
Construction of Secure Random Curves of

Genus 2 over Prime Fields

Pierrick Gaudry1 and Éric Schost2

1 Laboratoire LIX, École polytechnique, France
gaudry@lix.polytechnique.fr

2 Laboratoire STIX, École polytechnique, France
Eric.Schost@polytechnique.fr

Abstract. For counting points of Jacobians of genus 2 curves defined
over large prime fields, the best known method is a variant of Schoof’s
algorithm. We present several improvements on the algorithms described
by Gaudry and Harley in 2000. In particular we rebuild the symmetry
that had been broken by the use of Cantor’s division polynomials and
design a faster division by 2 and a division by 3. Combined with the
algorithm by Matsuo, Chao and Tsujii, our implementation can count
the points on a Jacobian of size 164 bits within about one week on a PC.

1 Introduction

Genus 2 hyperelliptic curves provide an interesting alternative to elliptic curves
for the design of discrete-log based cryptosystems. Indeed, for a similar security,
the key or signature lengths are the same as for elliptic curves and furthermore
the size of the base field in which the computations take place is twice smaller.
During the last years, efforts in improving the group law algorithms made these
cryptosystems quite competitive [19,25].

To ensure the security of the system, it is required to have a group of large
prime order. Until recently, for the Jacobian of a genus 2 curve, only specific
constructions provided curves with known Jacobian order, namely the complex
multiplication (CM) method [34] and the Koblitz curves. These curves have a
very special structure; although nobody knows if they are weaker than general
curves, it is pertinent to consider random curves as well. This raises the problem
of point-counting: given a random curve, find the group order of its Jacobian.

With today’s state of the art, the complexity of the point counting task in
genus 2 highly depends on the size of the characteristic of the base field: in short,
the smaller the characteristic, the easier the task of point counting (“easy” means
fast and does not mean that the theoretical tools are simple).

In the case of genus 2 curves in small characteristic p, the point counting
problem was recently solved using p-adic methods [31,23,20]. The particular case
where p = 2 is in fact treated almost as quickly as in genus 1. Unfortunately,
these dramatic improvements do not apply when p becomes too large (say, a few
thousands [10]).

C. Cachin and J. Camenisch (Eds.): EUROCRYPT 2004, LNCS 3027, pp. 239–256, 2004.
c© International Association for Cryptologic Research 2004

240 Pierrick Gaudry and Éric Schost

For large p, the best known algorithms are variants of Schoof’s algorithm,
theoretical descriptions of which can be found in [26,18,1,16]. In 2000, Gaudry
and Harley [11] designed and implemented the first practical genus 2 Schoof
algorithm, making use of Cantor’s division polynomials [8]. To reach reasonable
sizes, however, it was necessary to combine the Schoof approach with a Pollard
lambda method. Their record was a random genus 2 curve over a prime field
of size about 1019, thus too small to be used in a cryptosystem. For “medium
characteristic”, they also proposed to use the Cartier-Manin operator to get
additional information that can be combined with others. Therefore, for medium
characteristic p (say 109, see [5]), point counting is easier than for very large p.

We mentioned that in the non-small characteristic case, once the group or-
der has been computed modulo some large integer, the computation is finished
using a Pollard lambda method. Matsuo, Chao and Tsujii [21] proposed a Baby-
step/Giant-step algorithm that speeds up this last phase. With this device and
using the Cartier-Manin trick, they performed a point counting computation of
cryptographical size for a medium characteristic field.

In this paper, we improve on the methods of [11], so that, combined with the
algorithm of [21], we can reach cryptographical size over prime fields. Our im-
provements are concerned with the construction and the manipulation of torsion
elements in the Schoof-like algorithm of [11]. The impact of these improvements
is asymptotically by a constant factor, but they yield significant speed-up in
practice for the size of interest in cryptography. We now summarize them:

Our first contribution is the reintroduction of symmetries that were lost
in [11]. Indeed, the use of Cantor’s division polynomials to construct torsion
elements is very efficient, but the resulting divisor is given as a sum of points
instead of in Mumford representation. Therefore a factor of 2 in the degrees of
the polynomials that are manipulated is lost. In Sections 3.2 and 3.3, we give
algorithms to save this factor of 2 in the degrees.

In [11], it is proposed to build 2k-torsion elements using a halving algorithm
based on Gröbner basis computations. Our second contribution is a faster divi-
sion by 2, using a better representation of the system; in the same spirit we show
that a division by 3 can also be done: this is described in Section 4. Another
practical improvement is the ubiquitous use of an explicit action on the roots
coming from the group law to speed-up the factorizations that occur at different
stages. We explain it in details in the case of the division by 2 in Section 3.4.

To illustrate and to test the performance of our improvements, we imple-
mented them in Magma or NTL and mixed them with the algorithm of [21] and
an early abort strategy. Our main outcome is the first construction of secure
random curves of genus 2 over a prime field, as we obtained Jacobians of prime
order of size about 2164.

2 Generalities

In this work, p denotes a fixed odd prime, Fp is the finite field with p elements,
and C is a genus 2 curve defined by the equation y2 = f(x), where f is a

Construction of Secure Random Curves of Genus 2 over Prime Fields 241

squarefree monic polynomial in Fp[X] of degree 5. The main object we consider
is the Jacobian J(C) of C. We handle elements of J(C) through their Mumford
representation: each element of J(C) can be uniquely represented by a pair of
polynomials 〈u(x), v(x)〉, where u is monic of degree at most 2, v is of degree less
than the degree of u, and u divides v2 − f . The degree of the u-polynomial in
Mumford’s representation is called the weight of a divisor. If K is an extension
field of Fp, we may distinguish the curves defined on K and Fp, by denoting
them C/K and C/Fp; the Jacobians are correspondingly denoted by J(C/K) and
J(C/Fp). For precise definitions and algorithms for the group law, we refer to
[22] and [7,19].

Let Fp be an algebraic closure of Fp and let us consider the Frobenius endo-
morphism on J(C/Fp) denoted by π. By Weil’s theorem (see [24]), the character-
istic polynomial χ(T) of π has the form χ(T) = T 4 − s1T

3 + s2T
2 − ps1T + p2,

where s1 and s2 are integers such that |s1| ≤ 4
√
p and |s2| ≤ 6p. Furthermore

#J(C) = χ(1) = p2 + 1 − s1(p+ 1) + s2.

