
Construction of problem-solving methods as

parametric design

Annette ten Teije 1, Frank van Harmelen 2, Guus Schreiber 1 and Bob Wielinga 1

1 SWI, University of Amsterdam, fannetteg@swi.psy.uva.nl
2 Dept. of Math and CS, Vrije Universiteit Amsterdam

Abstract

The knowledge-engineering literature contains a number of approaches for constructing or selecting
problem solvers. Some of these approaches are based on indexing and selecting a problem solver from a
library, others are based on a knowledge acquisition process, yet others are based on search-strategies.
None of these approaches sees constructing a problem solver as a con�guration task that could be solved
with an appropriate con�guration method. We introduce a representation of problem solving methods
that allows us to view the construction of problem solvers as a con�guration problem, and speci�cally
as a parametric design problem. There are several methods for solving con�guration tasks. Studying
these methods and in particular the method of propose-critique-modify results in guidelines for arranging
the automated con�guration theory. Furthermore we illustrate this method by a scenario in a small
car domain example. This scenario is detailed enough that it can be directly implemented in a suitable
architecture, which we have described elsewhere.

1 Introduction

The literature on Knowledge Engineering has identi�ed a number of di�erent problem types (Hayes-Roth
et al., 1983; Clancey, 1985) (e.g. diagnosis, design, monitoring) and identi�ed for each problem type a
number of problem solving methods (PSMs), which are methods that can be employed to solve a problem of
that particular type. For example, diagnosis problems can be solved by such diverse methods as consistency-
based diagnosis, hierarchical diagnosis or abduction (see (Console et al., 1992) for a survey).

A central question is then \Which problem solving method (PSM) is optimal for a given problem type?". In
general, the choice of an appropriate PSM will depend on the goal of problem solving, and on characteristics
of the speci�c input (knowledge and data). As a result, PSMs must be selected or be constucted. In the
former case, methods are selected from a prede�ned set, while in the latter case parts of existing methods or
newly de�ned parts are combined to construct a new method. Such a selected or constructed method does
not guarantee the satisfaction of all the intended goals, for example due to lack of su�cient knowledge about
when to apply a PSM, or due to incompleteness of data or knowledge inherent to AI-problems. Because the
intended goals are not guaranteed, we have to validate the constructed method. If this validation fails, we
have to iterate the selection and construction process, using the results of the validation.

This paper proposes a novel solution for the automated construction of methods. The approach is based
on the correspondence between the construction of methods and parametric design. A restriction of our
proposal is that we consider a PSM as a logic program and study only the declarative properties of PSMs,
and no e�ciency or other algorithmic properties. Furthermore, our study of automated construction of PSMs
is based on studying diagnostic methods, although we belief that it will apply in general to other classes of
PSMs.

The structure of this paper is as follows. First we give a de�nition the problem of the automated construction
of PSMs. Then we describe the generic con�guration task based on existing literature. Subsequently, we
interpret automated construction of PSMs as a con�guration task and we discuss methods for this con�g-
uration task. Finally the body of this paper discusses a particular method for automated con�guration of
PSMs. This particular con�guration method is illustrated through a detailed scenario in which we con�g-
ure a diagnostic PSM. This scenario is detailed enough that it can be directly implemented in a suitable
architecture, which we have described in (ten Teije & van Harmelen, 1996b).

2 Analysis of the Construction Problem

In general the inputs of automated construction are:

1. the input problem for which we need to construct a method (given as: data and knowledge, e.g. a
particular case to diagnose);

2. the assumptions under which the method will have to operate;

3. the goals that the resulting method will have satisfy.

The outputs are:

1. the description of the constructed method;

2. the solutions computed by the method

3. the possibly slightly adjusted versions of the input problem, the goals and the assumptions.

The input/output relation of the construction process is as follows:

� the output has to be a representation of a method;

� it must not conict with the (possibly adapted) assumptions;

� it must satisfy the (possibly adapted) goals

� the slightly adapted inputs (assumptions, goals, problem) have to be closely related to the original
ones.

Examples of the inputs in the context of diagnosis are (1) the diagnostic problem containing the observed
behaviour and the behaviour model, (2) the single fault assumption, and (3) a goal such as a maximal size
of the diagnosis.

The goal of automated construction of methods is to construct a method that produces acceptable solutions
for a given problem under particular assumptions and desired goals. Our approach is to �rst con�gure and
then validate a method, and, if this validation fails, to iterate the con�guration step. We call the construction
before validation static con�guration and the con�guration using the validation results dynamic con�guration.
The question in static con�guration is \Which PSM is optimal?" and in dynamic con�guration \What should
be done if the PSM does not give the desired solution?". In line with the distinction of static and dynamic
con�guration we distinguish static and dynamic goals. Static goals are requirements (of the solution or of the
method) that can be guaranteed solely on the basis of the description of the method. For example, the goal
that a method always produces singleton diagnoses. Dynamic goals are requirements of the solution that
can only be validated after executing the method. For example, the goal of a maximal number of diagnoses.
This distinction between static and dynamic goals is not �xed. With more knowledge a dynamic goal might
be established statically. It depends on the knowledge that is available about methods, whether goals are
static or dynamic.

The method description that we have to construct has to satisfy both types of goals. The construction process
proceeds in two steps. The �rst step of the construction process concerns the con�guration of a method that
satis�es the static goals. If there is no such a method, the second step occurs: we adapt the problem,
assumptions or goals slightly such that a method can be constructed that satis�es the static goals (possibly
slightly adjusted). If this method also satis�es the dynamic goals, a suitable method has been constructed,
otherwise we try to adapt the method in such a way that is does. However, when this is impossible we again
adapt the problem, assumptions or goals slightly and con�gure a method for these new inputs. The basic
idea is that we construct the method that computes the \best" possible solutions for the given problem and
assumptions and desired goals. For computing these solutions, the constructed method possibly has to apply
to a problem which is a slight modi�cation of the original problem, and under possibly slightly modi�ed
assumptions and for possibly slightly modi�ed goals.

In all this, the object of the construction is the method description. The possibly slightly adjusted assump-
tions, goals and problem are side e�ects of con�guring an appropriate method for a given problem under
particular circumstances.

3 The Representation of Methods

Our approach to automated con�guration of problem solvers relies on exploiting the theory about problem
solving methods from (ten Teije & van Harmelen, 1994) and (ten Teije & van Harmelen, 1996b). In that work
we have proposed a uniform representation of (the functionality of) problem solving methods. The central
idea of this representation is that the functionality of a class of problem solving methods is captured in a
single schematic formula. Some of the predicates and terms from that formula are regarded as parameters
that must be further instantiated to capture di�erent members of the class of problem solving methods.
Thus, given a schematic formula that de�nes the functionality of a whole class of problem solving methods,
di�erent members of that class correspond to di�erent de�nitions for the parameters occuring in the schematic
formula.

It is exactly this uniform representation of an entire class of problem solving methods that will allow us in
this paper to view the construction process of problem solving methods as a parametric design task. Since we
will illustrate our theory about the con�guration of problem solving methods with examples from diagnostic
problem solving methods, we will now give our schematic de�nition of these diagnostic methods.

In general, a diagnostic problem arises if there is a discrepancy between the observed behaviour of a system
(e.g. an artifact) and how the system should behave, in other words, the expected behaviour does not
correspond with reality. The diagnostic task is to �nd out the cause of this discrepancy. A diagnostic method
computes the solutions for a diagnostic problem by using a model of the expected behaviour (the behaviour
model, BM), the actually observed behaviourOBS, and contextual information CXT. The computed solutions
of a diagnostic problem represent an explanation for the observed behaviour.

