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Construction of Optimal Norms for Semi-Groups of Matrices
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Abstract— The notion of spectral radius of a set of matrices
is a natural extension of spectral radius of a single matrix.
The Finiteness Conjecture (FC) claims that among the infinite
products made from the elements of a given finite set of
matrices, there is a certain periodic product, made from the
repetition of a finite product (the optimal product), whose rate
of growth is maximal. FC has been disproved. In this paper it
is conjectured that FC is almost always true, and an algorithm
is presented to verify the optimality of a given product. The
algorithm uses optimal norms, as a special subset of extremal
extremal norms. The algorithm has successfully calculated the
spectral radius of the pair of matrices associated with compactly
supported multi-resolution analyses and wavelets.

I. INTRODUCTION

Iteration, as a tool or a concept, is central to many
branches of mathematics. While most classical applications
of iteration, such as fractal generation [3], complex dynamics
[4], and iterative functional equations [32], use a single
function throughout the process, there is a wide spectrum of
emerging important cases where there is a choice of functions
at each stage of iteration. Linear multi-function iteration
occurs in refinement algorithms for computer aided design
[13], [41], image analysis techniques [3], Markov Chains
[2], [45], asynchronous processes in control theory [47], the
analysis of magnetic recording systems [40], the construction
of scaling functions or pre-wavelets of compact support using
the cascade algorithm and the Holder regularity analysis of
the resulting wavelets [16], [19]-[21], [28], hybrid systems
as they occur in intelligent transport systems or industrial
process control [8], the stability analysis of autonomous
differential equations [1], [10], [11], and the asymptotic
behavior of solutions of linear difference equations with
variable coefficients [24]-[26].

Each of these applications requires detailed analysis of the
convergence rate of long products of a given set of (at least
two) matrices. This rate dictates either the global degree of
stability [27] or smoothness of an associated system. (The
corresponding local degree is also determined by analyzing
the product of the matrices as a function of the ordering of
the elements of the product.) There have been many different
approaches to quantify this rate. We give an overview in the
next section.

A. A Host of Definitions for the Radius of a Set of Matrices

Let M be a finite collection of square matrices of the
same dimension. Assume £, = £, (M) indicates the set
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of products of length n of elements of M. The semi-group
generated by M is then £ = L(M) =2, L.

There are two distinct views toward defining a radius for
a set of matrices. The first one focuses on finding a rate of
growth for the size of the elements of the semi-group.

Definition 1 A matrix size function s is one of (an arbitrary
fixed) norm, spectral radius, or the absolute value of the trace.
For a finite collection of matrices A and 1 < p < oo the
induced s,-size is an averaging function defined as

sp(A) = (Y s"(A)/|ADY?, (1)
AeA
where | A| is the cardinality of A. For p = oo we have the
simplified induced sup-size
Soo(A) = sup s(A). (2)
AcA
For the semi-group generated by M the induced size is
defined as
Sp(M) = Sl;llp sp(Ln), (3)
and the semi-group is called s,-bounded if S,(M) is finite.
The induced spectral radius of M is defined as
ps, (M) = lim sup[s,(Ln)]*™. (4)
Some authors do not include division by |.4] in the definition
of s,(A). Also note that the spectral radius of M, with
respect to sp, can be defined as the infimum of positive
numbers 7 such that M /r generates an s,-bounded semi-
group.

The s is the most commonly used induced size function
and the corresponding quantities are well-defined when M
is not finite. If s is a norm and p = oo then we have Rota
and Strang’s definition of joint spectral radius (jsr) which
was originally given in [44] as

jsr(M) = limsup sup [|QI|/"™. (5)
n—oo QELy,
If s is the usual spectral radius and p = co then we have
Daubechies and Lagarias’ definition of generalized spectral
radius (gsr) which was originally given in [20] as

gsr(M) = limsup sup [p(Q)]"/". (6)
n—oo QL

They used gsr and jsr to obtain regularity estimates for
certain wavelets. If s is the absolute value of the trace and
p = oo then we have the definition of Chen and Zhou [14].
We refer to it as the mutual spectral radius (msr)

msr(M) = limsup sup |tr(Q)|*/™. (7)

n—oo QeL,
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The L,-type definitions have also played a role. Jia [31]
used a p-norm joint spectral radius similar to jsr,

jorp (M) =limsup( Y [|QPII/ILa)Y",  (8)

n—oo QGEn

for the study of L,-regularity of the solutions of the re-
finement equations. Muller [42] used a similar concept
for Banach Algebras. Also, Wang [48] used jsr; for L;-
regularity analysis of wavelets.

