Construction of Probe Interval Models

Ross M. McConnell *

Abstract

An interval graph for a set of intervals on a line consists
of one vertex for each interval, and an edge for each
pair of intersecting intervals. A probe interval graph is
obtained from an interval graph by designating a subset
P of vertices as probes, and removing the edges between
pairs of vertices in the remaining set N of non-probes.
We examine the problem of finding and representing
possible layouts of the intervals, given a probe interval
graph. We obtain an O(n 4+ mlogn) bound, where
n is the number of vertices and m is the number of
edges. The problem is motivated by an application to
molecular biology.

1 Introduction

The problem of creating an interval model of a graph
is defined as follows. The input is an undirected graph
G. The output is a set of intervals on a line, with one
interval representing each vertex of G, so that the edges
of G correspond to those pairs of intervals that intersect.
The class of graphs for which the problem has a solution
is called interval graphs.

An application to molecular biology is the problem
of reconstructing the arrangement of fragments of DNA
taken from multiple copies of the same genome. The
inputs to the problem are results of laboratory tests
that tell which pairs of fragments occupy intersecting
intervals on the genome. Before the structure of DNA
was well-understood, Seymour Benzer [1] was able to
show that the set of intersections of a large number of
fragments of genetic material in a certain virus were an
interval graph. This provided strong evidence that its
genetic information was physically organized in a linear
arrangement.

A linear-time algorithm for creating an arrangement
of intervals, given G, appeared in [2]. More recently,
a variant that makes more efficient use of laboratory
resources has been studied [16, 11], but no linear time
bound is known for it. This variant is the basis of a

~ *Dept. of Computer Science and Engineering, University of
Colorado at Denver, Denver, CO 80217-3364 USA (corresponding
author)

TDept. of Computer Science, Vanderbilt University, Nashville,
TN 37235 USA

Jeremy P. Spinrad

patent [17]. A subset of the fragments is designated
as probes, and for each probe, one may test all non-
probe fragments for intersection with the probe. This
results in an incomplete interval graph. The object is to
reconstruct an arrangement of fragments on the genome
that could have given rise to the test results, under the
assumption that the tests are reliable.

In graph-theoretic terms, the input to the problem
is a graph G = (V,E) and a subset P of probe
vertices. The set N = V — P is an independent set.
G is a probe-interval graph iff it can be extended to
an interval graph by adding edges between non-probe
vertices. The object is either to determine that G
is not a probe-interval graph, or else produce a set
of intervals whose intersections model the adjacencies
between members of P and members of V. Such a set
is called a model or realizer of G.

Another application of the problem of constructing
a probe-interval model occurs in recognizing circular-
arc graphs [9], where an algorithm for it played a
key role in obtaining a linear time bound for that
problem. Circular-arc graphs have applications to
problems involving cyclical schedules, such as traffic-
light scheduling.

Let n be the number of vertices and m the number
of edges of a graph. An O(n?) algorithm for construct-
ing probe-interval models is given in [8]. We give an
O(n + mlogn) algorithm.

2 Preliminaries

If G = (V,E) is a graph and X is a nonempty subset
of V, we let G|X denote the restriction of G to X,
that is, the subgraph of G induced by X. We let N(z)
denote the neighbors of z, and let N[z] = N(z) + «
denote the closed neighborhood of x.

We treat an undirected graph is a special case of a
directed graph where for each directed edge (u,v) there
exists a directed edge (v,u). If G = (V, E) is a graph,
then its transpose, GT = (V,ET), is obtained by
reversing the direction of each directed edge. A module
of a graph G = (V, E) is a set X C V such that for every
y € V — X, either all members of {y} x X are directed
edges or none of them are, and either all members
of X x {y} are directed edges or none of them are.
V' and its singleton subsets satisfy the requirements,

and are called trivial modules. All other modules are
nontrivial.

A directed acyclic graph is transitive if, whenever
(a,b) and (b, c) are two edges incident to b in sequence,
then (a,c) is also a directed edge. These graphs
model poset relations. A transitive orientation of
an undirected graph is an assignment of directions to
its edges that yields a transitive acyclic graph. The
class of graphs that can be transitively oriented is called
comparability graphs. The modules of comparability
graphs play an important role in the theory of transitive
orientation [6].

DEFINITION 2.1. A family F of subsets of a set V is a
tree-decomposable family if it satisfies the following
properties:

1. V and the members of {{x} : x € V} are members
of F.

2. If X and Y are properly overlapping members of
F,then XUY, XNY, X-Y, andY — X, are
members of F.

The strong members of F are those that properly
overlap no other member of F. It is easy to verify that
the modules of a graph are a tree-decomposable family.

The decomposition tree of a tree-decomposable
family is defined as follows. The strong members of a
tree-decomposable family are the nodes of the tree, and
the tree is the transitive reduction of the containment
relation on these members. V is the root, the singleton
subsets of V are the leaves, and each internal node’s
children are a partition of the set that it represents. The
tree can be represented with an O(1)-space structure for
each node, since the set that a node represents can be
recovered by visiting its leaf descendants.