Our uniform representation of diagnostic problem solvers is based on the following general account of their
functionality: An explanation distinguishes two types of observations: it covers some observations, and it
does not contradict other observations. The explanation is restricted to a vocabulary of special candidates
that could be causes of a behaviour discrepancy (e.g. components). Usually we are not interested in all
possible explanations, but only the most reasonable explanations. We also want to represent an explanation
as a solution that a user can interpret. (For example, in medical domains, users are usually interested in the
disease, and not in all the current states of the parts of the patient's body).

Together, these six aspects written in italics make up the particular notion of diagnosis that is realised in a
given method. We can capure these general characteristics of a diagnostic method in the following formal
de�nition:

When given as input the behaviour model BM, a context CXT and a set of observations OBS, a diagnostic
method computes a set of solutions Sol such that:

Obs-mapping(OBS) = hObscov; Obsconi and

Es = fEj BM [E [CXT`covObscov and
BM [E [CXT 6`cov? and
BM [E [CXT 6`con:Obscon and

E � V ocabularyg and
Selection(Es;E0) and
Solution-form(E0; Sol)

(1)

Each of the six underlined terms is one of the parameters in our representation of diagnostic methods.
Varying one or more parameters amounts to describing a di�erent diagnostic methods. The Obs-mapping
determines which observations must be explained (or: covered) Obscov, and which need only not be contra-
dicted (Obscon). E is an explanation for the observed behavoiur by covering some observations (`cov), and
not contradicting others (6`con). We write `cov and 6`con as di�erent symbols to emphasise that one is not
necessarily the negation of the other, and that neither is necessarily the same as the classical entailment `.
E is expressed in a particular Vocabulary. We are interested in the most reasonable explanations, determined
by a Selection criterion. The Solution-form determines the representation of the �nal result of the method.
The dependencies between all these components of a diagnostic method is shown in �gure 1

In (ten Teije & van Harmelen, 1994), we show that we can formulate properties of this general schematic
formula, as well as properties of instances of the schema. Such properties will be exploited in the con�guration
of methods. In (ten Teije & van Harmelen, 1996b) we have argued that this representation can in principle
be applied to other families of methods than diagnostic methods, such as methods for monitoring, design,
classi�cation etc. As a result, we will claim that also our approach to the con�gurtion of methods is general,

Obsmap

Obs-cov

Obs-con

Cxt Bm

Cover

Voc

Contra

Es-cov

Es-voc

Es-con

intersect

EsselectedE-selectSolformSol

Obs

FIGURE 1: Components of diagnostic methods and their relations. Ovals are components, boxes are their inputs/outputs, thick
boxes are inputs/outputs of the entire method

and could be applied to such other families of problem solving methods.

4 Con�guration Task

In the literature on con�guration there is a consensus about the nature of con�guration tasks. Most de�nitions
of a con�guration task found in the literature are a slight variant of (Mittal & Frayman, 1989):

\Given: (A) a �xed, pre-de�ned set of components, where a component is described by a
set of properties, ports for connecting it to other components, constraints at each port that
describe the components that can be connected at that port, and other structural constraints;
(B) some description of the desired con�guration; and (C) possibly some criteria for making
optimal selections.

Build: One or more con�gurations that satisfy all the requirements, where a con�guration is
a set of components and a description of the connection between the components in the set, or
detect inconsistencies in the requirements."

The con�guration task can be considered as a search problem using the above types of inputs and output
(L�ockenho� & Messer, 1994) The con�guration process restricts this search space in four steps using the
various types of inputs (see Figure 2). The set of possible components and the possible connections between
these components are �xed and given beforehand. This restricts the search space to the possible con�guration
space. The constraints restrict this possible con�guration space to the valid con�guration space. The user-
requirements restrict this valid con�guration space to the suitable con�guration space. The optimality criteria
can possibly restrict or divide this space further.

configuration space
possible

configuration
space

valid
configuration

space

suitable
configuration

space

restricted by:
possible set of components

possible connections

further restricted by:
constraints

further restricted by
user-requirements

FIGURE 2: Con�guration task as search problem

Parametric design is a simpli�cation of the con�guration task (class 3 problem). In parametric design are
only �xed structures and �xed components. A components is a parameter which have a particular range

that is given before hand. This reduces the con�guration problem, because we only have to assign values to
a parameter in its own range. (See (Wielinga et al., 1995) for a detailed analysis of parametric design).

4.1 Automated Con�guration of Problem Solvers as Parametric Design

In this section we map the automated con�guration of PSMs on the con�guration task. In order to make
this mapping, we consider the general characteristics of the con�guration task given above in the context of
the construction of problem solvers and we consider the con�guration of PSMs as a search problem.

We �rst consider the input types of the con�guration task in the context of con�guring PSMs. The inputs
are:

� components: The set of possible components are the possible de�nitions of the components in the
schematic formula from Section 3 (formula (1)). (e.g. subset minimality for the Selection compo-
nent). These possible de�nitions are the building blocks of the con�guration and are �xed and given
beforehand.

� compositional structures (the connections): The representation of a method is the schema from formula
(1). This schema is the only allowed structure, and is indeed �xed and given beforehand The mapping
to a con�guration problem is possible, exactly because we have a schema for representing diagnostic
methods in a uniform way (ten Teije & van Harmelen, 1994).

� constraints: the constraints between the diagnostic components and constraints between underlying
assumptions of the components.

� user-requirements: the goals (static or dynamic) that have to be ful�lled.

� optional: optimality criteria, transformation knowledge and heuristic knowledge for search. Although
we appreciate the need for these types of knowledge, they are outside the scope of our current work.

The output of the con�guration of methods consists of the six components of particular types which are
structured in such a way that together they represent a diagnostic method.

The three types of con�gurations (possible, valid, and suitable, Figure 2) can be given a meaning in con�g-
uring methods. A possible con�guration is a method that contains a de�nition for each component of the
general method schema. A valid con�guration is a method that expresses a diagnostic method and has no
conicts with the assumptions under which the method must operate. A suitable con�guration is a method
that satis�es the desired goals.

The mapping from the elements of a general construction problem onto our problem of method construction
shows that we can indeed interpret automated con�guration of diagnostic problem solvers as a con�guration
problem. In fact, it can even be interpreted as parametric design, because we use a �xed structure and
the possible de�nitions of each component can be considered as the range of the parameters in formula
(1). However, in our view of con�guring PSMs we do not only modify the method, but possibly also the
assumptions, goals, and the input problem, as already stated in Section 2.

4.2 Methods for the Con�guration Task

In this section we discuss con�guration methods from the literature: generate-&-test, propose-critique-modify
(PCM) and a speci�c PCM method propose-&-revise. We evaluate all these possible methods for con�guring
problem solvers. Although our study is not exhaustive, in this section we argue that the PCM-paradigm is
an appropriate paradigm for con�guring PSMs.

Generate-&-test family This family of methods generates a con�guration in the �rst step, and subse-
quently tesets this con�guration. There is a wide range of generation and test steps, from a simple gen-
eration step with a knowledge-intensive test step to a knowledge-intensive generation step with a simple
test step. Knowledge that can be used concerns the set of possible components, the possible connections
between components, the constraints and the user-requirements. Characteristic of a generate-&-test method
is that when a con�guration does not pass the test, the con�guration process continues with a completely
new con�guration, without taking into account the reason why the previous con�guration failed the test. In

our case the generate-&test method is not appropriate because our test for the dynamic goals is expensive,
since it requires performing diagnosis.

