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CONSTRUCTION OF TAME SUPERCUSPIDAL
REPRESENTATIONS

JIU-KANG YU

Introduction

In this paper, we give a quite general construction of supercuspidal representa-
tions of p-adic groups. Let F be a non-archimedean local field and let F t be its
maximal tamely ramified extension. Let G be a connected reductive group over
F . To construct a supercuspidal representation, we start with a triple (~G, π0, ~φ),
where ~G = (G0, . . . , Gd) is a tower of algebraic subgroups of G,

G0 ( · · · ( Gd = G,

such that Z(G0)/Z(G) is anisotropic and each Gi ⊗ F t is split and is a Levi factor
of a parabolic subgroup of G ⊗ F t, π0 is a supercuspidal representation of G0(F )
with depth zero, and ~φ = (φ0, . . . , φd) is such that φi is a linear character of Gi(F )
for each i. The main result is

Theorem 0.1. Suppose that 0 < depth(φ0) < · · · < depth(φd) and φi is Gi+1-
generic for 0 ≤ i ≤ d − 1. Then we can construct an irreducible supercuspidal
representation π of G(F ) from the triple (~G, π0, ~φ). This supercuspidal represen-
tation is compactly induced from an open subgroup which is compact modulo the
center of G(F ).

The notion of depth is defined by Moy-Prasad [MP2]. The notion of a generic
character will be defined in §9. When G = GLn or G is the multiplicative group of
a central division algebra of dimension n2 with (n, p) = 1, our generic characters are
just the generic characters in [My] (where the definition is due to Kutzko). More-
over, in these cases, our construction literally specializes to Howe’s construction as
formulated in [My], and it is known that the construction yields all supercuspidal
representations ([My], [HM]).

Notice that the initial datum in our construction consists of very simple objects:
linear characters and supercuspidal representations of depth zero. The latter are
well understood by the work of Moy, Prasad, and Morris (see §3).

By the work of Howe, irreducible supercuspidal representations of GLn(F )
with (n, p) = 1 are parametrized by certain characters of E∗ as E varies through

Received by the editors August 30, 1999 and, in revised form, November 13, 2000.
2000 Mathematics Subject Classification. Primary 22E50, 11F70; Secondary 20G25.
Key words and phrases. Supercuspidal representation, Hecke algebra.
The author was supported in part by grant DMS 9801633 from the National Science

Foundation.

c©2001 American Mathematical Society

579

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



580 JIU-KANG YU

extensions over F of degree n. Notice that such an E∗ is a maximal torus of
GLn(F ). If D is a central division algebra of dimension n2 over F with (n, p) = 1,
irreducible (supercuspidal) representations of D∗ are parametrized by certain char-
acters of E∗ as E varies through extensions over F of degree dividing n. After
the work of Howe, several authors have been attempting to construct supercuspi-
dal representations from characters of a (not necessarily maximal) torus which is
compact (modulo center). But in view of the local Langlands conjecture, it is more
natural to consider linear characters of the centralizer of such a torus. This is the
point of view of our approach.

The adjective “tame” in the title refers to the tamely ramified nature of our
construction. Howe called the supercuspidal representations he constructed for
GLn with (n, p) = 1 “tamely ramified supercuspidal representations”. Today it
seems more appropriate to reserve “tamely ramified representations” for “depth
0 representations” and it is customary to simply refer to the case considered by
Howe as “the tame case”. Howe’s method actually produces some supercuspidal
representations for GLn for any n, but it exhausts all supercuspidal representations
only when (n, p) = 1. The Langlands parameters of supercuspidal representations
constructed by Howe’s method should be the tame ones, as defined by Koch and
Zink [KZ].

Similarly our method produces some supercuspidal representations for every p-
adic reductive group which splits over F t, and they should correspond to “tame”
Langlands parameters. At this time it is not clear how one can define “tameness”
in terms of the representations themselves. But it is possible that our method
yields all supercuspidal representations that deserve to be called “tame”. For re-
ductive groups of a fixed type (i.e. associated to a fixed root datum in the sense
of [Sp]), all supercuspidal representations of groups of that type should be “tame”
when p is large enough. In particular, our method should yield all supercuspidal
representations when p is large enough relative to the type of G.

Our construction has a very nice inductive structure: from the datum (~G, π0, ~φ),
we actually get an irreducible supercuspidal representation πi on each member Gi

of the tower ~G. Therefore, it is very possible that these representations can be ana-
lyzed by using Hecke algebra isomorphisms as done by Howe-Moy [HM] for the case
of GLn. The required Hecke algebra isomorphisms are given in a conjectural form
in §17. In fact, the conjecture puts the current work into a much wider perspective:
it implies that there is a natural bijection between certain representations of Gi

and certain representations of Gi+1, sending πi to πi+1. Moreover, these Hecke
algebra isomorphisms can be used to study and classify all irreducible admissible
representations, as in [HM]. This paper is written with this goal in mind.

A well-known folklore conjecture says that every supercuspidal representation π
of G is compactly induced from some (K, ρ), where K is compact modulo center
and ρ is a representation of K. Moy, Prasad, and Morris ([MP2], [Mo1]) have shown
that the depth zero representation π0 is compactly induced from some (K0, ρ0). As
stated in the main theorem, our π = π(~G, π0, ~φ) is compactly induced from certain
(K, ρ) constructed out of (K0, ρ0) and other data. Moreover, the following should
be true:

Conjecture 0.2. There is a support-preserving algebra isomorphism

Ȟ(G(F ), ρ) ' Ȟ(G0(F ), ρ0).
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It can be shown that there is a support-preserving vector space isomorphism
(cf. Corollary 15.5). Notice that Ȟ(G0(F ), ρ0) is the Hecke algebra of a type of
depth 0 (see [BK2] for the theory of types). Lusztig and Kazhdan-Lusztig (see
e.g. [L]) have made very deep studies of such Hecke algebras and their representa-
tion theory in many important cases. Morris [Mo4] has calculated generators and
relations of such a Hecke algebra. The above conjecture implies that these Hecke
algebras also control the representation theory of types of positive depth.

As mentioned before, for GLn our theory specializes to Howe’s theory, and can
be expressed simply in terms of arithmetic of extensions of F . It is quite easy
to do the same for all classical groups. We will treat this in another paper. A
recent work of Julee Kim [Ki] also constructs supercuspidal representations of some
classical groups, with more restrictions on the base field. It seems that all her
representations can be obtained by our method, though we have not made a careful
comparison.

We now give more technical comments about the contents.
The tameness condition is used in several places: (i) in Proposition 2.2 and

Proposition 13.4, it is used to ensure the vanishing of a Galois cohomology, which
is very important in this paper; (ii) it is used in §2 to ensure that our theory
is non-empty; (iii) it simplifies the formulations in the case of classical groups.
The usage in (iii) is not crucial. The usage in (ii) can be by-passed by other
arguments in many wild cases. The usage in (i) presents more serious difficulties for
generalizations. However, the real difficulty in the “wild” case is that considerably
different constructions should be involved—as revealed in the GLn case by the work
of Bushnell, Corwin, and Kutzko ([BK1], [Co]).

Though minimal K-types are not explicitly used in this paper, the overwhelming
influence of the work of Moy and Prasad should be obvious. We also rely heavily
on Bruhat-Tits theory throughout the paper, in particular, the theory of concave
functions and their associated groups.

The basic ideas of the construction and the proof of supercuspidality are quite
simple and are presented in §4 in an axiomatic way. This construction has also been
considered by Adler independently and the main theorem in §15 was known to him
in special cases (private communication). The basic strategy of §4 has been used
in many works in the literature. But the argument is incomplete in some papers.
The crucial condition SC3 is an important key to complete the argument.

The central notion of the construction is that of generic characters and their in-
tertwining properties. These properties should be applicable to study all irreducible
admissible representations, though we concentrate on the supercuspidal ones in this
paper. The first intertwining property (see SC1 in §4 and Theorem 9.4) is now
quite standard, and a large part of the proof can be found in the works of Adler and
Roche (and can be traced back to the works of Howe and Moy). What is new here
is that we use the dual Lie algebra throughout. This is more natural and enables
us to relax the restriction on the residual characteristic (see Proposition 7.3 and
Lemma 8.1).

The second intertwining property (see SC2 in §4 and Theorem 11.5) involves
representations of Heisenberg groups and groups acting on Heisenberg groups. Here
we need to lift a natural projective representation to an ordinary representation.
One can find two approaches to this problem in the literature: either by showing
that the obstruction for lifting vanishes, or by saying “from the theory of Weil
representations, we can lift the representation”. The second approach has the
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advantage of singling out a canonically defined lifting. However, most authors
have not properly justified their usage of the second approach. See §10 for more
discussion of this problem and §11 for our solution to this problem.

The third intertwining property (see SC3 in §4 and Theorem 14.2) is a very
rigid and pleasant property of generic characters, and it is most difficult to prove.
Our approach, presented in §12, §13, and §14, is partly inspired by Howe’s paper
[Ho]. In proving this property, it is very important to have precise control of the
lifting constructed in SC2.

We complete the proof of the main theorem in §15. In §17, we give a general
Hecke algebra isomorphism associated to certain generic characters. This gener-
alizes Howe-Moy’s Hecke algebra isomorphism for “separated minimal K-types of
tame GLn” in [HM], and gives a criterion of non-supercuspidality. We conjecture
that a similar isomorphism exists for every generic character. In the most general
case, we can show that there is a support-preserving vector space isomorphism.

J. Adler’s paper [Ad] has been very useful and inspiring for me during the devel-
opment of this work. The notion of generic elements in this paper is a modification
of his notion of good elements. I would like to thank him for making the paper
available to me before its publication and for answering several of my questions. I
also thank J. Adler, S. Debacker, and G. Prasad for their careful reading of a draft
of this paper and numerous suggestions, and R. Howe, W.T. Gan, B.H. Gross, F.
Murnaghan, P. Sally, and G. Savin for their interest and comments on this work.

Notation and conventions

Let F be a non-archimedean local field of residual characteristic p, and let F̄ be
a fixed algebraic closure of F . We make no assumption on the value group of the
valuation ord: F → R∪ {∞}. However, subextensions of F̄ /F are always endowed
with the valuation extending the valuation ord on F .

All algebraic groups are assumed to be smooth. If G is a linear algebraic group
over F , we denote by G◦ the identity component of G, ZG the center of G, DG the
derived group of G, LieG the Lie algebra of G, and Lie∗G the dual of LieG. We
often denote LieG and Lie∗G by the corresponding German letters, i.e. g and g∗.
They are vector spaces over F . We often write g(E) for g⊗F E = Lie(G⊗F E).

Suppose that G is reductive. We denote by B(G,F ) the enlarged Bruhat-Tits
building of G over F . Recall that the enlarged building is the direct product
of the reduced building by a real affine space. For any point y in the enlarged
building, we denote by [y] the projection of y on the reduced building, and by
G(F )y (resp. G(F )[y]) the subgroup of G(F ) fixing y (resp. [y]). Following Moy-
Prasad [MP2], we let G(F )y,0 denote the (connected) parahoric subgroup associated
with y.

For any finite extension E of F , let (E)r = {x ∈ E : ord(x) ≥ r} for all
r ∈ R, (E)+ =

⋃
r>0(E)r, and OE = (E)0. Similarly, we put (E×)0 = O×E,

(E×)r = 1 + (E)r for r > 0, and (E×)+ =
⋃
r>0(E∗)r.

We choose once and for all an additive character Ψ of F which is trivial on (F )+

and non-trivial on (F )0.
Suppose that K is a subgroup of a group G, and g ∈ G. We denote gKg−1 by

gK, and gK∩K by g∩K. If ρ is a complex representation ofK, gρ denotes the repre-
sentation x 7→ ρ(g−1xg) of gK, and Ig(ρ) denotes the vector space Homg∩K(gρ, ρ).
If Ig(ρ) is non-zero, we say that g intertwines ρ.
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We use 1 to denote the trivial representation. Therefore, a representation is
1-isotypic if and only if the group acts trivially on the underlying vector space.

1. Results from Bruhat-Tits theory: The split case

Assume that E is a finite extension of F and G is a split connected reductive
group over E.

Let T be a maximal E-split torus of G, and let Φ = Φ(G, T,E) be the corre-
sponding root system. For each a ∈ Φ, let Ga be the root subgroup corresponding
to a. Choose a base ∆ ⊂ Φ. For each subset I ⊂ ∆, let TI be the identity compo-
nent of

⋂
a∈I ker a, and let GI be the centralizer of TI . Then GI is a Levi subgroup

of a parabolic subgroup of G, and the center of GI has identity component TI .
Clearly, if I ⊂ J , then TI ⊃ TJ and GI ⊂ GJ . The root system ΦI = Φ(GI , T, E)
is a subset of Φ and consists of precisely those roots in Φ which are integral linear
combinations of elements of I.

Now suppose that we have a sequence of subsets of ∆:

∅ ⊆ I0 ( I1 ( · · · ( Id = ∆,

and suppose that Gi = GIi are the corresponding groups, so

T ⊆ G0 ( G1 ( · · · ( Gd = G.

In the sequel, most constructions depend only on ~G = (G0, . . . , Gd) and the choice
of (T,∆) is irrelevant (though occasionally a construction may appear to depend
on the choice of T ). We call the datum ~G a split Levi sequence in G.

Put Φi = ΦIi ∪ {0} = Φ(Gi, T, E) ∪ {0} so that {0} ⊆ Φ0 ( Φ1 ( · · · ( Φd =
Φ ∪ {0}. For each a ∈ Φd, let Ga be the root subgroup of G corresponding to a if
a 6= 0, and Ga = T if a = 0. Let g(E) be the Lie algebra of G, and let g∗(E) be
the dual of g(E). For each a ∈ Φd, let ga(E) (resp. g∗a(E)) be the a-eigenspace of
g(E) (resp. g∗(E)) as a rational representation of T . Then ga(E) is the Lie algebra
of Ga, and g∗a(E) is the dual of g−a(E).

We refer the reader to [BT1, 6.4.1] for the definition of R̃ = R ∪ {r+ : r ∈
R} ∪ {∞}. We reproduce the following definition from [BT1, 6.4.3]: an R̃-valued
function f on Φ ∪ {0} is called concave if for any non-empty finite family (ai) of
elements in Φ ∪ {0} such that

∑
i ai ∈ Φ ∪ {0}, we have

f
(∑

i

ai

)
≤
∑
i

f(ai).

Lemma 1.1. Suppose that f is an R̃-valued function on Φ ∪ {0} such that 0 ≤
1
2f(0) ≤ f(a) for all a ∈ Φ. Then f is concave if and only if f(a+ b) ≤ f(a) + f(b)
for all a, b, a+ b ∈ Φ.

Proof. The “only if” part is obvious from the definition.
Let (ai) be a non-empty sequence of elements in Φ ∪ {0} such that a =

∑
ai is

also in Φ ∪ {0}. We have to show that f(a) ≤
∑
f(ai).

If a 6= 0, then f(a) ≤
∑

ai 6=0 f(ai) by [BT1, 6.4.5], therefore, f(a) ≤
∑
f(ai).

If a = 0, the inequality f(a) ≤
∑
f(ai) is obvious.

Consider a sequence ~r = (r0, . . . , rd) of elements in R̃ for which there exists
ν ∈ Z so that 0 ≤ ν ≤ d and

0 ≤ r0 = · · · = rν ,
1
2
rν ≤ rν+1 ≤ · · · ≤ rd.
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We call such a sequence admissible. Define f = f~r : Φd → R̃ as follows: f(a) = r0
if a ∈ Φ0, f(a) = rk if a ∈ Φk r Φk−1, 1 ≤ k ≤ d.

Lemma 1.2. If ~r is admissible, the function f~r is concave.

Proof. We apply the preceding lemma. Suppose that a, b, a + b ∈ Φd r {0}. Let
j = min{j : a ∈ Φj}, k = min{k : b ∈ Φk}. We may assume that j ≥ k. Then
a+ b ∈ Φj and hence f(a+ b) ≤ max(rj , r0) ≤ rj + rk = f(a) + f(b).

Let y be in the apartment A(G, T,E) ⊂ B(G,E). Recall that y determines
filtration subgroups {Ga(E)y,r}r∈R̃,r≥0 of Ga(E), lattices {ga(E)y,r}r∈R̃ in ga(E),
and lattices {g∗a(E)y,r}r∈R̃ in g∗a(E)y,r, for each a ∈ Φd. If a 6= 0, the filtration of
Ga(E) can be extended to a filtration {Ga(E)y,r}r∈R̃ indexed by the whole of R̃.

For any R̃-valued function f on Φd such that f(0) ≥ 0, let G(E)y,f be the sub-
group generated by Ga(E)y,f(a) for all a ∈ Φd, and let g(E)y,f (resp. g∗(E)y,f )
be the lattice generated by ga(E)y,f(a) (resp. g∗a(E)y,f(a)) for all a ∈ Φd. We will
denote Gy,f~r by ~G(E)y,~r and g(E)y,f~r (resp. g∗(E)y,f~r ) by ~g(E)y,~r (resp. ~g∗(E)y,~r).
The notation is chosen to remind ourselves that ~G(E)y,~r depends on (~G, y, ~r). No-
tice that ~G(E)y,~r is just an open subgroup of G(E), not a sequence of groups.

Here is an alternative description of the lattices. Let V be g(E) or g∗(E).
Then V is the direct sum of its a-eigenspaces Va, a ∈ Φd. Let V 0 =

∑
a∈Φ0

Va,
V i =

∑
a∈ΦirΦi−1

Va for i ≥ 1. Since each Va is equipped with a filtration
{Va,y,r} (defined in [MP1], [MP2]), each V i is equipped with a filtration {V iy,r =∑
a∈ΦirΦi−1

Va,y,r}. The lattice Vy,~r is simply V 0
y,r0 ⊕ · · · ⊕ V dy,rd .

Let ~r, ~s be two admissible sequences of elements in R̃. We write ~r < ~s (resp. ~r ≤
~s ) if ri < si (resp. ri ≤ si) for 0 ≤ i ≤ d.

To simplify the notation, we put
~G(E)y,~r:~s = ~G(E)y,~r/ ~G(E)y,~s and ~g(E)y,~r:~s = ~g(E)y,~r/~g(E)y,~s,

whenever ~r ≤ ~s.
Lemma 1.3. If ~r, ~s are two admissible sequences such that

0 < ri ≤ si ≤ min(ri, . . . , rd) + min(~r ) for 0 ≤ i ≤ d,
then ~G(E)y,~r:~s is abelian and isomorphic to ~g(E)y,~r:~s.

