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Abstract

Protein complexes are of great importance in understanding the principles of cellular organization and function. The
increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop
computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of
protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we
constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively
unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations
into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on
ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the
topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our
method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes.
The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively
combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein
complexes and has higher F1 and accuracy compared to other competing methods.
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Introduction

Protein complexes are groups of two or more associated

polypeptide chains, which play a critical role in many biological

processes. Many proteins are functional only after they are

assembled into a protein complex and interact with other proteins

in this complex. Even in the relatively simple model organism

Saccharomyces cerevisiae, these complexes are comprised of many

subunits that work in a coherent fashion. Therefore, protein

complexes are important molecular entities in cellular organiza-

tion, and are of great importance in unveiling the secrets of cellular

organization and function.

As protein complexes are groups of proteins that interact with

each other, they are generally dense subgraphs in protein-protein

interaction (PPI) networks [1,2]. The increase in available PPI data

makes it possible to predict protein complexes in PPI networks.

Several computational methods for protein complex prediction

typically focus on the extraction of dense regions in the PPI

networks based on graph theory, including MCL [3], MCODE

[4], LCMA [5], CFinder [6] and PCP [7]. However, these

methods ignore the biological properties of protein complexes. In

general, the proteins in a complex have similar biological

properties, but PPI networks cannot provide such vital informa-

tion. In addition, PPI data produced by high-throughput

experiments are often associated with high false positive and false

negative rates [8,9].

To address these problems, other valuable resources are

gradually being used for protein complex prediction. For example,

several recent studies [10,11] have investigated gene expression

data to improve protein complex prediction. These studies mainly

defined specific scoring methods based on gene expression data,

and constructed more reliable weighted PPI networks. The

intuition behind them is that the weighted PPI networks should

better represent the actual interaction network than the initial

binary PPI networks.

Gene Ontology (GO) is another useful resource, and is currently

one of the most comprehensive ontology databases in the

bioinformatics community [12]. GO aims to standardize the

annotation of genes and gene products across species and provides

a controlled vocabulary of terms for describing gene product

biological properties, which is a significant addition to PPI data for

protein complex prediction. Due to the inherent biological

properties of protein complexes, the ideal method for protein

complex prediction should generate clusters in PPI networks which

have a cohesive topological structure with similar GO annotations,

by balancing the topological structure and GO annotation

similarities. Figure 1 shows an example of protein complex

prediction. Figure 1 (a) is a simple PPI network where a vertex

represents a protein and an edge represents the interaction

between two proteins. Figure 1 (b) is the PPI network annotated by

GO slims. As we can see, due to the presence of noise and the

complex connectivity of PPI data, it is hard to predict protein

complexes from the PPI network in Figure 1 (a). However, if we
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consider the GO annotation information of each protein in

Figure 1 (b), we can predict two complexes reasonably well in

Figure 1 (c).

In this study we determined how to predict protein complexes based

on both the topological structure of PPI networks and GO annotation

similarities. We proposed a novel method for protein complex

prediction, called COAN, based on attribute graph clustering theory

[13]. The key to our method was to integrate the PPI data and GO into

a unified framework by constructing ontology augmented networks. In

the ontology augmented networks, we used a unified distance measure

to estimate the pairwise vertex closeness. Based on the ontology

augmented graph and unified distance measure, COAN generated

seed cliques from the maximal cliques in the PPI networks, and

expanded clusters starting from the seed cliques. In the experimental

section, we showed that COAN was competitive or superior in

performance, compared with the state-of-the-art methods used for

protein complex prediction.

Materials and Methods

Ontology augmented networks
Some resources, such as gene expression data, have been used

to assess the reliability of protein interactions. These methods

usually assign a score to each protein pair. Unlike these methods,

we integrated the PPI data and GO into a unified framework by

constructing ontology augmented networks, based on attribute

graph clustering theory [13].

The GO database is currently one of the most comprehensive

and well-curated ontology databases in the bioinformatics

community. GO provides GO terms to describe gene product

characteristics in the following three different aspects, (I) biological

process referring to a biological objective to which the gene or

gene product contributes; (II) molecular function defined as the

biochemical activity of a gene product; (III) cellular component

referring to the place in the cell where a gene product is active.

