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ABSTRACT scale analysis of protein—protein interactions, because
Motivation: Recent screening techniques have made most proteins function within complexes (Oliver, 2000;
large amounts of protein—protein interaction data avail- Pavson and Nash, 2000). High-throughput genome-wide

able, from which biologically important information such  screening for protein—protein interactions has been car-
as the function of uncharacterized proteins, the existence ried out in yeast,Caenorhabditis elegans, and higher
of novel protein complexes, and novel signal-transduction organisms such as the mouse (#bal., 2001; Suzuki
pathway§ can be Qiscovered: However, experir.n.ental data et al., 2001; Uetzet al., 2000; Walhoutet al., 2000).
on protein interactions contain many false positives, mak-  Several successful computational analyses of interaction
methods of assessing the reliability of each candidate Schwikowskiet al., 2000).
protein—protein interaction are urgently needed. - However, the publicly available protein—protein inter-
Results: We developed a new ‘interaction generality’  5qtion data, especially those obtained from two-hybrid
measure (IG2) to assess the reliability of protein-protein o0 ms include many false-positive interactions (Legrain
interactions using only the topological properties of their et al., 2001). Von Meringet al. (2002) estimate that
interaction-network structure. Using yeast protein—protein apprc;ximately half the interactions obtained from high-
interaction data, we showed that reliable protein—protein "
. . o throughput data may be false positives. These false
interactions had significantly lower 1G2 values than less- ositives mav unnecessarily link unrelated bproteins
reliable interactions, suggesting that 1G2 values can be Fesultin in hli/ e apparent ini/eraction clusters elFt)aI ’
used to evaluate and filter interaction data to enable 2001 9 hich 9 pIF_’ lucidati f the biol |
the construction of reliable protein—protein interaction impoZéa\r,]vcécof fr?ens]g Ii?]?;eragtilj)cr:satll%grgfo:eea xe()t?\gzgto
networks. ' '

assess the reliability of each candidate protein—protein

Availability: The protein—protein interaction data used ¢ R . .
in this study along with the associated IG2 values are  INtéraction is necessary. Earlier, we developed a simple

available at http://genome.gsc.riken.go.jp. computational method, which yielded an ‘interaction

Contact: rgscerg@gsc.riken.go.jp generality’ measure (IG1) that could be used to assess
the reliability of experimentally identified interactions

INTRODUCTION from just a list of interaction data (Saigbal., 2002). The

As whole-genome and complete cDNA sequences becamdéavelopment of IG1 was based on the idea that interacting

. : 7 'proteins that appear to have many other interacting
awailable for numerous organisms (Adaressal., 2000; partners which have no further interactions are likely to
Goffeauet al., 1996; Kawaiet al., 2001; Landeret al.,

: ) be false positives. However, our IG1 method was a simple
2001; TheC. elegans Sequencing Consortium, 1998; aihod for evaluating the reliability of interactions that
Venteret al., 2001), the focus of many research efforts gig not consider the topological properties of the protein
is shifting rapidly from genomics to proteomics. One of interaction network beyond the target pair of proteins.
the most important approaches in proteomics is the largg4ere we define a new interaction generality (1G2) measure
" that overcomes this problem and show that it can assess
To whom correspondence should be addressed.

" Present address: Institute for Advanced Biosciences, Keio University, 14-£he reliability of putative protein—protein interactions with
Baba-cho, Tsuruoka, Yamagata 997-0035, Japan. higher accuracy.
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Protein—protein interaction generality measure

e e e C is not cla_ssified as2, interact§ with A but not B_, and _
interacts with at least one protein that interacts with A, it
. ’ is classified a$ (looping interaction). If C does not meet
° e ° e ° e _th(_ese thre_g conditions and i_nteractg with another protein,
it is classified asf (further interaction). If C does not
al a2 |

interact with any proteins except for either A or B, it is
classified asl (dead-end interaction).