A second view of spectral radius of a set of matrices
searches for an extremal norm [49]. This definition was also
given by Rota and Strang. We refer to it as the common
spectral radius (csr).

Definition 2 The common spectral radius of M is
cst(M) = inf sup ||M]], 9)
11l Mem

where the infimum is over all sub-multiplicative norms (these
norms satisfy ||AB|| < ||A||||B]|, see [5], [30]). More

generally we may define
estn,p(M) = inf( > lQRI/IL DY (10)

I gez.,

Hence csr corresponds to ¢Sy oo

In the next section we review some attempts at simplifying
the definitions of radius.

B. Simplifications and Calculation Issues:

Fortunately, the definitions that have been advanced for
the spectral radius point to the same quantity.

Theorem 3 We have
csr(M) = jsr(M) = gsr(M) = msr(M).
The common value is denoted by p(M).

The equality of csr and jsr was proven by Rota and Strang.
The equality of jsr and gsr was conjectured by Daubechies
and Lagarias. It was proven by Berger and Wang [6], Elsner
[22], and Chen and Zhou [14]. The latter also proved that
gsr and msr are equal. The above theorem is still valid for
infinite but norm-bounded M. Heil and Strang [29] establish
the continuity of radius.

Question 4 To the author’s knowledge gsT,, STy, and
Csty, p, or their relationship with jsr,, have not been studied.
Also a general notion of size of a matrix, beyond the three
concepts of norm, radius, and trace, has not been advanced.
Moreover, the relationship between different notions of s,,-
boundedness has not been investigated. In particular, if the
spectral radii of all elements of a semi-group are less than 1 is
the semi-group norm-bounded?

A critical question is the degree to which the last limit
operation in the definition of radius can be simplified. Rota
and Strang showed that limsup in the definition of jsr can

be replaced by lim, and if a sub-multiplicative norm is used
it can be replaced by inf. Jia [31] and Protasov [43] have a
similar result for jsr,,. Daubechies and Lagarias showed that
lim sup in the definition of gsr can be replaced by sup. They
conjectured that for finite M it can be replaced by max, that
is, a finite product will attain the limit radius. This is known
as the Finiteness Conjecture (FC):

Conjecture 5 For finite M there exists a finiten and P € L,
such that p(P)*/™ = p(M). A product P that satisfies FC is
called an optimal product.

Bousch and Mairess [9] have disproved this conjecture.

In a similar manner finding necessary and sufficient condi-
tions under which inf in the definition of csr can be replaced
by min, that is a particular norm achieves the radius, have
been investigated.

Definition 6 A sub-multiplicative norm || - ||. is called an
extremal norm for M if p(M) = supy;cq || M]|le. A set M
is called

o product bounded if it generates a norm-bounded semi-
group.

o regular if it has an extremal norm.

o asymptotically non-defective if either M =
p(M) > 0 and M /p(M) is product bounded.

« irreducible or non-decomposable if M has two or more
matrices which do not have a common invariant subspace
other than 0 and the entire space.

0 or

Rota and Strang show that M is regular iff it is asymptoti-
cally non-defective. Protasov [43] and Elsner [22] show that
if M is irreducible then it is regular. Brayton and Tong [10]
give a sufficient condition for non-defectiveness in terms of
“uniform linear independence” of the columns of each of the
similarity transformations which reduce the elements of the
semi-group generated by M to their Jordan form. Blondel
and Tsitsiklis [7] show that the problem of determining
whether or not M generates a bounded semi-group or that
p(M) <1 is undecidable. A detailed analysis of defective
sets of matrices appears in [25].