GO slims are cut-down versions of the GO ontologies containing a

subset of GO terms. Compared with GO terms, GO slims give a

broad overview of the ontology content without the detail of the

specific fine-grained terms. GO slims are particularly useful for

giving a summary of the results of GO annotation of a genome,

microarray, or cDNA collection when broad classification of gene

product function is required. The studies [14,15] have showed the

proteins in a protein complex generally share one or more GO

term annotations. Since GO slims give a broader overview of

ontology content than GO terms, we used GO slims to annotate

PPI data in this study. Next, we introduce how to construct

ontology augmented networks.

Given a PPI network G~(V ,E) and the GO slim annotations

set A~(g1,:::,gm), each protein could be annotated by one or

more GO slims in A. For gi[A, we add a ‘‘dummy’’ vertex v0i in G.

An ontology augmented network is denoted as

Go~(V|V 0,E|E0) where V 0 is the set of GO ‘‘dummy’’

vertices. An edge (vi,v
0
j)[E0 denotes the protein vi is annotated by

GO slim gj . An edge (vi,vj)[E is called a PPI edge and an edge

(vi,v
0
j)[E0 is called a GO annotation edge. Figure 2 is the ontology

augmented network for the example in Figure 1. Two GO

‘‘dummy’’ vertices ‘‘A1. GO slim 1’’ and ‘‘A2. GO slim 2’’ are

added. Proteins with corresponding GO annotations are connect-

ed to the two ‘‘dummy’’ vertices, respectively, in the dash line.

Unified distance measure
The transition matrix Po of the ontology augmented network is

a V|V 0j j by V|V 0j j matrix. The transition probability is

defined as follows: The transition probability from protein vi to its

neighbor vj through a PPI edge or a GO annotation edge is

pvi,vj~

1

N(vi)j jz N 0(vi)j j ,if (vi,vj)[E|E0 and vi[V

0, otherwise

8<
: ð1Þ

where N(vi) represents the set of proteins directly connecting with

protein vi in the ontology augmented network, and N 0(vi)
represents the set of dummy vertices, namely GO slim annota-

tions, directly connecting with protein vi. The transition proba-

bility from GO annotation vi to protein vj through a GO

annotation edge is

pvi,vj~

1

N(vi)j j , if (vi,vj)[E0 and vi[V 0

0, otherwise

8<
: ð2Þ

Since there is no edge between two GO annotations, the transition

probability between vi and vj is 0.

Figure 1. An example of protein complex prediction: (a) A PPI network
is constructed by eight proteins. (b) The PPI network is annotated by
GO slims. (c) Prediction of two protein complexes in the PPI network
based on structural and GO annotation similarities.
doi:10.1371/journal.pone.0062077.g001
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pvi,vj~0, Vvi,vj[V 0 ð3Þ

Combining Equations (1)-(3), the transition probability matrix Po

of an ontology augmented network Go can be calculated. Figure 3

is a transition probability matrix for our example in Figure 2.

When the transition matrix Po is multiplied by itself, each P2
o

� �
ij

contains the summed transition probability of paths from protein

vi to protein vj through one intervening vertex, that is, the length

of paths is two. Similarly, for any length n, the summed transition

probability from protein vi to protein vj can be determined by

calculating Pn
o

� �
ij
. The unified distance on the ontology augment-

ed network is defined as follows:

d(vi,vj)~
X?

c~1
(lPo)c

h i
i,j

,l[(0,1) ð4Þ

Where l is the delay parameter. The matrix form of the unified

distance is

Ro~
X?

c~1
(lPo)c, l[(0,1) ð5Þ

Due to l[(0,1), the unified distance matrix Ro can be efficiently

calculated by Equation (6). Matrix inversion is roughly of cubic

time complexity.

Ro~(1{lPo){1{I , l[(0,1) ð6Þ

We use unified distance to measure protein pair closeness. One

important difference between the unified distance on the ontology

augmented network Go and that on the original PPI network G is

that, if two proteins vi and vj have the same GO annotation Ak,

they will have a new common neighbor, thus there is a random

walk path between vi and vj through Ak. The more GO

annotations two proteins share, the more random walk paths exist

between the pair of proteins. The increase in paths between the

pair of proteins vi and vj will enlarge the value of d(vi,vj). Based on

ontology augmented networks, we effectively unify the topology

structure of PPI networks and the similarity of GO annotations

into unified distance measures.