Proof. First notice that ~G(E)y,~s is a normal subgroup of ~G(E)y,~r by the preceding
lemma. To show that the quotient is abelian, it suffices to show that the commu-
tator subgroup of ~G(E)y,~r is contained in ~G(E)y,~s. This will be a consequence of
[BT1, 6.4.44]. To verify the hypothesis there, assume that (ai), (bj) are non-empty
sequences of elements in Φ∪ {0} such that c =

∑
ai +

∑
bj ∈ Φ∪ {0}. We need to

show that f~s(c) ≤
∑
f~r(ai) +

∑
f~r(bj).

Let k = min{k : c ∈ Φk}, so f~s(c) = sk. If k = 0, the desired inequality is clear.
If k > 0, then either there is some i0 such that ai0 /∈ Φk−1 or there is some j0 such
that bj0 /∈ Φk−1. Therefore, either f~r(ai0) or f~r(bj0) is greater than or equal to
min(rk, . . . , rd) ≥ f~s(c)−min(~r ). Since f~r(bj) and f~r(ai) are always greater than
or equal to min(~r ), the desired inequality always holds.

The second statement follows from the first statement and [BT1, 6.4.48].

We now discuss the dependence on T . Since the definitions of ~G(E)y,~r, etc.
apparently depend on T , we temporarily use a subscript T on the left to indicate

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTION OF TAME SUPERCUSPIDAL REPRESENTATIONS 585

this dependence, for example, T ~G(E)y,~r. We have assumed that y ∈ A(G, T,E) ⊂
B(G,E). Therefore, y determines a valuation of the root datum of (G, T,E) in
the sense of [BT1]. This valuation restricted on the root datum of (Gi, T, E),
is a valuation there. Therefore, it determines a point yi = T yi in A(Gi, T, E)
modulo the action of X∗(Z(Gi), E) ⊗ R. A choice of yi determines an embedding
ji = T ji : B(Gi, E)→ B(G,E) which is Gi(E)-equivariant and maps yi to y.

Now suppose that T ′ is another maximal E-split torus of G0 such that y ∈
A(G, T ′, E). Then T y0 ∈ T j

−1
0 A(G, T ′, E) = A(G0, T ′, E). Therefore, there exists

g ∈ G0(E) such that g.(T y0) = T y0, g.y = y, and T ′ = gTg−1. Now it is easy
to see that T ′y0 = g.(T y0) = T y0 and T ′

~G(E)y,~r = g
(
T
~G(E)y,~r

)
g−1 = T

~G(E)y,~r.
Therefore, ~G(E)y,~r is independent of the choice of T .

Similarly we can show that ~g(E)y,r, ~g∗(E)y,r are independent of T , and the
isomorphism ~G(E)y,~r:~s → ~g(E)y,~r:~s in Lemma 1.3 is independent of T (cf. [Ad,
1.6.6]).

If ~G = (G0), G0 = G, then ~G(E)y,~r is simply the Moy-Prasad group G(E)y,r0
(see [MP1], [MP2]). When ~r is increasing, we can relate the more general ~G(E)y,~r
to the Moy-Prasad groups as follows.

Lemma 1.4. If ~r is an admissible increasing sequence, we have

~G(E)y,~r = G0(E)y,r0G
1(E)y,r1 . . .G

d(E)y,rd .

Here we abuse notation and identify B(Gi, E) with its image in B(G,E) under
ji, hence we identify yi with y.

Proof. Inductively, we show that G0(E)y,r0 . . . G
i(E)y,ri is a group. This is clear for

i = 0. For i > 0, G0(E)y,r0 . . .Gi−1(E)y,ri−1 is a group by our induction hypoth-
esis. It is clearly a subgroup of Gi(E)y,0. Since Gi(E)y,0 normalizes G0(F )y,r0 · · ·
Gi−1(E)y,ri−1 , we see that G0(E)y,r0 . . . Gi−1(E)y,ri−1G

i(E)y,ri is a group.
It is clear that G0(E)y,r0 . . .Gd(E)y,rd is generated by Ga(E)y,f~r(a) for all a ∈

Φd.

It is possible to use more general ~r to construct concave functions. However, the
admissible sequences are enough for our purpose. In fact, we only need two cases:
either ~r is increasing, or d = 1 and ~r = (r0, r1) satisfies r0/2 ≤ r1.

2. Bruhat-Tits theory: The general case

Let G be a connected reductive group over F , and let S be a maximal F -split
torus of G. Let S1 be a torus of G, defined over F , such that S1 ⊃ S and S1 ⊗ F1

is a maximal F1-split torus of G, where F1 is the maximal unramified extension of
G. Such a torus exists by [BT2, 5.1.12]. Let T1 be the centralizer of S1. Then T1

is a maximal torus of G because G is quasi-split over F1.

Lemma 2.1. The following conditions are equivalent:

(i) There exists a tamely ramified extension E/F such that G⊗ E is split.
(ii) The splitting field E1 of T1 is tamely ramified over F .

Suppose that these two conditions hold. If E/F is such that G ⊗ E is split, then
E1F1 ⊂ EF1.
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Proof. It is clear that (ii) implies (i).
Assume (i). We may and do assume that E ⊃ F1. Then there exists a maximal

E-split torus T of G⊗E containing S1 ⊗E. Such a torus is certainly contained in
the centralizer T1 of S1, hence is equal to T1⊗E. Therefore, the splitting field E1 of
T1, being a subfield of E, is tamely ramified. Thus we have E1F1 ⊂ E = EF1.

We shall say that G is tamely ramified if the two equivalent conditions in the
preceding lemma hold. The following observation will be useful later (§13): if G is
tamely ramified, for any apartment A(G,S, F ) of B(G,F ), there is a maximal torus
T which is split over a tamely ramified extension E, and A(G,S, F ) ⊂ A(G, T,E).
In fact, we can simply take T = T1 and apply a result of Rousseau ([Ti, 2.6.1]).

Consider a sequence of reductive subgroups T ⊆ G0 ( G1 ( · · · ( Gd = G in G.
We say that ~G = (G0, . . . , Gd) is a twisted Levi sequence in G if there is a finite
extension E/F such that G0 ⊗ E is split, and ~G⊗ E = (G0 ⊗ E, . . . , Gd ⊗ E) is a
split Levi sequence in G ⊗ E (in the sense of §1). We call such an extension E a
splitting field of ~G. If there is a splitting field E of ~G which is Galois and tamely
ramified, we say that the twisted Levi sequence ~G is tamely ramified.

Suppose that ~G is a twisted Levi sequence in G and T is a maximal torus
of G0 such that T ⊗ E is split. Then A(G, T,E) and B(G,F ) are both subsets
of B(G,E). We put A(G, T, F ) = A(G, T,E) ∩ B(G,F ). Notice that if E′ is
an extension of E, then A(G, T,E) = A(G, T,E′) in B(G,E′). Therefore, the
definition of A(G, T, F ) does not depend on the splitting field E. It is possible that
A(G, T, F ) is empty. However, if T (hence ~G) has a tamely ramified Galois splitting
field E, then Gal(E/F ) acts on A(G, T,E) by affine automorphisms. The center of
mass of a Gal(E/F )-orbit in A(G, T,E) is certainly fixed by Gal(E/F ), and is a
point of A(G, T, F ) by a result of Rousseau ([Ti, 2.6.1]; a simple proof of this result
of Rousseau has been provided by G. Prasad [P]). This observation has been used
by Adler in [Ad].

Let y ∈ A(G, T, F ), and let ~r be an (R̃-valued) admissible sequence of length
d + 1. Then we can consider ~G(E)y,~r as defined in the preceding section. We
define ~G(F )y,~r to be ~G(E)y,~r ∩ G(F ). If E′ is an extension of E, then we have
~G(E′)y,~r ∩ G(E) = ~G(E)y,~r. Therefore, the definition of ~G(F )y,~r does not depend
on the choice of E. If E/F is Galois, then it is easy to see that ~G(E)y,~r is Galois
stable. Also, we can say that ~G(F )y,~r is the group of Galois-fixed elements in
~G(E)y,~r.

The lattices ~g(F )y,~r and ~g∗(F )y,~r are defined in the same fashion. Again we
define ~G(F )y,~r:~s = ~G(F )y,~r/ ~G(F )y,~s and define ~g(F )y,~r:~s, ~g∗(F )y,~r:~s similarly. The
quotient ~G(F )y,~r:~s is abelian if 0 < ~r ≤ ~s and si ≤ min(ri, . . . , rd) + min(~r ) for all
i.

We would like to obtain results similar to those for split groups, at least when
the twisted Levi sequence is tamely ramified.

In the statements of the following results, we are not assuming that E/F is a
splitting field of ~G. However, for the rest of this section, we assume that ~G is tamely
ramified.

Proposition 2.2. If E/F is Galois and tamely ramified, and ~s > 0, then

H1(Gal(E/F ), ~G(E)y,~s) and H1(Gal(E/F ),~g(E)y,~s)

are trivial.
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Corollary 2.3. If E/F is Galois and tamely ramified, 0 ≤ ~r ≤ ~s, and ~s > 0, then
the natural homomorphisms

~G(F )y,~r →
(
~G(E)y,~r:~s

)Gal(E/F )

and

~g(F )y,~r →
(
~g(E)y,~r:~s

)Gal(E/F )

are surjective.

Corollary 2.4. If 0 < ~r ≤ ~s, si ≤ min(ri, . . . , rd) + min(~r ) for all i, and E/F

is a splitting field of ~G which is Galois and tamely ramified, then the isomorphism
~G(E)y,~r:~s → ~g(E)y,~r:~s induces an isomorphism

~G(F )y,~r:~s → ~g(F )y,~r:~s.

Proof. The isomorphism ~G(E)y,~r:~s → ~g(E)y,~r:~s is Gal(E/F )-equivariant. There-
fore, it restricts to an isomorphism on the Gal(E/F )-fixed subgroups. By the pre-
ceding corollary, the group of Gal(E/F )-fixed points in ~G(E)y,~r:~s (resp. ~g(E)y,~r:~s)
is precisely ~G(F )y,~r:~s (resp. ~g(F )y,~r:~s).

To prove the proposition, we need a few lemmas. The first two are general facts
about the vanishing of H1 (see [Se]).

Lemma 2.5. Suppose that 1 → A → B → C → 1 is an exact sequence of
Gal(E/F )-groups. If H1(Gal(E/F ), A) and H1(Gal(E/F ), C) are both trivial, then
H1(Gal(E/F ), B) is also trivial.

Lemma 2.6. Let N/F be the maximal unramified subextension of E/F . Then we
have an exact sequence 1 → Gal(E/N) → Gal(E/F ) → Gal(N/F ) → 1 of Galois
groups and an exact sequence of cohomology sets

1→ H1(Gal(N/F ), AGal(E/N))→ H1(Gal(E/F ), A)→ H1(Gal(E/N), A),

where A is any topological group on which Gal(E/F ) acts.

Therefore, in order to prove that H1(Gal(E/F ), A) (where A = ~G(E)y,~s) is triv-
ial, it suffices to show that H1(Gal(N/F ), AGal(E/N)) = H1(Gal(N/F ), G(N)y,~s)
and H1(Gal(E/N), A) are trivial. That is, it suffices to prove the statement when
E/F is unramified, and to prove it when E/F is tamely and totally ramified.

Lemma 2.7. Suppose that 0 < ~r ≤ ~s, si ≤ min(ri, . . . , rd) + min(~r ) for all i. If
E/F is Galois and tamely ramified, then

H1(Gal(E/F ), ~G(E)y,~r:~s) = 0 and H1(Gal(E/F ),~g(E)y,~r:~s) = 0.

Lemma 2.8. Suppose that {Ai}i≥0 is a decreasing sequence of Gal(E/F )-groups
such that each Ai is normal in A0 and A0 is the inverse limit of A0/Ai. If
H1(Gal(E/F ), A0/Ai) is trivial for all i, then H1(Gal(E/F ), A0) is trivial.

Proof. Let Γ = Gal(E/F ), and let (aγ)γ∈Γ be a 1-cocycle with value in A0.
Then we can find b0 ∈ A0 such that

(
b−1
0 aγγ(b0)

)
γ∈Γ

is a 1-cocycle with value
in A1. Proceeding inductively, we can find bi ∈ A0 such that bi ≡ bi−1 modulo
Ai and

(
b−1
i aγγ(bi)

)
γ∈Γ

is a 1-cocycle with value in Ai+1. Let b = lim bi; then(
b−1aγγ(b)

)
γ∈Γ

is the trivial 1-cocycle. This proves the lemma.
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Before proving Lemma 2.7, we show that Proposition 2.2 follows from Lem-
mas 2.5–2.8. By Lemma 2.5 and Lemma 2.7, we easily see that

H1(Gal(E/F ), ~G(E)y,~r:~s)

is trivial for all 0 < ~r ≤ ~s. Now the proposition follows by applying Lemma 2.8
with Ai = ~G(E)y,~s+i, where ~s+ i is the sequence (r0 + i, r1 + i, . . . , rd + i).

We first prove Lemma 2.7 when E/F is tamely and totally ramified. The coho-
mology groups in question are abelian groups killed by a power of p and also by
the order of Gal(E/F ), which is prime to p. Therefore, they are zero.

Now assume that E is actually a splitting field of ~G, and N/F is the maximal
unramified subextension of E/F . By the special case of Lemma 2.7 (and also of the
proposition and its corollaries) that we just proved, we now know that ~G(N)y,~r:~s
is isomorphic to ~g(N)y,~r:~s, the isomorphism is Gal(N/F )-equivariant, and the two
groups are precisely the subgroups of ~G(E)y,~r:~s and ~g(E)y,~r:~s fixed by Gal(E/N).
By Lemma 2.6, to finish the proof of Lemma 2.7 (in the case that E is a splitting
field), it suffices to show that H1(Gal(N/F ),~g(N)y,~r:~s) = 0. This is a consequence
of the following lemma.

Lemma 2.9. If N/F is unramified, V is an F -vector space, and L ⊃ M are
Gal(N/F )-stable lattices in V ⊗N , then

H1(Gal(N/F ), L/M) = 0.

Proof. A Gal(N/F )-stable lattice L is necessarily of the form L0 ⊗OF ON : this is
a simple consequence of the fact that H1(Gal(N/F ),GLn(ON )) = 0, which is a
simple consequence of Hilbert’s theorem 90 over the residue field.

Let L0,M0 be lattices in V such that L0⊗OF ON = L, M0⊗OF ON = M . We can
find a sequence of lattices L0 ⊃ L1 ⊃ . . . ⊃ Lk = M0 in V such that πFLi ⊂ Li+1.
By Lemma 2.5, it suffices to prove that H1(Gal(N/F ), (Li ⊗OF ON )/(Li+1 ⊗OF

ON)) = 0 for all i. This is again just the (additive) Hilbert’s theorem 90 over the
residue field. The lemma is proved.

Now Lemma 2.7 (and the proposition and its corollaries) is proved when E/F is
a splitting field of ~G. For a general (Galois and tamely ramified) extension E/F , let
N/F again be the maximal unramified subextension of E/F . Lemma 2.6 tells us
that in order to prove Lemma 2.7, we only have to prove (i) H1(Gal(E/N), A) = 0,
and (ii) H1(Gal(N/F ), AGal(E/N)) = 0, where A is either ~G(E)y,~r:~s or ~g(E)y,~r:~s.

We have proved (i) in all cases. From this and the case we have already handled,
we now know that AGal(E/N) is isomorphic to ~g(N)y,~r:~s. Therefore, (ii) follows from
Lemma 2.9 again. This concludes the proof of Lemma 2.7 and of the proposition.

If d = 0, G0 = G, and r0 = r > 0, then ~G(F )y,~r is simply Moy-Prasad’s G(F )y,r
by [Ad]. In general, G(E)y,0∩G(F ), G(F )y,0, G(F )y, and G(F )[y] are all different.
Again we have the following relation, which is not needed in the sequel.

Lemma 2.10. If ~G is tamely ramified and ~r is increasing with r0 > 0, we have
~G(F )y,~r = G0(F )y,r0G

1(F )y,r1 . . . G
d(F )y,rd .

Remark 2.11. Again we need to explain the notation. We have assumed that y ∈
B(G,F )∩A(G, T,E), where E/F is Galois and tamely ramified, and T is a maximal
torus of G0 over F such that T ⊗E is split. Therefore, y determines a point yi on
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A(Gi, T, E) modulo the action of X∗(Z(Gi), E)⊗R as before. We may assume that
yi is fixed by Gal(E/F ) (first choose any yi, then replace it by the center of mass of
its Gal(E/F )-orbit). Then yi is a point on B(Gi, F ) by a result of Rousseau. The
embedding ji : B(Gi, E)→ B(G,E), ji(yi) = y, is Galois equivariant, hence induces
an embedding B(Gi, F ) → B(G,F ) (again by the result of Rousseau). Again we
identify B(Gi, F ) with its image in B(G,F ). Therefore, we identify yi with y.

We now prove the lemma. As in Lemma 1.4, we see that the product in the
statement of the proposition is a group. First we notice that the proposition is
known if ~G is split or if d = 0. We now perform an induction on d.

Define ~G′ = (G1, . . . , Gd), ~s = (r1, . . . , rd). Now let g ∈ ~G(E)y,~r ∩G(F ). Then
the image of g in

~G(E)y,~r/ ~G′(E)y,~s = G0(E)y,r0/G
0(E)y,r1

is fixed by Gal(E/F ). Therefore, we can find g0 ∈ G0(F )y,r0 such that g−1
0 g is

in ~G′(E)y,~s by Corollary 2.3 (we may assume that r1 > 0 without any loss of
generality). Clearly, g−1

0 g is also in G(F ), hence g−1
0 g is in

∏d
i=1G

i(F )y,ri by the
induction hypothesis. Finally, we get g = g0(g−1

0 g) is in
∏d
i=0G

i(F )y,ri . This
completes the proof.

3. The datum

We first recall the following fundamental result about depth zero supercuspidal
representations, which is due to Moy and Prasad [MP2] and independently to Morris
[Mo1].

Theorem 3.1. Let π be an irreducible supercuspidal representation of G(F ) such
that the depth of π is zero. Then there exists a maximal parahoric subgroup G(F )y,0
such that π is compactly induced from a representation ρ of the normalizer of
G(F )y,0 such that ρ|G(F )y,0+ is 1-isotypic.

Remark 3.2. In the statement above, we used Moy-Prasad’s notation that G(F )y,0
is the (connected) parahoric subgroup associated to y, as introduced before §1. We
caution the reader that there is a slight conflict of notation here: G(F )y,0 is in
general different from ~G(F )y,~r with ~r = (0, . . . , 0), even if d = 0. Since it is always
the parahoric subgroup that is more interesting to us, we now make the convention
that G(F )y,0 always means the parahoric subgroup.

Lemma 3.3. Assume the notation of the theorem.
(i) The normalizer of G(F )y,0 is equal to G(F )[y], the fixer of [y] under the action

of G(F ) on the reduced building of G.
(ii) If π is also compactly induced from a representation ρ′ of G(F )[y′], with

ρ′|G(F )y′,0+ being 1-isotypic, then [y′] = g.[y] for some g ∈ G(F ).