Then, the numbers of proteins in the database that
° e belong to each class are countechas (Nal, Na2, NI,
Nf, Nd). We counted’s (ng, nz, ..., np, wherep is the
number of interactions in the given interaction network)
° e ° e for all p interactions. From the set ofs, we constructed
f d

this matrix:

ni
. I . . . n2
Fig. 1. Classification of a protein C that interacts with a target
interacting protein pair A-B, according to the topological propertiesN = :
of its interaction network. Np-1
Np

Nal; Na2q N|1 Nfl Nd]_

MATERIALS AND METHODS Nal, Na2, NI N Nd,

Preparation of protein—protein interaction data

The publicly available protein interaction data of : : ) ) ‘

lto et al. (2001); Uetz et al. (2000), and MIPS Nalp_; NaZp3 Nlp-1 Nfpy Ndpy
(Mewes et al.,, 2000) were obtained from http: Nalp Nazp NIp Nfp Ndp
/lgenome.c.kanazawa-u.ac.jp/Y2H/ (754 heterodimers))Ve defined the 1G2 value for each interaction by applying
http://www.genome.ad.jp/brite/ (905 heterodimers), andprincipal-component analysis (Weller and Romney, 1990)
http://www.mips.biochem.mpg.de/projlyeast/ (2474 hetto N in the following way. First, the averages of each
erodimers), respectively. We assessed only heterodimecslumn were subtracted froi, producing
and considered the interactions of protein A (bait)—protein _ = —
B (prey) and of protein B (bait)—protein A (prey) to rep- Nal Naz NI Nf
resent a single interaction (these represent bidirectiona}{| “N_N=N-— Nal Naz NI f
interactions in a two-hybrid experiment). Combining " © : : : : :
these three data sets e_md rem.oving.redundancy from _them Nal Na2 NI Nf Nd
yielded 3066 heterodimers, including 673 reproducible

interactions. Interactions that were confirmed by coimwhereN denotes the average df and N] N; represents
munoprecipitation assays and bidirectional interactiongorrelations between variableN#§1, Na2, NI, Nf, Nd).
that were obtained from two-hybrid assays are considerelote that (¥ p)NJ N represents the covariance matrix

2l2]
(el

to be reproducible. of these variables. Then we determined the maRix
) ) ) that satisfied the following equations by singular-value
The new interaction generality measure decomposition (Weller and Romney, 1990):
The new interaction generality measure incorporates the T 1
topological properties of interactions around the target Ne Ne=PDP™% P = (p1. p2. 3. pa. Ps).
interacting pairs. The 1G2 for the target interacting pair 2 0 0 0 O
A-B is defined by the following procedure. Protein C, 0 22 0 0 O
which interacts directly with the target interacting pair D=1 0 0 423 0 O
A-B, can be classified into one of five groupsl( a2, 0 0 0 2 O
I, f andd) according to the topological properties of its 0 0 0 0 25

interaction network (Fig. 1). When C interacts with both \yherep; ands,; is each eigenvector and its corresponding

A and B, itis classified aal (alternative pathway from  gjgenvalue oNJ N¢ and they satisfy the following equa-
protein A to B throughl protein). When C interacts with jgns:

A but not B, and C also interacts with another protein T _
that interacts with B, it is classified a2 (alternative Ne Nepi = 2ipi (i =1,2,3,4,5)
pathway from protein A to B througR protein). When Al > A2 > A3 > A4 > A5
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Fig. 2. Interaction networks involving the interacting pairs of yeast proteins MED8-MED4 and YMD8-EST1. Nodes and lines denoté
proteins and their interactions, respectively. Only proteins within two interaction steps of the target interacting pairs are shown. T
MEDS8-MED4 interaction was experimentally verified by coimmunoprecipitation (Mgeed., 1998), and the proteins were confirmed
as components of a protein complex (Loetkal., 2000; Malik and Roeder, 2000), whereas the YMD8-EST1 interaction was indicated only
in a high-throughput two-hybrid assay (Uetzal., 2000).