The COAN algorithm
The COAN algorithm broadly consists of two phases. In the

first phase, COAN generates seed cliques from all the maximal

cliques. Firstly, COAN ranks the cliques based on the unified

distance measure. Then, COAN chooses the top rank clique as the

seed clique, and removes or prunes the others. This process is

repeated until the candidate clique set is empty. In the second

phase, COAN expands clusters starting from the seed cliques by

adding the close neighbor proteins.

As the existing PPI networks are usually sparse, enumerating all

maximal cliques does not pose a problem [10]. COAN uses the

cliques algorithm proposed by Tomita et al. [16] to enumerate all

maximal cliques with size no less than 3 from initial PPI networks.

All maximal cliques make up the candidate clique set C. COAN

uses density function to measure the closeness of each clique. The

Figure 2. Ontology augmented graph with GO slims.
doi:10.1371/journal.pone.0062077.g002

Figure 3. Transition probability matrix of the ontology
augmented network example.
doi:10.1371/journal.pone.0062077.g003
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density function is defined as follows:

density(Ck)~

P
vi[C,vj[C d(vi,vj)

Ckj j � ( Ckj j{1)
, Ck[C ð7Þ

where d(vi,vj) is the unified distance of two proteins vi and vj on

ontology augmented networks. If the clique has a large density

value, the clique generally has strong connectivity and shares more

common GO annotations. Therefore, the density function takes

into account both the structure connectivity of PPI networks and

GO annotation similarity. In order to choose large density cliques

as seed cliques, COAN ranks all the maximal cliques in descending

order of their density value.

In general, the maximal cliques overlap with each other. With

COAN the seed cliques do not overlap as the overlapped cliques

are removed or pruned. Given a candidate clique set ranked in

descending order of their density value, denoted as

C1,C2,::::,Cnf g, the COAN algorithm deletes the top rank clique

C1 from C and inserts C1 into the seed clique set S. Then, the

COAN algorithm removes or prunes the overlapped cliques as

follows: For any other clique Ci[C, COAN checks whether

C1\Ci=1. If such Ci exists, COAN further checks whether

Ci{C1j j§3 or not. If Ci{C1j j§3, Ci is replaced by Ci{C1,

otherwise Ci is removed directly. These steps are repeated until

candidate clique set C is empty. Consequently, COAN generates

the seed clique set S, and the seed cliques are not overlapped.

In the second phase, COAN expands the seed cliques by adding

the close neighbor proteins. We use the connectivity score to

measure how strongly a protein vi is connected to a seed clique Sj ,

where vi 6[Sj . The connectivity score of vi with respect to Sj is

defined as follows:

connectivity{score(vi,Sj)~

P
vk[Sj d(vi,vk)

Sj

�� �� � density(Sj)
, vi 6[Sj ð8Þ

If the connectivity{score(vi,Sj)§extend thres, then vi is added

to Sj . Here, extend thres is a predefined threshold for extending.

Thus the final predicted complexes will be generated by adding

the close proteins to the seed cliques. Figure 4 shows the pseudo-

codes of the COAN algorithm.

Results and Discussion

In this section, we first describe the datasets and evaluation

metrics used in our experiments, and then study the impact of the

extend thres on COAN. We compared COAN with the state-of-

the-art methods including CMC [10], COACH [15] and

HUNTER [11]. Finally, we present some protein complexes

predicted by COAN with detailed information. The Source Code

S1 in Supplementary Information is the source code of COAN.

Datasets
The two PPI datasets used were the DIP dataset [17] and

Krogan dataset [18], respectively. The DIP database contains

4928 proteins and 17208 interactions, and the Krogan database

contains 2675 proteins and 7080 interactions.

The reference complex dataset was CYC2008 [19] which is a

comprehensive catalogue of 408 manually curated heterometric

protein complexes reliably backed by small-scale experiments

reported and used as benchmark complexes in most methods.