The most widely used method for calculating the radius
is the Branch-and-Bound Method. It was introduced by
Daubechies and Lagarias to provide upper estimates. It was
utilized by Colella and Heil [16]. Gripenberg [23] refined it
to provide lower estimates as well. This method identifies a
base of finite products out of which near-optimal products
can be built. A problem with this method is the extremely
slow rate of convergence. For example in the benchmark
experiment involving a specific pair of 2 X 2 matrices and
using products of lengths 50, 150, and 250, Gripenberg’s
method produced a relative error of 1.5 x 1074, 3 x 1072,
and 2 x 107° respectively. In contrast, with the optimal
norm construction, as explained below, one obtains the exact
answer (to machine precision) using products of nearly same
length as the optimal product. In the benchmark calculation
the optimal product is of length 13.
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A central question is the complexity of algorithms aimed
at measuring the radius. Tsitsiklis and Blondel [46] show that
such algorithms are N P-hard. The point of view advanced in
this paper is that the [V P-hardness is due to certain rare and
extreme cases and the “average” case, while computationally
intensive, is still feasible.

Definition 7 Exceptional matrix sets are finite sets of matri-
ces for which the Finiteness Conjecture is not true.

We propose:

Conjecture 8 The Finiteness Conjecture is almost always
true. The matrix sets which are exceptional form a set of
measure zero in the space of matrices.

If this conjectures is true, then it suggests that one should
seek out candidates for optimal product and validate them in
order to find the radius. In the next section we explain how
to perform the validation step. This step is based on using
extremal norms for the given set. The next conjecture states
that instances where such norms may fail to exist are rare.

Conjecture 9 Decomposable matrix sets form a set of mea-
sure zero in the corresponding space of matrices. Asymptoti-
cally defective matrix sets form a set of measure zero within
the set of decomposable matrices.

II. CONSTRUCTING OPTIMAL NORMS FOR SEMI-GROUPS

Here we propose an “Optimal Norm Conjecture” (ONC) and
a companion algorithm aimed at deciding if a product is
optimal, determining the exact value of radius, and mapping
points in the space of sets matrices to their particular optimal
products.

To describe ONC first we define optimal norms essentially
as the “tightest” possible extremal norms.

Definition 10 Let a bounded set of points S that contains at
least one point other than origin be given. Suppose M is real
and has an extremal norm. Let U = U(S) be the intersection
of the unit balls of all extremal norms of M that contain
S. Suppose U has a non-empty interior then there is a norm
whose unit ball is U. We refer to this norm as an optimal norm
of M and U will be called an optimal unit ball of M. IfU(.S)
has an empty interior then we refer to it as a reduced optimal
ball. In particular if M is the single matrix M and U is a
ball in the eigenspace associated with eigenvalues A where
[A| = p(M) then we refer to U as a spectral ball of M.

Conjecture 11 Suppose M is non-decomposable then the
optimal ball of M is unique up to a multiple.

A uniqueness theorem for the case where M is only non-
defective appears to hold for most M but counterexamples
involving special rotation matrices are easy to build.

Let a real matrix A also represent a set of points indicated
by its column vectors. Denote by cvx(.S) the convex hull of
the set .S.

Conjecture 12 The Optimal Norm Conjecture (ONC)
Assume M is finite, real, product-bounded and of unit radius
p(M) = 1. Let L be the semi-group generated by M. Then a
product P € L is an optimal product of M only if there exists
G, afinite subset of L, such that cvx(LV) = cvx(GV), where
V' is a spectral ball of P.

In other words the optimal unit ball can be finitely generated
provided that we have the optimal product. The following
algorithm formalizes the process of construction. Recall that
x is called an extreme point of a set S if whenever y and z
belong to .S and x is on the line segment connecting y to z
then x =y = 2.

Algorithm 13 The ONC-Based Algorithm An algorithm to
verify the optimality of a product P of elements of a set M:
Suppose P is of length n, then p(M) = p(P)Y/™ if P is
indeed optimal.

1) Scale all matrices so that the radius of the set is 1, i.e.,
define M* = M/p(M). Then P* = P/p(P) and
p(M*) = p(P*) = 1. Define M*_ as M* augmented
with identity.

2) Find g, a spectral ball of P*.

3) Forq > 1 compute Q; = cvx(M?* Qq_1).

4) Positive exit: If at a certain stage q. the convex hull does
not grow, §}, = {1, _1, then P is an optimal product.

5) Negative exit: If an extreme point of P* becomes an
interior point of the convex hull of its own iterates, then
P is not an optimal product.