In point-counting algorithms based on Schoof’s idea [27], the torsion ele-
ments of J(C) play an important role. If N is a positive integer, the subgroup
of N -torsion elements of J(C/Fp) is a finite group denoted by J(C)[N]; it is iso-
morphic to (Z/NZ)4 and has the structure of a free Z/NZ-module of dimension
4 (see [24]). Furthermore, the characteristic polynomial of the restriction of π to
J(C)[N] is χ(T) mod N . Applying this to different small primes or prime powers
leads to the genus 2 Schoof algorithm that is sketched in Algorithm 1.

Algorithm 1 Sketch of a genus 2 Schoof algorithm
1. For sufficiently many small primes or prime powers �:

(a) Let L = {(s1, s2); s1, s2 ∈ [0, � − 1]}.
(b) While #L > 1 do

– Construct a new �-torsion divisor D;
– Eliminate those elements (s1, s2) in L such that

π4(D) − s1π
3(D) + s2π

2(D) − (ps1 mod �)π(D) + (p2 mod �)D �= 0

(c) Deduce χ(T) mod � from the remaining pair in L.
2. Deduce χ(T) from the pairs (�, χ(T) mod �) by Chinese remaindering, or using the

algorithm of [21].

Our contribution is to improve the first part of the algorithm, the construc-
tion of �-torsion divisors; the computations for small primes and prime powers
are respectively described in Sections 3 and 4.

We will frequently make genericity assumptions on the curve C and its torsion
divisors. We assume that C is chosen randomly among genus 2 curves defined over
a large field Fp, so we can expect that with high probability, such assumptions are
satisfied. The cases when our assumptions fail should require special treatments,
which are not developed here.

242 Pierrick Gaudry and Éric Schost

For the complexity estimates, we denote by M(d) the number of Fp-operations
required to multiply two polynomials of degree d defined over Fp. We make the
classical assumptions on M (see for instance [32, Definition 8.26]). In the sequel,
if no precise reference is given for an algorithm, then it can be found in [32],
together with a complexity analysis in terms of M.

3 Computation Modulo a Small Prime �

In the classical Schoof algorithm for elliptic curves, a formal �-torsion point is
used: the computations are made with a point P = (x, y), where x cancels the
�-th division polynomial ψ� and y is linked to x by the equation of the curve. In
other words, we work in a rank 2 polynomial algebra quotiented by two relations:
Fp[x, y]/(ψ�(x), y2 − (x3 + ax+ b)).

In genus 2, we imitate this strategy. According to [18], it is enough to consider
the �-torsion divisors of weight 2 (this is not surprising since a generic divisor has
weight 2). Let thusD be a weight 2 divisor given in Mumford representation,D =
〈x2 +u1x+u0, v1x+ v0〉. Then there exists a radical ideal I� of Fp[U1, U0, V1, V0]
such that

D ∈ J(C)[�] ⇐⇒ ϕ(u1, u0, v1, v0) = 0, ∀ϕ ∈ I�.

By analogy with elliptic division polynomials, this ideal I� is called the �-th divi-
sion ideal. There are �4−1 non-zero �-torsion elements, so that I� has dimension
0 and degree at most �4 − 1; generically, by the Manin-Mumford conjecture [15,
p. 435], all non-zero torsion divisors have weight 2, so the degree of I� is exactly
�4 − 1.

From the computational point of view, a good choice for a generating set of I�
is a Gröbner basis for a lexicographic order. Using the order U1 < U0 < V1 < V0,
we can actually predict the shape of this Gröbner basis. Indeed, if D is an
�-torsion divisor, then its opposite −D is also �-torsion, so it has the same u-
coordinates, and opposite v-coordinates. Furthermore, we make the genericity
assumption that all the pairs {D,−D} of �-torsion divisors have different values
for u1. Then, the Gröbner basis for the ideal I� takes the form

I� =

V0 − V1S0(U1)
V 2

1 − S1(U1)
U0 −R0(U1)
R1(U1),

where R1 is a squarefree polynomial of degree (�4 − 1)/2 and R0, S1, S0 are
polynomials of degree at most (�4 − 1)/2 − 1. If such a Gröbner basis for I�
is known, then it is not difficult to imitate Schoof’s algorithm, by working in
the quotient algebra Fp[U1, U0, V1, V0]/I�. Unfortunately, no easy computable
recurrence formulae are known that relate Gröbner bases of �-division ideals for
different values of �, just like for division polynomials of elliptic curves. Therefore
we shall start with the approach of [11] using Cantor’s division polynomials and
show that we can derive efficiently a multiple of R1.

Construction of Secure Random Curves of Genus 2 over Prime Fields 243

3.1 Cantor’s Division Polynomials

Let us fix a prime �. Cantor’s division polynomials [8] are polynomials in Fp[X],
denoted by d0, d1, d2, e0, e1, ∆, with the following property: for a divisor P =
〈x− xP , yP 〉 of weight 1, the multiplication of P by � in J(C) is given by

[�]P =
〈

x2 +
d1(xP)
d2(xP)

x+
d0(xP)
d2(xP)

, yP

(
e1(xP)
∆(xP)

x+
e0(xP)
∆(xP)

)〉

.

These polynomials have respective degrees 2�2−1, 2�2−2, 2�2−3, 3�2−2, 3�2−3,
3�2−2 and are easily computed by means of recurrence formulae. Even if a naive
method is used, the cost of their computation is by far negligible compared to
the subsequent operations.

Now, let D = 〈x2+U1x+U0, V1x+V0〉 be a generic divisor of weight 2, where
U1, U0, V1, V0 are indeterminates, subject to the condition that x2 + U1x + U0

divides (V1x+ V0)2 − f . The divisor D can be written as the sum of two weight
1 divisors P1 = 〈x −X1, Y1〉 and P2 = 〈x − X2, Y2〉, where U1 = −(X1 + X2),
U0 = X1X2, and where Y1 and Y2 satisfy V1X1 + V0 = Y1 and V1X2 + V0 = Y2.
Since D = P1 + P2, then D is �-torsion if and only if [�]P1 = −[�]P2.

Rewriting this equation using Cantor’s division polynomials, we get four
equations that must be satisfied for D to be �-torsion. Some of these equations
are multiples of X1−X2: this is an artifact due to the splitting of D into divisors
of weight 1 and if this is the case one should divide out this factor. Hence we
obtain the following system:

E1(X1, X2) = (d1(X1)d2(X2) − d1(X2)d2(X1))/(X1 −X2) = 0,
E2(X1, X2) = (d0(X1)d2(X2) − d0(X2)d2(X1))/(X1 −X2) = 0,

F1(X1, X2, Y1, Y2) = Y1e1(X1)e0(X2) + Y2e1(X2)e0(X1) = 0,
F2(X1, X2, Y1, Y2) = Y1e2(X1)e0(X2) + Y2e2(X2)e0(X1) = 0.