THEOREM 2.1. [12, 3, 4]. If F is a tree-decomposable
family, then each internal node of the decomposition tree
can then be labeled as prime, degenerate, or linear,
and the children of linear nodes can be ordered, so that
the decomposition tree has the following relationship to

F:

o X CV is a member of F iff X is a node of T, a
union of children of a degenerate node, or a union
of consecutive children of a linear node.

The decomposition tree for the modules of a graph
is called the modular decomposition.

We now summarize an abstraction that is due to
Moehring [12] and that is useful in the development of
our algorithm. The abstraction avoids explicit mention
of graphs and modules, while retaining those properties

required to prove most of the interesting theorems
about modules. Moehring has shown that a variety of
interesting structures other than modules in graphs are
instances of the abstraction, so a proof that uses only
the abstraction is more general than one that makes
specific mention of graphs and modules.

In the following definition, S corresponds to the set
of graphs, V(G) corresponds to a set of vertices of G,
G|X corresponds to the subgraph induced by X, and
F(G) corresponds to the set of modules of G.

DEFINITION 2.2. Let S be some class of structures that
can be defined over a set. S include a definition of what
constitutes isomorphism between two members of S. S

also includes a definition of three functions, denoted
V(), |, and F(). Let G € S.

o V(G) returns a set;

e For X C V(G), the restriction of G to X,
denoted G| X, yields an instance G’ of S such that
V(@) =X;

e F(G) defines a tree-decomposable family on V(G);

Then (S,V (), F(),|) defines a quotient structure
if it satisfies the following:

e (“The Restriction Rule:”) For each’Y C V(G) and
X e F(G@), XNY € F(G|Y)u{d}.

o (“The Substructure Rule:”) For each Y C X €
F(@G),Y e F(G) iff Y € F(G|X).

o Let P be a partition of V' such that each member of
P is a member of F(G). There exists a quotient
G' € S, denoted G/P, such that for all ways to
select a set A consisting of one representative from
each member of P, G|A is isomorphic to G'.

o (“The Quotient Rule:”) Let P be as in the last
condition. If W C P, then UW € F(G) iff
W e F(G/P).

Let TD(G) denote the tree decomposition of F(G),
which exists by Theorem 2.1. In the case where F(G)
denotes the modules of G, we get a quotient structure,
and T'D(G) is just the modular decomposition.

3 Containment orientations and A modules

We may assume without loss of generality that no
endpoints of intervals in a realizer of an interval graph
coincide, since in any realizer where they do, the
endpoints can be moved by small amounts to make
this true. We may thus capture all of the relevant
combinatorial properties of a realizer by traversing

it from left to right, creating a list of identifiers of
vertices. In the resulting sequence, each vertex appears
twice. Let us call this the string representation
of the realizer. The interval graph can clearly be
reconstructed from this string, and this abstraction
ignores irrelevant features of an interval realizer, such
as the exact geometric placement of the endpoints that
realize the string.

Henceforth, we will mean this representation when
we refer to an interval realizer. We consider two realizers
to be different iff their string representations differ. All
interval graphs have at least two realizers, where one is
obtained by reversing the representation of the other.
Some interval graphs have a large number of realizers.

Given an interval graph and an interval realizer R,
we may partition the edges of the graph into the set
FE, of overlap edges, which arise from two intervals
that each contain an endpoint of the other, and the set
E. of containment edges, which arise from an interval
properly containing the other. Let F, be the edges of
the complement of G. {E., E1, F, } is a partition of the
edges of the complete graph on V. Let G. = (V, E,),
G, = (V,E,), and G, = G = (V, E,). When R is not
understood, we let E.(R), G.(R), E1(R) G1(R), E,(R),
Gn(R), etc., denote these structures. We say that R is
a realizer of G., G1, and G,,. We will use multiple
subscripts to denote the graphs arising from unions of
these edge sets. For instance Gy, = (V, E1 U E,).

For z € {c¢,1,n}, let A, = {(a,b) : ab € E, and
the right endpoint of a occurs before the right endpoint
of bin R}, and let D, = (V, A,). Let a containment
orientation of G be H = (V, A.(R) U E1(R)) for some
realizer R of G. Note that H serves to represent D.,
Gy, and G,,. When R is not understood, we let A, (R),
D,(R), and H(R) denote these structures. We say
that R is a realizer of D.(R), Di(R), and D, (R), and
H(R). We may again use multiple subscripts to denote
unions of these. For example, D1,,(R) denotes the graph
(V, 41 (R) U Au(R)).

A A module of H is a module X of H that satisfies
the following additional Delta requirement: either
G|X is a clique or there exists no y € V — X such that
{y} x X - E1~

THEOREM 3.1. [9] Let H denote the containment ori-
entations of interval graphs. For H € H, let V(H) de-
note the vertices of H, F(H) its A modules, and H|X
denote the subgraph induced by X. Then (H,V (), F(),])
18 a quotient structure.