Propose-critique-modify family Characteristic of a propose-critique-modify (PCM) method is that when
a con�guration is not a suitable con�guration, the con�guration process does not continue with a complete
new con�guration, but uses the test results for determining a new con�guration instead of generating a
new one from scratch. The propose-critique-modify (PCM) family (Chandrasekaran, 1990; Brown & Chan-
drasekaran, 1989) consists of four steps: propose, verify, critique and modify. We discuss each step in turn.

Propose: The propose step gives a partial or a complete con�guration. Methods for the propose step are:
solution decomposition, design proposal by case retrieval, and constraint satisfaction (Chandrasekaran, 1990).
For our speci�c case of con�guring diagnostic methods, another method (close to the one used in the VT-task
(Schreiber & Birmingham, 1996)) seems more appropriate. In this propose-method, parts of the design (in
our case some of the parameters in the diagnostic schema) are proposed on the basis of requirements. These
partial proposals are then completed into full proposals by proposing values for the remaining parameters.
(As will be explained later on, in our case this completion process is unguided in our current proposal).

Verify: The verify step involves checking that the proposed con�guration satis�es the constraints and the
user-requirements. (Chandrasekaran, 1990) distinguishes two veri�cation steps. (1) \attributes of interest"
that can be directly calculated or estimated by means of domain speci�c formulae. In our case (con�guring
diagnostic problem solvers) these are the constraints on the diagnostic components and on the assumptions.
(2) \behaviour interest" that can be derived by simulation. In our case the simulation amounts to performing
diagnosis. Based on these results the dynamic goals have to be veri�ed. We use the term simulation-
veri�cation of (Chandrasekaran, 1990), but validation should be a more appropriate name, because we
validate the method by execution.

Critique: The critique step is a diagnostic problem of mapping from undesired behaviour to the parts of the
con�guration which are possibly responsible for this undesired behaviour1. This step analyses the failure
of the con�guration. Therefore it needs information about how the structure of the device contributes to
the desired behaviour. In our case this is knowledge of how properties of the components of the diagnostic
schema relate to properties of the complete schema. In this phase one can use (meta-)diagnostic knowledge
about goal violations and repairs.

Modify: The modify step uses the repair information from the critique step and executes the repair action.
It changes the con�guration to get closer to the speci�cations. In our case this is the actual adaptation of
the diagnostic method.

Propose-&-revise family The propose-&-revise family is a sub-family of PCM methods. These methods
are used in the VT-domain (Schreiber & Birmingham, 1996). This family of methods is a simpli�cation of the
PCM method, because the critique step is replaced by compiled knowledge. The idea behind this family of
methods is that it is possible to give an initial proposal for a con�guration. This con�guration is constructed
by selecting values for the set of components based on the user-requirements. This con�guration can be
\�xed" (repaired) if constraints are violated. These �xes are the compiled critique knowledge. Fixes are
direct associations of a constraint violation and a repair action by changing one or more parameter values
(Runkel et al., 1995; Marcus et al., 1988; Fensel, 1995). Propose-&-revise methods require these �xes as
search control knowledge.

A propose-&-revise method is not appropriate for automated con�guring of PSMs for two reasons. First in
our problem we need a full critique step. The critique step is quite complex and it is not possible to code it
in simple direct associations between a constraint violation and a repair action. Secondly, propose-&-revise
methods are used because of the large search spaces, but our most important motivation is to prevent the
expensive tests of dynamic goals (performing diagnoses). Our e�ciency problem is not in the constraints but
in verifying the dynamic goals.

Conclusion From this very brief discussion of the con�guration of PSMs seen as a con�guration task, we
conclude that the family of propose-critique-modify is the most suitable one for a method for automated
con�guration of PSMs. The speci�c propose-&-revise method is not appropriate for our application, because
(1) we need an explicit critique step and (2) the e�ciency problem di�ers from constraints in propose-&-
revise versus dynamic goals in our case. Furthermore, we made the PCM method more speci�c by allowing
the possibility to adapt beside the diagnostic methods, also the assumptions, the diagnostic problem and the
goals.

1Notice that this is a meta-diagnostic problem, since we are diagnosing failures in diagnostic methods.

5 A Propose-critique-modify Method for Con�guring PSMs

In this section we describe a method of the PCM family for automated con�guration of problem solvers. We
con�gure complete models and verify, criticise and modify them. We discuss the four steps of a PCM method
(propose, verify, critique and modify), and visualise them in diagrams: the ovals are inferences (steps and
sub-steps in the method), the solid-line boxes are input/output data of the inferences, and the dotted boxes
represent knowledge that is speci�c for a particular type of PSMs. In our case the dotted boxes contain
knowledge about diagnostic methods.

5.1 Propose

The propose step proposes a con�guration. It has to propose an instance of the general schema that we use
for representing PSMs. In our study such a proposed con�guration is an instantiation of the six components
of the diagnostic schema. We describe a method by a term2

ds(Obs-mapping,Vocabulary,Cover,NotContra ,Selection,Solform)

where each argument of ds (for: diagnostic system) represents a de�nition of the particular component (e.g.
Obs-mapping, ie. one of the underlined terms from formula (1)). Such a de�nition is a de�nition taken from
the possible set of instances of a component. The proposed components de�nitions are not structured, but
are only a de�nition from a �xed set that is given beforehand. The Selection component is the sole component
that can be structured. However in the propose step only \basic" selection criteria are proposed, which can
be adapted to more complex ones later in the modify step the Slection component. We will illustrate this in
the scenario in Section 6.

The propose step (see Figure 3) results in a con�guration (i.e. a method description) from the possible
con�guration space, by selecting a de�nition for each of the six components. This selection is controlled by
the required static goals. An example of a static goal would be that the con�gured method has to result in
a small set of the solutions, which would result in proposing a strong Selection component.

If the static goals do not determine a de�nition for each component (or when there are no static goals), the
proposed method is completed with an arbitrarily chosen de�nition from the set of possible de�nitions for
these components. When di�erent static goals require di�erent de�nitions of the same component, one of
these de�nitions is chosen arbitrarily, and the goals that are not guaranteed by the method become dynamic
goals. Satisfying static goals might depend on the diagnostic problem or on the given assumptions. For this
reason, the given input assumption and problem are input for the propose step.

Characteristic of this propose step is that it always gives a proposal, and that the static goals control the
search space in this phase of the con�guration process. The speci�c (diagnostic) knowledge that is used in
the propose step is (1) the knowledge for ful�lling a static goal, (2) the number of components (the arity of
the schema of ds(...)) (3) a set of de�nitions for each component. The propose step enables us to generate
possible methods using the de�nitions for the diagnostic components in the system. However, at this moment
we do not say anything about the sequence of choices of diagnostic component and about the sequence of
the proposed con�gurations.

propose
Possible
Methodtype-1

component
definitions

type-i
component
definitions

.....

satisfying
static goals

Goals

Dp

Assumptions
Dynamic
Goals

FIGURE 3: Propose Step: The Possible Method is a complete de�nition of a method, where the Goals are ful�lled as much
as possible. The Dynamic Goals are those goals which are part of the Goals, but which are not guaranteed by the proposed
method.

2Terms beginning with a capital letter will denote variables.