Consider now the finite-dimensional Fp-algebra

B = Fp[X1, X2, Y1, Y2]/(E1, E2, F1, F2, Y
2
1 − f(X1), Y 2

2 − f(X2)).

In a generic situation, the minimal polynomial of −(X1 + X2) in B is then
precisely the polynomial R1 that appears in the Gröbner basis of I� (failures
could occur, e.g., if there exists an �-torsion divisor D = P1 +P2, such that [�]P1

is not of weight 2). We will see below that the whole Gröbner basis of I� is not
necessary to the point-counting application we have in mind. Thus, we can start
by working with the first two equations E1, E2, which involve X1, X2 only.

These polynomials were already considered in [11]. The strategy used in that
paper consisted in computing the resultant of E1, E2 with respect to X2 for a
start, from which it was possible to deduce the coordinates of [�]-torsion divisors.
This approach did not take into account the symmetry in (X1, X2); we now show
how to work directly in Mumford’s coordinates U1 = −(X1 +X2), U0 = X1X2,
so as to compute resultants of lower degrees.

244 Pierrick Gaudry and Éric Schost

3.2 Resymmetrisation

The polynomials E1(X1, X2) and E2(X1, X2) are symmetric polynomials. It is
well known that they can be expressed in terms of the two elementary symmetric
polynomials X1X2 and X1 +X2. The heart of Mumford’s representation is the
use of this expression, but this had been broken in order to apply Cantor’s divi-
sion polynomials. We call resymmetrisation the method that we present now to
come back to a representation of bivariate polynomials in terms of the elemen-
tary symmetric polynomials. This is not as trivial as it seems, since the naive
schoolbook method to symmetrize a polynomial yields a complexity jump in our
case.

Let us consider the unique polynomials E1 and E2 in Fp[U0, U1] such that
E1(X1X2,−X1 − X2) = E1(X1, X2) and E2(X1X2,−X1 − X2) = E2(X1, X2)
and let R1 ∈ Fp[U1] be their resultant with respect to U0; then R1 divides R1.

We want to use the following evaluation/interpolation techniques to compute
R1: evaluate the variable U1 at sufficiently many scalars u1, compute the resul-
tants of E1(U0, u1) and E2(U0, u1), and interpolate the results. Unfortunately,
computing with E1 and E2 themselves has prohibitive cost, as these polyno-
mials have O(�4) monomials. However, their specific shape yields the following
workaround.

Let h be a polynomial in Fp[X] and X1 and X2 be two indeterminates. Then
the divided differences of h are the bivariate symmetric polynomials

A0(h) =
(
h(X1)−h(X2)

)
/(X1−X2) and A1(h) =

(
X1h(X2)−X2h(X1)

)
/(X1−X2).

We let A0(h) and A1(h) be the unique polynomials in Fp[U0, U1] such that
A0(h)(X1X2,−X1 −X2) = A0(h) and A1(h)(X1X2,−X1 −X2) = A1(h). Then
a direct computation shows that

E1 = A0(d1) A1(d2) − A0(d2) A1(d1),
E2 = A0(d0) A1(d2) − A0(d2) A1(d0) in Fp[U0, U1].

Given an arbitrary polynomial h in Fp[X] and u1 ∈ Fp, we show in the last
paragraphs how to compute the polynomials A0(h) and A1(h) evaluated at U1 =
u1 efficiently. Taking this operation for granted, we deduce Algorithm 2 for
computing the resultant R1 of E1 and E2.

Algorithm 2 Computation of the resultant R1

1. For deg(R1) + 1 different values of u1 ∈ Fp, do
(a) Compute A0(d0), A1(d0), A0(d1), A1(d1), A0(d2), A1(d2) evaluated at U1 = u1.

(b) Deduce E1 and E2, evaluated at U1 = u1.
(c) Compute R1(u1) as the resultant in U0 of E1 and E2.

2. Interpolate R1 from the pairs (u1, R1(u1)).

The classical estimates for the degrees of resultants imply that the degree
of R1 is 6�4 − 17�2 + 12; thus to be able to perform the interpolation, it is

Construction of Secure Random Curves of Genus 2 over Prime Fields 245

necessary to take at least 6�4 − 17�2 + 13 different values of u1. In practice, it is
recommended to take a few more values of u1, in order to check the computation.
Note that the resultant of E1, E2 has degree 8�4 − 22�2 + 15.

We finish this subsection by detailing our solution to the problem raised
above: given u1 in Fp and h in Fp[X], how to compute the polynomials A0(h)
and A1(h) evaluated at U1 = u1 efficiently? It is immediate to check the following
identity:

h(X) = A1(h)(U0, u1)X + A0(h)(U0, u1) mod (X2 + u1X + U0).

Thus, the problem amounts to reduce h modulo X2 + u1X + U0 in Fp[U0][X].
Our solution relies on the following primitive: If h is a polynomial of degree N
in Fp[X] and a is a scalar in Fp, then the coefficients of h(X+a) can be deduced
from the coefficients of h(X) for one polynomial multiplication in degree N ,
see [2]. We call this primitive var-shift.

The main idea is now to rewrite the relation X2 + u1X +U0 = 0 in the form
(X + u1/2)2 = u2

1/4−U0. Let Y = X + u1/2, and k in Fp[X] such that h(X) =
k(Y). We group the coefficients of k according to the parity of their indices,
forming the polynomials kodd and keven such that k(Y) = keven(Y 2)+Y kodd(Y 2).
Taking h modulo X2 + u1X + U0, we have

h(X) ≡ keven

(
u2

1

4
− U0

)

+
(
X +

u1

2

)
kodd

(
u2

1

4
− U0

)

.

Thus, computing A0(h) and A1(h) can be done by Algorithm 3 below.

Algorithm 3 Reduction of h(X) modulo X2 + u1X + U0 in Fp[U0][X]
1. Compute k from h using var-shift.
2. Decompose k in kodd and keven.
3. Compute keven

(
u2

1/4 − U0

)
and kodd

(
u2

1/4 − U0

)
using var-shift.