Singular-value  decomposition  considers  correla{al, a2,l, f, andd) as mentioned above. Classes a2,
tions between the variablesNal, Na2, NI, Nf, andl correspond to interactions forming a closed loop,
Nd), and it summarizes the matrik; as vectorsp; and f andd do not. In particularal is used for three
(i = 1,2, 3,4,5), which are orthogonal to each other. proteins A, B, and C that interact with each other; if
The Ai(i = 1,2, 3,4,5) values indicate how well the interactions having a largel value appear frequently in
matrix is summarized by each correspondmgAs A1 an interaction network, the proteins participating in the
has the greatest value among five, p; is the best vector network are highly interconnected.
that summarizes the matril.. 1G2 vectors for each )
interaction are defined as follows: Implementation

— — Principal-component analysis was performed wRha
IG2 vectors= NcP = (N-N)P = NP—K (K =NP) |anguage and environment for statistical computing and
graphics, http://www.r-project.org/). All other analyses

IG2 values for each interaction are defined as .
were done by means of Perl scripts we developed.

IG2 values= Ncp1 = (N — N)py = Npz — kg

= Nalpi1 + Na2pp1 + Nlpz1 + Nfpa RESULTS
+Ndps1—k1 Assessment of new interaction generality

(ki = Np1, pr = (P11, P21, P31, Pat, Ps1) ") The original IG1 measure was based on the idea that
interactions observed in a complicated interaction net-
Thus, the topology of the protein—protein interactionwork are likely to be true positives. The IG1 value was
structure is summarized by a single number IG2. In othesimply defined as the number of proteins that interact
words, characteristics of the topology are mapped to awith only one of the target interacting pair (Sa#bal.,
IG2 valuee R™. 2002). Interactions with low IG1 values were more likely
The idea behind the mechanics of 1G2 calculationto be reproducible in independent assays. However, the
is that interactions involving proteins that have manytopological properties of the protein interaction network
interacting partners are likely to be false positives, butbeyond the target interacting pair were not considered
highly interconnected sets of interactions or interactionsn the 1G1. For example, 1G1 values for both MED8—
forming a closed loop (such as the set of interaction pairé/ED4 and YMD8-EST1 interactions were three, even
A-B, B-C, C-D, D-A) are likely to be true positives though MED8-MED4 seems to be involved in a more
(Walhoutet al., 2000; Saitoet al., 2002). To distinguish complicated interaction network and is experimentally
the false and true interactions, proteins that interact witimore certain than the YMD8—-EST1 interaction (Fig. 2).
the target interaction pair were classified into five classe#ctually, both the MED8 and MED4 proteins are known
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Fig. 3. Distributions of 1G2 values for reproducible and non-reproducible interactions. The histogram shows the frequencies of interactiogs
falling in the specified ranges of IG2 values. The lines show the cumulative proportion of interactions. Rep and non-Rep indicate reproducigle
and non-reproducible interactions, as defined in Materials and Methods.

to be transcription regulation mediators, whereas YMD8andidate protein—protein interaction pairs, distributions
and EST1 have different functions (chromatin chro-of 1G2 values for reproducible and non-reproducible
mosome structure/DNA synthesis and small moleculenteractions were calculated. We expected that most
transport, respectively). To overcome this inaccuracy, weeproducible interactions should be true positives, whereas
developed 1G2, in which principal-component analysisthe non-reproducible interactions should contain many
of the topological properties is incorporated into thefalse positives. As shown in Figure 3, the 1G2 values for
evaluation of the reliability of the interaction. First, we reproducible interactions are significantly lower than those
classified proteins that directly interact with the targetof non-reproducible ones, suggesting that the 1G2 value
interacting pair A-B into one of five group®X, a2, can be used to select reliable interactions (average 1G2
I, f andd) according to the topological properties of vaues for reproducible and non-reproducible interactions
its interaction network (Fig. 1 and see Materials andare—2.904 and 0.817 respectivelp; < 1.37 x 10~4).
Methods). Then, to convert the numbers of proteins that Next, we investigated the mean 1G2 value for the
belong to each clasaN@l, Na2, NI, Nf, Nd) into a relatively reliable protein interaction data sets. Deahe
single 1G2 value, each of the five numbers is weightedal. (2002) found 3003 interactions that they considered
and summed. Principal-component analysis determine®liable, by using information on gene expression and
the weight for each number, based on the correlationparalogous proteins. The average 1G2 value for our
between these numbers, so that a single summed valuateractions that are contained in Deasaeal.'s data
(IG2) can represent the five numbeldgl, Na2, NI, set is—1.07, and the average G2 value for those that
Nf, Nd). By applying the computational framework are not is+0.80 P < 1.1 x 1079, again showing
described in Materials and Methods to our interactionthat lower 1G2 values tend to occur for true protein—
data setp; = (—0.057, 0.0963, 0.179, 0.920, 0.331 protein interactions. In addition, Mering al. showed
andk; = 5.603 were obtained. The IG2 value for the that interactions confirmed by more than one method,
MED8-MED4 interaction £4.17) is now very different such as by both two-hybrid and tagged proteins/mass
from that for YMD8-EST1 {0.34). spectrometry (protein complex data) methods, are reliable.