Evaluation metrics
Overall, there are two types of evaluation metrics used to

evaluate the quality of predicted complexes and compute the

overall precision of the prediction methods.

One type of evaluation metrics are Precision, Recall and F1

which are commonly used in bioinformatics and machine

learning. Let p(Vp,Ep) be a predicted complex and b(Vb,Eb) be

a reference complex. The neighborhood affinity score NA(p,b)
between p(Vp,Ep) and b(Vb,Eb) is defined as follows:

NA(p,b)~
Vp\Vb

�� ��2
Vp

�� �� � Vbj j
ð9Þ

If NA(p,b)§v, then we consider p(Vp,Ep) and b(Vb,Eb) to

match each other. We set v~0:2 in our experiment, which is the

same as most methods for protein complex prediction [4,5,19-21].

Let P and B denote the sets of complexes predicted by a method

and reference complex, respectively. Let Ncp be the number of

predicted complexes which match at least one reference complex

and Ncb be the number of reference complexes that match at least

one predicted complex. Precision, Recall and the F1 measure are

defined as follows:

Figure 4. The pseudo-codes of the COAN algorithm.
doi:10.1371/journal.pone.0062077.g004
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Precision~
Ncp

Pj j ð10Þ

Recall~
Ncb

Bj j ð11Þ

F1~
2 Pr ecision �Recall

Pr ecisionzRecallð Þ ð12Þ

Precision measures the fidelity of the predicted complex set.

Recall quantifies the extent to which a predicted complex set

captures the known complexes in the reference set. The F1

measure provides a reasonable combination of both precision and

recall, which can be used to evaluate the overall performance.

Another type of evaluation metrics are sensitivity, positive

predictive value (PPV) and accuracy which were recently proposed

to evaluate the performance of the protein complex prediction

methods [22]. The definitions of these parameters are described in

detail by Xiao et al. [23].

The effect of extend_thres
Firstly, we kept extend thres~0:5 and evaluated the effect of l

in Equations (4) on the performance of COAN by setting

l~0:1,0:2,:::,0:9, respectively. Overall, COAN achieved best

performance, when l~0:8. Secondly, we kept l~0:8 and studied

the effect of extend thres on the performance of COAN by setting

extend thres~0:1,0:2,:::,0:9, respectively. The detailed experi-

mental results on the DIP dataset with different extend thres are

shown in Table 1.

As shown in Table 1, the COAN algorithm is sensitive to

extend thres. When extend thres~0:1, the precision and recall

were only 0.274 and 0.174, respectively. This indicates that too

many proteins were added to the seed cliques to construct

complexes in the expanding step, because the value of

extend thres was too small. In particular, the size of the largest

predicted complex with extend thres~0:1 was 118, which is too

large for protein complexes. With an increase in extend thres, the

precision and recall improved. When extend thres~0:6, the

precision and recall were highest. In addition, the highest value of

F1 was 0.461, which is generally used to evaluate overall

performance. When extend thres was increased from 0.6 to 0.9,

the precision, recall and F1 all decreased. When

extend thres~0:9, the size of the largest predicted complex was

only 14. This indicated that only the closest proteins were added to

the seed clique in the expanding step, however, the proteins closely

connected to part of the seed clique may well be missed.

In general, high sensitivity values indicate that the prediction

has good coverage of the proteins in the reference complexes,

while high PPV values indicate that the predicted complexes are

likely to be true positive [23]. When extend thres was changed

from 0.1 to 0.9, the PPV always increased but sensitivity dropped

sharply. This is mainly because with an increase in extend thres,

the size of predicted complexes gradually decreases and only the

Table 1. The effect of extend_thres on the performance of COAN on the DIP database.