4. Recombine their coefficients to get h(X) mod X2 + u1X + U0.

3.3 Parasites Prediction and Removal

In [11] it is shown that a factor of the resultant of E1, E2 can be predicted and
used to speed-up the computation. This prediction is still possible in the context
of the resymmetrisation, and the factor of R1 corresponding to such roots can
be computed efficiently. The roots of this factor of R1 are called parasites: they
are not the U1-coordinates of an �-torsion divisor, and actually appear as a
by-product of our elimination scheme. Thus, they can be safely factored out.

If x1 and x2 in Fp cancel d2, then E1(x1, x2) = E2(x1, x2) = 0. The U1

coordinates corresponding to these solutions can be written as −(x1 +x2) where
x1 and x2 are roots of d2. Hence we obtain the following factor ρ of R1:

ρ(U1) =
∏

d2(x1)=0

∏

d2(x2)=0

(U1 + x1 + x2).

246 Pierrick Gaudry and Éric Schost

The factor ρ is a parasite, as generically it does not lead to any �-torsion divisor.
Then ρ divides R1 but not R1, so we lose nothing in eliminating it from R1. The
polynomial ρ is computed using an algorithm of [4] dedicated to such questions.
Then Step 2. in Algorithm 2 is replaced by the interpolation of R1/ρ from the
pairs (u1, R1(u1)/ρ(u1)).

The degree of ρ is 4�4−12�2+9, so the degree of R1/ρ is 2�4−5�2+3, reducing
by a factor of about 3 the number of values of u1 that have to be considered
in Algorithm 2. As an output, we now have at our disposal the polynomial
R1 = R1/ρ, which is a multiple of R1. For comparison, the resultant computed
in [11] has degree 4�4 − 10�2 + 6, which is twice the degree of R1.

3.4 Factorization and Reconstruction of a Torsion Element

Once the resultant R1 has been computed, the task is not finished: indeed, what
we want is the representation of an �-torsion divisor, so that we can plug it
into the equation of the Frobenius endomorphism. Here, there are two possible
strategies:

1. Refine R1 to get exactly R1 and reconstruct from it the whole Gröbner basis
of I� describing a generic �-torsion divisor.

2. Look for small degree factors of R1, check if they are indeed factors of R1

and deduce the corresponding �-torsion divisors.

By analogy with Schoof’s algorithm for elliptic curves, one would think that
the first choice is the most pertinent. However, refining R1 into R1 can be a costly
task, and if there exist indeed small factors of R1, then the second solution is
faster. That is the reason why we chose the second solution in our experiments
described below. However, especially for � = 17 or 19, we could feel the limit
of this choice. Therefore, for larger computations, we should probably switch to
the first solution.

We now describe the second strategy with more details.
Let u1 be a root of R1 in an extension Fq of Fp. We evaluate the polynomials

E1 and E2 at (X1,−u1 −X1) in Fq[X1], and obtain two univariate polynomials
in Fq[X1]. Their GCD is (generically) a polynomial of degree 2 which might, or
not, be the u-polynomial of an �-torsion divisor. To settle the question, we take
into account the last two equations F1 and F2, and check that our candidate u-
polynomial is compatible with them. If not, we try again and select another root
of R1. Otherwise, we deduce the v-polynomial, and build an �-torsion divisor de-
fined over Fq. It is then plugged into all possible candidates for the characteristic
polynomial χ(T) mod � to detect the right one.

We now concentrate on the problem of finding irreducible factors of R1,
using classical ingredients of polynomial factorization. It is interesting to find
the factors of small degree first, as it reduces the subsequent computation. Thus,
we start by detecting the linear factors, given by gcd(Xp − X,R1(X)). If this
GCD is non-trivial, then the corresponding roots are separated and processed
before maybe continuing the factorization. Then factors of degree d are detected

Construction of Secure Random Curves of Genus 2 over Prime Fields 247

for increasing d by computing gcd(Xpd −X,R1(X)), and when we find a root, it
is used to try to build an �-torsion divisor that perhaps determines χ(T) mod �.

This can be improved using the fact that the factorization pattern of R1 is
partly predictable. Indeed, due to the Galois structure induced by the group
law in J(C), some factorization patterns are forbidden. We can then proceed as
follows: we first precompute the list of all possible patterns corresponding to �
and p, and we start looking for irreducible factors by increasing degree as before.
At each step, the number of factors we find eliminates some patterns in the list.
Then we look in the remaining patterns for the next smallest possible degree
and try directly to catch factors of that degree. If there is a large gap between
the current degree and the next one, the Baby-step/Giant-step strategy of [30]
using modular compositions can yield a significant speed-up compared to the
classical powering algorithm.

As another application of the factorization patterns, we mention the influence
of the choice of p: if p = 1 mod �, then we can infer that the smallest irreducible
factor of R1 has degree at most (�2 + 1)/2, compared to possibly O(�4) in the
general case. We do not give details on the determination of the possible patterns
for lack of space. The idea is similar to the one used in [12] for modular equations.

3.5 Complexity

We start by evaluating the cost in Fp-operations of one iteration of Step 1 in
Algorithm 2. Using Algorithm 3, the cost of computing A0(d0), A1(d0), A0(d1),
A1(d1), A0(d2), A1(d2) is O(M(�2)), since the di have degree O(�2). Deducing
E1 and E2 involves 4 more multiplications of polynomials of degree O(�2) at a
cost of O(M(�2)). The resultant of E1 and E2 can then be computed using the
HGCD algorithm at a cost of O(M(�2) log �).

Hence the resultant computation is dominating this step; this would not
have been the case without the var-shift strategy. The loop in Step 1 must be
repeated for O(�4) different values of u1, so the cost of Step 1 is O(�4M(�2) log �)
operations in Fp. Step 2 is a degree O(�4) polynomial interpolation, which can
be done using O(M(�4) log �) operations in Fp.

We now evaluate the influence of the parasite prediction on the complexity.
The polynomial ρ is computed using the algorithm of [4] at a cost of O(M(�4))
operations. Then its evaluations at the O(�4) different values of u1 can be de-
duced using O(M(�4) log �) operations in Fp. Therefore, the cost of precomputing
the effect of the parasite factor is negligible compared to the cost of computing
R1.

Knowing the values of ρ on the different values of u1 allows to interpolate
a polynomial of degree 3 times less. This yields a speed-up by a factor at least
3 (and even more in practice, depending on the function M). Also the input of
the factorization step is 3 times smaller, thus gaining a constant factor in that
phase.

The factorization phase is less easy to analyze, since its complexity varies
quite a lot depending on the degrees of the smallest irreducible factors. Denote
by d the degree of the smallest factor of R1 that allows to deduce χ(T) mod �.