IG2 values ranging from 52.98 to —6.35 were obtainedThe average IG2 value for protein—protein interactions
for all the interactions we collected. To investigate whethethat were verified by the protein-complexing experiments
the IG2 value may be useful for assessing the validity obf Gavin et al. (2002) or Hoet al. (2002) is —2.48,
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Fig. 4. Proportions of reproducible and non-reproducible interactions below various IG thresholds. Plots corresponding to |G thresholds fram
—6 to 20 (left to right) for IG2 (diamonds) and from 1 to 21 (left to right) for IG1 (squares) are shown. Some of the plots are labeled Witf%)
corresponding |G threshold values. Theoretical proportions when the interactions are selected randomly regardless of their IG valuesgare
plotted in triangles.

whereas the average G2 value for interactions not verifiedalculating &1, a2,1, f, andd) for each interaction scales

by their experiments is+0.39 (P < 2.72 x 10716, asnS3, wheren is the number of interacting partners for

complex data were converted to binary protein—proteireach protein, but the computational time for calculating

interaction data by considering that the bait interactdG1 is proportional ton. Howewer in practice, proteins

directly with each protein in the complex; Bader andhaving many interaction partners are rather few, which

Hogue, 2002). reduces the calculation time. In fact, the real elapsed time
Another way to evaluate the utility of the 1G2 measureto calculate 1G2 for 3066 interactions wasl.5 h on a

is to calculate the proportions of reproducible and nonPentium 4-based machine running Linux.

reproducible interactions falling below particular 1G2 ) o )

values. When we construct an interaction network byFunctional associations and expressional

selecting interactions with IG2 values below a certainCor rlations becomeclear in areliable

threshold, the 1G2 measure is assumed to be useful Rrotéin—protein interaction network

the set of interactions below that threshold contains manynteracting proteins generally share a common function

reproducible and few non-reproducible interactions. Weand a common localization (‘guilt-by-association’ princi-

used this approach to compare the IG1 and IG2 measurgsle; Oliver, 2000). Approximately 63% of interacting pro-

Figure 4 shows the proportions of reproducible and nonteins have at least one common cellular role (as defined

reproducible interactions below various 1G2 and IG1lin the Yeast Proteome Database; Costaeizal., 2001),

thresholds, among all reproducible and non-reproducibland 73-76% of them have at least one common cellular

interactions, respectively. IG2 (diamonds) performs bettelocalization (Hishigakiet al., 2001; Schwikowskiet al.,

than IG1 (squares) for all thresholds, except where th@000). We investigated the accuracy of the IG2 measure

proportion of reproducible interactions is close to 1.by eliminating unreliable interactions and comparing its

However, this region is not important in constructing performance with that of IG1.

a reliable interaction network, since the rate of non- Figure 5a and b show the proportions of interacting
reproducible interactions is also close to 1 in the region. protein pairs having common cellular roles and com-
Most of the computational time needed to calculatemon localizations at various |G thresholds. As the 1G2
IG2 is spent on calculatingal, a2, I, f, andd) for threshold is decreased, the proportion of interacting pairs
each interaction. Theoretically, the computational time fowith common cellular roles and localizations increases,
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Fig. 5. Evaluation of the reliability of a protein—protein interaction network constructed by eliminating protein—protein interactions having