Extend – thres Size Precision Recall F1 Sensitivity PPV Accuracy

Threshold = 0.1 118 0.274 0.174 0.213 0.707 0.192 0.368

Threshold = 0.2 77 0.339 0.252 0.29 0.657 0.27 0.421

Threshold = 0.3 69 0.405 0.324 0.36 0.588 0.338 0.446

Threshold = 0.4 50 0.462 0.407 0.433 0.515 0.41 0.46

Threshold = 0.5 37 0.48 0.431 0.455 0.464 0.481 0.472

Threshold = 0.6 31 0.486 0.438 0.461 0.435 0.555 0.491

Threshold = 0.7 28 0.457 0.412 0.433 0.403 0.598 0.491

Threshold = 0.8 21 0.441 0.404 0.422 0.383 0.636 0.494

Threshold = 0.9 14 0.433 0.397 0.414 0.369 0.659 0.493

The word ‘size’ refers to the size of the largest predicted complex with different extend_thres. The highest value in each row is in bold.
doi:10.1371/journal.pone.0062077.t001

Table 2. Performance comparison of protein complex prediction methods using the DIP dataset.

Methods #Complexes Size Precision Recall F1 Sensitivity PPV Accuracy

COAN 383 31 0.486 0.438 0.461 0.435 0.555 0.491

COACH 730 85 0.364 0.468 0.41 0.544 0.38 0.455

CMC 173 49 0.595 0.287 0.387 0.399 0.566 0.475

HUNTER 92 160 0.685 0.199 0.308 0.496 0.467 0.482

MCODE 77 60 0.468 0.098 0.162 0.279 0.352 0.313

MCL 372 498 0.21 0.232 0.221 0.555 0.331 0.429

The ‘#Complexes’ refers to the number of predicted complexes, and ‘Size’ refers to the size of the largest predicted complex. extend_thres was set at 0.6 for COAN. The
highest score is in bold.
doi:10.1371/journal.pone.0062077.t002
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Table 3. Performance comparison of protein complex prediction methods using the Krogan dataset.

Methods #Complexes Size Precision Recall F1 Sensitivity PPV Accuracy

COAN 237 20 0.709 0.331 0.451 0.388 0.646 0.501

COACH 345 24 0.617 0.343 0.441 0.432 0.544 0.485

CMC 111 24 0.748 0.235 0.358 0.381 0.589 0.474

HUNTER 74 67 0.865 0.199 0.323 0.374 0.569 0.462

MCODE 72 52 0.75 0.159 0.263 0.27 0.552 0.386

MCL 309 486 0.291 0.245 0.266 0.57 0.396 0.475

The ‘#Complexes’ refers to the number of predicted complexes, and ‘‘Size’ refers to the size of the largest predicted complex. extend_thres was set at 0.6 for COAN. The
highest score is in bold.
doi:10.1371/journal.pone.0062077.t003

Figure 5. Two protein complexes predicted by COAN method on Krogan dataset.
doi:10.1371/journal.pone.0062077.g005
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closest proteins can be added to the seed cliques. Therefore, the

predicted complexes are more likely to be true positive or a part of

the reference complexes, when extend thres is larger. accuracy is

defined as the geometric average of sensitivity and PPV. Similar to

F1, accuracy increased when extend thres was changed from 0.1

to 0.6. However, when extend thres ranged from 0.6 to 0.9,

accuracy did not change appreciably, and was about 0.49.

Comparison of COAN with other methods
In this experiment, we compared COAN with the state-of-the-

art methods: CMC [10], COACH [15], HUNTER [11] MCODE

[4] and MCL [3]. The results using the DIP dataset and the

Krogan dataset evaluated with the CYC2008 dataset are listed in

Table 2 and Table 3, respectively.

As shown in Table 2, COAN outperformed other methods

using the DIP dataset. In particular, COAN achieved an F1 of

0.461, which was significantly superior to the other methods.

Compared to COAN, COACH predicted more complexes, which

was beneficial in achieving high recall and sensitivity. In contrast,

MCODE only predicted 77 complexes, which resulted in the worst

recall of 0.098 and F1 of 0.162. HUNTER predicted 92

complexes and achieved the highest precision of 0.685. MCL

and CMC achieved the highest sensitivity of 0.555 and PPV of

0.566, respectively. In addition, we noticed that the size of the

largest predicted complex by the four methods was very different.

The largest predicted complex by MCL consisted of 498 proteins,

which was far beyond the normal size protein complex.

Next, we compared the four methods using the Krogan dataset.