248 Pierrick Gaudry and Éric Schost

By the powering algorithm, computing gcd(Xpd −X,R1(X)) can be done using
O((d log p+log �)M(�4)) operations in Fp and isolating one of the factors of degree
d has similar expected complexity. From an irreducible factor of degree d, the
reconstruction of an �-torsion divisor D defined over Fpd requires to manipulate
polynomials of degree O(�2) over Fpd , so it costs O(M(d�2) log �) operations in
Fp.

Finally, the detection of the invalid choices for (s1, s2) mod � requires 4 ap-
plications of the Frobenius endomorphism to D and O(�) group operations in
J(C/Fpd), that is O((� log d+ log p)M(d)) operations in Fp.

If d is small enough (say d = O(�)), this factoring strategy is satisfactory
since its complexity is not worse than computing R1, if log p is not too large.
However, if d is O(�4), then the above complexity estimate of the factoring step
is catastrophic. Using the known factorization patterns is useful in this context,
even if the precise analysis is complicated. We expect that working with the whole
ideal I� (thus avoiding the factorization) is more suited for a proper analysis;
cleaning all details of that approach is out of the scope of this article.

4 Computation Modulo Small Prime Powers

Given a prime �, from the knowledge of an �-torsion divisor in J(C), one can de-
duce �2-torsion divisors by performing a division by � in the Jacobian; iterating
this process yields divisors of �3-torsion, �4-torsion, . . . This can be used within
Schoof’s algorithm, so as to obtain modular information on the polynomial χ(T)
modulo �, �2, and so on. As appears below, there are many computational diffi-
culties to overcome before this can be efficiently applied in practice. We mostly
dedicated our efforts on the case � = 2, improving the techniques of [11], and
spend much of this section describing this case. We thereafter briefly describe
the case � = 3.

In the case � = 2, this lifting strategy was already used in [11]. It starts from
the data of a 2-torsion divisor; then the iterative step is as follows. Suppose that
a divisor Dk of 2k-torsion is given; we denote by Fq the extension of the base
field Fp over which Dk is defined. We make the assumption that Dk has weight
2, and write Dk = 〈x2 + u1x+ u0, v1x+ v0〉.

There are exactly 24 = 16 divisors D such that [2]D = Dk. Let us make
the genericity assumption that all these divisors have weight 2, and introduce
4 indeterminates U1, U0, V1, V0 to denote the coordinates of D. Using doubling
formulas coming from Cantor’s addition algorithm, we obtain a system Fk that
relates D and Dk:

Fk

∣
∣
∣
∣
∣
∣
∣
∣

H1(U1, U0, V1, V0) = u1, G1(U1, U0, V1, V0) = 0,
H2(U1, U0, V1, V0) = u0, G2(U1, U0, V1, V0) = 0,
H3(U1, U0, V1, V0) = v1,
H4(U1, U0, V1, V0) = v0,

where H1, H2, H3, H4 are rational functions, and G1, G2 are polynomials which
specify that x2+U1x+U0 divides (V1x+V0)2−f . Cleaning denominators, we are

Construction of Secure Random Curves of Genus 2 over Prime Fields 249

left with a polynomial system in U1, U0, V1, V0, with u1, u,v1, v0 as parameters.
We make the further genericity assumption that the ideal generated by Fk admits
a Gröbner basis of the form

V0 − L0(U1)
V1 − L1(U1)
U0 −M0(U1)
M1(U1),

where M1 ∈ Fq[U1] has degree 16 and L0, L1,M0 have degree at most 15. Since
Dk is 2k-torsion, this provides a description of 16 divisors of 2k+1-torsion.

The next step is to factorize the polynomial M1 in Fq[U1]. Any factor of M1

can be used to try and determine the characteristic polynomial χ mod 2k+1, but
some of them might give no information. Let r be one irreducible factor of lowest
degree that allows the determination of χ mod 2k+1, n its degree, and u1 a root
of r in Fqn . Then the divisor Dk+1 = 〈x2 + u1x+M0(u1), L1(u1)x + L0(u1)〉 is
of 2k+1-torsion. It can be used for the next loop of the algorithm.

From the computational point of view, the main tasks to perform at the
kth step are the following: First, solve a zero-dimensional polynomial system of
the form [2]D = Dk, then factorize a polynomial of degree 16. The following
subsections detail our contributions on these questions. It should be clear that
these computations are done with polynomials defined over an extension Fq of
the base field Fp, whose possibly high degree is the main cause of concern.

4.1 Performing a Division by 2

All the systems Fk that we consider are obtained in the same manner; as k
grows, only their right-hand sides vary. The difficulty comes from the fact that
the field of definition of u1, u0, v1, v0 is an extension of Fp of possibly high degree.

The solution, suggested in [11], is to solve the system Fk for generic values
u1,u0,v1,v0. There are of course only two degrees of freedom, as x2 +u1x+u0

must divide (v1x+v0)2−f . Working over the base field Fp(u1,u0), we are thus
led to consider the system Fgen in the unknowns v1,v0, U1, U0, V1, V0

Fgen

∣
∣
∣
∣
∣
∣
∣
∣

H1(U1, U0, V1, V0) = u1, G1(U1, U0, V1, V0) = 0,
H2(U1, U0, V1, V0) = u0, G2(U1, U0, V1, V0) = 0,
H3(U1, U0, V1, V0) = v1, G1(u1,u0,v1,v0) = 0,
H4(U1, U0, V1, V0) = v0, G2(u1,u0,v1,v0) = 0,

where the last two equations express that x2 +u1x+u0 divides (v1x+v0)2−f .
Generically, the solutions of this system can be represented the following way:

T

V0 − L0(U1,v1),
V1 − L1(U1,v1),
U0 −M0(U1,v1),
M1(U1,v1),
v0 −N1(v1),
N0(v1).

250 Pierrick Gaudry and Éric Schost

All these polynomials have coefficients in Fp(u1,u0). The polynomial N0 has
degree 4, N1 has degree less than 4, M1 has degree 16 in U1 and less than 4 in
v1 and L0, L1,M0 have degree less than 16 (resp. 4) in U1 (resp. v1).

Systems like Fgen that involve free variables are difficult to handle. A direct
application of a Gröbner basis algorithm over Fp(u1,u0) fails by lack of memory,
so we used the algorithm of [28], dedicated to such situations, to compute T .
Once T is known, it can be specialized on the coordinates of the divisor Dk,
realizing its division by 2.