In [34] we prove two theorems that establish the sufficiency
of the two exit criteria. Optimal Norm Conjecture states that
these exit criteria are also necessary.

At the positive termination of the algorithm, €2,  can be
considered as the unit ball of an optimal norm || - ||. with
respect to which M attains its radius p(M) = [[M]|. =
supyren || M||c. The value of g. is defined as the critical
index of the optimal product P. In experiments q. exceeds
the length of the optimal product by a small integer.

Constructing special unit balls, through a convex hull of
the action of semi-group matrices on an arbitrary starting
ball, is a recurrent theme in the papers on this topic.
It appears in Rota and Strang’s paper as the “alternative
construction of the norm” and in Brayton and Tong’s papers
as the “constructive algorithm.” What is new about our
approach is the special choice of the starting ball. We use
the optimal ball of the optimal product of Lagarias and
Daubechies’ Finiteness Conjecture as our starting ball. Then
we observe that Rota and Strang’s procedure terminates in a
finite number of steps.

The calculation of convex hulls, especially in high di-
mensions, is of course expensive. A brute-force approach
to the calculation of spectral radius of a set of matrices,
by subjecting every possible product to Algorithm 13, will
have a prohibitive cost. However, there are well established
branch-and-bound methods [19], [20], [23] for selecting
products which are the only likely ones to be a prefix of
an optimal product.
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III. NUMERICAL TESTS FOR THE ONC-BASED
ALGORITHM

The proposed ONC-based algorithm is both exact and faster
than branch-and-bound type algorithms. Among successful
applications of the algorithm is the numerical discovery [39]
of the Holder-smoothest four-coefficient orthogonal scaling
functions and the associated multiresolution analysis (MRA)
or wavelet, predating the theoretical discovery of the same
by Broker and Zhou [12]. We also describe the smoothest
six-coefficient orthogonal scaling function and point out an
error of Daubechies in the approximation of the same. (For
a description of MRA see [15], [34].)

1) The Holder exponent of four-coefficient MRA: Con-
sider the 4-coefficient dilation equation

d(x) = cop(2x) + 120 — 1) + c20(22 — 2) + e3P (22 — 3),

(11)

subject to sum and orthogonality rules:
co+co=1, c1+c3 =1, (120,)
(co—1/2)% + (c3 —1/2)* = 1/2. (12b)

Then the Holder exponent of the associated wavelet is h =
—log,(p(M)) (if p(M) < 1) where M = {My, M1} and

o Co 0
MO_(—Cg 1—60—63>’
o 1-— Co — C3 —Cp
(e o),
Colella and Heil’s conjectured [16], [18], [17], that at
(co,c3) = (0.6,—0.2) the radius of M attains its smallest
value and the optimal product is P = M; M}?. We disproved
the first statement and confirmed the second one. Our numer-

ical experiments [37], [39], showed that the optimal product
at any point (¢, c3) of (12b) is one of

(13)

M()Mln or MlMSL (14)
Furthermore, we obtained a very detailed picture of the
structure of the optimal balls, dependence of n on (cg, c3),
dependence of ¢. on n, the smallest value of the radius, the
resulting smoothest wavelet, and the critical arcs on which
n > 0, etc. Here we give a brief report on such findings.
To determine h for each wavelet we will travel on the
half-circle below ¢y = c3, from (0,0) toward (1,1) in the
counter-clockwise direction on the orthogonality circle (12b).
(The properties on the upper half can be described similarly.)
First the optimal product is simply M, and the optimal ball
is a quadrilateral. Then, starting at (1/2, (1 — /2)/2), there
is a critical strip on which the optimal product is of the
form M;M§F where n starts at infinity, descends to 11, and
goes back to infinity. On the second stretch of the critical
strip (where n goes from 11 to infinity) we pass through
Heil-Colella point (cp,c3) = (0.6,—0.2), which is on a
subinterval where n = 12. The spectral radius decreases
throughout that interval and no minimum occurs. Next, there
is a point on the border between n = 22 and n = 23 at which

the smallest joint spectral radius and the smoothest multi-
resolution is realized. At this point the ball has 54 sides,

co = +0.64319821225683, c; = +1.19245524910022,
c2 = +0.35680178774317, c3 = —0.19245524910022,

p(M) = 0.64705462513820 and the Holder exponent of
the resulting MRA is h = 0.62804058345878. Broker and
Zhou [12] obtain the same result by analytical means. As we
leave the critical strip (at c3 = 1 — a'/3 — 1/3a='/3 where
a = 1/4 4+ 33/2/36, ie., co = 0.64779887126104, and
c3 = —0.19148788395312), we enter an interval where once
again the optimal product is of length one and the optimal
ball is first a quadrilateral (Daubechies’ D, is here) and then
a hexagon. Finally we arrive at (1,1).