Proof. (i) If gG(F )y,0g−1 = G(F )g.y,0 is equal to G(F )y,0, then g.[y] = [y] by [BT2,
the proof of 5.2.8].

(ii) Then π contains an unrefined minimal K-type of the form (G(F )y,0, χ) and
another of the form (G(F )y′,0, χ′). By [MP1], this implies that there exists g ∈
G(F ) such that G(F )y′,0 ∩G(F )g.y,0 maps surjectively onto both G(F )y′,0:0+ and
G(F )g.y,0:0+. But if [y′] 6= g.[y], then G(F )y′,0 ∩ G(F )g.y,0 lies in a non-maximal
parahoric subgroup, and cannot map surjectively onto G(F )y′,0:0+.

Therefore, we must have [y′] = g.[y] and (ii) is proved.
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As mentioned in the introduction, the datum we shall use to construct a super-
cuspidal representation is a triple (~G, π0, ~φ). But it will be convenient to work with
a 5-tuple (~G, y, ~r, ρ, ~φ) instead for a while. We now explain the meaning of this
5-tuple. Later (Remark 3.7 and Theorem 15.7 in §15) we will show how the 5-tuple
determines a triple, and that the construction only depends on the triple.

D1 ~G is a tamely ramified twisted Levi sequence ~G = (G0, . . . , Gd) in G; we
assume that Z(G0)/Z(G) is anisotropic;

D2 y is a point in B(G,F ) ∩A(G, T,E), where T is a maximal torus of G0, and
E is a Galois tamely ramified splitting field of T (hence of ~G); this point is
fixed throughout and is used in all the constructions, and will be suppressed
from the notation;

D3 ~r = (r0, . . . , rd) is a sequence of real numbers satisfying 0 < r0 < r1 < . . . <
rd−1 ≤ rd if d > 0, 0 ≤ r0 if d = 0;

D4 ρ is an irreducible representation of K0 = G0(F )[y] such that ρ|G0(F )0+ is
1-isotypic (recall that G0(F )0+ means G0(F )y,0+ by the convention intro-

duced in D2) and the compactly induced representation π0 = indG
0(F )

K0 ρ is
irreducible supercuspidal;

D5 ~φ = (φ0, . . . , φd) is a sequence of quasi-characters, where φi is a quasi-
character of Gi(F ); we assume that φi is trivial on Gi(F )ri+ but non-trivial
on Gi(F )ri for 0 ≤ i ≤ d − 1. If rd−1 < rd, we assume that φd is trivial on
Gd(F )rd+ but non-trivial on Gd(F )rd , otherwise we assume that φd = 1.

Remark 3.4. Condition D1 implies that we essentially have no freedom in choosing
embeddings B(Gi, F ) ↪→ B(G,F ). The embedding is unique up to translation by
an element of X∗(Z(G0), F )⊗ R = X∗(Z(G), F ) ⊗ R, and this choice has no effect
on the formation of the groups ~G(F )y,~s, etc.

Remark 3.5. Here is another consequence of D1. Let z ∈ K0. Then z.y = y+v for
some v ∈ X∗(Z(G0), F )⊗R = X∗(Z(G), F )⊗R. It is easy to see that ~G(F )y+v,~s =
~G(F )y,~s for any admissible ~s and any v ∈ X∗(Z(G), F )⊗R. Therefore, z normalizes
any group of the form ~G(F )y,~s.

Remark 3.6. The representation to be constructed will be of depth rd. In case
d = 0, our construction simply gives the depth zero representation π0 = indG

0(F )
K0 ρ.

Remark 3.7. Condition D4 implies that G0(F )y,0 is a maximal parahoric subgroup
of G0(F ) by [MP2, Prop. 6.8]. In other words, [y] is a vertex on the reduced building
of G0(F ). Lemma 3.3 says that y is actually determined by π0 (up to conjugacy
by G0(F )).

It is also clear that ~r is determined by ~φ by condition D5. Therefore, the 5-tuple
(~G, y, ~r, ρ, ~φ) determines the triple (~G, π0, ~φ), and the triple determines (up to con-
jugacy) 4 objects out of 5 in the 5-tuple, namely (~G, y, ~r, ~φ). It will be shown in
Theorem 15.7 of §15 that our construction only depends on the triple.

Remark 3.8. Combining Remark 3.4 and Remark 3.7, we see that there are only
finitely many possible y (even (y, ρ|G0(F )y,0 )) up to conjugation and translation by
X∗(Z(G0), F )⊗ R.

To ease the notation, we put T i = (Z(Gi))◦, si = ri/2.
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Using the datum, we define K0
+ = G0(F )0+, and for 1 ≤ i ≤ d,{

Ki = K0G1(F )s0 · · ·Gi(F )si−1 = G0(F )[y]
~G(i)(F )(0,s0,... ,si−1),

Ki
+ = K0

+G
1(F )s0+ · · ·Gi(F )si−1+ = ~G(i)(F )(0+,s0+,... ,si−1+),

where ~G(i) is the twisted Levi sequence (G0, . . . , Gi). We also put{
J i = (Gi−1, Gi)(F )(ri−1,si−1),

J i+ = (Gi−1, Gi)(F )(ri−1,si−1+).

Then we have for 1 ≤ i ≤ d,

Ki−1J i = Ki, Ki−1
+ J i+ = Ki

+.

4. The construction

Suppose that 0 ≤ i ≤ d− 1.
We consider g = LieG as a rational representation of T i, and decompose it into

isotypic subspaces. Then gi = LieGi is the maximal subspace on which T i acts
trivially. Let ni be the sum of the remaining isotypic subspaces. Then g(F )s is
a direct sum gi(F )s ⊕ ni(F )s for all s, where ni(F )s is a lattice in ni(F ) (this is
because y ∈ A(G,S, F ) and S ⊃ T 0 ⊃ T i).

Recall that φi is a linear character of Gi(F ) of depth ri. We have

Gi(F )si+:ri+ ' gi(F )si+:ri+ ⊂ gi(F )si+:ri+ ⊕ ni(F )si+:ri+ ' G(F )si+:ri+.

We extend φi|gi(F )si+
to a linear character on gi(F )si+:ri+⊕ni(F )si+:ri+ by letting

it be trivial on ni(F )si+:ri+. The corresponding character of G(F )si+ is denoted
by φ̂i.

It is clear that φi|Gi(F )si+
= φ̂i|Gi(F )si+

. Therefore, there is a unique character
on the group K0Gi(F )0G(F )si+ extending both φi|Gi(F )si+

and φ̂i. We shall de-
note this character again by φ̂i. By convention we set φ̂d = φd. Notice that by
construction, φ̂i is trivial on (Gi, G)(F )(ri+,si+).

We now assume that for 0 ≤ i ≤ d− 1, φi satisfies the following condition:
SC1i If g ∈ Gi+1(F ) intertwines φ̂i|Ji+1

+
, then g ∈ J i+1Gi(F )J i+1.

Proposition 4.1. If g∈Gi(F ) intertwines θi=
∏i
j=0 φ̂j |Ki

+
, then g∈KiG0(F )Ki.

Proof. We will prove the proposition by induction. The statement is trivial when
i = 0. Now suppose that i ≥ 1.

Since φ̂i|Ki
+

is the restriction of φi, which is defined on the whole of Gi(F ), g also

intertwines the character θ′ = θiφ̂
−1
i =

∏i−1
j=0 φ̂j |Ki

+
. Therefore, it also intertwines

θ′|Ji+ . But φ̂j is trivial on J i+ for j < i− 1. So θ′|Ji+ = φ̂i−1|Ji+ . By SC1i−1, there
are j1, j2, g′ such that g = j1g

′j2, and j1, j2 ∈ J i, g′ ∈ Gi−1(F ).
By Lemma 4.3 below, g′ intertwines θ′ as well. Therefore, g′ intertwines θ′|Ki−1

+
=

θi−1. By the induction hypothesis, g′ ∈ Ki−1G0(F )Ki−1, and therefore, g ∈
KiG0(F )Ki.

Lemma 4.2. With the notation of the above proof, we have

[J i,Ki
+] ⊂ (Gi−1, Gi)(F )(ri−1+,si−1+) ⊂ ker(θ′).
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Proof. It suffices to prove the first inclusion when ~G is split over F . In this case,
the result is immediate from [BT1, 6.4.44]. In fact, we have [J i, Gi(F )0+] ⊂
(Gi−1, Gi)(F )(ri−1+,si−1+). The second inclusion is obvious: φ̂j is trivial on
(Gi−1, Gi)(F )(ri−1+,si−1+) for 0 ≤ j ≤ i− 1.

Lemma 4.3. Assume the notation is as in the proof of the proposition. If g inter-
twines θ′, j ∈ J i, then gj and jg also intertwine θ′.

Proof. Let K = Ki
+. Recall that g intertwines θ′ if and only if θ′(g−1xg) = θ′(x)

for all x ∈ gKg−1 ∩K. It is clear from Lemma 4.2 that every j ∈ J i intertwines
θ′. Lemma 4.2 also implies that J i normalizes K.

Suppose that g intertwines θ′, and j ∈ J i. Then for all x ∈ (gj)K(gj)−1 ∩K =
gKg−1 ∩K, we have θ′((gj)−1x(gj)) = θ′(j−1(g−1xg)j) = θ′(g−1xg) = θ′(x). So
gj intertwines θ′. Similarly, for all x ∈ (jg)K(jg)−1 ∩K = j(gKg−1 ∩K)j−1, we
have θ′((jg)−1x(jg)) = θ′(g−1(j−1xj)g) = θ′(j−1xj) = θ′(x). So jg intertwines θ′.
The lemma is proved.

Next, we assume that for 0 ≤ i ≤ d− 1, φi satisfies the following condition:

SC2i There is an irreducible representation φ̃i of Ki n J i+1 such that (i) the re-
striction of φ̃i to J i+1

+ = 1nJ i+1
+ is (φ̂i|Ji+1

+
)-isotypic; and (ii) the restriction

of φ̃i to Ki
+ n 1 is 1-isotypic.

We now construct a representation ρi of Ki. The construction below depends on
the choices of (φ̃i) satisfying SC2. But later we will make canonical choices using
the theory of Weil representations.

We will first construct a representation ρ′i of Ki such that ρ′i|Gi(F )ri
is 1-isotypic.

We will then put ρi = ρ′i ⊗ (φi|Ki). We proceed inductively. First, we put ρ′0 = ρ
and ρ0 = ρ′0 ⊗ (φ0|K0).

Suppose that ρ′i−1 and ρi−1 are already constructed. We inflate φi−1|Ki−1 to a
representation inf(φi−1) of Ki−1 n J i. We now claim that inf(φi−1)⊗ φ̃i−1 factors
through the natural map Ki−1 n J i → Ki−1J i = Ki.

The kernel of this natural map consists of elements of the form x n x−1, x ∈
Ki−1∩J i = Gi−1(F )ri−1 ⊂ Ki−1

+ . For such an element, inf(φi−1)(xnx−1) is scalar
multiplication by φ̂i−1(x), and φ̃i−1(xn x−1) is scalar multiplication by φ̂i−1(x−1)
by SC2. This proves the claim.

Let φ′i−1 be the representation of Ki whose inflation to Ki−1n J i is inf(φi−1)⊗
φ̃i−1. Inflate ρ′i−1 to a representation inf(ρ′i−1) of Ki = Ki−1J i via the map
Ki → Ki−1J i/J i = Ki−1/(Ki−1 ∩ J i) (recall that ρ′i−1 restricted on Ki−1 ∩ J i
is 1-isotypic). Now we define ρ′i = inf(ρ′i−1) ⊗ φ′i−1, and ρi = ρ′i ⊗ (φi|Ki). This
completes the construction.

Proposition 4.4. ρi|Ki
+

is θi-isotypic, where θi =
∏i
j=0 φ̂j |Ki

+
.

Proof. We show this by induction. This is clear when i = 0.
If i ≥ 1, x ∈ Ki−1

+ , z ∈ J i+, then inf(ρ′i−1)(xz) is scalar multiplication by
θi−1(x)φ̂i−1(x)−1 by the induction hypothesis, and φ′i−1(xz) is scalar multi-
plication by φ̂i−1(x)φ̂i−1(z). This shows that ρ′i(xz) is scalar multiplication by
θi−1(x)φ̂i−1(z).
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But φ̂j(z) = 1 for j < i− 1. So ρ′i(xz) is scalar multiplication by
∏i−1
j=0 φ̂j(xz),

and ρi(xz) is scalar multiplication by
∏i
j=0 φ̂i(xz) = θi(xz). The proposition is

proved.

Corollary 4.5. If g ∈ Gi(F ) intertwines ρi, then g ∈ KiG0(F )Ki.

Finally, we impose the following condition for 0 ≤ i ≤ d− 1:
SC3i For all g ∈ G0(F ), we have dim Ig(φ′i|Ji+1) = dim Ig(φ′i|Ki+1) = 1.

Notice that we have a trivial inclusion: Ig(φ′i|Ki+1) ⊂ Ig(φ′i|Ji+1). Therefore,
condition SC3i asserts that these two spaces are equal and are both 1-dimensional.

Proposition 4.6. Suppose that SC1i, SC2i, SC3i are satisfied for 0 ≤ i ≤ d −
1. Then the compactly induced representation indG

i(F )
Ki ρi of Gi(F ) is irreducible

supercuspidal of depth ri for 0 ≤ i ≤ d.

Proof. The depth statement is easy.
By well-known results, it is necessary and sufficient to prove the following state-

ment: if g ∈ Gi(F ) intertwines ρi, then g ∈ Ki. By Corollary 4.5, we may assume
that g ∈ G0(F ). We notice that g intertwines ρi if and only if g intertwines ρ′i.

We proceed by induction using an argument in [BK1, 5.3.2]. Suppose that f
is a non-zero element in Ig(ρ′i). Let V and W be the space of inf(ρ′i−1) and φ′i−1

respectively. Then V ⊗W is the space of ρ′i and f is an endomorphism of V ⊗W . We
may write f =

∑
j f
′
j⊗f ′′j such that f ′j ∈ End(V ) and f ′′j ∈ End(W ). Furthermore,

we may assume that {f ′j : j} is a linearly independent set.
Let x ∈ g∩J i; then inf(ρ′i−1)(x) and g inf(ρ′i−1)(x) are both trivial. Since f ∈

Ig(inf(ρ′i−1)⊗ φ′i−1), we have∑
f ′j ◦ g inf(ρ′i−1)(x)⊗ f ′′j ◦ gφ′i−1(x) =

∑
inf(ρ′i−1)(x) ◦ f ′j ⊗ φ′i−1(x) ◦ f ′′j .

Therefore, for x ∈ g∩J i we have∑
f ′j ⊗ f ′′j ◦ gφ′i−1(x) =

∑
f ′j ⊗ φ′i−1(x) ◦ f ′′j .

The linear independence of the set {f ′j : j} implies that f ′′j ∈ Ig(φ′i−1|Ji). Since
Ig(φ′i−1|Ji) is 1-dimensional by SC3, we may assume that there is only one j. In
other words, f = f ′ ⊗ f ′′, where f ′′ is a fixed basis of Ig(φ′i−1|Ji) = Ig(φ′i−1|Ki).

It then follows easily that f ′ is a non-zero element in

Ig(inf(ρ′i−1)) ⊂ Ig(ρ′i−1)

(observe that inf(ρ′i−1)|Ki−1 = ρ′i−1). By the induction hypothesis, this implies
that g ∈ G0(F ) ∩Ki−1 = K0. This completes the proof.

5. Duality and intertwining

Recall that if L is a lattice in an F -vector space V , the dual lattice L∗ is defined to
be {x ∈ V ∗ : x(L) ⊂ (F )0}. We define L• = L∗⊗ (F )+. If L ⊂M are lattices in V ,
then the Pontrjagin dual of M/L can be identified with L•/M• (via Ψ). Explicitly,
every element a ∈ L• defines a character χ = χa on M by χa(m) = Ψ(a(m)).
Clearly, χa factors through M 7→M/L and χa depends on a mod M• only. We say
that a realizes the character χ.

If ~r = (r0, . . . , rd) is an R-valued sequence, we define ~r+ to be the sequence
(r0+, . . . , rd+). Then g∗(F )y,~r is equal to (g(F )y,(−~r )+)∗ ⊗ (F )+ and g∗(F )y,~r+ is
equal to (g(F )y,−~r)∗ ⊗ (F )+.
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In fact, let V be either g(F ) or g∗(F ), as a rational representation of a maximal
torus S of G0. Let T i ⊂ S be the identity component of the center of Gi. Let Vi
be the maximal subspace of V on which T i acts trivially, V 0 = V0, and let V i be
the subspace of Vi which is the direct sum of the non-trivial isotypic components
under the action of T i−1 if i ≥ 1. Then V = V 0 ⊕ · · · ⊕ V d. Each V i is equipped
with an admissible filtration {V iy,r}, and Vy,~r = V 0

y,r0 ⊕ · · · ⊕ V dy,rd . For any i and
any real number r, (V ∗)iy,r is equal to (V iy,(−r)+)∗ ⊗ (F )+, and (V ∗)iy,r+ is equal to
(V iy,−r)

∗ ⊗ (F )+.
Let r > 0 and let S be any group lying between G(F )y,(r/2)+ and G(F )y,r. Let

χ = χa be a character of S/G(F )y,r+ ' s/g(F )y,r+, where s is a lattice between
g(F )y,(r/2)+ and g(F )y,r, and a ∈ g∗(F )y,−r = (g(F )y,r+)•. The following result is
due to Adler [Ad].

Lemma 5.1. Let g ∈ G. Then g intertwines χa if and only if Ad(g).(a + s•) ∩
(a+ s•) 6= ∅.

6. Computing with a Chevalley basis

In this section only, E is an arbitrary field and G is a split connected reductive
group over E. Let T be a maximal split torus of G over E.

Then there exists a Chevalley system for (G, T ), which is a collection of isomor-
phisms {xa : Ga → Ga}a∈Φ(G,T,E) with certain properties; see [BT2] or [Ad]. We
now recall the basic facts and set up some notation.

For a ∈ Φ = Φ(G, T,E), let Xa = dxa(1) and Ha = [Xa, X−a] = da∨(1) (a∨

being the coroot of a). Then Xa is a generator of the 1-dimensional space ga. Let
X∗a be the element of g∗ such that X∗a(LieT ) = 0, X∗a(Xb) = δb,−a. Then X∗a is a
generator of g∗a = (g∗)a, the a-eigenspace of T (by the coadjoint action). Let H∗a
be the element of g∗ such that H∗a(gb) = 0 for all b ∈ Φ, and H∗a(H) = da(H) for
H ∈ LieT .