The solution presented in [11] followed the same approach, with a notable
difference: instead of considering the representation T , another representation
was used, which involved polynomials of degree 64. Our approach reduces this
degree to 16, and makes the subsequent computations much easier.

In terms of complexity, the polynomials defining the system Fgen have degree
bounded independently from p; thus, computing T takes a bounded number of
operations in Fp. Next, at each division step, we must specialize u1,u0,v1,v0

on the coordinate of the divisor Dk in T . If Dk is defined in a degree d extension
of Fp, then this substitution requires O(M(d)) operations in Fp.

4.2 Factorization Using the Action of the 2-Torsion

After performing the division by 2, we are left with a description of the solution
set Vk of the system Fk by means of the following representation:

M1(U1) = 0, U0 = M0(U1), V1 = L1(U1), V0 = L0(U1)

Now, we have to factorize the polynomial M1 ∈ Fq[U1]. It has degree 16, which
is moderate; the main issue is the degree of Fq over its prime field: in the com-
putations presented below, Fq had degree up to 1280 on its prime field. We now
show how to simplify this factorization, using the natural action of the 2-torsion
group J(C)[2] on Vk, in the spirit of [14].

Let us see U1 as a coordinate function on the set of weight 2 divisors (the
choice of U1 is arbitrary, but makes the computation easier). To any subgroup G
of J(C)[2], we associate the averaging operator SG : D
→

∑
g∈G U1(D+g), which

is defined as soon as all divisors D + g have weight 2. Now, G acts on Vk, and
each orbit has cardinality |G|. The function SG takes constant values on each
orbit, so it takes at most [J(C)[2] : G] distinct values on Vk. By an additional
genericity assumption, we may suppose that SG takes precisely [J(C)[2] : G]
distinct values on Vk.

To realize this algebraically, let us introduce the “divisor” D0 = 〈x2 +U1x+
M0, L1x + L0〉, defined over Fq[U1]/M1. Given any 2-torsion divisor g, we can
apply the addition formulas to D0 and g, performing all operations in Fq[U1]/M1

(the addition formulas require divisions, but if one of them fails it gives a proper
factor of M1). We obtain a “divisor” Dg = 〈x2 + U

(g)
1 x + U

(g)
0 , V

(g)
1 x + V

(g)
0 〉,

where U (g)
1 , U

(g)
0 , V

(g)
1 , V

(g)
0 are in Fq[U1]/M1; by construction, if D is any divisor

in Vk, then the U1-coordinate of D+ g is obtained by evaluating U (g)
1 on the U1-

coordinate of D. Let thus sG =
∑

g∈G U
(g)
1 ∈ Fq[U1]/M1. Then for any D ∈ Vk,

Construction of Secure Random Curves of Genus 2 over Prime Fields 251

the value SG(D) is obtained by evaluating sG on the U1-coordinate of D. From
the above discussion on the function SG, we deduce that the minimal polynomial
of sG in Fq[U1]/M1 has degree [J(C)[2] : G].

As an abstract group, J(C)[2] is isomorphic to (Z/2Z)4. Let us consider sub-
groups

G1 � (Z/2Z) ⊂ G2 � (Z/2Z)2 ⊂ G3 � (Z/2Z)3 ⊂ J(C)[2] � (Z/2Z)4.

Using the above construction, we associate to these subgroups the elements s1,
s2, s3 of Fq[U1]/M1. Introducing their minimal polynomials, we deduce that the
extension Fq → Fq[U1]/M1 is isomorphic to the quotient of Fp[U1, S1, S2, S3] by
some polynomials

TU (U1, S1, S2, S3)
T1(S1, S2, S3)
T2(S2, S3)
T3(S3),

where all polynomials have degree 2 in their main variables, resp. S3, S2, S1, U1.
Using this decomposition, we avoid the factorization of M1: We start by fac-
torizing T3 over Fq, and adjoin one of its roots to Fq; then we factor T2 over
this new field, and so on. Thus, only the computation of T3, T2, T1, TU and four
square root extractions are needed.

Suppose that q = pd; then all polynomials T3, T2, T1, TU can be computed
in O(M(d)) operations in Fp. For square-root extraction, we used a factoriza-
tion algorithm quite similar to those of [33] and [17]. Using such algorithms,
the expected complexity of extracting a square root in Fpd is O(C(d) log(d) +
M(d) log(p)) operations in Fp, where C(d) denotes the cost of modular composi-
tion in degree d, so that C(d) ∈ O(d2 +

√
dM(d)), see [6]. One should note that

this whole process only saves a constant factor over the factorization of M1 from
scratch; however, it was quite significant in practice.

In the worst case, after k lifting steps, the degree d might be of order O(16k).
In this case, taking into account all previous estimates, the expected complexity
to obtain a 2k-torsion is expected to be in O(kC(16k)+M(16k) log(p)) base field
operations. However, our experiments showed that with a surprising amount
of uniformity, the degree of this extension was actually in O(2k), so the above
complexity bound was by far overestimated.

4.3 Performing a Division by 3

Most of what was described above extends mutatis mutandis to arbitrary �.
Nevertheless, the computations become much more difficult: even for � = 3, we
did not solve the system describing the division of a generic divisor by 3. Thus,
we used the plain strategy to divide torsion divisors by 3, by means of successive
Gröbner bases computations, over extensions of Fp of increasing degrees. As
the tables below reveal, the time required for solving these polynomial systems
makes this approach much more delicate than for 2-torsion. As a consequence,
we did not implement the equivalent of our improved factorization process, and
used a plain factorization strategy.

252 Pierrick Gaudry and Éric Schost

5 Implementation and Experiments

We implemented a whole point-counting algorithm including all the above-
mentioned improvements and the MCT algorithm [21], first within the Magma
computer algebra system [3]. Then, the critical parts of the computation modulo
small primes and the MCT algorithm were implemented in C++ using the NTL
library [29]. The communication between different parts of the program is done
using files for small communications or named pipes in the case of a heavy in-
teraction. For instance, the analysis of the factorization pattern of the resultant
R1 is implemented in a Magma program that sends elementary factoring tasks
(like a modular composition) to a running NTL program.

To test our program we ran it on several randomly chosen curves defined over
Fp with p = 5 × 1024 + 8503491, with the hope to find some cryptographically
secure Jacobians. An early abort strategy was used to eliminate curves C for
which either the Jacobian order or the Jacobian order of the twisted curve was
discovered to be non-prime. In particular, f must be irreducible to ensure the
oddity of the group orders.