5.2 Verify

The verify step checks whether the proposed method satis�es the constraints and the user-requirements
(goals). The verify step is divided into two (sub) steps: knowledge-veri�cation and simulation-veri�cation
(these names are taken from (Chandrasekaran, 1990)). In the context of problem solving methods we might
better call them the static-veri�cation (verifying before execution of the method) and the dynamic-veri�cation
(verifying after execution of the method) respectively. We discuss both veri�cation steps in turn.

Knowledge-veri�cation In exible problem solving the knowledge-veri�cation consists of two types of
problem-type speci�c knowledge (e.g. diagnosis speci�c) (1) constraints between components and (2) con-
straints following from assumptions. The knowledge-veri�cation step (see Figure 4) uses the component-
constraints and the assumption-constraints for testing whether a method is valid. Both type of constraints
might depend on the given assumptions and the input problem. For example, the compatibility of some diag-
nostic components depends on the kind of behaviour model (which is part of the diagnostic input problem).

An example of an assumption-conict is the following: Suppose that the assumption is given that the causes
in our behaviour model are not necessarily indepent, but are possibly correlated. This would cause an
assumption-conict if we would ever use number-minimality as a Selection component. Number-minimality
selects the explanation with the lowest number of causes (since a small number of faults is more likely than
a high number of faults). This minimality-criterion only makes sense if the the causes are assumed to be
uncorrelated. After all, if the causes are correlated, a single unmodelled cause might underly a large number
of correlated causes in our explanation, and we would incorrectly rule out such an explanation with our
selection criterion.

In the con�guration literature the term valid con�guration is used. A method is valid if it is both component-
valid method and assumption-valid. A method is component-valid if and only if all the component constraints
hold and a method is assumption-valid if no assumption conict occurs.

If veri�cation fails, a new propose step will be performed. However, the distinction between the propose
step and the verify step is relative. We can make the propose step gradually more knowledge intensive
by including more knowledge of the knowledge-veri�cation step in the propose step. We can only propose
component-valid methods, or only assumption-valid methods, or even only valid methods. We can make the
propose step less knowledge intensive by generating arbitrary methods, without using the static goals for
guiding the proposal of a method. The knowledge about the particular problem type (in our case diagnosis)
determines which type of knowledge (static goals, assumption conicts or component constraints) must be
part of the propose or knowledge-veri�cation steps. In our case the knowledge about diagnostic methods
enables us to guide the propose step using the static goals. This makes the propose step a kind of nested
generate-&-test, which generates proposals which are tested using the static goals. This saves us generating
proposals which can be easily determined as inappropriate.

Possible
Method

verify
component-
constraints

verify
assumptions-

constraints

Dp Assumptions
equal Valid

Method

Component-
Valid

Method

Assumption-
Valid

Methodassumptions-
constraints

components-
constraints

FIGURE 4: Knowledge-verify step: a Valid Method is a Possible Method which causes no assumption conicts and no component-
constraint conicts. If veri�cation failed a new propose step will be performed.

Simulation-veri�cation Simulation-veri�cation consists of performing diagnosis followed by tests whether
the dynamic goals are met. Diagnosis is performed using the valid method of the knowledge-veri�cation step.
The computed diagnoses are used for testing the dynamic goals. (See Figure 5).

The veri�cation of the dynamic goals requires the computed diagnoses. Computing these diagnoses is expen-
sive, and therefore the simulation-veri�cation is expensive. An examples of a dynamic goals is a requirement
on the size of the diagnoses. Sometimes these dynamic goals can be guaranteed by a particular choice of a

Valid
Method

Dp

Dynamic
Goals

perform
configured

method
Solutions

verify
dynamic goals

general method
scheme

Suitable
Method

tests of
dynamic goals

Verification
Results

FIGURE 5: Simulation-verify Step: If the Veri�cation-Results contains \success" then the method is a Suitable Method. The
Veri�cation-Result is \success" if the Valid Method meets all the Dynamic Goals, otherwise the result consist of the violated
goals, as well as the used method.

component (ie. statically determined), but if this component is not appropriate for other reasons (e.g. an
assumption conict) then we might chose another component. In such a case we have to verify this goal
dynamically. In the case that not all goals are met, the results of veri�cation contain the failing goals, as
well as the method that failed to meet these goals.

5.3 Critique

The critique step is an analysis of why the veri�cation failed, in other words why the method is not an
appropriate method. In our propose-critique-modify method we verify and criticise complete methods. The
result of the step is the identi�cation of one of the six components that is held responsible for the failure of
the veri�cation step. Notice that we do not yet identify a possible repair action that must be taken to �x
this component. That is the purpose of the modify step. The blame-assignment is done based on domain
speci�c knowledge (i.e. diagnosis knowledge). Unfortunately, we do have only limimted concrete examples
of such knowledge. Another open issue is what to do if there are multiple possible components that can be
responsible for the veri�cation failure.

An example would be a violation of the goal \maximum number of diagnoses is one". The system might
contain the knowledge that the existence of too many solution can be blamed on the selection criterion.
A possible subsequent repair action in the modify step would then be to use a de�nition for the Selection
component that �lters more explanations.

We need a critique step, because the veri�cation (especially the simulation-veri�cation) is very expensive
(because of performing diagnosis). Such a critique step enables us to control the search instead of generating
arbitrary methods and testing these methods until we �nd a correct one. This is our main motivation for
using a propose-critique-modify method. Normally the large search space is the main motivation to use
PCM methods. In our case this holds too, but even more important is the motivation of the expensive
simulation-verify step. Therefore controlling (reducing) the search space is necessary.

5.4 Modify

The modify step uses the result of the critique step to �nd an appropriate modi�cation. Given a component
that must be modi�ed, �nding the appropriate repair action is not immediately obvious. Like every step of our
PCM-method the modi�cation uses problem-type speci�c knowledge, such as the properties of components.
For example, the repair-action of strengthening the Selection component results in checking for which possible
Selection components this holds (for example: \number-minimal" is stronger then \subset-minimal")

Another example of knowledge that is useful for modi�cations of methods is whether con�gurations (methods)
give the same solutions. This enables us to exclude modi�cations before verifying, and therefore to avoid the
expensive simulation verify.

For example, in diagnosis we have the knowledge that when the computed sets of explanations are equal, we
know that using the same values for the Selection and Solform components will result in the same solutions
for these two methods. We can use this in avoiding a useless repair-action:

same-Es(ds(Obsmap1; V oc1; Cover1; NotContra1; Selection; Solform);
ds(Obsmap2; V oc2; Cover2; NotContra2; Selection; Solform))

! same-Sols(ds(Obsmap1; V oc1; Cover1; NotContra1; Selection; Solform);
ds(Obsmap2; V oc2; Cover2; NotContra2; Selection; Solform))

(here Es and Sols refer to the variables of the same name in formula (1)). A way to establish that same-Es
holds is to use knowledge about properties of the components that are used.

A modi�cation action can consist of modifying an individual component so that it has a desired property,
modifying an entire method so that it has a desired property, or tuning components so that they become
more compatible. We have mainly studied modi�cation of methods. Finding the appropriate modi�cation
step can be a complex process that might consist of generating possible repairs, and preferring those that
are \closest" to the original component. In Section 6.2, we illustrate such a complex repair-action.

6 A Scenario of the proposed PCM-method

In this section we illustrate our PSM-method for con�guration of methods. We start with an initial con�gu-
ration problem: a diagnostic case to be solved, plus assumptions and goals to be satis�ed by the diagnostic
method that we will con�gure. We then pass through the various steps of our method, each indicated with
a >. The entire succession of steps is graphically depicted in Figure 9.