DEFINITION 3.1. A graph G = (V, E) is prime if has
has only the trivial modules V and {{z} :x € V}. H is
A-prime if it has only these sets as A modules.

Theorems 2.1 and 3.1 imply that the A modules can

be represented with a decomposition tree, which we will
call the Delta tree of H, or A(H).

D, is a transitive orientation of G., and D, =
(V,A1 U A,,) is a transitive orientation of G1,. Those
transitive orientations that Gy, that are given by
D1n(R) = (V,A1(R) U A, (R)) for some realizer R of
H are called interval orientations of G1,,. Not every
transitive orientation of (G1,, is an interval orientation.

THEOREM 3.2. R and

D1, (R).

is recoverable from H(R)

This can be easily understood by observing that
A.UA; UA, is a transitive orientation of a complete
graph, hence a linear order on V, and this order
gives the order of appearance of right endpoints in the
realizer. Similarly, (4.)TUA;UA,, gives the order of left
endpoints. There is a unique way to interleave these two
orders to realize H. This can be accomplished in linear
time if the orientation D1, is represented implicitly by
means of one of its topological sorts of V' [9].

Since an undirected graph G is a special case of a
symmetric directed graph, it is legitimate to define a
relation on the directed edges of an undirected graph,
and to view of an orientation of G as a subset of
the directed edges of G. The following relation has a
similar role with respect to interval orientations and A
modules as the well-known I relation has with respect
to transitive orientations and standard modules that is
given in [5, 6]:

DEFINITION 3.2. [9] Let {a,b,c} be three vertices.
Then (a,b)A(a, c) and (b,a)A(c,a) if one of the follow-
ing applies:

e ab,ac € E,, and bc € Eq.;
e ab,ac € Fq,, and bc € E;

e abe E, and bc,ac € E;.

A A implication class is the equivalence classes
of the transitive symmetric closure of A. That is, e,
and e, are in the same A implication class iff there is
a sequence (e, = €1, e, €3, ..., €51, €k = €p) of directed
edges of Gy, such that each for each j from 1 to k — 1,
e;jAejtr1. A A color class is the union of an implication
class and its transpose, which, by symmetry, must also
be an implication class.

THEOREM 3.3. [9] An orientation of G, is an interval
orientation iff it is an acyclic union of A implication
classes.

THEOREM 3.4. [9] Edges ab,cd € Gy, are in the same
A color class iff there is no A module X such that

G1n|X contains exactly one of ab and cd. If there exist
disjoint strong A modules Y and Z such that a,c € Y
and b,d € Z, then (a,c) and (b,d) are in the same
implication class.

Below, we give an efficient algorithm for finding a
containment orientation H of G. Theorems 3.4 and 3.3
imply that A(H) gives a compact representation of all
interval orientations of Gy, corresponding to H, hence
of all interval realizers of H.

Johnson and Spinrad [8] give a related way to
represent implicitly all possible realizers of G, which
is, in turn, related to Booth and Lueker’s earlier PQ
representation of possible clique arrangements in the
realizer of G [2]. We achieve our improvements to their
time bound by working with H instead, as it allows us
to adapt and use a nice mathematical framework from
the literature on transitive orientations.

4 Using the A tree to represent all realizers of
H

If R is an interval realizer, then the restriction of R to
X, denoted R|X, is the result of deleting all intervals
except those in X.

The modules of a graph are often described in
terms of a type of substitution operation on graphs [12].
The definition of A modules is motivated by a similar
substitution operation on interval realizers:

DEFINITION 4.1. Let R; and Rs be two interval real-
izers on disjoint sets Vi and Vo of intervals, and let
r € V1. A substitution of Ry for x in Ry is the
realizer R that is obtained as follows.

1. If the two endpoints of x are contiguous in Ry,
then these two endpoint are removed from the string
representation of Ry, and the string representation
of Ry is substituted in their place.

2. 1If all left endpoints precede all right endpoints in
Rs, then the left endpoint of x is replaced in Ry with
the sequence of left endpoints of Ro, and the right
endpoint of x is replaced in Ry with the sequence of
right endpoints of Rs.

For example, if Ry = wwwvwzzu and Ry = abacbe,
then substituting Ry for z yields uvwvwabacbcu. On
the other hand, if Ry = abcbac, then it implements a
complete interval graph, hence all left endpoints precede
all right endpoints. We may substitute Ry for w,
yielding uvabcvbacxzu. Note that after a substitution,
Ry becomes a A module inside the resulting realizer.

In [9], it is shown that if X is a strong A module
of H, then in every realizer of H, either the set of

mldebacedfghiabcifghjjkklm

d £ 1k

Figure 1: An interval realizer and the A tree for
the graph H = (V,A. U Ep) given by a realizer R.
When M is an internal node and C is its children, the
node is labeled with a string quotient, depicted in
parentheses. This quotient is a realizer of (H|M)/C.
By performing substitution operations in postorder, it is
possible to reconstruct R in O(n) time, using elementary
data structures.

endpoints of X are consecutive, or else the set of left
endpoints are consecutive and the set of right endpoints
are consecutive. The remaining A modules are those
sets for which this is true in some, but not all, realizers
of H.