Table I records sample values of p(M) at different values
of c3 over the critical strip. Between two consecutively
recorded values of c3 the structure of optimal unit ball is
determined. The critical exponent ¢ is half of the num-
ber of vertices of the ball. The columns of matrix V,
together with —V, represent the vertices of the ball. The
vector v is the eigenvector of the scaled optimal prod-
uct associated with eigenvalue —1, BA™v = —wv, where
(A, B) = (My, My)/p(M). We used Ay to stand for
v, Av, A%v, -, A™.

A. The Holder exponent of six-coefficient MRA

Consider the 6-coefficient dilation equation

¢(x) =cop(2x) + 102z — 1) + c20(2x — 2)+

c30(2x — 3) + c4p(2x — 4) + e50(2x — 5), (15)
subject to sum and orthogonality rules:
cgt+cotcys=c+cez+c5=1,
Ocog — 1cy 4 2¢9 — 3c3 4+ 4eqg — bes =0,
coCa + c1c3 + cocy + c305 = 0, (16)

cocq + c1c5 =0,
2 2 2 2 2 2
Gtatatatagteag=

These rules can be written in terms of the corner coeffi-
cients (cp, ¢5) for the main cases as

8ca + 8ch +16c2c2 — 4¢3 — 4c3+

17a

12¢3c5 + 12¢oc2 — c3 — ¢ + 4cges = 0, (17a)
2co + 2¢c5 +1 .

= —— |if 17b

205 — 260 ! o 7& €5 ( )

c1 = zcp, €4 = ZCs, (17¢)

co=1—cy—zc5, c3=14+zco— cs. (17d)

In a special case where ¢y = c5 =0 or ¢y =c5 =0 or
co = c1 = 0 we get an MRA with less than six coefficients.
If ¢cg = c5 then their common value is —1/4 and in fact
¢o = ¢5 = —1/4 is an isolated point on the graph of (17a).
In this case ¢; = ¢4 = 0 and ¢o = ¢35 = 5/4. The graph of
(17a) resembles a bent figure-8 or a butterfly with an eye at
(—1/4,—1/4), see Fig. 1.
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The Holder exponent of the first derivative of the associ-
ated wavelet is h = — log,(2p(M)) (if p(M) < 1/2) where
M = {Moy, M1},

1+a —1—2a 14+ 2a
Mozi 1+ —1—a-0 1+ 2a ,
0 205 1+b—205
a = 4cy — 2¢1 — 2cs,
0 1 5 (18)
b:260—261—2657
1 (@ 1+ 2a —1—2a
M1:§ 2c5 1+b—2c5 —1—a-—0
0 0 205

Here the matrices My and M; have been obtained by
applying the similarity transformations suggested in [19]
and the sum-rules (17) to the standard wavelet matrices
Ty and T3. (For the m + 1-coefficient dilation equation
(Td)ij = C2i—j+d—1> d=0or 1, 1 < i,j < m)

We have applied Algorithm 13 to determine p(M). As a
result we have found that the optimal product is one of

MoM{ or MZM or MM} or MEMy. (19)

We report the value of p in terms of m = c¢5/co. We
start at the origin and move on the loop with ¢y > c5
in the clockwise direction on the graph of (17a). At the
beginning either M, or M; can be considered an optimal
product. This occurs on a strip starting at the origin, where
m = 2 — /3, and continues up to m = .20091381944779,
where a critical strip starts. On this critical strip the optimal
product is M{'M;, and n starts from infinity, descends to
4 and increases back to infinity. (The value of n generally,
but not always, changes in steps of 2.) This strip ends at
m = .12041694921052. At m = .12278337157050, on
the border between two subintervals with optimal products
M§M; and M°M;, we find the smoothest 6-coefficient
MRA. Here the coefficients of the dilation equation are

c5

m=0.12278..