As before, we shall write G0 = T and g0 = LieT , the zero-eigenspace of T acting
on g, and we write (g∗)0 for the zero-eigenspace of T acting on g∗.

We then have the following formulas:

Lemma 6.1. Let t ∈ T (E), a ∈ Φ, u, v ∈ E∗. Then

Int(t).h = h for all h ∈ G0(E),

Int(t).xb(v) = xb(b(t)v) for all b ∈ Φ,

Int(xa(u)).h = xa(u− a(h).u)h for all h ∈ G0(E),

Int(xa(u)).xa(v) = xa(v),

Int(xa(u)).x−a(v) = x−a(v(1 + uv)−1) a∨(1 + uv)xa(−u2v(1 + uv)−1),

Int(xa(u)).xb(v) =
( ∏
i,j>0

xia+jb(Ca,b;i,juivj)
)
xb(v) for all b ∈ Φ, b 6= ±a.

Lemma 6.2. Let t ∈ T (E), a ∈ Φ, u ∈ E∗. Then

Ad(t).H = H for all H ∈ g0,

Ad(t).Xb = b(t)Xb for all b ∈ Φ,

Ad(xa(u)).H = H − uH∗a(H)Xa for all H ∈ g0,

Ad(xa(u)).Xa = Xa,
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Ad(xa(u)).X−a = X−a + uHa − u2Xa,

Ad(xa(u)).Xb =
∑
i≥0

Ma,b,i u
iXia+b for all b ∈ Φ, b 6= ±a.

These results are well known. Here Ca,b;i,j and Ma,b,i are integers, and Ma,b,0 =
1. The product in Lemma 6.1 is taken in any fixed order. See [BT2, 3.2.3] for
details. We put M∗a,b,i = Ma,−(ia+b),i in the next lemma. So M∗a,b,0 = 1 also.

Lemma 6.3. Let t ∈ T (E), a ∈ Φ, u ∈ E∗. Then

Ad(t).H∗ = H∗ for all H∗ ∈ (g∗)0,

Ad(t).X∗b = b(t)X∗b for all b ∈ Φ,

Ad(xa(u)).H∗ = H∗ − uH∗(Ha)X∗a for all H∗ ∈ (g∗)0,

Ad(xa(u)).X∗a = X∗a ,

Ad(xa(u)).X∗−a = X∗−a + uH∗a − u2X∗a ,

Ad(xa(u)).X∗b =
∑
i≥0

M∗a,b,i u
iX∗ia+b for all b ∈ Φ, b 6= ±a.

Proof. This is immediate from the preceding lemma.

7. Centralizers of semisimple elements

In this section only, E is an arbitrary algebraically closed field, G is a connected
reductive group over E, and T is a maximal torus of G.

We refer to [Sp] for the notion of root datum. (N.B. This notion is completely dif-
ferent from that in [BT1].) We always assume that the root system of a root datum
is reduced. Following [Sp], we write ψ(G, T ) = (X∗(T ),Φ(G, T ), X∗(T ),Φ(G, T )∨)
for the root datum of (G, T ) if T is a maximal torus of G. The isomorphism class of
ψ(G, T ) is independent of T , and is denoted by ψ(G). The map G 7→ ψ(G) induces
a natural bijection between isomorphism classes of connected reductive groups over
E and the isomorphism classes of root data.

We now consider a subset Θ of G0(E) = T (E) (resp. g0 = LieT , resp. (g∗)0).
Let ZG(Θ) be the subgroup of G fixing Θ pointwise under the (co)-adjoint action.
Let W = W (G, T ) be the Weyl group of (G, T ) and let ZW (Θ) be the subgroup
of W fixing Θ pointwise. Let ΦΘ be the subset of Φ = Φ(G, T,E) consisting
of those a such that a(Θ) = 1 (resp. H∗a(Θ) = 0, resp. Θ(Ha) = 0) and let
Φ∨Θ = {a∨ : a ∈ ΦΘ}.

Let ψ(G, T ) = (X,Φ, X∨,Φ∨). For each w ∈ W = N(T )(E)/T (E), let nw be an
element of N(T )(E) representing w.

Proposition 7.1. The group ZG(Θ) is generated by T , those Ga such that a ∈
ΦΘ, and those nw such that w ∈ ZW (Θ). The identity component of ZG(Θ) is
generated by T and those Ga such that a ∈ ΦΘ, and is a reductive group with
maximal torus T . The root datum of (ZG(Θ)◦, T ) is (X,ΦΘ, X

∨,Φ∨Θ). The Weyl
group W (ZG(Θ)◦, T ) = W (ΦΘ) is a normal subgroup of ZW (Θ). The quotient
ZW (Θ)/W (ΦΘ) is abelian, and is isomorphic to the group of connected components
of ZG(Θ).

Proof. The case Θ ⊂ G0(E) and the case Θ ⊂ g0 are well known ([St]). The case
Θ ⊂ (g∗)0 follows from the same proof ([St, 3.7]) with the help of Lemma 6.3.
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As a result, the list of all groups that arise as ZG(Θ)/ZG(Θ)◦ can be easily
determined from the root datum ψ(G, T ) = (X,Φ, X∨,Φ∨). For example, to deal
with the case Θ ⊂ g0, we observe that g0 can be identified with X∨ ⊗Z E. Given
Θ ⊂ X∨ ⊗Z E, ZW (Θ)/W (ΦΘ) can be computed without any reference to the
reductive group G.

This observation is an essential tool in [St], where connectedness results (see
Proposition 7.2) are proved first for Θ ⊂ G0(E), then transferred to the case Θ ⊂ g0.
We now recall the result in the case Θ ⊂ g0, and transfer it to the case Θ ⊂ (g∗)0.

A prime number p is called a torsion prime for (X,Φ, X∨,Φ∨) if there is a Z-
closed subsystem Φ1 of Φ such that X∨/Z[Φ∨1 ] contains an element of order p. Here
Z[Φ∨1 ] is the lattice contained in ⊂ X∨ and generated by Φ∨1 .

Proposition 7.2. The centralizer ZG(Θ) is connected for all Θ ⊂ g0 if and only
if the characteristic of E is not a torsion prime of ψ(G).

Proposition 7.3. The centralizer ZG(Θ) is connected for all Θ ⊂ (g∗)0 if and only
if the characteristic of E is not a torsion prime of ψ(G)∨.

Here ψ(G)∨ is the dual root datum of ψ(G), or equivalently, the root datum of
the dual group G∨ of G. Here we take G∨ to be defined over E (instead of over
C). The proof is immediate. In fact, let Θ ⊂ (g∗)0 ' X ⊗Z E. Then we can
identify Θ with a subset Θ∨ of LieT∨ = (g∨)0, where T∨ is a maximal torus of
G∨. By Proposition 7.1, the component group of ZG(Θ) is the same as that of
ZG∨(Θ∨).

8. Generic elements

Let G be a reductive group over F , let ~G = (G′, G) be a twisted Levi sequence
in G, let Z ′ = Z(G′), and let T be a maximal torus of G′.

We can regard Lie∗(Z ′)◦ as a subspace of Lie∗G′ in a canonical way: let V be
the subspace of Lie∗G′ fixed by the coadjoint action of G′. Each element of V
induces a linear function on Lie(Z ′)◦ ⊂ LieG′ by restriction. This gives a linear
bijection from V to Lie∗(Z ′)◦. We identify Lie∗(Z ′)◦ with V ⊂ Lie∗G′.

We can also regard Lie∗G′ as a subspace of Lie∗G in a canonical way: if we
consider the action of (Z ′)◦ on Lie∗G, then the subspace fixed by (Z ′)◦ can be
identified with Lie∗G′.

Recall that (Z ′)◦(F ), Lie(Z ′)◦, Lie∗(Z ′)◦ carry canonical filtrations (because
(Z ′)◦ is a torus).

An element X∗ of (Lie∗(Z ′)◦)−r is called G-generic of depth r ∈ R if two con-
ditions GE1 and GE2 hold. The first one is very simple. The second one is quite
technical, but it is implied by the first one in most cases (see Lemma 8.1). We first
explain GE1 (recall that Ha = da∨(1) and a∨ : Gm → T is the coroot of a).

GE1 ord(X∗(Ha)) = −r for all a ∈ Φ(G, T, F̄ )r Φ(G′, T, F̄ ).
To explain GE2, let ψ(G, T ) = (X,Φ, X∨,Φ∨), and let W be the Weyl group

of Φ(G, T, F̄ ). Recall that (Lie∗ T )⊗ F̄ can be identified with X ⊗Z F̄ . Therefore,
we can regard $rX

∗ ∈ Lie∗(Z ′ ⊗ F̄ )◦ ⊂ Lie∗(T ⊗ F̄ ) as an element of X ⊗Z OF̄ ,
where $r is an element of F̄ ∗ of valuation r. The residue class X̃∗ of $rX

∗ is an
element of X ⊗Z κ̄, where κ̄ is the residue field of F̄ . Then X̃∗ is well defined up to
a multiplicative constant in κ̄∗. By GE1, ΦX̃∗ can be identified with Φ(G′, T, F̄ ).

GE2 The subgroup ZW (X̃∗) of W fixing X̃∗ is precisely the Weyl group of ΦX̃∗ =
Φ(G′, T, F̄ ).
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Clearly, if the element X∗ is G-generic, then it is (G⊗E)-generic as an element
of Lie∗(Z ′ ⊗ E)◦−r for any finite extension E/F . It is also easy to see that GE1
and GE2 do not depend on T .

Lemma 8.1. If the residual characteristic of F is not a torsion prime for ψ(G)∨,
then GE1 implies GE2.

Proof. This is an immediate consequence of Propositions 7.1 and 7.3.

Lemma 8.2. Let T be any maximal torus of G. For all y ∈ B(G,F ), r ∈ R̃, we
have {

t(F ) ∩ g(F )y,r ⊂ t(F )r,
t∗(F ) ∩ g∗(F )y,r ⊂ t∗(F )r .

Proof. We will give the proof of the first inclusion. The second one is analogous.
We first prove the lemma when r is in ord(F ∗) ⊗ Q. Replacing F by a finite

extension if necessary, we may and do assume that r ∈ ord(F ∗). Let πr be an
element such that ord(πr) = r. Then t(F )r = πrt(F )0, g(F )y,r = πrg(F )y,0.
Therefore, it suffices to prove the lemma when r = 0. But this case is obvious: an
element in t(F )∩ g(F )y,0 is a compact element of t(F ), hence is in t(F )0 (see [De]).

If r is any real number, then
g(F )y,r =

⋂
s<r

s∈ord(F∗)⊗Q

g(F )y,s,

t(F )r =
⋂
s<r

s∈ord(F∗)⊗Q

t(F )s.

Therefore, the lemma in this case follows from the case r ∈ ord(F ∗)⊗Q.
If r = s+ for some real number s, then for ε > 0 small enough, we have g(F )y,r =

t(F )y,s+ε, t(F )r = t(F )s+ε. Therefore, the lemma in this case follows from the case
r ∈ R.

This proves the lemma completely.

We now assume that ~G = (G′, G) is split by a tamely ramified extension E/F ,
and T is a maximal torus of G′ and is split over E. Let y ∈ A(G, T, F ). As in §2,
we consider B(G′, F ) as a subset of B(G,F ) so that y ∈ B(G′, F ) ⊂ B(G,F ).

Lemma 8.3. Let X∗ be G-generic of depth r, y ∈ B(G′, F ) ⊂ B(G,F ). Suppose
that

Y ∗1 , Y
∗
2 ∈ (Lie∗G′)(F )y,−r

are regular semisimple and satisfy

Y ∗1 ≡ Y ∗2 ≡ X∗ (mod (Lie∗G′)(F )y,(−r)+).

If g ∈ G(F ) is such that Ad(g).Y ∗1 = Y ∗2 , then g ∈ G′(F ).

Proof. First observe that we can replace F by any extension of F without loss of
generality. So we shall assume that the maximal torus Ti fixing Y ∗i is split, i = 1, 2.
By multiplying X∗, Y ∗i by a scalar of valuation r, we may also assume that r = 0.

Let t∗i = Lie∗ Ti. By Lemma 8.2, Y ∗i ∈ (ti)∗0 and Y ∗i −X∗ ∈ (ti)∗0+.
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Let h ∈ G′(F ) be such that hT1h
−1 = T2. Then Y ∗0 := Ad(h).Y ∗1 is in (t2)∗0, and

we have

Y ∗0 ≡ Ad(h).X∗ ≡ X∗ ≡ Y ∗2 (mod (t2)∗0+).

The element w = gh−1 normalizes T2, hence is in the Weyl group of (G, T2). We
have w.Y ∗0 = Y ∗2 .

By choosing a Chevalley basis, we can construct a Chevalley group scheme G
over OF such that the generic fiber of G is G, and the special fiber Gs is reductive of
the same root datum as G. The special fiber (T2)s of the canonical integral model
of T2 is a maximal torus of Gs. There is a unique closed subgroup scheme G′ of G
extending G′, and is a Chevalley group scheme over OF of the same root datum as
G′.

We can find t ∈ T2(F ) such that wt ∈ G(OF ). Then wt reduces to an element
w′ of Gs(κ), where κ is the residue field of OF . We also reduce X∗ to an element
X̃∗ of Lie∗Gs. Since Ad(wt).Y ∗0 = Y ∗2 , we have Ad(w′).X̃∗ = X̃∗.

The genericity assumption precisely means that w′ is in the Weyl group of
(G′s, (T2)s). This implies that w ∈ G′(F ) and hence g = wh ∈ G′(F ).

Lemma 8.4. Suppose that X∗ ∈ (Lie(Z ′)◦)∗−r is G-generic of depth r. Let s, t be
real numbers such that 0 < s ≤ t. The map

~G(F )y,(s,t):(s,t+) → ~g∗(F )y,(s−r,t−r):(s−r,(t−r)+), g 7→ g.X∗ −X∗

is well defined, and is a group isomorphism.

Proof. In view of Corollary 2.4, it is enough to prove this proposition under the
additional hypothesis that G,G′ are split. Let Φ = Φ(G, T, F ), Φ′ = Φ(G′, T, F ).

Choose a Chevalley system {xa}a∈Φ. Recall that the Chevalley system deter-
mines a hyperspecial point y0 ∈ A(G, T, F ). The filtration subgroups can be de-
scribed as follows (cf. [BT1, 6.2.5]):

Ga(F )y,r = {xa(u) : u ∈ (F )r−a(y−y0)},
ga(F )y,r = {uXa : u ∈ (F )r−a(y−y0)},
g∗a(F )y,r = {uX∗a : u ∈ (F )r−a(y−y0)}.

For any H∗ ∈ g∗0(F ) and any u ∈ F , xa(u).H∗−H∗ = −uH∗(Ha)X∗a . Applying
this to H∗ = X∗, we see that g.X∗−X∗ is in ~g∗(F )y,(s−r,t−r) if g is in Ga(F )y,(s,t)
for some a ∈ Φ ∪ {0}.

The co-adjoint action of ~G(F )y,0+ on~g∗(F )y,(s−r,t−r):(s−r,(t−r)+) is trivial. There-
fore,

(g1g2).X∗−X∗ = g1(g2.X
∗−X∗) + (g1.X

∗−X∗) = (g2.X
∗−X∗) + (g1.X

∗−X∗)
modulo ~g∗(F )y,(s−r,(t−r)+) for all g1, g2 ∈ ~G(F )y,(s,t) such that (g2.X

∗ − X∗) ∈
~g∗(F )y,(s−r,t−r). This together with [BT1, 6.4.48] shows that the map ~G(F )y,(s,t) →
~g∗(F )y,(s−r,t−r):(s−r,(t−r)+), g 7→ g.X∗−X∗ is a well-defined group homomorphism.

Condition GE1 implies that the homomorphism is surjective with kernel
~G(F )y,(s,t+). This completes the proof.

Lemma 8.5. Suppose that X∗ ∈ (Lie(Z ′)◦)∗−r is G-generic of depth r > 0. Let
s be a real number strictly greater than −r, and let Y ∗ be any element in X∗ +
~g∗(F )y,((−r)+,s). Then Y ∗ is conjugate to an element of X∗ +~g∗(F )y,((−r)+,s+) by
the coadjoint action of G(F )y,s+r.
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Proof. Write Y ∗ = Y ∗1 + Y ∗2 with Y ∗1 ∈ X∗ + (g′)∗(F )y,(−r)+, Y ∗2 ∈ g∗(F )y,s. It is
enough to find g ∈ G(F )y,s+r such that Ad(g).Y ∗ − Y ∗1 ≡ 0 (mod ~g∗(F )y,(s,s+)).

By the preceding lemma, we can find g ∈ G(F )y,s+r such that

Ad(g−1).X∗ −X∗ ≡ Y ∗2 (mod ~g∗(F )y,(s,s+)).

Since g ∈ G(F )y,s+r and X∗ − Y ∗1 ∈ g∗(F )y,(−r)+, we have Ad(g).(X∗ − Y ∗1 ) ≡
X∗ − Y ∗1 (mod g∗(F )y,s+). Therefore,

Ad(g).Y ∗ − Y ∗1 ≡ Ad(g).Y ∗1 − Y ∗1 + Ad(g).Y ∗2
≡ Ad(g).Y ∗1 − Y ∗1 +X∗ −Ad(g).X∗

≡ Ad(g)(Y ∗1 −X∗)− (Y ∗1 −X∗) ≡ 0 (mod ~g∗(F )y,(s,s+)).

The lemma is proved.

Lemma 8.6. With the notation and hypotheses of the preceding lemma, Y ∗ is con-
jugate to an element of X∗ + (g′)∗(F )y,(−r)+ by G(F )y,s+r.

Proof. Easy from the preceding lemma.

9. Generic characters

We maintain all the notation of the last section. In addition, we put s = r/2 to
simplify the notation.

A character φ of G′(F )y,r:r+ is called G-generic if it is realized (in the sense of
§5) by an element X∗ ∈ (Lie∗(Z ′)◦)−r ⊂ (Lie∗G′)y,−r which is G-generic of depth
r.

A quasi-character φ of G′(F ) is called G-generic (relative to y) of depth r if φ
is trivial on G′(F )y,r+, non-trivial on G′(F )y,r, and φ restricted to G′(F )y,r:r+ is
G-generic of depth r in the sense just defined.

Remark 9.1. In many cases, the point y is unimportant. For example, if we have
G′(F )y,r = (DG′)(F )y,rZ(G′)◦(F )r for all y and all r, and if φ is trivial on
(DG′)(F ), then the G-genericity of φ is completely independent of y.

From now on, assume that φ is a G-generic character of G′(F )y,r. Put J =
(G′, G)(F )y,(r,s), J+ = (G′, G)(F )y,(r,s+). As in §4, φ determines a character φ̂ on
J+, trivial on (G′, G)(F )y,(r+,s+).