Suppose R is available, M is a node of the decom-
position tree, and C is the children of M. Let a string
quotient on a node X with children C be any real-
izer of the modular quotient (H|X)/C. It is possible to
reconstruct R from this labeling of the decomposition
tree, by a composition of substitution operations dur-
ing a postorder traversal of the tree. Figure 1 gives an
example.

Because each node of the tree is prime, degenerate,
or linear, the string quotient always represents a A-
prime graph or is of one of the forms given in Figure 2.
We have seen that any realizer R of H is represented
by a labeling of the decomposition tree with a certain
set of string quotients. Conversely, it is easily seen that
whenever the tree is labeled with string quotients, it
takes O(n) time to assemble the corresponding realizer
using substitution operations. To do this, one must

Figure 2: A string quotient is either A-prime (if X is
prime), has the form of Figure A (if X is linear), or one
of the forms of Figures B and C (if X is degenerate). In
Figure 1, P, S, and W are linear, @, T, X, and U are
degenerate. R is prime; though SUT is a module of H,
it fails to be a A module. A new realizer of H can be
represented by reversing the quotient string at a prime
node, or by replacing the quotient at a degenerate node
M with one of the other trivial k! realizers of (H|M)/C,
where k& = |C|. Using a sequence of such replacements
of quotient strings, the tree can be made to represent
any realizer of H.

implement each string quotient with a doubly-linked list
and a pointer to the first instance of a right endpoint in
the list. In addition, each child must have pointers to
its two occurrences in its parent’s string quotient. This
gives the following:

THEOREM 4.1. There is a one-to-one correspondence
between realizers of H and ways to label the A tree with
string quotients.

Clearly, there is only one string quotient for a linear
node, and there are k! string quotients for a degenerate
node with k children. If X is a prime node, then there
are only two string quotients, by the Quotient Rule,
Theorem 3.2, Theorem 3.3, and Theorem 3.4, and one
can be obtained from the other by reversing its string
representation.

These observations and Theorem 4.1 justify our
claim that the A decomposition tree implicitly models
all realizers of H. The string representations of realizers
of H are a language over alphabet V', and the A tree
gives a grammar for the language.

5 Computing the A tree incrementally

For finding the A tree, we use a generic algorithm for
finding the decomposition tree of an instance of a quo-
tient structure H on V that is given in [10]. The al-
gorithm is expressed there as a modular decomposition
algorithm, but it is proved there that it is general to all
quotient-structures. The algorithm works by repeated
application of an incremental step. At each itera-
tion, TD(H|U) is known where U C V. An arbitrary
z € V — U is selected, and the decomposition is ex-

panded to yield TD(H|(U + z)). By iterating, U can
be expanded incrementally until U = V| at which time
TD(H|U) =TD(H) is returned.

Let A be the set {X : X € F(H|U) and X + z €
F(H|(U + z)}, let A" be the members of A that are
neither disjoint from nor properly overlap any other
member of A, and let A” = {X +2: X € A'}. Let
Xo be the unique minimal member of A’. Note that
Xo+2z € FH|(U + 2)). If Xo € F(H|(U + 2)) and X,
is not strong in F(H|(U +z), then Dy = {z}; otherwise,
Dy = Xy. Let M be the maximal members of F(H|Dy)
that are also members of F(H|(Dg + z)). Let C be the
nodes of A(H|U) that are disjoint from Dy or contained
in a member of M.

THEOREM 5.1. Let A”, M, and C be the sets defined
above in terms of H|U. The nodes of TD(H|(U + 2))
are given by A" UMUC U {{z}}.

There is a unique minimal node of TD(H|U) that
is a member of A’. Let Zy denote this node.

ALGORITHM 5.1. Incremental step in computing the A
tree of a containment orientation H

1. Find Zy, Dy, and M.

2. If Dy # Zy, make Dy a new child of Zj, and for
each child U of Zy that is contained in Dg, remove
U from the list of children of Zj.

3. Make {z} and the members of M be children of
Do.

4. For each member X of M, let the maximal nodes
of A(H|U) that are proper subsets of X be the
children of X.

Since the A modules define a quotient structure,
we do not need to re-prove that the algorithm can be
used to compute the A tree. Let us now address the
implementation details.

During the incremental construction of the A tree,
we implement the string realizer of each quotient using
a splay-tree implementation of a list [15], which is
referred to as a “path” in that paper. This allows us
to maintain a function f() on each point in the list
that gives the number of intervals passing through the
point. The data structure supports each of the following
operations in O(logn) time amortized time: accessing
the i*" element of a list, cutting a list into two lists
at a given point, concatenating two lists, reversing a
list, adding a constant to f(z) at each element = of a
list, and querying the list for the point that minimizes

f(), each in O(logn) time. It is easy to verify that this
allows us to carry out each of the substitution operation
of Definition 4.1 O(logn) amortized time, while still
maintaining f() in the resulting realizer.