The amount of detail in which we have described the scenario might seem somewhat excessive. The reason
for this amount of detail is that we can now ensure that each of the steps in our scenario is implementable.
In fact, in (ten Teije & van Harmelen, 1996b) we have described an architecture which we have implemented
using logic-programming and meta-reasoning techniques, and which is powerful enough to directly implement
each of the steps that occur in the scenario of this section.

6.1 The Input-problem

The input of automated exible diagnostic problem solving is the diagnostic problem, the assumptions that
must be respected, and the desired goals. The diagnostic problem contains domain knowledge of the system
under diagnosis (the behaviour model, BM), the observed behaviour and the context. Our diagnosis problem
is in a car domain, and we use the domain model of Figure 6. The case contains two observations: lights(yes)
and engine-starting(no) and there is no context information. The desired goals are: \use a standard notion
of explanation" (explanation-notion(standard)), and \at most two alternative diagnoses are allowed" (max-
number-diagnoses(2)). The given assumption is that \the causes are di�erent in likelyhood".

BM = Figure 6
OBS = flights(yes); engine-starting(no)g
Goals = fexplanation-notion(standard);max-number-diagnoses(2)g
Assumptions = the causes are di�erent in likelyhood

(2)

The scenario described in the next section will show the steps for computing the outputs of this exible
diagnostic solving problem.

6.2 The steps in the PCM method

>1 Propose

We have to propose a method with de�nitions for each of the six components. The goal that guides the
choice for the Cover and NotContra components is explanation-notion(standard), since the system contains
knowledge that standard entailment is most frequently used in diagnostic methods (as opposed to the use

road
 condition

ground
clearance

engine
mileage

oil sump
holed

hole in
oil sump

state of
pistons

piston
wear state

piston ring
wear state

piston rings
 state

battery
age

battery
 water lack

alternator
 belt

alternator
 status

exhaust
smoke

oil
consumption short

circuit
spark plugs

 mileage rain battery charge
status

lack of oil oil warning
light

fuses

fuse burn
out

spark plug
used up

water in
distrubutor

distrubutor
status

battery
power

ext.
temperature

electrical
power lights

engine
temperature

accelerator
response

spark
ignition

increase
cooleant

temperature

high
temperature

indicator
fuel

engine
starting

starter

coolant
leakage steam

seizure stuck
engine

and

and

present->present
absent->absent

present->severe
absent->no

slightly_worn<-low
very_worn<-high

ok<-ok

low->increased
high->much_increased

ok->normal

low->slightly_worn
high->very_worn

ok->ok

low->increased
high->much_increased

ok->normal

grey<-increased
black<-much_increased

normal<-normal

increased->moderate
much_increased->severe

normal->no
yellow<-moderate

red<-severe
out<-no

severe+normal->increased
moderate+high->increased

severe+high->much_increased
normal+normal->normal

much_increased->delayed
normal->normal

increased->medium
much_increased->severe

normal->no
medium->yellow

severe->red
no->out

severe->present
no->absent

present->present
absent->absent

yes->yes
no->no

present->yes
no->no

yes->burned
no->no

yes->absent
no->present

more_than_20000_km->severe
new->no

present->wet
absent->dry

high->flat
low->low

normal->normal

flat->less_than_20_ah
low->between_20_and_45_ah

normal->normal

low->low
flat->off

normal->normal

low->dim
off->not_lit

normal->yes

irreg<-low
absent<-off

present<-normal

off->no
normal->yes

no<-no
yes<-yes

delayed<-irreg
null<-absent

normal<-present

irreg->irreg
present->regular

irreg->difficult
absent->no

present->yes

poor+low->present
normal+normal->absent

between_50000_and_100000_km->low
more_than_100000_km->high

new->ok
between_50000_and_100000_km->low

more_than_100000_km->high
new->ok

present->yes
absent->no

severe->irreg
no->normal

very_heavy->present
no->absent

more_than_5_years->flat
between_3_and_5_years->low

new->normal

severe->low
very_severe->flat

no->normal

slack->low
cut->high

normal->normal

present->absent
absent->present

alpha1

alpha2

alpha3

alpha7

alpha8

alpha9

alpha6

alpha5

alpha4

FIGURE 6: Behaviour model (BM) of a car from (Dupr�e, 1994). The bold lined boxes are initial causes, conditions, and
observables.

type component name description
Obs-mapping abd-obs all observations have to be covered: Obscov contains all observa-

tions, and Obscon is empty
Vocabulary initial-fault-nodes the vocabulary contains all initial fault nodes and incompleteness

assumptions (�'s)
Cover ` use of standard entailment
NotContra 6` use of standard entailment
Selection #-min an explanation is selected if it contains the smallest number of

causes
Solform = no e�ective solform (thus: a minimal set of explanations is also

the diagnosis set)

FIGURE 7: The components of the proposed method.

of non-standard variatons of entailment proposed in (ten Teije & van Harmelen, 1996a)). As a result, we
choose for both explanation relations (Cover and NotContra) the classical entailment relations (` and 6`
respectively). The other four components are chosen blindly.

The proposed method is3:

ds(abd-mapping; initial-fault-nodes;`; 6`;#-min;=) (3)

In Table 7 the de�nitions of the components are briey described. In (ten Teije & van Harmelen, 1994) the
de�nitions of some of these components are given more formally.

The dynamic goals now become all the goals that have not already been statically determined. In this case
the only dynamic goal is max-number-diagnoses(2).

>1 Knowledge-veri�cation

One of the usual constraints on diagnostic methods is to demand that the Cover component is at least as
strong as the NotContra component. After all, if an observable is entailed by a consistent theory, then that
observable is also consistent with this theory.

The method described by term (3) does not violate this constraint. However, there is another assumption
conict, because #-min assumes that every cause has equal likelyhood. This means that the knowledge-
veri�cation step has failed, and therefore a new propose step is started.

>2 Propose

We now propose another method. Because this step is still guided by the same static goal as before
(explanation-notion(standard)), the method still contains ` as Cover de�nition and 6` as NotContra de�-
nition. The other components are again chosen blindly. The propose method is now4:

ds(abd-mapping; initial-fault-nodes;`; 6`;� -min;=) (4)

>2 Knowledge-veri�cation

As in \>1 knowledge-veri�cation" there is no violation of the constraint concering the Cover and NotCon-
tra components. The other assumption-conlict also disappears because � -min does not assume equal
likelyhood of causes. As a result, in this case assumptions conicts no longer occur.

>2 Simulation-Verify

In this step the system performs diagnosis using the valid method of term (4). Based on the computed
diagnoses it tests the dynamic goals.

Using the method of the term (4) results in the following Obscov = fengine-starting(no); lights(yes)g and
Obscon = ;. The vocabulary de�ned by initial-fault-nodes contains all the initial nodes of Figure 6 that cor-
respond to fault-modes, plus all the assumption-symbols �i. Performing diagnosis results in \no diagnosis",
which becomes the veri�cation result.