c0

Fig. 1. Butterfly Curve of MRA-6, Smoothest Scaling Function at o

TABLE I
OPTIMAL PRODUCTS FOR 4-COEFFICIENT MRAS

c3 = —0.20710678118655
q =00, BA®v = —v

c3 = —0.20685451946438
q= 15, BAZy = —v
interval of shortest products
c3 = —0.20641657740770
q=16, BAYly = —v

c3 = —0.20639313158185
qg=15, BAly = —v

c3 = —0.20634605286404
q= 14, BAYly = —v

c3 = —0.20248452406185
qg=15, BAly = —v

c3 = —0.20181564521458
q=16, BAlvy = —v

c3 = —0.20131323874003
interval of shortest products T
q=15, BA2y = —v

c3 = —0.19994273898044
q= 16, BA2y = —v

c3 = —0.19935467077442
q=17, BA2y = —v

c3 = —0.19887220524860

—

anomalous interval |

c3 = —0.19516075726816
qg=19, BAYSy = —vy

c3 = —0.19512218095930
q =20, BAYSy = —v

c3 = —0.19479024238150
q=21, BAYy = —vy

c3 = —0.19447589464925
q=22, BAYSy = —vy

c3 = —0.19446922675618
anomalous interval T

c3 = —0.19250565305303
q =128, BA22y = —v
smoothest 4-coef. MRA:

c3 = —0.19245524910022
q=27, BA?%v = —v

c3 = —0.19240955523641

q =00, BA®v = —v
c3 = —0.19148788395312

co = +0.43244669413947,
o = +0.70549917462643,
1 = —0.13794586876589,

p = 0.70710678118655
V = [Al0ooly]

p = 0.69618860818864
V = [Al018ly, B A3y

p = 0.69004302279648
V= [A[0:13]v, BAy)
p = 0.68979383768344
V= [A[0:13]v, BA2y)
p = 0.68930630911961
V= [A[0:12]v, BA2y)
p = 0.66771960222144
V = [Al0:13]y BA12y]
p = 0.66530105883053
V= [A[Ojlg’]v, BA3y, BA2y)
p = 0.66359100053031

V= [A[0:13]U7 BA13U]
p = 0.65951833373125
V = [A[0:14]U7 BA13U]
p = 0.65790899824005
V = [Al0:14], BAl4y, BA13y]
p = 0.65663720229290

p = 0.64928146835213
V = [A[0:17]U7 BA17U]
p = 0.64923016354484
V= [A[Ozls]u BA17U]
p = 0.64879376983300
V = [Al0:18]y BA18y, BALTy]
p = 0.64838816938558
V = [Al0:19], BA18y, BALTy]
p = 0.64837963968583

p = 0.64705734026606

V = [Al0:25], BA24y, BA234]
minimum value of p:

p = 0.64705462513820

V= [14[0:25]117 BA24’U]

p = 0.64705945464432

V= [A[O:OO]U, BAv]
p = 0.64779887126104

c1 = +1.12348982603632,
c3 = —0.17658708916728,
cs = +0.05309726313096,

while p = .43707240150802 and the generalized Holder
exponent is 1.19405581139788. We note a discrepancy be-
tween this result and the ones reported in [17, page 510]
and [18, page 242] where the smoothest six-coefficient
MRA wavelet is said to have a Holder exponent of at least
1.40198 and at most 1.4176. We calculate an exponent of
1.123543439 for the wavelet reported there.

As we leave the first critical strip either My or M; can
be considered the optimal product. Then a second critical
strip starts at m = —.26637703880995. On this strip the
optimal product is of the form M ME. The strip terminates
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at m = —.58801735569420. Then once again the optimal
product is My or M; until we arrive at the origin.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have demonstrated that the concept of optimal ball
and the Optimal Norm Conjecture are important tools in
investigating the spectral radius of a set of matrices.

B. Future Works

In addition to investigating some of the many conjectures
included we intend to use the ONC-based algorithm to find
the Holder smoothest 8-coefficient MRA. This function is
most likely the shortest orthogonal wavelet which is twice
differentiable.
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