The analysis of the time bound uses the following
credit discipline [15]. Each node of the decomposition
tree carries a credit. Processing of z requires at most
O(|N(z)]) new credits, and must take O((|N(z)| +
k)logn) time, where k is the number of credits freed up
by nodes of A(H|U) that are deleted in transforming
the tree into A(H|(U + z)). This clearly gives an
O(n 4+ mlogn) bound for the collection of incremental
steps required to build the tree.

The first step is to assign an adjacency labeling
to nodes of A(H|U). This consists of two labels on
each node X of A(H|U) such that there is an edge
between z and some member of X. An undirected
edge ab of H is considered to consist of two directed
edges, (a,b) and (b,a). The first label tells whether
all members of {z} x X are directed edges of H, and
the second tells whether all members of X x {z} are
directed edges of H. X is labeled mixed if it fails one
of these tests, which implies that X is not a module
in H|(U + z). The absence of labels on X indicates
that there are no edges of H in {2z} x X or in X x {z}.
The adjacency labeling can be accomplished without
violating the credit discipline [13, 10]. In contrast to
the algorithms of [13, 10], we must also maintain a
cliquehood label on each internal node of the tree
that indicates whether it is a clique of G. This also
presents no problem for the time bound.

Steps 2, 3, and 4 of Algorithm 5.1 are implemented
as they are in [10] for modular decomposition, except
for updating the string quotients when a node is deleted,
which can be accomplished efficiently using substitution
operations. Finding Dy, given Zj, requires a straight-
forward modification that accommodates the additional
A constraint that must be satisfied by A modules. It
remains to describe how to find Zy and M.

5.1 Finding Z;.

For finding Z,, we adopt a strategy similar to that
of [13, 10], by starting at the root of A(H|U), and
traverse downward through the chain of ancestors of Z;
until we reach Zy. This step is a bottleneck in the O(n?)
bound in the implementations for standard modular
decomposition. However, because we are implementing
this step on the A tree rather than on the modular
decomposition tree, we are able to implement it more
efficiently.

We use the following approach:

ALGORITHM 5.2. Finding Zj.
Input: A node W that is a (not-necessarily proper)

ancestor of Zj.

Case 1: W has more than one child labeled mixed.
Then ZO =W

Case 2: W has exactly one mixed child Y. Then Y
is an ancestor of Zy iff Y +z is a A module in H|(U 4+ z);
otherwise Zo =W

Case 3: No previous case applies, and W is degen-
erate. If there is a unique child Y whose labels differ
from the label of edges between children of W, then Y
is an ancestor of Zy iff Y +z is a A module of H|(U + z);
otherwise Zyg = W.

Case 4: No previous case applies, and W is linear.
This is handled with a straightforward variant of the
approach for Case 3.

Case 5: No previous case applies, and W is prime.
If there is a child Y such that Y + z is a A module
in H|(U + z), then Y is an ancestor of Zy; otherwise
Zo=W.

If W = Zy, return W; else recurse on Y.

All of the cases except Case 5 are handled with the
techniques from [10]. Case 5 is the actual bottleneck for
the time bound of that algorithm, and a data structure
for handling it is the subject of much of the paper.
However, when working with A trees, a string realizer R’
of (H|W)/C is available, where C is the set of children of
W, and this quotient is A-prime. The problem reduces
to the following:

o Given H|(X'+ z) such that H|X’ is A-prime, find
y € X' such that {y, z} is a A module in H|(X'+2z).

Let R’ be a realizer of H|X’. By the Quotient
Rule, adding an interval corresponding to z to R’ and
removing y results in a realizer R” of an isomorphic
A-prime graph. By Theorems 3.2, 3.3, and 3.4, the
placement of endpoints of z among endpoints of R” is
unique, and must be the same positions as those of y
in R’. Finding this placement, if it exists, solves the
problem. Solving this problem given R’ takes time
proportional to the number of edges incident to z,
except for one case, which requires finding a point in
a given section of the string realizer that is covered
by a minimum number of intervals in R’. This is
accomplished in O(logn) time, using the splay-tree
implementation of R'.

5.2 Finding M.

LEMMA 5.1. [9] Let x be a source or sink in some
interval orientation of Gin, and let P denote {x} and
the mazimal standard modules of H = (V, Ac U Ey) that
do not contain x. Then every member of P is a A
module of H.

LEMMA 5.2. Let X be a child of Zy in A(H|U). In the
interval orientation D1, of Gy, given by any realizer of
T|(U + 2), z is a source or sink in D1,|(X + z).

It follows from these two lemmas that finding M
reduces to finding the maximal standard modules of H
that are contained in Dg. This latter problem is solved
in [13], and it is easy to implement the solution so that
it conforms to the credit discipline.