Remark 9.2. The following observation will be useful. Let E be a finite extension
of F . Since F/(F )+ → E/(E)+ is injective, we can extend our additive character
Ψ : F/F+ → C∗ to a character ΨE on E/E+. Since Ψ is non-trivial on (F )0,
ΨE is non-trivial on (E)0. The character φE of G′(E)y,r:r+ ' g′(E)y,r:r+ realized
(via ΨE) by X∗ ∈ Lie∗(Z ′)◦ ⊂ (Lie∗(Z ′)◦) ⊗ E is simply φ when restricted to
G′(F )y,r:r+. We now can put J(E) = ~G(E)y,(r,s), etc. and do all the constructions
over E. In several places, we will prove results first over a splitting field E, then
reduce the general case to the split case.

Notice that even if φ is a character of the whole G′(F ), the character φE con-
structed above may not be extendable to a character of G′(E).

Lemma 9.3. Let g ∈ G′(F ). Then φ̂(g−1xg) = φ̂(x) for all x ∈ g∩J+.
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Proof. By Remark 9.2, it suffices to do this with the additional assumption that T
is split.

Choose an ordering on Φ(G, T, F ) and define J+(+) (resp. J+(−)) to be the
subgroup generated by Ga(F )y,s+ for all positive (resp. negative) a ∈ Φ(G, T, F )
such that a /∈ Φ(G′, T, F ).

Then we have J+ = G′(F )y,rJ+(+)J+(−), and every element x of J+ can be
decomposed as x = x′j1j2 for unique x′ ∈ G′(F )y,r, j1 ∈ J+(+) and j2 ∈ J+(−).
The uniqueness can be deduced from [BT1, 6.4.48], but it is also a consequence
of the following: Let N(+) (resp. N(−)) be the subgroup generated by Ga(F )
for all positive (resp. negative) a ∈ Φ(G, T, F ) such that a /∈ Φ(G′, T, F ). Then
G′(F ) × N(+)× N(−) → G(F ), (x′, j1, j2) 7→ x′j1j2 is an injection (to prove this
statement, just observe that G′(F )N(+) is a group, G′(F )N(+)∩N(−) = {1}, and
G′(F ) ∩N(+) = {1}).

Now suppose that x ∈ J+ ∩ gJ+. Write x = x′j1j2 as above. Then g−1xg is
equal to

(g−1x′g)(g−1j1g)(g−1j2g),

and this expression is necessarily the decomposition of g−1xg. Therefore, we have
x′ ∈ g∩G′(F )y,r, j1 ∈ g∩J+(+), j2 ∈ g∩J+(−).

Now it is clear that φ̂(x) = φ(x′) and φ̂(g−1xg) = φ(g−1x′g). It suffices to
show φ(x′) = φ(g−1x′g), which is a consequence of [Ad, 1.6.7] and the fact that
Ad(g).X∗ = X∗.

Theorem 9.4. Let g ∈ G(F ). Then g intertwines φ̂ if and only if g ∈ JG′(F )J .

Proof. Suppose that g intertwines φ̂. By Lemma 5.1, we can find Y ∗1 , Y ∗2 in X∗ +
~g∗(F )y,((−r)+,−s) such that Ad(g).Y ∗1 = Y ∗2 . We may assume that Y ∗1 and Y ∗2 are
regular semisimple.

By Lemma 8.6, we can find k1, k2 ∈ G(F )y,s such that

Z∗i = Ad(ki).Y ∗i ∈ X∗ + (g′)∗(F )y,(−r)+.

Let g1 = k2gk
−1
1 . Then Ad(g1).Z∗1 = Z∗2 .

By Lemma 8.3, g1 ∈ G′(F ). Therefore, g ∈ G(F )y,sG′(F )G(F )y,s = JG′(F )J .
This proves the “only if” part of the proposition.

Using arguments similar to those for Lemmas 4.2 and 4.3, the reverse implication
is reduced to the following statement: every g ∈ G′(F ) intertwines φ̂, which is
precisely Lemma 9.3.

10. Heisenberg groups and the Weil representations

Because an important subtlety has been neglected in most of the literature, we
give a detailed discussion here.

Let κ be a finite field of odd characteristic p. Let V = (V, 〈, 〉, C) be a finite-
dimensional symplectic space over κ, where the pairing takes values in the 1-
dimensional vector space C over κ. We allow V to be zero-dimensional. The
Heisenberg group V ] of V is defined to be the set V × C with the group law
(v, a).(w, b) = (v +w, a+ b+ 1

2 〈v, w〉). The symplectic group Sp(V ) acts on V ] by
g.(v, a) = (g.v, a). The center of V ] is simply {(0, a) : a ∈ C} and is equal to the
commutator subgroup of V ] when dimV > 0. Given a non-trivial character ψ of
C, there is a unique irreducible representation ωψ (called the Heisenberg represen-
tation) of V ] with central character ψ. It follows that ωψ extends to a projective
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representation of Sp(V ) n V \. The theory in [Ge] shows that it actually extended
to a representation ωψ (called the Weil representation) of Sp(V )nV ] in a canonical
way.

Now let H be a finite p-group, where p is an odd prime. We say that H is a
Heisenberg p-group if there exists a symplectic space V = (V, 〈, 〉, C) over Fp such
that H is isomorphic to V ]. For such a group H , there is a natural, non-degenerate,
symplectic pairing 〈, 〉 on VH = H/CH with values in CH , (v, w) 7→ vwv−1w−1,
where CH is the center of H . Let H1, H2 be Heisenberg p-groups. We say that an
isomorphism f : H1 → H2 is a symplectic isomorphism if f(〈v, w〉) = 〈f(v), f(w)〉
for all v, w ∈ H1/CH1 .

Let H be a Heisenberg p-group and let Sp(H) be the set of symplectic isomor-
phisms σ : H → H such that σ|C is the identity. Let Sp0(H) be the kernel of the
natural (surjective) map Sp(H) → Sp(VH). Then Sp0(H) = {σv : v ∈ VH}, where
σv(h) = h〈h, v〉. It is easy to see that Sp0(H) is isomorphic to VH by σv 7→ v.

Let (V, 〈, 〉, C) = (VH , 〈, 〉, CH). Call an isomorphism j : H → V ] special if j|C is
the identity and j induces the identity map from V = VH/CH to V ]/C = V . The
set of special isomorphisms is a principal homogeneous space of Sp0(H) ' V .

Now let K be a group acting on H by automorphisms. Suppose that K acts
trivially on C, and 〈g.v, g.w〉 = 〈v, w〉 for all g ∈ K, v, w ∈ H . We then have a
homomorphism f : K → Sp(H).

In the literature, people often write: then we have homomorphisms K → Sp(V )
and K n H → Sp(V ) n H, and we can pull back the Weil representation (after
choosing a central character).

This is not true. For an abstract Heisenberg p-group, there is no natural way
of making Sp(V ) act on H . To get such an action, we need to choose a splitting
s : Sp(V )→ Sp(H) of the exact sequence

1→ Sp0(H)→ Sp(H)→ Sp(V )→ 1.

In order to pull back the Weil representation, we need more: we need to choose a
splitting s for which there exists a special isomorphism j : H → V ] which transforms
s to the splitting of Sp(V ])→ Sp(V ) defined by the natural action of Sp(V ) on V ].
The set of all such splittings is a principal homogeneous space of Sp0(H) ' V .

In order to get a homomorphism K nH → Sp(V ) nH , the composition K →
Sp(H) � Sp(V ) followed by s : Sp(V ) → Sp(H) has to be identical to f : K →
Sp(H). This is clearly impossible if f(K)∩Sp0(H) 6= {1}. If f(K)∩Sp0(H) = {1},
there is still an obstruction for finding an allowable s, and that obstruction is
represented by a class in H1(f(K), Sp0(H)) = H1(f(K), V ). This obstruction
class can be non-trivial.

Even if all the obstructions vanish, we still can’t say that the pull back of ωψ is
“canonical”. In general the isomorphism class of the pull back still depends on the
choice of the special isomorphism mentioned above.

Therefore, we introduce the following notion: let H be an abstract Heisenberg
p-group with center C, V = H/C, and let K be another group. A symplectic action
of K on H is a pair (f, j) such that f : K → Sp(H) is a homomorphism, j : H → V ]

is a special isomorphism, and the map K → SpV ]), g → j ◦ f(g)◦ j−1 has image in
Sp(V ) ⊂ SpV ]). In this case, K nH → Sp(V )n V ], g n h 7→ j ◦ f(g) ◦ j−1 n j(h)
is a group homomorphism. We define the Weil representation of K nH to be the
pull back of ωψ.

We now give a way to recognize Heisenberg p-groups and symplectic actions.
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Let H be a finite p-group with center C such that [H,H ] ⊂ C, and C is of order
p. We also assume that the natural symplectic pairing 〈, 〉 on V = H/C with values
in C is non-degenerate. Let π be the natural map H → V . Suppose that there are
subgroups W1, W2 of H such that W1 ∩C = W2 ∩C = {1}, and π(W1) and π(W2)
form a complete polarization of V .

It follows that every element of H can be expressed uniquely as w1w2c, with
w1 ∈ W1, w2 ∈W2, c ∈ C. Define j = jW1,W2 : H → V ] by

j(w1w2c) = (π(w1) + π(w2), c+
1
2
〈π(w1), π(w2)〉).

Lemma 10.1. The group H is a Heisenberg p-group and the map j is a special
isomorphism.

Proof. We have (w1w2c).(w′1w
′
2c
′) = (w1w

′
1)(w2w

′
2)(c+ c′ − 〈w′1, w2〉). It is easy to

check that j is a group isomorphism. It is clear that j|C is trivial and j induces
the identity V = H/C → V = V ]/C.

Lemma 10.2. Maintain the above situation. Suppose that K is a group and f :
K → Sp(H) is a homomorphism. If f(g).W1 ⊂ W1 and f(g).W2 ⊂ W2 for all
g ∈ K, then (f, j) is a symplectic action.

Proof. Let f̄ be the composite of f : K → Sp(H) and Sp(H) → Sp(V ). We have
to show that for all w1 ∈W1, w2 ∈ W2, c ∈ C,

j ◦ f(g) ◦ j−1(π(w1) + π(w2), c+
1
2
〈π(w1), π(w2)〉)

= (f̄(g)(π(w1) + π(w2)), c+
1
2
〈π(w1), π(w2)〉).

By assumption, f̄(g)(π(wi)) = π(f(g)wi), i = 1, 2. Therefore,

j(f(g)(w1)f(g)(w2)f(g)(c)) = (f̄(g)(π(w1) + π(w2)), c+
1
2
〈π(w1), π(w2)〉).

Therefore, the formula we want to prove is equivalent to

f(g)(w1w2c) = f(g)(w1)f(g)(w2)f(g)(c),

which is obviously true.

Lemma 10.3. Let K be a group, let H be a Heisenberg p-group with center C, and
let (f, j) be a symplectic action of K on H. Let V1 be a non-degenerate subspace
of V = H/C, and let H1 be the preimage of V1 in H. Then H1 is a Heisenberg
p-group. Suppose that K1 is a subgroup of K such that K1.H1 ⊂ H1. Define
f1 : K1 → Sp(H1) by f1(g1) = f(g1)|H1 and j1 : H1 → V ]1 by j|H1 . Then (f1, j1) is
a symplectic action of K1 on H1.

Proof. It is clear that j1(H1) = j(H1) is the inverse image of V1 in V ], and is
equal to V ]1 by definition. Therefore, H1 is a Heisenberg p-group and j1 is a special
isomorphism.

For any g ∈ K1, j1◦f1(g)◦j−1
1 is the restriction of j◦f(g)◦j−1 to H1. Therefore,

it is of the form (v, c) 7→ (f̄(g).v, c) for some f̄(g) ∈ Sp(V ). By assumption,
f̄(g).V1 ⊂ V1 and hence f̄(g)|V1 ∈ Sp(V1). This shows that (f1, j1) is a symplectic
action.
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11. Weil representations arising from generic characters

We continue with the notation and assumptions from §9. From now on, we
assume that the residual characteristic p of F is odd.

Let N = ker φ̂. We define 〈a, b〉 = φ̂(aba−1b−1) for a, b ∈ J . This is well defined
because [J, J ] ⊂ J+. Since [J, J+] ⊂ ~G(F )y,(r+,s+) ⊂ N , we easily see that 〈a, b〉
depends on aJ+ and bJ+ only (the statement about the commutator group is a
special case of Lemma 4.2). It is also easy to see that the induced function 〈, 〉 on
J/J+ × J/J+ is bi-additive and symplectic (in the sense that 〈a, a〉 = 0 for all a).

Lemma 11.1. The pairing 〈, 〉 is non-degenerate on J/J+.

Proof. Recall that J/J+ is naturally isomorphic to ~g(F )y,(r,s):(r,s+). We may con-
sider the pairing 〈, 〉 as being defined on the latter group. From the definitions, it
is easy to see that if A,B ∈ ~g(F )y,(r,s), then 〈A,B〉 = Ψ ◦X∗([A,B]).

The function B 7→ X∗([A,B]) on g(F ) is linear, hence is an element of g∗. We
denote this element by [X∗, A]. So we have [X∗, A](B) = X∗([A,B]).

Now suppose that Ψ ◦ [X∗, A](B) = 1 for all B ∈ ~g(F )y,(r,s). Then [X∗, A] ∈
~g∗(F )y,((−r)+,(−s)+) by duality.

By the next lemma, this implies that A ∈ ~g(F )y,(0+,s+). Therefore,

A ∈ ~g(F )y,(0+,s+) ∩~g(F )y,(r,s) = ~g(F )y,(r,s+).

This proves the non-degeneracy.

Lemma 11.2. For any real numbers u, v, the map A 7→ [X∗, A] induces an iso-
morphism

~g(F )y,(u,v):(u,v+) ' ~g∗(F )y,(u−r,v−r):(u−r,(v−r)+).

Proof. This is similar to and easier than Lemma 8.4.

Observe that if g ∈ G′(F ) ∩G(F )[y], then g normalizes J and J+, and we have

Lemma 11.3. For any g ∈ G′(F ) ∩ G(F )[y], we have 〈ga, gb〉 = 〈a, b〉 for all
a, b ∈ J , and φ̂(gag−1) = φ̂(a) for all a ∈ J+.

Proof. It suffices to show that

Ψ ◦X∗([Ad(g).A,Ad(g).B]) = Ψ ◦X∗([A,B]) for A,B ∈ ~g(F )y,(r,s),

and

Ψ ◦X∗(Ad(g).A) = Ψ ◦X∗(A) for A ∈ ~g(F )y,(r,s+).

Both are immediate from the fact that X∗ ◦Ad(g) = Ad(g−1).X∗ = X∗.

Notice that Lemma 11.1 implies that the center of J/N is J+/N , which is also
the commutator subgroup of J/N if J 6= J+.

Proposition 11.4. Suppose that the residual characteristic p of F is odd. Then
J/N is a Heisenberg p-group, and there is a canonical special isomorphism j :
J/N → (J/J+)]. Let f : G′(F )∩G(F )[y] → Sp(J/N) be the homomorphism induced
by the conjugate action of G′(F )∩G(F )[y] on J . Then (f, j) is a symplectic action
on J/N .
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Proof. We will first prove the proposition in the case that G and G′ are split over
F .

Let S ⊂ G′ be a maximal torus which is split over F and such that y ∈
A(G′, S, F ). We choose an ordering on Φ(G,S, F ) and define J(+) (resp. J(−))
to be the subgroup of J generated by Ga(F )y,s for all positive (resp. negative)
a ∈ Φ(G,S, F ) such that a /∈ Φ(G′, S, F ).

It is easy to show that J(+)N ∩ J+ = N . Using Bruhat-Tits theory ([BT1,
6.4.44]), we can show that

[J(+)N, J(+)N ] ⊂ [J(+)J+, J(+)J+] ⊂ (G′, G)(F )y,(r+,s+) ⊂ N.
Therefore, W (+) = J(+)N/N maps injectively into J/J+, and the image W̄ (+)
is a totally isotropic subspace with respect to 〈, 〉. All these statements apply to
J(−) as well. Since W̄ (+) + W̄ (−) = J/J+, and both W̄ (+) and W̄ (−) are totally
isotropic, we conclude that W̄ (+) and W̄ (−) form a complete polarization of J/J+.
By Lemma 10.1, J/N is a Heisenberg p-group, and there is a special isomorphism
j = jW (+),W (−) from J/N to (J/J+)].

It is clear that for all g ∈ G′(F ) ∩ G(F )[y], we have gJ(+)Ng−1 = J(+)N and
gJ(−)Ng−1 = J(−)N . By Lemma 10.2, (f, j) is a symplectic action.

It remains to show that the special isomorphism doesn’t depend on the choice
of S and the choice of ordering. Observe that for any a ∈ Φ(G,S, F )rΦ(G′, S, F )
and any u ∈ Ga(F )y,s, j(u) is simply (uJ+, 0) ∈ (J/J+)]. Since {uN : u ∈
Ga(F )y,s for some a ∈ Φ(G,S, F )rΦ(G′, S, F )} together with J+/N generate J/N ,
we see that j doesn’t depend on the choice of ordering.

Let B be the Borel subgroup of G determined by the chosen ordering. Let P
be the parabolic subgroup containing B such that G′ is a Levi factor of P . Let U
be the unipotent radical of P . Then U(F ) ∩ J = J(+). If we choose a different
torus S1, then there is an ordering on Φ(G,S1, F ) such that U1(F ) = U(F ) (where
B1, P1, U1 are the obvious counterparts of B, P , U). Therefore, we obtain the
same W (+) and W (−) if we use S1 in the construction. This shows that j doesn’t
depend on the choice of the torus S.

The proof of the split case is now complete. We now reduce the general case to
the split case.

Take E to be a tamely ramified splitting field for T . From the split case,
J(E)/N(E) is a Heisenberg p-group, and there is a canonical special isomorphism
j : J(E)/N(E)→ (J(E)/J+(E))]. Let ι be the injection J/N → J(E)/N(E). The
image ι(J/N) in J(E)/J+(E) is isomorphic to J/J+, and hence is a non-degenerate
subspace. The action of G′(F ) ∩ G(F )[y] ⊂ G′(E) ∩G(E)[y] stabilizes ι(J/N). By
Lemma 10.3, we get a symplectic action (f, j) of G′(F )∩G(F )[y] on the Heisenberg
p-group J/N .

It is easy to check that this construction is independent of the choice of the
splitting field E. This completes the proof of the general case.

Theorem 11.5. Let K = G′(F )∩G(F )[y] and let φ̃ be the representation of KnJ
which is the pull back of the Weil representation of Sp(J/J+) n (J/N) via the
symplectic action given by the preceding proposition. Then (i) the restriction of φ̃
on J+ = 1 n J+ is φ̂-isotypic; and (ii) the restriction of φ̃ on G′(F )y,0+ n 1 is
1-isotypic.