>2 Critique

3We write #-min for number-minimality, and = for the identity mapping
4We write � min for subset-minimality.

name Obscov; Obscon intuition

complete-mapping: Obscov = OBS all observations must be covered
Obscon = f:oi : oi 2 O nOBSg the absence of all other observables

must be consistent
abd-mapping: Obscov = OBS all observations must be covered

Obscon = ; with no further consistency check
(this is abductive diagnosis)

cbd-mapping: Obscov = ; we demand no cover
Obscon = OBS and only that all observations are con-

sistent with BM
(this is consistency-based diagnosis)

abnormality-mapping: Obscov = fo 2 OBSjabnormal(o)g all abnormal o must be covered
Obscon = fo 2 OBSjnormal(o)g and all normal o need only be consistent

polarity-mapping: Obscov = foi 2 OBSg all positive o must be covered
Obscon = f:oi 2 OBSg and all negative o must be consistent

FIGURE 8: O denotes the possible observable values, and OBS denotes the currently given observations

The reason for not �nding any diagnoses is that there is no explanation for lights(yes): only incompleteness
assumptions (�'s) and faults are part of the vocabulary (initial-fault-nodes), and a fault cannot explain
the correct behaviour of lights(yes) when we use ` and 6` for Cover and NotContra respectively. This step
determines that a possible suitable repair action is adapting the Obs-mapping. This is so because a di�erent
Obs-mapping might require only incorrect behaviour to be explained (as apposed to all behaviour, including
correct behaviour, as is the case withe the current de�nition, namely Obs-mapping=abd-mapping).

>2 Modify

The modify step must now repair the component speci�ed by the critique step. The repair action is deter-
mined by �rst generating a set of variants of the Obs-mapping, and then applying two �lters on this generated
set of Obs-mapping de�nitions.

� generate: generate variants of the Obs-mapping component.

We require that any solution of the method using the original Obs-mapping is also a solution for the adapted
method with the new Obs-mapping (after all, we want to increase the set of solutions). This relation is
expressed in the predicate subset-Es(Old,New). It denotes that the explanations generated by a method with
Obs-mapping-component Old are also generated by a method with Obs-mapping-component New, provided
all the other components remain the same. In this generation step we generate those Obs-mapping de�nitions
which satisfy subset-Es(abd-mapping,New):

fNewjsubset-Es(Old;New)g = NewObsmapSet
!
generate(ds(Old; V ocabulary; Cover;NotContra; Selection; Solform); NewObsmapSet)

For our problem, the system generates the following set based on its factual knowledge of subset-Es:

subset-Es(complete-mapping; abd-mapping)
subset-Es(abd-mapping; cbd-mapping)
subset-Es(abd-mapping; abnormality-mapping)
subset-Es(abd-mapping; polarity-mapping)

(5)

The complete de�nitions of these Obs-mapping components are in (ten Teije & van Harmelen, 1994), but in
sloppy notation these de�nitions are given in table 8.

The generated set of Obs-mapping de�nitions is now:

fcbd-mapping,nor-abnorm-mapping,polarity-mappingg

because subset-Es(abd-mapping,New) holds for these elements.

� filter1: of all the possible candidate repairs, we prefer the variants that are the \closest" to the original
Obs-mapping component:

fNewjNew 2 ObsmapSet ^ closest-Obs-mapping(Old; PossibleSet;New)g= FilteredSet
!
filter1(ds(Old; V ocabulary; Cover;NotContra; Selection; Solform); ObsmapSet; F ilteredSet)

We de�ne \closest" as those Obs-mapping de�nitions whose Obscov set is (1) in any case no superset of the
original Obscov set (since we do not want to explain more observable values strongly) and (2) is not a subset
of another possible Obscov set (since we want to delete as few observable values as possible).

The predicate closest-Obs-mapping is therefore de�ned as follows, whereby subset-ObsCov(X;Y) denotes that
the Obs-mapping X gives an Obscov set that is a subset of the Obscov set computed by the Obs-mapping Y.

ObsmapSelect 2 PossibleObsmaps^
subset-Obscov(ObsmapSelect; ObsmapOld)^
fObsmap : subset-Obscov(ObsmapSelect; Obsmap)^

Obsmap 2 PossibleObsmap^
Obsmap 6= ObsmapSelectg = ;

!
closest-Obs-mapping(ObsmapOld; PossibleObsmaps;ObsmapSelect)

We �lter the set based on the following factual knowledge of subset-Obscov:

subset-Obscov(complete-mapping; abd-mapping)
subset-Obscov(abd-mapping; complete-mapping)
subset-Obscov(abnormality-mapping; abd-mapping)
subset-Obscov(polarity-mapping; abd-mapping)
subset-Obscov(cbd-mapping; abnormality-mapping)
subset-Obscov(cbd-mapping; polarity-mapping)

This factual knowledge, just as the knowledge in (5), is stored as given facts in our system. However, given
su�ciently powerful theorem-proving techniques, it would be possible for the system to automatically derive
these facts from the de�nitions in table 8. From these de�nitions, it follows that closest-Obs-mapping holds
for the Obs-mapping de�nitions polarity-mapping and abnormality-mapping. The FilteredSet is therefore:

fabnormality-mapping; polarity-mappingg (6)

� filter2: We now �lter those variants which result in the same solutions as the original method in the
current case. In this �lter the system executes a part of the diagnosis, namely the Obs-mapping de�nition.
The results of the possible Obs-mapping de�nitions have to be computed and compared with the outputs
of the original Obs-mapping. Those which give the same Obscov and Obscon will be deleted from the set.
In contrast with filter1, this �lter is speci�c for the current problem on hand, whereas the filter1 was
independent of the problem.

Applying the Obs-mapping de�nitions from (6) to OBS=flight(yes),engine-starting(no)g gives the following
values for Obscov and Obscon:

Obs-mapping Obscov Obscon
abd-mapping flight(yes),engine-starting(no)g ;
abnormality-mapping flight(yes)g fengine-starting(no)g
polarity-mapping flight(yes),engine-starting(no)g ;

We see that the Obs-mapping with value polarity-mapping gives the same sets as the original Obs-mapping
(which had value abd-mapping). The Obs-mapping with value abnormality-mapping gives other sets. This
results in a FilteredSet where the only Obs-mapping is abnormality-mapping.

The modify therefore results in the method:

ds(abnormality-mapping; initial-fault-nodes;`; 6`;� -min;=) (7)

The originally proposed method of term (4) could not handle observed behaviour that was correct behaviour.
The above critique-&-modify step tried to recover from this shortcoming by adapting the Obs-mapping
component, resulting in the method from term (7). The next step is to verify the adapted method.

>3 Knowledge-veri�cation

The knowledge veri�cation still succeeds, since the Cover-, NotContra- and Selection-components and the
assumptions have not changed. (see \>1 Knowledge-veri�cation")

>3 Simulation-veri�cation

Again we perform diagnosis, but now using the modi�ed method of term (7). Performing diagnosis results
in the following diagnoses:

fshort-circuit(present)g
fbattery-age(more-than-5-years); �7g
fbattery-water-lack(very-severe); �8g
falternator-belt(cut); �9g

(8)

Unfortunately, the test whether the dynamic goal max-number-diagnoses(2) is satis�ed fails. This means
we have to perform another critique step.

>3 Critique

In the veri�cation step the problem of too many solutions was recognized. A repair action for this problem
is a modi�cation of the Selection component. If the new Selection component is a stronger �lter, then less
diagnoses will be left. The system uses the knowledge that constructing the conjunction of the current
Selection-component with an additional selection criterion will have this e�ect.

>3 Modify

The repair action of con�guring the new Selection criterion is executed in this step. In our case the Vo-
cabulary (initial-fault-nodes) contains faults and incompleteness-assumptions. We can therefore eomply a
selection-criterial that prefers explanations which are subset-minimal in the incompleteness assumptions
(� -min-in-�). The proposed Selection criterion then becomes \� -min and � -min-in-�".