6 Finding a containment orientation H for a
probe-interval graph G

A probe interval graph G is realized with a set R of
intervals, and a list P of those intervals that correspond
to the probes. Thus, we may let (R, P) denote a
probe-interval realizer. Just as in the case of interval
realizers of interval graphs, a probe-interval realizer
partitions the edges of G into a set E. of containment
edges and a set E; of proper-overlap edges. We let
FE,, denote those nonadjacent pairs where at least one
member of the pair is a probe. As before, it assigns an
orientation A, of E., which tells, for each edge, which
interval is contained in which, and an orientation Ay,
which tells, for each edge, which interval precedes which.
The graph H = (V, A. U F1) is again a containment
orientation of G, and H and P can be used to represent
D., Gy, and G,,.

In this section, we examine the problem of comput-
ing a containment orientation of G, given only G.

Let p = |P|, n' = |N|, n = p+n/, m;, be the number
of edges in G|P, and m,, be the number of edges from
P to N, with m =m, + m,,.

To simplify the problem, let us get rid of any
isolated or universal vertices, and all but one vertex in
any module that is contained in N, and all but one
vertex in any module of N, and then all but one vertex
x in any module that is a clique, selecting x to be
a member of P. Now, no two adjacent vertices have
identical closed neighborhoods. It takes linear time
to find these and throw them out. These can all be
added back in as duplicate intervals once we get a probe
interval realizer on the reduced graph.

In the remainder of this section, let G denote this
reduced graph, and assume that it has no clique modules
or universal vertices.

LEMMA 6.1. [7] If G is an interval graph with no
universal vertices or clique modules of size two, then
there exists an interval realizer where N{u] C N[w] iff
u’s interval is a proper subset of w’s interval in the
realizer.

LEMMA 6.2. If G is a probe interval graph with no
universal vertex, no clique modules, and no modules that

are subsets of N, then there is a probe interval realizer
of G with the following properties:

1. If uw is an edge of G and u,w € P, then N[u] C
Nlw] iff u’s interval is a proper subset of w’s
interval;

2. If uw is an edge of G and one of u and w is in P
and the other is in N, then NuJN P C Nw|Nn P
iff u’s interval is a proper subset of w’s interval.

Proof. (Sketch). No pair of vertices in N is adjacent,
so the lemma is vacuously true for these pairs. For
adjacent pairs in P, there is a containment orientation
H' of an interval graph that is obtained is obtained by
adding edges between members of N in H. There is
a realizer R of H' that satisfies Lemma 6.1. Since the
neighborhood of a vertex in P is the same in H as it is
in H', R satisfies the claim for pairs of vertices in P.

We then show how to adjust endpoints of interval
of N in R make the claim true for pairs that have one
member in P and one in N. We fix the intersection for
one edge at a time to make it match the lemma.

The general strategy for each case is illustrated by
the case where u € P, w € N, and N[u|NnP C N[w|NP.
If w’s interval does not contain w’s in R, then since
they are neighbors, their intervals overlap. We can
stretch w’s endpoint that is inside u, moving it just
past the other endpoint of w. This cannot cause w to
lose neighbors in P since it only grew. It cannot pick up
new neighbors in P, since it is already a neighbor of all
vertices of P with endpoints in u’s interval. This causes
the claim to be true for w and uw without changing the
intersection relationship on any edge that is not incident
to w.

We then show that no step reverses an adjustment
made in a previous step, which guarantees that the
algorithm halts.

Let us create a bipartite graph H(V, P', Ey) where
V. = PUN, P’ consists of one copy of each vertex
in P. To define the edges of H, let x € V, y €
P, and 3y’ be the copy of y in P’. Then zy €
H iff zy € G. By Lemma 6.2, the problem of
computing a containment orientation reduces to finding
neighborhood containments in H between pairs in V'
that are adjacent in G, and neighborhood containments
in H between pairs in P’ whose copies in P are adjacent
in G. By the following two facts, this takes O(n +
min{n?,mlogn}) time:

LEMMA 6.3. H is chordal bipartite.

THEOREM 6.1. [14] It takes O(n + k +
min{n?,mlogn}) time to find neighborhood con-

tainments for k pairs of vertices in a chordal bipartite
graph.

When construction of a probe-interval model comes
up as a subproblem in [9], it is in a special case where
this step can also be carried out in linear time. This
lucky circumstance permits linear-time recognition of
circular-arc graphs.

7 Constructing probe-interval models

Let H be a containment orientation of a probe-interval
graph G. If R is a probe-interval realizer of H, then
R|P is an interval realizer of the interval graph G|P
and its containment orientation H|P. R|P has the
property that the adjacencies of each z; € N can
be represented by adding a single interval to R for
z;. Let an extensible realizer of H|P be one that
has this property. An extensible orientation is the
orientation of G,|P given by an extensible realizer of
H|P.

Finding a probe-interval realizer clearly reduces to
finding an extensible realizer of H|P, and our algorithm
works by solving this reduced problem.

The difficulty is that not all interval realizers of H|P
are extensible realizers. On the other hand, every exten-
sible realizer of H|P is also an interval realizer. Thus,
there are additional constraints on extensible realizers
that do not apply to interval realizers. We capture the
necessary constraints by merging A implication classes
in G1,|P to obtain more restrictive “extensible implica-
tion classes.”