From Table 3, it can be seen that the results using the Krogan

dataset were similar to the results using the DIP dataset. COAN

predicted 237 complexes, and achieved best performance in the

overall evaluation metrics, F1, PPV and accuracy. COACH

predicted 345 complexes, and achieved highest recall of 0.343.

HUNTER and MCL achieved best precision 0.865 and sensitivity

0.57, respectively. MCODE only predicted 72 complexes, and

achieved worst recall 0.159.

Overall, COAN predicted many protein complexes using the

DIP and Krogan datasets, and outperformed other methods in the

major evaluation metrics, F1 and accuracy.

In addition, Figure 5 gives an example of two complexes

predicted by COAN on Krogan dataset. Due to the complex

connectivity of PPI networks, it is difficult to accurately predict

complexes only based on topology structure information of PPI

networks. If the PPI network is annotated by GO slim, it can be

noticed that some proteins share common GO slim annotations.

For instance, ‘‘YPR175W’’, ‘‘YDR121W’’, ‘‘YBR278W’’ and

‘‘YNL262W’’ share common GO slim annotations

‘‘GO:0005694’’, ‘‘GO:0006260’’, ‘‘GO:0016779’’ and

‘‘GO:0003677’’ in Figure 5. Based on such valuable GO slim

annotations information, two complexes can be predicted by

COAN relatively easily.

Examples of predicted complexes
Examples of predicted complexes using the DIP dataset are

presented in Table 4 with the p-values of the three GO domains.

In general, a predicted complex is considered to be statistically

significant if the p-value is less than 0.01. Therefore, a smaller p-

value represents a higher biological meaning in Table 4. We used

the tool SGD’s GO::TermFinder [24] to calculate p-value. From

Table 4, it can be seen that some predicted complexes (ID1- ID6)

matched the reference complex dataset well with high p-values.

Other predicted complexes (ID7-ID9) were not matched with the

reference dataset. However, they also had high biologically

functional homogeneity and local density. Therefore, they are

possible real protein complexes which are still undiscovered by

biologists. These results provide clues for biologists to verify and

identify new protein complexes.

Conclusion

In order to exploit GO to predict protein complexes in a PPI

network, we have proposed a novel method which constructs an

ontology augmented network based on a PPI network and GO

annotation information. Ontology augmented networks can

efficiently integrate the PPI data and GO into a unified framework

through a unified distance measure. Using the ontology augment-

ed network, we developed a clustering algorithm, COAN, to

predict protein complexes, which was capable of taking into

account the topological structure of the PPI network, as well as the

similarity of GO annotations. Experimental comparisons on two

yeast PPI datasets showed that our approach was better than or

competitive with the state-of-the-art approaches. In particular, our

approach provided a framework to integrate other valuable

resources, such as gene expression data.

In a complex, the GO annotations may have different

importance. Therefore, they may have a different degree of

contribution in the unified distance measure. In future work, we

plan to explore a self-adjustment mechanism to determine the

degree of contribution of different GO annotations. In addition,

we will exploit other resources to improve the performance of

COAN in protein complex prediction.
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Source Code S1 The source code of COAN.

(ZIP)

Author Contributions

Conceived and designed the experiments: YZ HL ZY. Performed the

experiments: YZ JW. Analyzed the data: YZ JW. Contributed reagents/

materials/analysis tools: YZ. Wrote the paper: YZ.

References

1. Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, et al. (2002) A

combined experimental and computational strategy to define protein interaction

networks for peptide recognition modules. Science 295: 321–324.

2. Spirin V, Mirny L (2003) Protein complexes and functional modules in

molecular networks. PNAS 10: 12123–12128.

3. Dongen SV (2000) Graph Clustering by Flow Simulation. PhD Thesis,

University of Utrecht.

4. Bader G, Hogue C (2003) An automated method for finding molecular

complexes in large protein interaction networks. BMC Bioinform 4: 2. Available:

http://www.biomedcentral.com/1471-2105/4/2.Accessed 19 March 2013.

5. Li XL, Tan SH, Foo CS, Ng SK (2005) Interaction graph mining for protein

complexes using local clique merging. Genome Inform 16: 260–269.

6. Adamcsek B, Palla G, Farkas IJ, Derény I, Vicsek T (2006) Cfinder: locating
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