Proof. (i) is clear from the definition of the Heisenberg representation. To prove
(ii), it suffices to show that the action (by conjugation) of G′(F )y,0+ on J/J+ is
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trivial. This follows from the fact [G′(F )y,0+, J ] ⊂ J+, which is an easy consequence
of [BT1, 6.4.44].

12. Calculating intertwining: Counting arguments

We begin with two general facts about Heisenberg representations.
Let κ be a finite field of odd characteristic p. Let V = (V, 〈, 〉, C) be a finite-

dimensional symplectic space over κ, let ψ be a non-trivial character of C, and let
ω = ωV be the Heisenberg representation of V ] with central character ψ.

Lemma 12.1. The character of ω is given by

Trω(u) =

{
(#V )1/2ψ(u) if u ∈ C,
0 if u /∈ C.

Proof. All we need to know are (i) the dimension of the space of ω is (#V )1/2,
(ii) the central character of ω is ψ, and (iii) ω is irreducible.

(i) and (ii) imply Trω(u) = (#V )1/2ψ(u) if u ∈ C. (iii) implies
∑

u∈V ] |Trω(u)|2
= (#V )(#κ). But

∑
u∈C |Trω(u)|2 = (#V )(#κ), and this forces Trω(u) = 0 for

u /∈ C.

Let U be a subspace of V , and let U ] be the preimage of U in the projection
V ] → V . We will analyze ωV |U] . Let U0 = {u ∈ U : 〈u, U〉 = 0}. Then U/U0 is
a non-degenerate symplectic space, and we can find a non-degenerate subspace V1

such that U = U0⊕ V1 (in general V1 is not unique). Then U ] = U ]0V
]

1 . We denote
by ωV |U]0×V ]1 the inflation of ωV |U] to U ]0 × V

]
1 .

Lemma 12.2. Let N0 =
(
#(V/V1)

)1/2
/#U0. Then ωV |U]0×V ]1 decomposes into a

sum over irreducible representations χ⊗ ωV1 , each occurring with multiplicity N0,
where χ runs over all linear characters of U ]0 extending ψ, and ωV1 is the Heisenberg
representation of V ]1 with central character ψ.

Proof. By the preceding lemma,

TrωV |U]0×V ]1
(
(u0, c0)× (v1, c1)

)
= N0

(
Tr reg(u0)

)
ψ(c0)

(
TrωV1(v1, c1)

)
,

where reg is the regular representation of U0. The lemma follows immediately.

Now we return to the notation and assumptions of the preceding section. As
in Theorem 11.5, we put K = G′(F ) ∩ G(F )[y] and let φ̃ be the representation of
K n J which is the pull back of the Weil representation of Sp(J/J+) n (J/N) via
the symplectic action given by Proposition 11.4. Our goal is to prove the following
proposition.

Proposition 12.3. For all g ∈ G′(F ), we have dim Ig(φ̃|J) = 1.

We will give a few counting arguments in this section and reduce this proposition
to the existence of a certain decomposition. The required decomposition will be
constructed in the next section.

Lemma 12.4. For any g ∈ G′(F ), dim Ig(φ̃|J) = [J : J+]/[g∩J : g∩J+]. In partic-
ular, g always intertwines φ̃|J .
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Proof. Let p2n = [J : J+]. By Lemma 12.1, the character Tr φ̃|g∩J (x) is non-zero
precisely when x ∈ (g∩J)∩J+ = J+ ∩ (gJ). Similarly, Tr gφ̃|g∩J (x) is non-zero pre-
cisely when x ∈ (g∩J)∩ (gJ+) = J ∩ (gJ+). Therefore,

(
Tr φ̃|g∩J(x)

)(
Tr gφ̃|g∩J(x)

)
is non-zero precisely when x ∈ J+ ∩ (gJ+), and in this case it takes the value

pnφ̂(x)pnφ̂(g−1xg) = p2n

by Lemma 9.3. From character theory, the intertwining number is equal to
p2n/[g∩J : g∩J+].

Lemma 12.5. Let g ∈ G′(F ). Then [(g∩J)J+ : g∩J ] = [J+ : J+ ∩ (gJ)] and
[(J ∩ (gJ+))J+ : J+] = [J ∩ (gJ+) : g∩J+].

Proof. In this proof, if B is a subgroup of G′(F ) and A is a subset of G(F ) such
that AB = A, then we denote by [A : B] the number of distinct cosets aB in A.
Recall the elementary index equality [AB : B] = [A : A ∩ B], valid for any two
subgroups A,B of G(E).

Apply the equality with A = (g∩J)J+, B = gJ (note that A is a group because
g∩J is a subgroup of J and J+ is a normal subgroup of J). We get [(g∩J)J+(gJ) :
gJ ] = [(g∩J)J+ : g∩J ]. Observe that

(g∩J)J+(gJ) = J+(g∩J)(gJ) = J+(gJ).

Therefore, [(g∩J)J+(gJ) : gJ ] = [J+(gJ) : gJ ] = [J+ : J+ ∩ (gJ)]. This proves the
first part of the lemma. The second part is a straightforward application of the
index equality.

Lemma 12.6. Fix g ∈ G′(F ). The following are equivalent:
(i) dim Ig(φ̃|J ) = 1;
(ii) [J : J+] = [g∩J : g∩J+];
(iii) [(g∩J)J+ : J+] · [(J ∩ (gJ+))J+ : J+] = [J : J+] = [(g

−1∩J)J+ : J+]·
[(J ∩ (g

−1
J+))J+ : J+].

Proof. The equivalence of (i) and (ii) is immediate from Lemma 12.4.
Now consider the diagram of inclusions

(g∩J)J+

pc

⊃ g∩J
pm

⊃ g∩J+⋃
pm−a−b

⋂
pb

(J ∩ (gJ+))J+

pa

⊃ J+

pc

⊃ J+ ∩ (gJ)

The number by each inclusion symbol indicates the index. We have applied Lemma
12.5 to label two of the indices by the same number pc.

Let p2n = [J : J+]. We will show that pm+a−b ≤ p2n in the remark following this
proof. We now assume this inequality holds. Suppose that (ii) holds, i.e. m = 2n.
Then a ≤ b, i.e. [J ∩ (gJ+) : g∩J+] ≤ [J+∩ (gJ) : g∩J+] (we are applying the second
part of Lemma 12.5). However, (ii) also implies that p2n = [g

−1∩J : g
−1∩J+]. So

we have [J ∩ (g
−1
J+) : g−1∩J+] ≤ [J+ ∩ (g

−1
J) : g−1∩J+]. Applying the inner

automorphism x 7→ gxg−1, we get [gJ ∩ J+ : g∩J+] ≤ [gJ+ ∩ J : g∩J+], i.e. b ≤ a.
We conclude that a = b. The two equalities a = b and m = 2n imply (iii).

Conversely, let’s assume that (iii) holds. Now condition (iii) says precisely that
m + a − b = 2n and m + b − a = 2n. Therefore, we conclude b = a and m = 2n,
hence (ii).
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Remark 12.7. We can give a direct proof that (iii) implies (i). Let U (resp. U0) be
the image of J∩(gJ) (resp. J∩(gJ+)) in V = J/J+. We claim that U0 ⊥ U . In fact,
if a ∈ J ∩ (gJ), b ∈ J ∩ (gJ+), then aba−1b−1 ∈ J+ ∩ g[J, J+] and φ̂(aba−1b−1) =
φ̂(g−1(aba−1b−1)g) = 1 by Lemma 9.3. In particular, U0 is totally isotropic, and
dimU0 + dimU ≤ 2n, i.e. a + (m − b) ≤ 2n. This justifies the statement used in
the proof of equivalence of (ii) and (iii).

Remember that dimU0 +dim(U0)⊥ = dimV . Therefore, the first equality of (iii)
is equivalent to U = (U0)⊥. We now assume that this is the case. By Lemma 12.2,
this implies that φ̃|g∩J decomposes into the direct sum of d = #U0 distinct irre-
ducible representations π1, . . . , πd. We assume that π1 is the unique irreducible
subrepresentation which is (gφ̂|J∩(gJ+))-isotypic.

Let f be a non-zero element in Ig(φ̃|J ). The image of f is a direct sum of a
collection of πi’s. Let v be a non-zero element in the space of πi such that v is in
the image of f , say v = f(v•). Then since v• is a gφ̂-eigenvector under the action
of gJ+ ∩ J , v must be the same kind of eigenvector. So we must have i = 1.

Similarly, gφ̃|g∩J decomposes into distinct representations π•1 , . . . , π•d. We as-
sume that π•1 is the unique irreducible subrepresentation on which J+ ∩ (gJ) acts
φ̂-isotypically. The second equality in (iii) implies that if v• is in the space of π•i
such that f(v•) 6= 0, then i = 1. Therefore, the homomorphism f determines, and
is determined by, an element of Homg∩J (π•1 , π1). We conclude that dim Ig(φ̃|J ) is
at most one, hence is exactly one, by Lemma 12.4. This finishes our direct proof of
(iii) implying (i).

This proof allows us to see the intertwining explicitly. Basically, both gφ̃|g∩J and
φ̃|g∩J contain a unique irreducible subrepresentation which is the inflation of the
Heisenberg representation of (U/U0)], and the only possible non-zero intertwining
operators are isomorphisms between these two subrepresentations. This argument
will be considerably refined in §14.

Lemma 12.8. Fix g ∈ G′(F ). Let J1, J2, J3 be three subgroups of J , and let
V1, V2, V3 be their images in V = J/J+. Suppose

(a) V = V1 ⊕ V2 ⊕ V3;
(b) V1 ⊥ V2, V2 ⊥ V3;
(c) V1 and V3 are totally isotropic;
(d) V1 = (J ∩ (gJ+))J+/J+, V1 ⊕ V2 = (g∩J)J+/J+.

Then [(g∩J)J+ : J+] · [(J ∩ (gJ+))J+ : J+] = [J : J+].

Proof. By (d), we only have to show that dim(V1⊕V2)+dimV1 = dimV (here dim =
dimFp). By (a), this is equivalent to dimV1 = dim V3. By (b), V1 ⊕ V3 ⊂ V ⊥2 . By
(a), this inclusion has to be an equality. Therefore, V2 is a non-degenerate subspace,
and so is V1 ⊕ V3. By (c), dim V1, dimV3 ≤ 1

2 dim(V1 ⊕ V3). So dimV1 = dim V3.
The lemma is proved.

13. Calculating intertwining: Decompositions

This section makes heavy use of the groups associated with concave functions
by Bruhat-Tits theory. See §1 for basic definitions and notation.

Let Φ be a root system of linear functions on a real vector space V , Φ0 = Φ∪{0}.
We first give a few ways to recognize concave functions on Φ0. Recall that our
functions take values in R̃. The proof of the next lemma is very easy.
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Lemma 13.1. In this lemma, “concave” means “concave as a function on Φ0”.
(i) If f is concave, v ∈ V , then a 7→ f(a) + a(v) is concave.
(ii) If f, f ′ are concave, so is a 7→ max(f(a), f ′(a)).
(iii) If f is concave and real-valued and C ⊂ Φ0 is closed under addition, then

a 7→
{
f(a) if a ∈ C,
f(a)+ if a /∈ C

is also concave.
(iv) If f is concave, and C ⊂ Φ0 is closed under addition, then

a 7→
{
f(a) if a ∈ C,
∞ if a /∈ C

is also concave.

Let G be a split connected reductive group over E, and let T be a maximal
E-split torus in G. Let Φ = Φ(G, T,E), and y a point on A(G, T,E). Recall that
to a concave function f on Φ0, we can construct a subgroup G(E)y,f of G(E) (the
construction actually depends on T , but this is suppressed in the notation).

Lemma 13.2. Let f, f ′ be concave. Assume that f(0) > 0, f ′(0) > 0.
(i) The intersection G(E)y,f ∩ G(E)y,f ′ is equal to G(E)y,max(f,f ′), where

max(f, f ′) is the concave function a 7→ max(f(a), f ′(a)).
(ii) If the function min(f, f ′) :a 7→min(f(a), f ′(a)) is concave, then G(E)y,min(f,f ′)

is the subgroup generated by G(E)y,f and G(E)y,f ′ .

Proof. Choose a system of positive roots Φ+ of Φ and put Φ− = Φ r Φ+. It is
known that for any fixed order of multiplication, the multiplication map∏

a∈Φ+

Ga(E)y,h(a) × T (E)h(0) ×
∏
a∈Φ−

Ga(E)y,h(a) → G(E)y,h

is bijective for any concave h such that h(0) > 0 [BT1, 6.4.48]. We fix an order and
write g =

∏
a∈Φ0 ga to indicate this decomposition for g ∈ G(E)y,h.

Now if g ∈ G(E)y,f ∩G(E)y,f ′ , then g has a decomposition
∏
ga as an element

of G(E)y,f , and also a decomposition
∏
g′a as an element of G(E)y,f ′ . But it is also

known that the multiplication map∏
a∈Φ+

Ga(E)× T (E)×
∏
a∈Φ−

Ga(E)→ G(E)

is injective [Hu, 28.1, 28.5]. Therefore the two decompositions must be the same:
ga = g′a for all a. Therefore, ga∈Ga(E)y,f(a)∩Ga(E)y,f ′(a) =Ga(E)y,max(f(a),f ′(a)).
This shows that G(E)y,f ∩ G(E)y,f ′ ⊂ G(E)y,max(f,f ′). The reverse inclusion is of
course trivial. This proves (i).

(ii) is immediate from the definition.

Now assume that G is a connected reductive group over F , and E/F is a finite
Galois extension such that G⊗ E is split. Let T be a maximal torus of G, defined
over F split over E. Let y be a point in A(G, T,E) ∩B(G,F ).

Under these assumptions, Gal(E/F ) acts on Φ = Φ(G, T,E). A function f on
Φ0 is called Gal(E/F )-stable if f(γ.a) = f(a) for all a ∈ Φ0, γ ∈ Gal(E/F ). If f
is concave and Gal(E/F )-stable, then G(E)y,f is Gal(E/F )-stable, and we define
G(F )y,f = G(E)y,f ∩G(F ) = G(E)Gal(E/F )

y,f .
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Lemma 13.3. Let f, f ′ be Gal(E/F )-stable concave functions such that min(f, f ′)
is also concave, f(0) > 0, f ′(0) > 0, and G(E)y,f normalizes G(E)y,f ′ . Suppose
that

H1(Gal(E/F ), G(E)y,max(f,f ′))

is trivial. Then G(F )y,fG(F )y,f ′ = G(F )y,min(f,f ′).

Proof. Consider the exact sequence of groups

1→ G(E)y,max(f,f ′) → G(E)y,f nG(E)y,f ′ → G(E)y,min(f,f ′) → 1,

where the first map is x 7→ xn x−1 and the second map is xn y 7→ xy. The Galois
group Gal(E/F ) acts on all three groups. Taking the exact sequence of cohomology
groups, we obtain

1→ G(F )y,max(f,f ′) → G(F )y,f nG(F )y,f ′ → G(F )y,min(f,f ′)

→ H1(Gal(E/F ), G(E)y,max(f,f ′)).

By assumption, the last term is trivial. Therefore,

G(F )y,f nG(F )y,f ′ → G(F )y,min(f,f ′)

is surjective. This proves the lemma.

In order to obtain the vanishing of H1 in Lemma 13.3, we will need a slight
generalization of Proposition 2.2.

Proposition 13.4. Suppose additionally that E/F is tamely ramified. Let f be a
Gal(E/F )-stable concave function on Φ0 such that there is a real number ε > 0 and
f(a) ≥ ε for all a ∈ Φ0. Then

H1(Gal(E/F ), G(E)y,f )

is trivial.

Proof. By [BT1, 6.4.44], there is a Gal(E/F )-stable concave function f1 such that

[G(E)y,f , G(E)y,f ] ⊂ G(E)y,f1

and f1(a) ≥ 2ε for all a ∈ Φ0.
Inductively, we can find a sequence of Gal(E/F )-stable concave functions (fn)n

on Φ0 such that [G(E)y,fn , G(E)y,fn ] ⊂ G(E)y,fn+1 and fn(a) ≥ 2nε for all a ∈ Φ0.
By [BT1, 6.4.48], we have a Gal(E/F )-equivariant isomorphism

G(E)y,fn/G(E)y,fn+1 ' g(E)y,fn/g(E)y,fn+1 .

The arguments in §2 show that these two groups have vanishing first cohomology.
The proof is then completed by using Lemma 2.8.

We now return to the proof of Proposition 12.3. From now on, g is a fixed
element of G′(F ). Let T be a maximal F -torus of G′ such that T is split over a
tamely ramified Galois extension E, and y, g.y ∈ A(G′, T, F ). Such a torus exists by
the fact that any two points of B(G′, F ) are contained in an apartment of B(G′, F )
and by the discussion in the beginning of §2. We put Φ = Φ(G, T,E).

Let 
Φ1 = {a ∈ Φ(G, T,E) : a(y − g.y) < 0},
Φ2 = {a ∈ Φ(G, T,E) : a(y − g.y) = 0} ∪ {0},
Φ3 = {a ∈ Φ(G, T,E) : a(y − g.y) > 0}.
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Notice that each Φi is closed under addition. Let Φ′i = Φi ∩ (Φ(G′, T, E) ∪ {0}),
Φ′′i = Φi r Φ′i, i = 1, 2, 3. Define fi : Φ(G, T,E) ∪ {0} → R̃ as follows (recall that
s = r/2):

fi(a) =


r if a ∈ Φ′i,
s if a ∈ Φ′′i ,
∞ if a /∈ Φi.

Lemma 13.1(iv) shows that f1, f2, f3 are concave functions, because f0 = f(r,s) is.
We define Ji(E) to be the subgroup G(E)y,fi of G(E) for i = 0, 1, 2, 3. We have

J0(E) = J(E) = J1(E)J2(E)J3(E) by [BT1, 6.4.48]. Notice also that Φ1 ∪ Φ2 and
Φ2 ∪ Φ3 are closed under addition. Therefore, J1(E)J2(E) and J2(E)J3(E) are
groups. Let f+ = f(r,s+) so that G(E)y,f+ = J+(E).

Lemma 13.5. All of the following commutator subgroups are contained in N(E) =
ker(φE : J+(E)→ C∗):

[J1(E), J1(E)], [J1(E), J2(E)], [J2(E), J3(E)], [J3(E), J3(E)].