Note now that now that we are working with a
probe-interval graph rather than an interval graph,
G, = (V, E;UE,) contains no edges between members
of N. Let {z1,22,..., 25|} denote the vertices of N. If
eq, and e, are directed edges of G1,|P, note that they
are in the same implication class of Gy,|P iff there is
a sequence (e, = ey, e, €3, ..., €51, ex = €p) of directed
edges of G1,, such that each for each j from 1 to & — 1,
€jA6j+1.

We now give the central insight of this section.
For the extensible implication classes, we modify
this definition by letting each e; be an arbitrary edge
of Gin, but require that e; and ejy1 both be edges
of Gin|(P + 2;) for some i. Letting the chain of
edges roam freely within Gp,|(P + z;) tightens the
constraints on possible orientations: it incorporates
the constraints imposed by all A implication classes in
cach Gi,|(P + z;). This ensures that Dq,|P can be
extended an interval orientation in each Gi,|(P +).
Equivalently, it ensures that each z; can be added as a
single interval to the corresponding interval orientations
of Gi,|P. By requiring that e; and ej41 be edges in the

same G1,|(P + 2;), it we ensure that these are the only
additional constraints.

An interval graph is a special case of a probe-
interval graph where N is empty. We now generalize the
critical theorems from interval graphs to probe interval
graphs. The proof of the following is based on the
“central insight” above, and generalizes Theorem 3.3:

THEOREM 7.1. If H is a containment orientation of a
probe-interval graph, then an orientation of G1,|P is an
extensible orientation for H iff it is an acyclic union of
extensible implication classes.

Let F be a set family on universe V', and let U C V.
The restriction of F to U, denoted F|P, is the set
family {X NP : X € F}. Let A; denote the A modules
of HI(P + z). F = NN{AIP} is a family of A
modules, which we may call the extensible modules
of H|P.

The following generalizes Theorem 3.4:

THEOREM 7.2. Edges ab,cd € G1,|P are in the same
extensible color class iff there is no extensible module X
such that G1,|X contains exactly one of ab and cd. If
there exist disjoint strong extensible modules Y and Z
such that a,c € Y and b,d € Z, then (a,c) and (b,d)
are in the same extensible implication class.

Let H be containment orientation given by a re-
alizer with probe intervals P and non-probe intervals
N, and let E be its edges. We can use H(P, N, E) as
a shorthand notation to denote this. Let Sp denote
the set of all containment orientations of probe-interval
graphs that have the probe vertices indicated. Let us
consider Hq(Py, N1, E) and Hy(P,, No, E) to be isomor-
phic members of Sp only if there is an isomorphism
that maps P; to P, and Ny to No. If H = H(P,N, FE)
is a probe-interval graph and X C P, let H|pX de-
note the probe-interval graph H(X, N, E(H|(X UN))),
where E(H|(X U N)) denotes the edges of H|(X UN).
Let V(H) = P. Let Fp(H) denote the extensible mod-
ules on P in H.

The following generalizes Theorem 3.1:

THEOREM 7.3. (Sp,V(),Fp(),|p) defines a quotient
structure.

Thus, Fp(H) has a tree decomposition, which will
the extensible tree decomposition. Let us denote it
by ET(H). Note that ET(H) is built on top of P only,
even though it is determined by all the edges of G.

By Theorems 7.1, 7.2, and 7.3 ET(H) can be
used to represent all extensible orientations of Gi,|P,
just as the A tree can be used to represent all interval

orientations for an interval graph. Since all extensible
modules are A modules, extensible modules reflect
substitution operations, just as before. The main
difference is that the string quotients can no longer be
constrained to be A prime when a node is prime in the
decomposition tree; the quotient may have A modules
that are not extensible modules, hence be prime only
with respect to extensible modules.

Let H = H(P,N, E), and let {z1, 22, ..., 2/ N|} be a
numbering of vertices in N Let N; denote {z1, 22, ..., z; },
and let H; denote H(P,N;, E(H|(P U N;))), let F;
denote the extensible modules of H;, and let T; =
ET(H;) be their decomposition tree. Tjy is what we
need to compute to represent the extensible realizers of
H|P. We do this by computing the A tree of the interval
graph H|P. We then pass through |N| stages. At stage
1, we modify T;_1 to get T;.

The algorithm for producing 7T; from T;_; uses the
following alterations to the definitions of Algorithm 5.1.
Let F/' = {W : W — {z;} € F;_1 and W is a A module
of H|(P + z;)}. Let A be the set {X : X € F;_
and X + z; € F'}. Let A’ be the members of A that
are neither disjoint from nor properly overlap any other
member of A, and let A" = {X 4+ z : X € A'}. Let
X be the minimal member of A’. Xy + z; € F'. If X,
is also a member of ' and overlaps another member of
F', then Dy = {z;}; otherwise, Dy = Xy. Let M be the
maximal subsets of Dy that are members of F’. Let C
be the nodes of the tree representation of F;_; that are
disjoint from Dy or contained in a member of M.

