ ○
y, (33)

β ○ : ψ (σ x ,0), ψ (0,σ y), (34)
σ reg0y : ψ (σ x ,σ y), σ ○

y, (77)
θ y(σ reg0y ) : σ reg0y , (70)
t0a(σ reg0y ) : ψ (σ x ,σ y), (B,C,D)y, (B,C,D)z, (87)

M̂ ′
z(λ ,α ) : σ reg0y , β , β ○, F̂0y(α reg0 )θ y(σ reg0y ), t0a(σ reg0y ), (86)

else

M̂ ′
z(λ ,α ) := M̂0z(α reg0 ) sin(β ), (86)

end if
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Algorithm 6 Pseudo-code implementation of the semi-empirical region-invariant

additional aligning-moment model based on Property 15.

Require: λ , α , (B,C,D, E)x,y
Produces: M̂z(λ ,α )

λ reg0 , α reg0 : λ , α , (153)
F̂0x(λ reg0 ), F̂0y(α reg0 ) : λ reg0 , α reg0 , (B,C,D, E)x,y, (12)
σ ○
x , σ ○

y : (B,C,D)x,y, (94a), (105)
if ψ (σ x ,σ y) < 1 (144) then

σ x , σ y : λ , α , (143)
ψ (σ x ,σ y), ψ (σ x ,0), ψ (0,σ y) : σ x, σ y, σ ○

x, σ ○
y, (33)

σ reg0x , σ reg0y : ψ (σ x ,σ y), σ ○
x, σ ○

y, (77)
θ x(σ reg0x ), θ y(σ reg0y ) : σ reg0x , σ reg0y , (70)
Γ zx , Γ zy, Γ z,: ψ (σ x ,σ y), (89)
M ′′
az(λ ,α ) : ψ (σ x ,σ y), F̂0x(λ reg0 ), F̂0y(α reg0 ), (88)

else

θ x(σ reg0x ) := 1, θ y(σ reg0y ) := 1
Γ zx := 1, Γ zy := 1, Γ z := 1
M ′′
az(λ ,α ) := 0

end if

F̂0sx(λ reg0 ) := θ x(σ reg0x )F̂0x(λ reg0 )

F̂0sy(α reg0 ) := θ y(σ reg0y )F̂0y(α reg0 )

β f : λ , α , F̂0sx(λ reg0 ), F̂0sy(α reg0 ), (42) using µsx/µsy = F̂0sx(λ reg0 )/F̂0sy(α reg0 ) and vsy/vsx =
sin(α )/(λ cos(α )).
M ′′
sz(λ ,α ) : F̂0x(λ reg0 ), F̂0y(α reg0 ), β f , Γ zx, Γ zy, Γ z, (88)
M̂ ′′
z (λ ,α ) := M̂ ′′

az(λ ,α ) + M̂ ′′
sz(λ ,α )
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