We have computed the characteristic polynomials of 32 randomly chosen
curves, that yield 64 group orders, taking into account the twists. Due to the
early abort strategy, these group orders are not divisible by any prime less than
or equal to 19. Among them, 7 were found to be primes, meaning that the
corresponding Jacobians are secure against all known attacks. One particular
curve has the nice feature that both itself and its twist have a prime order
Jacobian. The data for that curve can be found in the appendix.

Table 1 gives statistics for the runtimes of the different steps of the algorithm.
They are given in seconds on a Pentium IV at 2.26 GHz having 1 GB of central
memory. Due to the early abort strategy, the statistics for the factoring phase
are made on less curves for larger �, e.g., 39 curves for � = 5, versus 21 curves for
� = 19. More curves were computed on different computers and were not taken
into account for the statistics.

The modular composition used for factorization is done using Brent and
Kung’s algorithm [6]. For � = 17 and � = 19, the precomputation (Baby steps)
is not balanced with the Giant steps due to memory constraints. This explains
why the runtimes for those values look so bad compared to other values.

As for the torsion lifting, 2-torsion was much easier to handle than 3-torsion,
as we computed divisors of order 1024 = 210, versus 27 = 33 only. The curves we
used were selected so that they have 8-torsion defined over Fp10 and 3-torsion
defined over Fp4 . Then in almost all cases, the 2i-torsion divisors, i ≥ 3, were
defined in extensions of degrees 10, 20, 40, 80, . . . , and the 3i-torsion divisors in
extensions of degrees 4, 12, 36, . . .

After the modular computations, we know χ(T) mod 44696171520 = 210 ·
33 · 5 · 7 · 11 · 13 · 17 · 19 ; for comparison’s sake, note that in [11], the modular
computation went to 3843840 = 28 ·3 ·5 ·7 ·11 ·13. To conclude; we run the MCT
algorithm. Due to memory requirements, we used a Xeon at 2.66 GHz with 2
GB of memory; this computation takes about 3 hours and 1.7 GB per curve.

Construction of Secure Random Curves of Genus 2 over Prime Fields 253

Computations Modulo Small Primes

� 5 7 11 13 17 19 Theory

generic degree of R1 1,128 4,560 28,680 56,280 165,600 258,840 2�4 − 5�2 + 3
generic degree of ρ 2,209 9,025 57,121 112,225 330,625 516,961 4�4 − 12�2 + 9

Time computing ρ 0.3 2 23 52 256 374 O(M(�4) log �)
Time Step 1, Algo 1 6.5 63 1,504 5,072 34,869 69,162 O(�4M(�2) log �)
Time Step 2, Algo 1 0.3 2 17 39 182 275 O(M(�4) log �)
Total time Algo 1 7.1 67 1,544 5,163 35,307 69,811

Time Xp mod R1 3.3 15 77 280 2,251 2,294 O(M(�4) log p)
Time Prec. Mod Comp 0.8 8 105 525 3,267 2,122 O(�2M(�4))
Time Apply Mod Comp 1.1 11 225 976 20,768 51,710 O(�8 + �2M(�4))

Factoring Time (Min) 12.5 59 524 1,055 23,537 15,061
Factoring Time (Max) 61 353 5,021 23,083 206,860 359,330
Factoring Time (Avg) 42 193 2,700 9,415 117,785 145,734

2- and 3- Torsion Lifting

Torsion Total Time (Min) Total Time (Max) Total Time (Avg)

27 10,901 11,317 11,511
1024 71,421 103,433 90,071

Lifting to 1024-torsion
Details for a sample curve

Generic Resolution: 5,104 sec

Torsion Degree Specialization Factor Deducing χ

8 10 1 12 1
16 20 1 37 3
32 40 3 178 16
64 80 15 543 50
128 160 41 1,423 146
256 320 115 4,627 459
512 640 390 16,776 1,602
1024 1280 1301 58,408 6,590

Lifting to 27-torsion
Details for a sample curve

Torsion 9 27

Degree 12 36

Gröbner 745 3,811

Factor 914 5,917

Deducing χ 3 19

Table 1. Runtimes in seconds for the torsion computation on a 2.26 GHz Pen-
tium IV.

Putting all this together, a complete point-counting for a random curve over Fp

takes on average about 1 week.
For comparison, in the record-curve computation in [11] the Schoof-like part

was used up to � = 13. Just the modulo 13 computation had taken 205 hours
on a Pentium II at 450 MHz. A crude estimation gives a runtime of about 40
hours on the same computer as the one we used in this paper. This has to be
compared with the 4 hour runtime that we obtained with our improvements and
our new implementation.

Are the Curves “Random”? In our computer experiments, the “pure ran-
domness” is biased in several places. Due to the cryptographical requirements,

254 Pierrick Gaudry and Éric Schost

the group order must be prime, so “random curve” should be understood as ran-
dom among the curves with prime order Jacobians, but that is standard. Also a
bias is introduced by our early abort strategy on both the curve and its twist.

A more important bias is in the choice of p. We choose a prime which is
congruent to 1 modulo all the small primes � for which we do the Schoof com-
putation. This was meant to speed-up the factorization of the resultant R1, as
mentioned in Section 3.4. This dependency of the runtime of the algorithm in the
form of p can be avoided by working in the formal algebra instead of factoring.
In fact, in more recent versions of our software, we implemented this and the
runtimes are slightly better for large �. Hence, this bias could be removed.

The last bias that we introduced is the particular shape of the 8- and 3-
torsion that we imposed. The goal was mostly to have the same kind of behav-
ior for all the curves with respect to the division by 2 and by 3. Indeed, the
division algorithms rely on Gröbner basis computations and are very hard to
implement and to debug. The technical difficulty of handling our computation
on many computers, with interactions between Magma and NTL led us to add
this simplification that made our code more reliable.

Our NTL implementation of the Schoof-like part has been made freely avail-
able [9]. The Magma implementation of the division algorithms is not stable
enough to be exported in the present state.

6 Conclusion and Perspectives

In this paper, we have detailed algorithms used to compute the cardinalities of
Jacobians defined over prime fields of order about 1024. Most of our attention was
aimed at improving the techniques for torsion computation introduced in [11].