Proof. First we note that these commutators are all contained in J+(E), and an
element g of J+(E) has a decomposition

∏
a∈Φ0 ga, where ga ∈ Ga(F )y,f+(a). By

the construction of φ̂, φ̂(g) 6= 1 only when g0 /∈ G0(E)r+.
We can apply [BT1, 6.4.44] to construct a concave function h such that [J1(E),

J2(E)] ⊂ G(E)y,h. By the preceding discussion, it suffices to show that h(0) > r.
It follows from [BT1, 6.4.44] that h(a) 6= ∞ only when a can be expressed as
a sum

∑
i ai +

∑
bj, where (ai)i ⊂ Φ1 and (bj)j ⊂ Φ2 are non-empty families.

Clearly this condition implies that a(y − g.y) < 0. Therefore, h(0) = ∞ and
φ̂([J1(E), J2(E)]) = 1.

The remaining three cases are proved similarly.

Define 

fg(a) = f0(a) + a(y − g.y) (i)
fg+(a) = f+(a) + a(y − g.y) (i)
f4(a) = max(f0(a), fg(a)) (ii)
f5(a) = max(f0(a), fg+(a)) (ii)
f6(a) = min(f4(a), f+(a)) (iii)
f7(a) = min(f5(a), f+(a)) (iii)
f8(a) = min(f1(a), f2(a)) (iv)

Lemma 13.1 shows that these functions are concave on Φ0 (the roman numeral
following each function indicates the case of Lemma 13.1 to use).

Recall that for any a ∈ Φ(G, T,E)∪{0}, we haveGa(E)g.y,r = Ga(E)y,r+a(y−g.y).
It follows easily that G(E)y,fg = gJ(E), G(E)y,fg+ = gJ+(E), G(E)y,f4 = g∩J(E),
G(E)y,f5 = J(E) ∩ (gJ+(E)), G(E)y,f6 = J1(E)J2(E)J+(E) = (g∩J(E))J+(E),
G(E)y,f7 = J1(E)J+(E) = (J(E) ∩ (gJ+(E)))J+(E), and G(E)y,f8 = J1(E)J2(E).

We will now descend to F . Notice that each of Φi,Φ′i,Φ
′′
i is Gal(E/F )-stable,

and therefore fi (0 ≤ i ≤ 8), f+, fg, fg+ are all Gal(E/F )-stable. Therefore, Ji(E)
is Gal(E/F )-stable. We define Ji = Ji(E) ∩G(F ), i = 1, 2, 3.

Lemma 13.6. The four conditions (a)–(d) in Lemma 12.8 are all satisfied.
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Proof. (b) and (c) are obvious from the preceding lemma. If i, j, k are distinct,
then JiJ+ ∩ JjJkJ+ ⊂ Ji(E)J+(E) ∩ Jj(E)Jk(E)J+(E) ⊂ J+(E) by Lemma 13.2.
Therefore, JiJ+∩JjJkJ+ ⊂ J+(E)∩G(F ) = J+. Therefore, we know that the sum
V1 + V2 + V3 is direct.

It remains to show that J1J2J3 = J , J1J+ = (J ∩ (gJ+))J+, and J1J2J+ =
(g∩J)J+.

It is easy to show that J1J2 = G(F )y,f8 and J1J2J3 = J .
We now claim that J1J+ = G(F )y,f7 = (J ∩ (gJ+))J+. By Lemma 13.3, the two

equalities are implied by

H1(Gal(E/F ), G(E)y,max(f1,f+))=1 and H1(Gal(E/F ), G(E)y,max(f5,f+))=1.

The vanishing of these first cohomology groups, as well as those needed below, can
be checked easily by Proposition 13.4.

We claim that G(F )y,f8J+ = G(F )y,f6 = G(F )y,f4J+. This is implied by

H1(Gal(E/F ), G(E)y,max(f8,f+))=1 and H1(Gal(E/F ), G(E)y,max(f4,f+))=1.

The lemma is proved completely.

Proof of Proposition 12.3. Combine the above lemma with Lemmas 12.6 and 12.8.

We want to derive one more decomposition needed in the next section. Recall
that K = G′(F ) ∩G(F )[y].

Lemma 13.7. For all g ∈ G′(F ), g∩(KJ) = (g∩K)(g∩J).

Proof. Again we will prove the lemma first over E. We do all the constructions
over E to define K(E), J(E), etc.

Choose an ordering of Φ = Φ(G, T,E). We define U(+) (resp. U(−)) to be the
subgroup generated by Ga(E) for all positive (resp. negative) a ∈ Φ(G, T,E) such
that a /∈ Φ(G′, T, E). Then the multiplication map G′(E)×U(+)×U(−)→ G(E)
is injective.

We also define J(+) (resp. J(−)) to be the subgroup generated by Ga(E)y,r/2
for all positive (resp. negative) a ∈ Φ(G, T,E) such that a /∈ Φ(G′, T, E).

The group K(E)J(E) is generated by K(E), J(+), and J(−). We claim that
the multiplication map K(E)× J(+)× J(−)→ K(E)J(E) is a bijection. Indeed,
we have K(E)J(+)J(−) = K(E)G′(E)y,rJ(+)J(−) = K(E)J(E). So the map is
surjective. The injectivity is obvious from the above discussion.

It is clear that G′(E) normalizes G′(E), U(+) and U(−). Therefore, if x ∈
g∩(K(E)J(E)) is decomposed into x1x2x3 as an element of K(E)J(+)J(−), and
decomposed into x′1x′2x′3 as an element of gK(E)gJ(+)gJ(−), we must have x1 =
x′1 ∈ g∩K(E), x2 = x′2 ∈ g∩J(+), x3 = x′3 ∈ g∩J(−). Therefore, we have
g∩(K(E)J(E)) = (g∩K(E))(g∩J(E)).

As in the proof of Lemma 13.3, it remains to show that

H1(Gal(E/F ),K(E) ∩ J(E)) = 1 and H1(Gal(E/F ), g∩(K(E) ∩ J(E))) = 1.

The first statement is a special case of Proposition 2.2, because K(E) ∩ J(E) =
G′(E)y,r. The second statement can be handled by Proposition 13.4.
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14. Calculating intertwining: Conclusion

So far, we have only assumed that φ is a G-generic-character of G(F )y,r:r+.
Now we assume further that φ is a quasi-character defined on the whole of G′(F ),
G-generic relative to y, of depth r.

As in §4, we inflate φ|K to a representation inf(φ) of K n J . It can be shown as
in §4 that the representation inf(φ) ⊗ φ̃ of K n J is inflated from a representation
φ′ of KJ via the map K n J → KJ .

Proposition 14.1. For all g ∈ G′(F ), we have dim Ig(φ′|KJ) = 1.

The proof will take up the whole section. We first record a consequence.

Theorem 14.2. For any subgroup K ′ such that J ⊂ K ′ ⊂ KJ , and for all g ∈
G′(F ), we have dim Ig(φ′|K′) = 1.

Proof. Immediate from Proposition 12.3 and Proposition 14.1.

We now begin to prove Proposition 14.1. From Lemma 13.7, Homg∩(KJ)(gφ′, φ′)
is the same as

Homg∩Kng∩J (g inf(φ) ⊗ gφ̃, inf(φ)⊗ φ̃).

Clearly, g inf(φ) = inf(φ) on gK n gJ (φ is a 1-dimensional character on the whole
of G′(F )). Therefore, it suffices to show that dim Homg∩Kng∩J(gφ̃, φ̃) = 1. From
Proposition 12.3, we know that this dimension is at most one.

The rest of the proof refines the discussion in Remark 12.7. We adopt the
notation there: U = (g∩J)J+/J+, U0 = (J ∩ (gJ+))J+/J+. Furthermore, let U#

and U#
0 be the preimage of U and U0 by the projection V # → V .

The character φ̂|J+ agrees with the character gφ̂|(J∩(gJ+)) on the intersection of
their domains of definition by Lemma 9.3. Together they determine a character of
(J ∩ (gJ+))J+ which is trivial on N . We denote this character by φg. Our first
task is to identify this character. Recall that j : J/N → (J/J+)] is the special
isomorphism defined in Proposition 11.4.

Lemma 14.3. The character φg is trivial on j−1(U0 × {1}), hence kerφg is equal
to j−1(U0 × {1}).

Proof. The second statement follows from the first because

(J ∩ (gJ+))J+/j
−1(U0 × {1}) ' U#

0 /(U0 × {1})
is cyclic of order p and φg is non-trivial.

We first prove the lemma for the split case. According to the proof of Proposition
11.4, U0 × {1} is generated by j(u), u ∈ Ga(F )y,r/2, a ∈ Φ′′1 , where Φ′′1 is defined
in the last section. It is clear that gφ̂(u) = 1. This implies the lemma in the split
case.

The general case is easily reduced to the split case by looking at the proof of
Proposition 11.4.

Since g∩J is contained in J , the pairing 〈, 〉 : (a, b) 7→ φ̂(aba−1b−1) is defined on
g∩J . The character φ is also G-generic relative to g.y, and the associated “J”-
group is (G′, G)(E)g.y,(r,s) = gJ . The pairing g〈, 〉 on gJ is related to 〈, 〉 by
g〈gag−1, gbg−1〉 = 〈a, b〉. However, for a, b ∈ g∩J , we have 〈a, b〉 = g〈a, b〉 by
Lemma 9.3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTION OF TAME SUPERCUSPIDAL REPRESENTATIONS 613

Let (g∩J)+ = {a ∈ g∩J : 〈a, g∩J〉 = 1}.

Lemma 14.4. (g∩J)+ = g∩J ∩ ((gJ+ ∩ J)J+) = (gJ ∩ J+)(gJ+ ∩ J).

Proof. By Remark 12.7,
g∩J

(g∩J)+
' (g∩J)J+

(gJ+ ∩ J)J+
'

g∩J
g∩J ∩ ((gJ+ ∩ J)J+)

(the second equality is from a standard isomorphism theorem). This proves the
first equality in the lemma.

The second equality of the lemma can be verified by the method of the last
section: first deal with the split case and write every group as a group associated
to a concave function and apply Lemma 13.2; then reduce the general case to the
split case.

We put Ng = ker(φg|(g∩J)+), N ′g = ker(φg), and summarize the situation with
the following diagram:

g∩J ⊂ (g∩J)J+ ⊂ J⋃ ⋃ ⋃
(g∩J)+ ⊂ (gJ+ ∩ J)J+ ⊃ J+⋃ ⋃ ⋃
Ng ⊂ N ′g ⊃ N

We obtain
g∩J

Ng
↪→ (g∩J)J+

N ′g
↪→ J

N ′g

j' V ]

j(N ′g)
.

By Lemma 14.3, the image of the leftmost term in the rightmost term is U ]/
(U0 × {1}).

Lemma 14.5. The action of g∩K on J/J+ stabilizes the subspace U0.

Proof. This is obvious: [gK ∩K, gJ+ ∩ J ] ⊂ gJ+ ∩ J .

We now digress to discuss a general property of Weil representations. Let
(V, 〈, 〉, C) be a non-degenerate symplectic space over Fp, and let (ω,W ) be the
Weil representation of Sp(V )nV ]. Let U0 be a totally isotropic subspace of V and
U = U⊥0 . For any subspace X of V , let X] be the preimage of X under V ] → V ,
i.e. X] = X × C, and let X0 be X × {1}. Let P0 = {g ∈ Sp(V ) : g.U0 ⊂ U0} (this
is a maximal parabolic subgroup of Sp(V )). There is a surjection P0 → Sp(U/U0).
Let N0 be its kernel.

Lemma 14.6. The group U ]/U0
0 is naturally isomorphic to (U/U0)] by the map

(u, c)+U0
0 7→ (u+U0, c). The subspace WU0

0 is stable under the action of P0nU ] and
the action of N0nU0

0 is trivial. Therefore, we can regard WU0
0 as a representation

of Sp(U/U0) n (U/U0)]. This representation is simply the Weil representation of
Sp(U/U0)n (U/U0)].

Proof. The first claim, i.e. that U ]/U0
0 is naturally isomorphic to (U/U0)], is obvi-

ous.
It is also obvious that WU0

0 is stable under the action of P0 n U ], and U0
0 acts

trivially on this subspace. To show that N0 acts trivially on WU0
0 , we first notice

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



614 JIU-KANG YU

that WU0
0 as a representation of (U/U0)] is simply the Heisenberg representation

(Lemma 12.2), and therefore is irreducible. There is at most one way of extending
this representation to a representation of P0 n (U/U0)] up to tensoring by a linear
character of P0. Therefore, WU0

0 as a representation of P0n(U/U0)] is the (inflation
of the) Weil representation tensored by a linear character of P0. It is easy to show
that N0 is contained in the commutator subgroup of P0. Therefore, N0 acts trivially
on WU0

0 .
Let V1 be a non-degenerate subspace of V such that U = U0⊕V1. Put V2 = V ⊥1 .

It is well known (see [Ge]) that the pull back of ω by the map

(Sp(V1)n V ]1 )× (Sp(V2)n V ]2 )→ Sp(V )n V ]

is the external tensor product of the Weil representation ω1 of Sp(V1)nV ]1 with the
Weil representation ω2 of Sp(V2) n V ]2 . From this it follows that WU0

0 is the Weil
representation of Sp(V1)n V ]1 (we identify Sp(V1) with the first factor of Sp(V1)×
Sp(V2) ⊂ Sp(V )). Since Sp(V1)nV ]1 maps isomorphically onto P0/N0nU ]/U0

0 , the
space WU0

0 as a representation of Sp(U/U0) n (U/U0)] is the Weil representation.
This proves the last statement of the lemma.

We now return to the main proof. Let j1 be the composition
g∩J

Ng
' U#

U0 × {1}
'
( U
U0

)#

,

where the first isomorphism is the one in the discussion preceding Lemma 14.5, and
the second isomorphism is from the first statement of Lemma 14.6.

Proposition 14.7. (i) The group g∩J/Ng is a Heisenberg p-group with center
(g∩J)+/Ng, and j1 : (g∩J)/N → (g∩J/(g∩J)+)] is a special isomorphism. (ii) Let
f1 : g∩K → Sp(g∩J/Ng) be the natural morphism induced by conjugation. Then
(f1, j1) is a symplectic action. (iii) Let φ̃ be the Weil representation of K n J , and
let π1 be the (φg|gJ+∩J)-isotypic subspace of φ̃. Then π1 is naturally a representa-
tion of g∩K n g∩J , and this representation is the Weil representation coming from
the symplectic action (f1, j1).

Proof. (i) is clear.
Let k ∈ K1. Since (f, j) is a symplectic action, there exists f̄(k) ∈ Sp(V ) such

that j ◦ f(k) ◦ j−1(u, c) = (f̄(k).u, c). It follows that j1 ◦ f1(k) ◦ j−1
1 (u + U0, c) =

(f̄(k).u + U0, c). By Lemma 14.5, f̄(k) stabilizes U0 and U = U⊥0 . Therefore,
f̄(k) induces a symplectic automorphism on U/U0. This shows that (f1, j1) is a
symplectic action and proves (ii).

By Lemma 14.3, the (φ∗|gJ∩J+)-isotypic subspace of φ̃ is the same as the sub-
space fixed by j−1(U0 × {1}). Therefore, (iii) follows from the last statement of
Lemma 14.6.

Proof of Proposition 14.1. We can exchange the roles of J and gJ in the discussion
above. More precisely, we can replace y by y• = g.y and g by g• = g−1, and
then apply the above discussion. This gives us another special isomorphism j•1 :
(g∩J)/Ng → (g∩J/(g∩J)+)], a morphism f•1 : g∩K → Sp(g∩J/Ng), and a subspace
π•1 of gφ̃ which is (φg• |gJ∩J+)-isotypic and naturally the Weil representation of
g∩K n g∩J coming from the symplectic action (f•1 , j

•
1 ).
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Obviously, f1 = f•1 . By tracing the proofs of Proposition 11.4 and Proposition
14.7, we see that j1 = j•1 . Therefore, we have found a subspace π1 of φ̃ and a
subspace π•1 of gφ̃ which are isomorphic as representations of g∩K n g∩J . This
completes the proof of Proposition 14.1.

15. Supercuspidal representations and supercuspidal types

We now resume the situation of §3. We say that the datum (~G, y, ~r, ρ, ~φ) is
generic if φi is Gi+1-generic of depth ri (relative to y) for 0 ≤ i ≤ d− 1.

Now suppose that the datum (~G, y, ~r, ρ, ~φ) is generic. By Theorem 9.4, condition
SC1i is satisfied. By Theorem 11.5, condition SC2i is satisfied with canonically
constructed φ̃i’s, which do not depend on any choices. Finally, condition SC3i is
also satisfied by Theorem 14.2. Applying Proposition 4.6, we obtain the following
theorem.

Theorem 15.1. Let (~G, y, ~r, ρ, ~φ) be a generic datum. Construct (ρi)i by the
method of §4 using (φ̃i)i constructed in §11. Then the compactly induced repre-
sentation πi = indG

i(F )
Ki ρi of Gi(F ) is irreducible, supercuspidal, and of depth ri

for 0 ≤ i ≤ d.

We emphasize that the entire construction depends only on the generic datum.
No choices are involved.

Remark 15.2. If G0 is anisotropic modulo Z(G), the theorem follows directly from
Corollary 4.5. If J i = J i+ for 1 ≤ i ≤ d, the proof can also be considerably
simplified. These cases are known to J. Adler independently.

Corollary 15.3. Let ◦K0 = G0(F )y, ◦Ki = (◦K0)~G(i)(F )y,(0,s0,... ,si−1), and ◦ρi =
ρi|◦Ki . Then (◦Ki, ◦ρi) is an si-type in the sense of Bushnell-Kutzko ([BK2]), where
si is the inertial class of [Gi, πi]Gi .

Proof. This is immediate from [BK2, 5.4], and the fact that ◦Ki is the maximal
compact subgroup of Ki.

Remark 15.4. If we only want to construct the supercuspidal type (◦Ki, ◦ρi), we
can proceed as follows. Start with a datum (~G, y, ~r, ◦ρ, ~φ), satisfying D1, D2, D3,
D5, and ◦D4:
◦D4 ◦ρ is an irreducible representation of G0(F )y such that ◦ρ|G(F )y,0+ is 1-

isotypic, G0(F )y,0 is a maximal parahoric subgroup, ◦ρ can be extended to
a representation of K0 = G0(F )[y], and ◦ρ|G0(F )y,0:0+ contains an irreducible
cuspidal representation.

We then follow the construction in §4, and replace Ki by ◦Ki, ρ by ◦ρ, and ρi
by ◦ρi throughout.

Corollary 15.5. Assume the notation of the preceding corollary. If g ∈ Gi(F )
intertwines ◦ρi, then g ∈ (◦Ki)G0(F )(◦Ki). Moreover, an element g of G0(F )
intertwines ◦ρi if and only if it intertwines ◦ρ0. In fact, we have for g ∈ G0(F ),

Ig(ρi|◦Ki) = Ig(ρ0|◦K0)⊗ Ig(φ̃0)⊗ · · · ⊗ Ig(φ̃i−1),

where Ig(φ̃j) is 1-dimensional for 0 ≤ j ≤ d− 1.
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Proof. This follows by inspecting the proof of Proposition 4.6. At the end of that
proof, we will have an equality Ig(inf(◦ρ′i−1)) = Ig(◦ρ′i−1) instead of just an inclu-
sion. This follows from a slight variation of Lemma 13.7:

g(◦Ki) =
(
g(◦Ki−1)

)
(gJ i).