ALGORITHM 7.1. Produce T; from T;_
Input: H, z;, and the decomposition tree T;_1
Incorporate z; into 7;_; using Algorithm 5.1 and
the new definitions of A", M, and C given in this
section, yielding decomposition tree 7" on P + z;.
Remove {z;} from the leaves of T, and collapse any
chains of duplicate nodes in the tree, to obtain T;.

One obstacle to efficient implementation is that our
implementation of Case 5 of Algorithm 5.2 assumes that
the quotient at W is A-prime. Now, after {21, 22, , ..., z; }
have been added and removed, such a quotient is prime
only in the sense that it has no extensible modules in
H|(P U {Zl, ceey Zz})

LEMMA 7.1. Let T; be the tree on H|P after insertion
of z; € N. Let B; be the set of nodes in {T1,T5,...,Tx}.
The transitive reduction of the containment relation on
B; is a tree.

Let T; and B; be as in Lemma 7.1. The refined
version of T; is the transitive reduction of B;. A way
to compute the refined version of T; is to simply mark

nodes as deleted when they are deleted, but to fail to
remove them from the structure. Since we must operate
on both 7; and its refined version T, we give each node
of T; a list of children in T}, and each node 77 a list of
children in T7. Similarly, each node of T} gets a pointer
to its parent in T;, and each node of T gets a pointer to
its parent in 7. The nodes of T} that are not nodes of T;
are helpers. Since nodes in 7; are also nodes of T}, we
distinguish between a node’s children and parent in
T;, and its helper children and helper parent in 77.
Each node of T} carries a quotient label that applies to
its children in 77}, and each node of T; carries a second
quotient label that applies to its children in 7;. The
quotient labels for quotients in T; may be expanded as
before when a node gets deleted or reversed.

For the analysis of the time bound, we use the
same credit discipline as before, letting a node release
its credit when it becomes a helper, since it is then
implicitly deleted from the tree. The parent and child
pointers are used to skip over helper nodes on steps that
could not charge the cost of touching helper nodes due
to the absence of a credit in them.

The advantage of using the helper tree is that the
the quotient induced in a prime node W by its helper
children is A-prime, thus allowing us to carry out and
analyze Algorithm 5.2 as before.

References

[1] S. Benzer. On the topology of the genetic fine structure,
Proc. Nat. Acad. Sci. U.S.A., 45 (1959), pp. 1607-1620.

[2] S. Booth and S. Lueker. Testing for the consecutive
ones property, interval graphs, and graph planarity
using PQ-tree algorithms, J. Comput. Syst. Sci., 13
(1976), pp. 335-379.

[3] A. Ehrenfeucht and G. Rozenberg. Theory of 2-
structures, part 1: Clans, basic subclasses, and mor-
phisms, Theoretical Computer Science, 70 (1990)
pp. 277-303.

[4] A. Ehrenfeucht and G. Rozenberg. Theory of 2-
structures, part 2: Representations through labeled
tree families, Theoretical Computer Science, 70 (1990)
pp. 305-342.

[5] T. Gallai. Transitiv orientierbare Graphen, Acta Math.
Acad. Sci. Hungar., 18 (1967) pp. 25-66.

[6] M. C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York, 1980.

[7] W. Hsu. O(mn) algorithms for the recognition and
isomorphism problems on circular-arc graphs, STAM J.
Comput., 24 (1995), pp. 411-439.

[8] J.L. Johnson and J.P. Spinrad. A polynomial time
recognition algorithm for probe interval graphs, Pro-
ceedings of the Twelfth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 12 (2001), pp. 477-486.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

R. M. McConnell. Linear-time recognition of circular-
arc graphs, Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science
(FOCSO01), 42 (2001), to appear.

R. M. McConnell. An O(n?) incremental algorithm
for modular decomposition of graphs and 2-structures,
Algorithmica, 14 (1995), pp. 229-248.

F.R. McMorris, C. Wang, and P. Zhang. On probe
interval graphs, Discrete Applied Mathematics, 88
(1998), pp. 315-324.

R. H. Moéhring. Algorithmic aspects of the substitution
decomposition in optimization over relations, set sys-
tems and boolean functions, Annals of Operations Re-
search, 4 (1985), pp. 195-225.

J. H. Muller and J. P. Spinrad. Incremental modular
decomposition, Journal of the ACM, 36 (1989), pp. 1-
19.

J.P. Spinrad. Doubly lexical ordering of demse 0-1
matrices, Inf. Process. Lett., 45 (1993), pp. 229-235.
R. E. Tarjan. Data structures and network algorithms.
Society for Industrial and Applied Math., Philadelphia,
1983.

P. Zhang. Probe interval graphs and its applications to
physical mapping of DNA, manuscript, 1994.

P. Zhang. United states patent: Method
of mapping DNA fragments, available at
www.cc.columbia.edu/cu/cie/techlists/pat-
ents/5667970.htm. July 3, 2000.