We expect more improvements to be possible. For instance, for torsion index
about 17 or 19, the factorization strategy of Subsection 3.4 becomes lengthy,
and comparative tests with other strategies are necessary, possibly using the
modular equations of [12]. Also, our techniques for lifting the 3-torsion are still
quite crude, as we would like it to be as efficient as that of 2-torsion. We have
designed a birthday paradox version of the MCT algorithm, to be described
elsewhere [13], that loses a constant factor in runtime but is highly parallelizable
and requires almost no memory. In future work, we also plan to use it on top of
our torsion computation algorithms.

Acknowledgments. Many people have been of assistance when designing, im-
plementing and running our algorithms. We thank Gérard Guillerm and Bogdan
Tomchuk for letting classroom computers at École polytechnique at our disposal,
Grégoire Lecerf for his fast evaluation and interpolation code, Allan Steel for re-
leasing is HGCD implementation in Magma by our request, Nicolas M. Thiéry
for sharing his insight on symmetric polynomials and Emmanuel Thomé for his
help on handling large scale computations. The computations were performed on
classroom computers at École polytechnique, on the machines of the MEDICIS
center for computer algebra http://www.medicis.polytechnique.fr/, and on
machines paid by ACI Cryptologie.

Construction of Secure Random Curves of Genus 2 over Prime Fields 255

References

1. L. Adleman and M.-D. Huang. Counting points on curves and abelian varieties
over finite fields. J. Symbolic Comput., 32:171–189, 2001.

2. A. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polynomials at fixed sets of
points. SIAM J. Comput., 4(4):533–539, 1975.

3. W. Bosma and J. Cannon. Handbook of Magma functions, 1997.
http://www.maths.usyd.edu.au:8000/u/magma/.

4. A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation with two alge-
braic numbers. Technical Report 4579, INRIA, 2002.

5. A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coef-
ficients and computation of the Cartier-Manin operator on hyperelliptic curves.
2003. To appear in Proceedings Fq’7.

6. R. Brent and H. Kung. Fast algorithms for manipulating formal power series. J.
ACM, 25:581–595, 1978.

7. D. G. Cantor. Computing in the Jacobian of an hyperelliptic curve. Math. Comp.,
48(177):95–101, 1987.

8. D. G. Cantor. On the analogue of the division polynomials for hyperelliptic curves.
J. Reine Angew. Math., 447:91–145, 1994.

9. P. Gaudry. NTLJac2, Tools for genus 2 Jacobians in NTL.
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/NTLJac2/.

10. P. Gaudry and N. Gürel. Counting points in medium characteristic using Kedlaya’s
algorithm. To appear in Experiment. Math.

11. P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields.
In W. Bosma, editor, ANTS-IV, volume 1838 of Lecture Notes in Comput. Sci.,
pages 313–332. Springer–Verlag, 2000.

12. P. Gaudry and É. Schost. Modular equations for hyperelliptic curves. To appear
in Math. Comp.

13. P. Gaudry and Éric Schost. A low-memory parallel version of Matsuo, Chao and
Tsujii’s algorithm. To appear in ANTS VI.

14. G. Hanrot and F. Morain. Solvability of radicals from an algorithmic point of view.
In ISSAC’01, pages 175–182. ACM Press, 2001.

15. M. Hindry and J. Silverman. Diophantine geometry. An introduction, volume 201
of Graduate Texts in Mathematics. Springer–Verlag, 2000.

16. M.-D. Huang and D. Ierardi. Counting points on curves over finite fields. J.
Symbolic Comput., 25:1–21, 1998.

17. E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic ex-
tensions of finite fields. In W. Kuchlin, editor, ISSAC-97, pages 184–188. ACM
Press, 1997.

18. W. Kampkötter. Explizite Gleichungen für Jacobische Varietäten hyperelliptischer
Kurven. PhD thesis, Universität Gesamthochschule Essen, August 1991.

19. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves, 2003. Preprint.
20. R. Lercier and D. Lubicz. A quasi quadratic time algorithm for hyperelliptic curve

point counting. Preprint.
21. K. Matsuo, J. Chao, and S. Tsujii. An improved baby step giant step algorithm for

point counting of hyperelliptic curves over finite fields. In C. Fiecker and D. Kohel,
editors, ANTS-V, volume 2369 of Lecture Notes in Comput. Sci., pages 461–474.
Springer-Verlag, 2002.

22. A. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary introduction to hyper-
elliptic curves. In Algebraic aspects of cryptography, by N. Koblitz, pages 155–178,
Springer-Verlag, 1997.

256 Pierrick Gaudry and Éric Schost

23. J.-F. Mestre. Utilisation de l’AGM pour le calcul de E(F2n). Letter to Gaudry
and Harley, December 2000.

24. J. S. Milne. Abelian varieties. In G. Cornell and J. H. Silverman, editors, Arithmetic
Geometry, pages 103–150. Springer–Verlag, 1986.

25. J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosystems:
Closing the performance gap to elliptic curves. Preprint, 2003.

26. J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite
fields. Math. Comp., 55(192):745–763, October 1990.

27. R. Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Math. Comp., 44:483–494, 1985.

28. É. Schost. Complexity results for triangular sets. J. Symbolic Comput., 36:555–594,
2003.

29. V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl/.

30. V. Shoup. A new polynomial factorization algorithm and its implementation. J.
Symbolic Comput., 20:363–397, 1995.

31. F. Vercauteren. Computing Zeta functions of hyperelliptic curves over finite fields
of characteristic 2. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Comput. Sci., pages 369–384. Springer-Verlag,
2002.

32. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 1999.

33. J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring poly-
nomials. Comput. Complexity, 2:187–224, 1992.

34. A. Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography.
Math. Comp., 72:435–458, 2003.

Appendix: A Cryptographically Secure Curve

Let C be defined by y2 = f(x) over Fp with p = 5 × 1024 + 8503491, and

f(x) = x5 + 2682810822839355644900736x3 + 226591355295993102902116x2 +
2547674715952929717899918x+ 4797309959708489673059350.

Then its characteristic polynomial is χ(T) = T 4 − s1T
3 + s2T

2 − ps1T + p2,
where

s1 = 1173929286783 and s2 = 4402219446392186881834853.

Thus the cardinality of its Jacobian is

NJ = χ(1) = 24999999999994130438600999402209463966197516075699,

which is a 164-bit prime number. Furthermore the quadratic twist of C has a
Jacobian with group order

NJ̃ = χ(−1) = 25000000000005869731468829402229428962794965968171,

which is also a prime number.

	Introduction
	Generalities
	Computation Modulo a Small Prime $ell $
	Computation Modulo Small Prime Powers
	Implementation and Experiments
	Conclusion and Perspectives