IG values below a given threshold. The network was evaluated by three measurements: (a) proportion of interacting proteins known to have
a common cellular role; (b) proportion of interacting proteins known to have a common cellular localization; and (c) correlation of gene
expression for the interacting proteins. Plots corresponding to IG thresholds of 20 to —6 (left to right) for IG2 (diamonds) and 21 to 1 (left to
right) for IG1 (squares) are shown. Some of the plots are labeled with corresponding IG threshold values.
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respectively, from 63% and 74% t®85%, indicating (Walhoutet al., 2000).
that interacting proteins are more likely to have common The usefulness of IG2 resides in that we can construct
cellular roles and localizations. 1G2 shows slightly bettera protein network of desirable reliability in which new bi-
performance than IG1. However, unlike the IG1 valueological insights may wait to be uncovered. In addition,
whose lower limit is 1, there is no lower limit for IG2. protein interactions deemed reliable by the IG2 measure
Therefore, reducing the IG2 threshold allows the propormay be useful for evaluating previously reported results
tion of interactions having a common cellular role to beobtained with unselected publicly available protein inter-
increased to over 90% whereas the maximum proportioactions, in which many false positives occur. Jeengl.
using the IG1 threshold is only 80%. (2001) reported that lethal proteins (proteins whose dele-
Some recent studies have shown significant correlatiotion is lethal to the cell) are likely to have more interact-
in the expression of genes that encode interacting prong partners than non-lethal proteins do, suggesting that
teins (Deanet al., 2002; Geet al., 2001; Grigoriev, 2001; lethal proteins form relatively more extensive interaction
Janseret al., 2002; Kemmereret al., 2002; Mrowkaet ~ complexes. We confirmed this tendency by using a reli-
al., 2001). Therefore, expressional correlation can also bable interaction data set (i.e. with an 1G2 valde—1),
used to assess the performance of IG1 and 1G2. We calcin Which we found that the mean number of interacting
lated the average correlations of gene expression for prgartners is 2.78 for lethal proteins and 1.94 for non-lethal
tein partners whose interaction was considered to be relPnes. Recently, Maslov and Sneppen (2002) reported that
able (i.e. below various IG thresholds), using expressioroteins with many interacting partners are likely to inter-
data collected by Eiseet al. (1998). The average corre- actwith proteins with a few interacting partners. However,
lation of gene expression for the interactions significantlywe could not confirm this tendency with the reliable inter-
increased as the IG threshold become low, clearly demoriction data set. This discrepancy may have occurred be-
strating that the interaction network indeed becomes morgause Maslov and Sneppen used Ito’s full data set for their
reliable (Fig. 5¢). IG2 is better than IG1 in selecting inter-analysis, which seems to include a relatively high propor-
acting pairs having a high degree of expressional correldion of false-positive interactions (Grigoriev, 2001; &b

tion when the proportion of interactions left after eliminat- &, 2001). Actually, all of the 116 interactions in the orig-
ing unreliable interactions is below 60%. inal protein interaction data set, which consist of protein

pairs with many £29) interacting partners and with few
(<4) interacting partners, were removed from our reliable
DISCUSSION interaction data set (i.e. with an IG2 valse—1).

We described a new interaction generality measure 1G2, |n proteomics studies it is definitely essential to con-
which is produced by a novel method for computationallystruct reliable protein-interaction networks by integrating
assessing the reliability of candidate protein—protein interal| available genome-wide interaction data sets. The 1G2
actions. The method includes principal-component analymeasure may be useful for this purpose, at least for eval-
sis in evaluating the reliability of interactions, using five uating binary interaction data sets that have been obtained
parametersgi1, P21, P31, P41, Ps1) for topological proper-  from biological experiments.

ties @1,a2,l, f andd). In principle-component analysis,

one can determine parameters and constants without neeCKNOWLEDGEMENTS
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