The adapted method is:

ds(abnormality-mapping; initial-fault-nodes;`; 6`;� -min and � -min-in-�;=) (9)

The proposed method from (7) resulted in too many diagnoses. The above critique and modify steps tried
to recover from \too many diagnosis" and have modi�ed the method. This modi�ed method now has to be
veri�ed.

>4 Knowledge-veri�cation

The knowledge veri�cation still satis�es, as before (� -min-in-�; also does not violate the unequal-likelyhood
assumption).

>4 Simulation-veri�cation

Again we perform diagnosis using the modi�ed method of term (9). Performing diagnosis results in the
following diagnosis:

fshort-circuit(present)g (10)

Checking this against the dynamic goal shows that we have now also satis�ed max-number-diagnoses(2).

We have now (�nally!) solved the original diagnostic problem speci�ed in (2). The method of term (9) has
explained the observations fengine-starting(no),lights(yes)g under the assumption \the causes are di�erent
in likelyhood" for the desired goals \use a standard notion of explanation" and \at most two alternative
diagnoses are allowed". The sole computed diagnosis is (10).

During this diagnostic problem solving process the con�guration system has had to recover from the initial
inability to deal with correct behaviour (by modi�ng the Obs-mapping component) and it had to recover
from \too many solutions" caused by too weak a selection �lter (by modifying the Selection component).

6.3 Alternatives for Critique & Modify Steps

In this section we give alternatives of the critique and modify steps of the above scenario. How to choice
between these alternative actions. is still subject of study. The search space which is generated by the trace

described above and the alternatives describe below is depicted in Figure 9.

6.3.1 Alternatives for \>2 Critique & Modify"

We propose two alternatives for recovering from the impossibility to handle correct behaviour.

>20 Critique

An alternative for the critique step is to better tune theObs-mapping component to the Vocabulary component
initial-fault-nodes. In general, the combination of abd-mapping and initial-fault-nodes is not an obvious choice,
because using the initial-fault-nodes assumes that only abnormal behaviour is observed. However, the given
problem contains also normal behaviour light(yes).

A more obvious choice of Obs-mapping component can be determined by checking whether we have observed
both normal and abnormal behaviour. This is a case speci�c repair action, because we use the current
observed behaviour in the choice of Obs-mapping. The abnormality or normality of the observed behaviour
is checked using the abnormality-mapping Obsmap component. If execution of abnormality-mapping results
in a non-empty set of Obscov then we use the knowledge that the combination of initial-fault-nodes and
abd-mapping is a bad combination, and abnormality-mapping is probably a better one.

>20 Modify

The previous critique step results in the same method as the \>2 Modify" step, namely term (7).

>200 Critique

The other alternative for \>2 Critique & Modify" is to adapt the Vocabulary component. If the Obs-mapping
component abnormality-mapping does not result in an empty Obscov set, then a better choice of Vocabulary
is possibly all-initial-nodes. This vocabulary contains all initial causes (including correct states) and the
incompleteness assumptions, and is therefore better tuned to Obs-mapping=abd-mapping .

>200 Modify

We would now come to another method then before, namely:

ds(abd-mapping; all-initial-nodes;`; 6`;� -min;=) (11)

>300 Knowledge-veri�cation

The knowledge veri�cation still satis�es, as before.

>300 Simulation-veri�cation

Performing diagnosis results in the following diagnosis part

for light(yes): fbattery-age(new); �7g;
fbattery-water-lack(no); �8g;
falternator-belt(normal); �9g:

for engine-starting(no): fshort-circuit(present)g;
frain(very-heavy); �6g;
fbattery-age(more-than-5-years); �7g;
fbattery-water-lack(very-severe); �8g;
falternator-belt(cut); �9g

(12)

This yields 3 x 5 = 15 diagnoses, so we have too many possible diagnoses. We end up with these other
diagnoses because the critique and modify steps are based on the observation that the vocabulary was too
small, whereas before the devision of the observations was considered as wrong. After veri�cation we establish
that \too many solutions" are computed. A repair action for solving \too many diagnoses" is needed. We
do not describe this trace further.

6.3.2 Alternative for >3Critique & Modify

Finally, we give an alternative for the critique and modify steps that tries to recover from \too many
diagnoses".

>30 Critique

In analysing the failure of the veri�cation step, the system uses the knowledge that if the number of ob-
servations four or less and there are too many diagnoses, then the repair action becomes \ask to the user
the relevant observables for the computed diagnosis". This repair action changes the input problem (since
additional observations are requested). In contrast, the previous repair actions only changed the method.

>30 Modify

New observables need to be asked from the user. The relevant observables are those which are connected
to a cause of the computed set of diagnoses, but that are not already part of the observed behaviour. Our
set of observables for asking to the user is therefore based on the causes: short-circuit, battery-age, battery-
water-lack and alternator-belt.

In our problem the following observables are asked:

fuses, distributor-status, accelerator-response, fuel, battery-power.

The user gives only a value for distributor-status, namely wet. The new observation theory contains therefore:

engine-starting(no) ^ light(yes)^ distributor-status(wet) (13)

The diagnostic problem has now been adapted by adding new information.

>40 Knowledge-veri�cation

The knowledge veri�cation still satis�es as before.

>40 Simulation-veri�cation

We perform diagnosis using the adapted problem and the method of term (7). This results in just one
diagnosis:

frain(very-heavy); �6g (14)

We continue with the test of the dynamic goals, namely max-number-diagnose(2), which succeeds. The
diagnosis problem is now solved. Notice that we end up with another diagnosis then in the previous scenario,
where it was. short-circuit). This is because we recover from \too many solutions" by asking new observables,
whereas in the �rst scenario we made the Selection component stronger.

6.4 Scenario Conclusions

This scenario has illustrated our proposed PCM method. It shows the method proposal (guided by the
static goals), the knowledge-veri�cation (of constraints and assumptions), the simulation-veri�cation (by
computing diagnoses and testing the dynamic goals), and the critique and modify (for recovering from
violations of dynamic goals). We have show three possibilities for recovering from the inability to handle
normal observed behaviour:

� by adapting the Obs-mapping as a way to get more explanations;

� by adapting the Vocabulary, to better tune the Cover, Obsmap and Vocabulary components to each
other;

� by choosing an Obs-mapping that depends on the current observations.

Furthermore we have shown three possibilities of recovering from \too many solutions":

� by strengthening the Selection component, because the used Selection is a to weak �lter.

� by adding more data, because more data will exclude diagnoses;

The scenario and the alternative paths are summarised in Figure 9. The choice on the brancing nodes of
this search space (ie. which repair action has to be taken) is di�cult, and needs further study.

OBS
Assumptions

Goals

Method-1 Method-2

"no diagnoses"

Method-3 Method-3’’

Method-4 Obs-4’

1 diagnosis
Diagnoses-4

1 diagnosis
Diagnoses-4’

"too many diagnoses"
Diagnoses-3’’

"too many diagnoses (4)"
Diagnoses-3

...

...

...

.....

propose-1 propose-2

critique-2 & modify-2

fail

knowledge-verify-1 verify-2

critique-2’ & modify-2’

critique-2’’ & modify-2’’

verify-3 verify-3’’

critique-3 & modify-3 critique-3’ & modify-3’

verify-4 verify-4’

FIGURE 9: The steps of the PCM method in the scenario and the alternative steps. The Method-i and the Diagnoses-i are
explained in table 1.