Each Ig(φ̃j) is 1-dimensional by Proposition 12.3.

Denote by π(ρ) = π(~G, y, ~r, ρ, ~φ) the representation indG(F )

Kd ρd constructed in
Theorem 15.1. We want to show that π(ρ) is equivalent to π(ρ•) if ρ• is another
representation of K0/K0

+ such that indG
0(F )

K0 ρ• = π0. By examining the construc-
tion, we see that there is a representation λ of Kd such that ρd = ρ ⊗ λ, and
ρ•d = ρ• ⊗ λ, where we are regarding ρ and ρ• as representations of Kd by the
natural isomorphism Kd/Kd

+ ' K0/K+
0 .

Lemma 15.6. If g ∈ G0(F ) is such that

Homg∩K0(gρ, ρ•) 6= 0,

then

Homg∩Kd(g(ρ⊗ λ), ρ• ⊗ λ) 6= 0.

Proof. By (the proof of) the preceding corollary,

dim Homg∩Kd(gλ, λ) = 1

for all g ∈ G0(F ). The lemma follows immediately.

This lemma implies immediately that π(ρ) ' π(ρ•). Therefore,

Theorem 15.7. For 0 ≤ i ≤ d, the equivalence class of the representation π con-
structed in Theorem 15.1 depends only on the triple (~G, π0, ~φ) determined by the
5-tuple (~G, y, ~r, ρ, ~φ) via Remark 3.7.

In our definition of a twisted Levi sequence, successive members in the sequence
are always distinct. Sometimes it is convenient to relax this condition. We call a
sequence ~G = (Gi)0≤i≤d of connected reductive groups over F a generalized twisted
Levi sequence if G0 ⊂ G1 ⊂ · · · ⊂ Gd and Gi ⊗ F̄ is a Levi subgroup of Gj ⊗ F̄ for
all i ≤ j. A generalized twisted Levi sequence becomes a twisted Levi sequence if
we remove the repeated members.

For example, (G′, G) is a generalized twisted Levi sequence if G′ = G. In this
case, we regard any element of (Lie(Z ′)◦)−r as generic of depth r, and we regard
any character trivial on G′(F )y,r+ as G-generic of depth r (in particular, the trivial
character is regarded as G-generic of depth r for all r). It is easy to see that
Theorem 9.4, Theorem 11.5, and Theorem 14.2 remain true if we allow (G′, G) to
be a generalized twisted Levi sequence.

We define a generalized datum to be a 5-tuple (~G, y, ~r, ρ, ~φ) satisfying D1–D5,
except in D1 we only require ~G to be a tamely ramified generalized twisted Levi se-
quence, and in D5 we do not insist that φi is non-trivial on Gi(F )y,ri (in particular,
φi = 1 is allowed).

Starting with a generalized datum (~G, y, ~r, ρ, ~φ), it is easy to see that the whole
construction of §4 can be carried out. Moreover, if the datum is generic (which
means that φi is Gi+1-generic of depth ri for 0 ≤ i ≤ d− 1), then πi = indG

i(F )
Ki ρi

is irreducible supercuspidal of depth ≤ ri for 0 ≤ i ≤ d.
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However, it is easy to see that we don’t get any new supercuspidal representations
using generic generalized data: what we get are exactly those which come from
generic data. The point of this discussion is the following proposition, whose proof
is easy.

Proposition 15.8. Let G1, . . . , Gn be connected reductive groups, and let G be the
direct product

∏n
j=1 Gj.

(i) A generalized twisted Levi sequence ~G in G is of the form (
∏
j G

i
j)0≤i≤d, where

~Gj = (Gij)0≤i≤d is a generalized twisted Levi sequence in Gj for 1 ≤ j ≤ n.
(ii) Let (~G, y, ~r, ρ, ~φ) be a generalized datum. Then we can write y = (yj)1≤j≤n,

ρ =
⊗n

j=1 ρ
(j), φi =

⊗n
j=1 φ

(j)
i , and (~Gj , yj , ~r, ρ(j), ~φ(j)) is a generalized da-

tum for each j. Conversely, given a sequence {(~Gj , yj , ~r, ρ(j), ~φ(j))} of gener-
alized data, then we get a generalized datum for G.

(iii) The generalized datum (~G, y, ~r, ρ, ~φ) is generic if and only if (~Gj , yj , ~r, ρ(j), ~φ(j))
is generic for each j.

(iv) The supercuspidal representation of G(F ) constructed from (~G, y, ~r, ρ, ~φ) is
the tensor product of the supercuspidal representations of Gj(F ) constructed
from (~Gj , yj , ~r, ρ(j), ~φ(j)).

(v) A supercuspidal representation π =
⊗
πj of G(F ) =

∏
Gj(F ) arises from

our construction if and only if each πj does.

16. A lemma about double cosets

Let (G′, G) be a tamely ramified twisted Levi sequence, y ∈ B(G′, F ) ⊂ B(G,F ).
Let r, s be real numbers such that s ≥ r/2 > 0. Put J = (G′, G)(F )y,(r,s) and
J ′ = G′(F )y,r = J ∩G′(F ).

Special cases of the following lemma have been proved in the works of Howe and
Moy. The proof here follows their ideas. The new feature is that we have to use
two tori, and instead of using the Iwahori decomposition, we use the decomposition
in §13.

Lemma 16.1. For any g ∈ G′(F ), JgJ ∩G′(F ) = J ′gJ ′.

Corollary 16.2. The map

J ′\G′(F )/J ′ → J\
(
JG′(F )J

)
/J, J ′gJ ′ 7→ JgJ

is a well-defined bijection.

Proof. Let T be a maximal torus of G′ such that T is split over a tamely ram-
ified Galois extension E/F , and let y, g.y ∈ A(G′, T, F ). We form the groups
J1(E), J2(E), J3(E) as in §13 such that J(E) = J1(E)J2(E)J3(E). (In §13 we
assume s = r/2. But that hypothesis can be weakened to s ≥ r/2.)

Replace (y, g, T ) by (y•, g•, T •) = (y, g−1, g
−1
T ) (observe that (y•, g•.y•) =

g•.(g.y, y) is a pair of elements lying on A(G′, T •, F )). We form another decompo-
sition J(E) = J•1 (E)J•2 (E)J•3 (E).

We now compare these groups. The root system Φ• = Φ(G, T •, E) is simply
{Ad(g).a : a ∈ Φ = Φ(G, T,E)}, where Ad(g).a : g

•
T → Gm is t 7→ a((g•)−1tg•).

For a ∈ Φ, we have g•Ga(E)y,t = GAd(g•).a(E)g•.y,t for any t ∈ R̃. We also have
a(y − g.y) = Ad(g•).a(g•.y − y) = −Ad(g•).a(y• − g•.y•). Therefore, if a ∈ Φi,
then Ad(g•).a ∈ Φ•4−i.
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Let f (resp. f•) be the concave function on Φ(G, T,E) (resp. Φ(G, T •, E)) such
that J(E) = G(E)y,f (resp. J(E) = G(E)y,f•). Then
g•Ga(E)y,f(a) = GAd(g•).a(E)g•.y,f(a)

= GAd(g•).a(E)y,f(a)+Ad(g•).a(y−g•.y) = GAd(g•).a(E)y,f(a)−a(y−g.y).

Since f(a) = f•(Ad(g•).a), we conclude that g•J1(E) ⊂ J•3 (E), g
•
J2(E) = J•2 (E),

and g•J3(E) ⊃ J•1 (E).
Of course, this implies that gJ•3 ⊃ J1, gJ•2 = J2, and gJ•1 ⊂ J3.
Now we have JgJ = J3J2J1gJ = J3g(g−1J2J1g)J = J3gJ = J3gJ

•
1J
•
2J
•
3 =

J3(gJ•1 g
−1)gJ•2J

•
3 = J3gJ

•
2J
•
3 .

So for any x ∈ JgJ , we can write x = jgk, where j ∈ J3, k ∈ J•2J•3 . We claim
that j and k are unique. Indeed, if jgk = j∗gk∗, then (j∗)−1j = gk∗(k−1)g−1 ∈
J3∩g(J•2J•3 )g−1 ⊂ GΦ3(E)∩GΦ1∪Φ2∪{0}(E) = {1}. Therefore, j = j∗, k = k∗. Here
we are writing GΨ(E) for the subgroup generated by Ga(E) for all a ∈ Ψ ⊂ Φ∪{0}.

Similarly, we have a unique decomposition JgJ = J3J2gJ
•
3 . But we shall not

need this.
Choose z ∈ X∗(T,E) ⊗ R such that z lies in a Weyl chamber whose closure

contains y − g.y. Then Φ+ = {a ∈ Φ : a(z) > 0} is the system of positive roots
determined by z. Then Φ3 ⊂ Φ+, Φ1 ⊂ Φ− = −Φ+. Let Φ′ = Φ(G′, T, E).

Lemma 16.3. Let (ga)a∈Φ0 be a family of elements such that ga ∈ Ga(E) for each
a ∈ Φ0. Suppose that

x =
( ∏
a∈Φ+

ga

)
g0

( ∏
a∈Φ−

ga

)
is an element of G′(E), where the product is taken in any fixed order. Then ga = 1
for a /∈ Φ′ ∪ {0}.

Proof. We first rephrase (using [Hu, 28.1]): let U± =
∏
a∈Φ± Ga; if x ∈ G′(E) has

a “big cell” decomposition x = u+g0u−, then u± ∈ U ′±(E) = U±(E) ∩ G′(E) (and
therefore x is in the big cell of G′(E)).

Write u+ = u′′+u
′
+, where u′′+ ∈ U ′′+(E) =

∏
a∈Φ+rΦ′ Ga(E), u′+ ∈ U ′+(E).

Similarly write u− = u′−u
′′
−. Then x = (u′′+)(u′+g0u

′
−)(u′′−). But the multiplication

map U ′′+(E) × G′(E) × U ′′−(E) → G(E) is injective. Therefore, u′′± = 1 and u± ∈
U ′±(E).

Now we return to the proof of Lemma 16.1. If x = j3gj
•
2j
•
3 ∈ J3gJ

•
2J
•
3 = JgJ

lies in G′(F ), then xg−1 = j3(gj•2g
−1)(gj•3g

−1) ∈ J3J2GΦ1(E). By [BT1, 6.4.48]
and Lemma 16.3, this implies that j3 ∈ J3∩G′(F ) ⊂ J ′, and j•2 ∈ J•2 ∩G′(F ) ⊂ J ′,
j•3 ∈ J•3 ∩G′(F ) ⊂ J ′. Therefore, x ∈ J ′gJ ′. The lemma is proved.

17. A Hecke algebra isomorphism

We now return to the setting of §9–§14: Let (G′, G) be a tamely ramified twisted
Levi sequence, and let y ∈ B(G′, F ) ⊂ B(G,F ). Let φ be a G-generic character of
G′(F ) relative to y of depth r.

Recall that J = (G′, G)y,(r,r/2), J+ = (G′, G)y,(r,(r/2)+). We also put J ′ =
G′(F )y,r = J ∩G′(F ).

Our notation of Hecke algebra is that of [BK1, 4.1]. We find it convenient to
write Ȟ(G, ρ) for H(G, ρ̌), where ρ̌ is the contragradient of ρ.
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Theorem 17.1. If G′ is a Levi factor of a parabolic subgroup P of G, then there
exists a support-preserving algebra isomorphism

Ȟ(G(F ), φ̃) ' Ȟ(G′(F ), φ|J′).

Proof. Following a trick of Howe and Moy, we define a group J` between J and
J+ as follows: Choose a maximal torus T of G′ such that T is split over a tamely
ramified extension E, and y ∈ A(G, T,E). Let U+ be the unipotent radical of P ,
and let U− be the unipotent subgroup “opposite to” U+. Define

f(a) =


r if a ∈ Φ(G′, T, E) ∪ {0},
(r/2)+ if a ∈ Φ(U+, T, E),
(r/2) if a ∈ Φ(U−, T, E),

and J` = G(F )y,f . By [BT1, 6.4.44], [J`, J`] ⊂ (G′, G)(F )y,(r+,s+) ⊂ ker φ̂. There
is a unique character of J`/(G′, G)(F )y,(r+,s+) which is realized by the G-generic
element X∗ realizing φ|G(F )y,r:r+ . We denote this character by φ`. By a well-known
fact about Heisenberg representations,

indJJ` φ` ' φ̃

and therefore, Ȟ(G(F ), φ̃) ' Ȟ(G(F ), φ`) by [BK1, 4.1.3]. It suffices to show that
there is a support-preserving isomorphism Ȟ(G(F ), φ`) ' Ȟ(G′(F ), φ|J′ ).

Lemma 17.2. The support of Ȟ(G(F ), φ`) is exactly J`G′(F )J`.

Proof. Notice that by Theorem 9.4, the support is contained in JG′(F )J , and
by Proposition 12.3 and [BK1, 4.1.5], the subspace of Ȟ(G(F ), φ`) consisting of
functions with support on JgJ is exactly 1-dimensional, for all g ∈ G′(F ). To prove
the lemma, it suffices to show that the unique (up to a scalar multiple) non-zero
function in this space is supported on J`gJ`. In other words, it suffices to show
that every g ∈ G′(F ) intertwines φ`.

The last statement can be proved by the method of Lemma 9.3 with obvious
modifications.

Now we are ready to apply [BK2, Theorem 7.2 (ii)]. Indeed, the conditions in
[BK2, 6.1] are obviously satisfied. By the lemma we just proved, Ȟ(J`G′(F )J`, φ`)
is the whole of Ȟ(G(F ), φ`), hence is certainly a subalgebra of Ȟ(G(F ), φ`). Thus
all hypotheses of [BK2, Theorem 7.2 (ii)] are satisfied and the theorem is proved
completely.

Corollary 17.3. Suppose that G′ is a Levi factor of a proper parabolic subgroup P
of G. If π is an irreducible admissible representation of G(F ) such that π contains
the minimal K-type (G(F )y,r , φ̂), then π is not supercuspidal.

Proof. By [Ad, 2.3.4], π contains (J+, φ̂), and hence also (J, φ̃).
Since Z(G′)(F )/Z(G)(F ) is not compact, π is not supercuspidal by a well-known

argument.

Remark 17.4. The isomorphism constructed in the proof of Theorem 17.1 depends
on the parabolic subgroup P in general.

Remark 17.5. The preceding theorem and its corollary are true in any residual
characteristic (i.e. residual characteristic 2 is not a problem). This is because the
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whole proof concerns only the Heisenberg representations (but not the Weil repre-
sentations), and Heisenberg representations can be easily done in a more general
setting.

Remark 17.6. This Hecke algebra isomorphism contains a large part of Howe-Moy’s
Hecke algebra isomorphism for “separated minimal K-types of GLn”.

Conjecture 17.7. Using the setting in the beginning of this section, there exists a
support-preserving algebra isomorphism

Ȟ(G(F ), φ̃) ' Ȟ(G′(F ), φ|J′).

Remark 17.8. This Hecke algebra isomorphism will imply that there is a bijection
from

{irreducible admissible representations of G′(F ) containing φ|J′}
to

{irreducible admissible representations of G(F ) containing φ̃}
by [BK1, 4.2.3]. With the hypothesis of Theorem 17.1, this bijection is essentially
a parabolic induction/Jaquet functor ([BK2, §12]). This bijection should send πi−1

to πi when applied to the pair (Gi−1, Gi) in the set-up of Theorem 15.1.

As evidence for this conjecture, we have: (i) it is true when G′ is a Levi factor of
a parabolic subgroup over F (by the above theorem); (ii) it is true when G′/Z(G)
is anisotropic (this is essentially in [Ad], but we will give a proof below for com-
pleteness); (iii) it is true in many cases when G = GLn with (n, p) = 1 (by [HM]);
(iv) we have the following partial result:

Theorem 17.9. There exists a support-preserving vector space isomorphism

Ȟ(G(F ), φ̃) ' Ȟ(G′(F ), φ|J′).

Proof. If ρ is a representation of K and X ⊂ G is such that KXK = X , we
use Ȟ(X, ρ) to denote the subspace of Ȟ(G, ρ) consisting of those functions whose
supports lie in X .

By Theorem 9.4 and Proposition 12.3, Ȟ(G(F ), φ̃) is the direct sum of 1-dimen-
sional subspaces:

Ȟ(G(F ), φ̃) =
⊕

X∈J\JG′(F )J/J

Ȟ(X, φ̃).

By Lemma 9.3, Ȟ(G(F ), φ|J′ ) is also a direct sum of 1-dimensional subspaces:

Ȟ(G′(F ), φ|J′) =
⊕

X′∈J′\G′(F )/J′

Ȟ(X ′, φ|J′).

By choosing a linear isomorphism

Ȟ(J ′gJ ′, φ|J′)→ Ȟ(JgJ, φ̃)

for each g ∈ J ′\G′(F )/J ′ and applying Corollary 16.2, we obtain a vector space
isomorphism Ȟ(G′(F ), φ|J′ ) ' Ȟ(G(F ), φ̃) and the theorem is proved.

The following lemma shows that a natural isomorphism exists between certain
subalgebras of the two Hecke algebras.
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Lemma 17.10. Let K = G′(F ) ∩ G(F )[y]. There is a natural support-preserving
algebra isomorphism from Ȟ(KJ, φ̃) to Ȟ(KJ ′, φ|J′).

Proof. There is a Weil representation φ′ : KJ → GL(W ) extending the Heisenberg
representation φ̃ of J . For any g ∈ K, let fg be the function from KJ to End(W )
such that fg is supported on JgJ = gJ and fg|gJ = φ′|gJ . Similarly let f ′g be
the function from K = KJ ′ to C such that f ′g is supported on J ′gJ ′ = gJ ′ and
f ′g|gJ′ = φ|gJ′ .

It is clear that {f ′g}g∈K spans Ȟ(KJ ′, φ|J′) and {fg}g∈K spans Ȟ(KJ, φ̃). There
is a unique vector space isomorphism η : Ȟ(KJ ′, φ|J′) → Ȟ(KJ, φ̃) such that
η(f ′g) = fg.

It is immediately verified that for any g, h ∈ K, we have (i) f ′g ∗ f ′h = f ′gh and
(ii) fg ∗ fh = fgh. Therefore, η is an algebra isomorphism.

Corollary 17.11. If G′/Z(G) is anisotropic, then Ȟ(G(F ), φ̃) ' Ȟ(G′(F ), φ|J′ ).
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