Method-i value equation
Diagnoses-i
OBS flights(yes),engine-starting(no)g (2)
Goals fexplanation-notion(standard), max-number-diagnoses(2)g (2)
Assumptions the causes are di�erent in likelyhood (2)
Method-1 ds(abd-mapping, initial-fault-nodes, `,6`, #-min,=) (3)
Method-2 ds(abd-mapping, initial-fault-nodes, `, 6`, �-min, =) (4)
Method-3 ds(abnormality-mapping, initial-fault-nodes, `, 6`, �-min, =) (7)
Method-3" ds(abd-mapping, all-initial-nodes, `, 6`, �-min, =) (11)
Method-4 ds(abnormality-mapping, initial-fault-nodes, `, 6`, �-min and �-min-in-�, =) (9)
Obs-4' engine-starting(no), light(yes), distributor-status(wet) (13)
Diagnoses-3 fshort-circuit(present)g fbattery-age(more-than-5-years),�7g

fbattery-water-lack(very-severe),�8g falternator-belt(cut),�9g (8)
Diagnoses-3" : : : (12)
Diagnoses-4 fshort-circuit(present)g (10)
Diagnoses-4' frain(very-heavy),�6g (14)

TABLE 1: Explanation of the terms in �gure 9

7 Conclusion & Related Work

In this paper we have given a proposal for the automated con�guration of problem solvers for an arbitrary
problem-type. Because we use a parameterised schema for describing a problem solver, we are able to regard
con�guration of problem solvers as a parametric design problem. Our propose-critique-modify method for
con�guration of (the functionality of) PSMs uses several knowledge types. Our basic assumption is that we
exploit the much knowledge of the problem type (in our case diagnosis) for the con�guration of problem
solvers.

Although parametric desing is classi�ed as \routine design" this does not imply that it is an easy problem
to solve. This is in line with our experience. It is di�cult to instantiate various knowledge types for the case
of diagnosis. However, these knowledge types enable us to come to grips with the complex problem of the
automated con�guration of (diagnostic) PSMs.

Related Work In the knowledge-engineering literature we �nd approaches for selecting and con�guring
problem solving methods (e.g. (Istenes et al., 1996; Stroulia & Goel, 1994; Benjamins, 1993)). None of these
approaches validate the selected or con�gured method or are able to execute this method. These systems
are only intended for selecting or con�guring a method, and checking whether the method does indeed
work e�ectively is outside their scope. All these systems use a method-decomposition tree for describing
a method. In (Istenes et al., 1996) the kind of operations on methods are: select a method, identify a
possible method, choose the most favourable method. The approach in (Stroulia & Goel, 1994) comes from
the �eld of knowledge acquisition. The system make choices, advises and interacts with the user during the
con�guration of a PSM. Examples of feedback of the system are: there is an error in the decomposition
tree (e.g. input/output do not match), places which need more speci�c application conditions of methods,
suggestions for changes for data or knowledge. In (Benjamins, 1993) the con�guration of methods is based
on a decomposition tree of tasks and methods. The decisions for the choice of a method are taken locally at
each node, without referring to descendants, ancestors and siblings. The necessary and suitability application
criteria determine the choice of the method. The primitive methods of such a tree are labels, which refer to a
semi-formal description of the method. The contents of these \labels" does not inuence the choices during
method con�guration.

For all these three systems, selecting a method means selecting an informal or semi-formal description of the
method. This is a description that is oriented on algorithmic aspects of the method. However, one would
expect that the functionality of the method also plays a role in method selection.

Remarkable is that all these theories of selecting and con�guring problem solving methods are abstract and
very high-level. This is a consequence of the desire to generalise the description of methods across very
di�erent families of methods, and therefore to avoid the use of speci�c knowledge, for instance knowledge of
design methods. In our view, we have to exploit domain speci�c knowledge for strengthening of theories of
problem solving methods.

Acknowledgment This work has bene�ted from many discussions with Dieter Fensel. We also thank
Richard Benjamins and Remco Straatman for their comments on an earlier version.

References

Benjamins, V. R. (1993). Problem Solving Methods for Diagnosis. PhD thesis, University of Amsterdam,
Amsterdam, The Netherlands.

Brown, D. C. & Chandrasekaran, B. (1989). Design Problem Solving: Knowledge Structures and Control
Strategies. Research Notes in Arti�cial Intelligence. London, Pitman.

Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI Magazine, 11:59{71.

Clancey, W. J. (1985). Heuristic classi�cation. Arti�cial Intelligence, 27:289{350.

Console, L., de Kleer, J., & Hamscher, W. (1992). Readings in Model-based Diagnosis. Morgan Kaufmann.

Dupr�e, D. (1994). Characterizing and Mechanizing Abductive Reasoning. PhD thesis, Universita di Torino.

Fensel, D. (1995). A case study on assumptions and limitations of a problem solving method. In Proceedings
of the 9th Ban� Knowledge Acquisition for Knowledge-Based System Workshop (KAW'95), Ban�, Canada.

Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1983). Building Expert Systems. New York, Addison-
Wesley.

Istenes, Z., Tchounikine, P., & Trichet, F. (1996). Using zola to model dynamic selection of tasks and
methods as a knowledge level reective activity. In Europeen Knowledge Acquisition Workshop (Position
Papers, pages 42{53, Nottingham.

L�ockenho�, C. & Messer, T. (1994). Con�guration. In Breuker, J. A. & Van de Velde, W., (Eds.), The
CommonKADS Library for Expertise Modelling, chapter 9, pages 197{212. Amsterdam, The Netherlands,
IOS Press.

Marcus, S., Stout, J., & McDermott, J. (1988). VT: An expert elevator designer that uses knowledge-based
backtracking. AI Magazine, Spring:95{111.

Mittal, S. & Frayman, F. (1989). Towards a generic model of con�guration tasks. In Proceedings of IJCAI'89,
pages 1395{1401.

Runkel, J., Birmingham, W., & Balkany, A. (1995). Solving vt by reuse. Int. J. Human-Computer Studies,
(43).

Schreiber, A. T. & Birmingham, W. P. (1996). The Sisyphus-VT initiative. International Journal of Human-
Computer Studies. Editorial special issue.

Stroulia, E. & Goel, A. (1994). Reective, self-adapative problem solvers. In Steels, L., Schreiber, G., &
van de Velde, W., (Eds.), Proceedings of the 8th European Knowledge Acquisition Workshop (EKAW'94),
volume 867 of Lecture Notes in Arti�cial Intelligence, pages 394{413, Hoegaarden, Belgium. Springer Verlang.

ten Teije, A. & van Harmelen, F. (1994). An extended spectrum of logical de�nitions for diagnostic systems.
In Proceedings of DX-94 Fifth International Workshop on Principles of Diagnosis, New Paltz, New York.

ten Teije, A. & van Harmelen, F. (1996a). Computing approximate diagnoses by using approximate entail-
ment. In Proceedings of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR'96), Boston, Massachusetts.

ten Teije, A. & van Harmelen, F. (1996b). Using reection techniques for exible problem solving. Future
Generation Computer Systems, special issue Reection and Meta-level AI Architectures. To appear in 1996.

Wielinga, B. J., Akkermans, J. M., & Schreiber, A. T. (1995). A formal analysis of parametric design problem
solving. In Gaines, B. R. & Musen, M. A., (Eds.), Proceedings of the 8th Ban� Knowledge Acquisition for
Knowledge-Based Systems Workshop, volume II, pages 37.1{37.15, Alberta, Canada. SRDG Publications,
University of Calgary.

