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Construction of the Affine Lie Algebra
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Abstract. We give an explicit construction of the affine Lie algebra A(^} as an
algebra of differential operators onC[x l 5x3,x5,...]. This algebra is spanned by
the creation and annihilation operators and by the homogeneous components
of a certain "exponential generating function" which is strikingly similar to the
vertex operator in the string model.

1. Introduction

For every complex simple Lie algebra α there is an infinite-dimensional Lie
algebra cf called the associated affine algebra. The affine algebras are among the
generalized Cartan matrix (GCM) Lie algebras (or Kac-Moody Lie algebras),
which were introduced and studied by Kac [3a] and Moody [7], and which have
recently received a great deal of attention. The simplest non-trivial GCM Lie
algebra is the affine Lie algebra sI(S, <C). [Here sl(2, <C) denotes the Lie algebra
of traceless 2 by 2 complex matrices. The Kac-Moody definition of $1(2, C) is given
in §2 below.] This algebra is denoted A^ by Kac. For convenience we will
henceforth write cj for $1(2, C) and cf for sl(2, <C).

The main purpose of this paper is to construct cf as a concrete Lie algebra of
differential operators on the space <C[x l 5x 3,x 5,...]of polynomials in infinitely
many variables. (This space is naturally graded by setting degxk^ — fc.) In this
construction (described in detail in § 5) g^ is spanned by the identity, the creation
and annihilation operators [L(xk) and <3/3xk], and the homogeneous components
of

exp(£4L(xk)/fc)exp(-£S/Sx f c).
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The last expression may be thought of as an ''exponential generating function" for
g^. It is strikingly similar (see the remark following Theorem 5.7) to an expression
for the vertex operator in the string model; see for example [8, p. 285, Formula
(1.71)]. (We are indebted to Howard Garland for calling our attention to this
similarity.)

Our construction depends on two main results. The first of these (§ 3) is that g^
contains a subalgebra s consisting of elements of odd degree which is isomorphic
to a Heisenberg algebra on infinitely many variables. The second (§4) is that cf has
an irreducible module V (one of the standard cf -modules introduced and studied
by Kac [3b]) which remains irreducible when considered as an δ-module. We call
V the fundamental module for cf . The uniqueness of the Heisenberg commutation
relations then allows us to identify V with C[x1;x3,...] and % with the algebra of
creation and annihilation operators. The construction of the rest of gΛ is then
accomplished using commutator relations between elements of % and elements of

Q
The first of these results is proved using results of Kac [3 a] and Moody [7] on

the structure of cf . Namely, g^ has a one-dimensional center Cz and the quotient
g~ = g7Cz is easily described :

where (Γ[ί, t~ *] is the algebra of Laurent polynomials in the indeterminate r. The
Lie bracket in g~ is given by the formula

for all x, };eg and m.neTL (the set of integers).
If we view the variable ί as the function elθ (θ a real number between 0 and 2π),

then we see that g~ is simply the Lie algebra of trigonometric polynomials with
values in g, and hence is a Lie algebra of functions from the circle into g.
Philosophically, our construction of gΛ amounts to "quantizing" these functions,
by making them act as certain operators on a Fock space.

The second of the above-mentioned results is proved by using results of [3b]
and [6] to show that V and (C^, x3,...] have the same "character". It was the
unexpected discovery [1] that the classical partition function p(n) occurs in the
character formula for the fundamental module which led to this result and to the
discovery of 5.

In addition to the papers cited above, the reader may wish to consult [2,3c] and
[5] for further information and bibliography on GCM Lie algebra theory and its
connections with other parts of mathematics. For the convenience of the reader,
however, the treatment below is almost entirely self-contained.

Our construction of A(^] is generalized in [4].

2. Definition of δl(2, <Γ)~

The 3-dimensional Lie algebra g = sl(2, (C) has basis

/ ί1 °\ (° {\ < (°
Ho -i ' Ho o ' Hi o
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satisfying the bracket relations

The infinite-dimensional Lie algebra g~ is defined to be $®<C[ί, ί"1], where
(C[ί, ί"1] is the algebra of polynomials in the indeterminate t and its inverse Z " 1 .
Hence cf has basis

with brackets

and the remaining brackets among basis elements are zero. Note that cf may be
viewed as the Lie algebra of 2 by 2 matrices whose coefficients are finite Laurent
series in ί.

The GCM Lie algebra cf is defined as the Lie algebra generated by the six
elements /70, h1, e0, el, /0, f{ subject to the relations

[ft,/,] = -V)
if

where /I is the 2 by 2 "generalized Cartan matrix" I. (The original

definition of GCM Lie algebras appears in [3 a] and [7]. For Q* the definition may
be simplified to this form by Proposition 13 of [3a].) Note that the last relations
may be rewritten

4-+1e ί = 0 = (ad/i)-'4"+1/J. if

Define z = h0 + h1. Then z is central, i.e., [z, cf]=0, since adz annihilates all six
generators of cf .

The "abstract" Lie algebra cf may be described using the more "concrete"
algebra cf as follows : We may identify $ with the direct sum of vector spaces

(2.1) cf = Q~®<S:z.

In this description of cf , g~ is not a Lie subalgebra of cf , but instead, for all x, j^eg
and m,

(2.2) [x (x) f\ y ® t "] - [x, y] ® ί m + " + mδmt _ π tr (χy
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in cf, where tr(xj r) is the ordinary trace of matrices. The elements el9 f^ ht in the first
description of cf correspond to the following elements in the second description :

(The second description of cf may be deduced easily from [3 a] and [7].)
Our main goal in this paper is to construct cf as an algebra of differential

operators.

3. Heisenberg Subalgebras

We use the description (2.1), (2.2) of cf. For all odd integers j, define the following
elements of cf :

and

Cj=

For all nonzero even integers 7, define

Hj = h®ίjl2 ,

and finally, define

Then the B ., C , H ;, and z form a new basis of cf, and (2.2) easily gives us the
following bracket relations, for all appropriate j and k :

(3,)

Let

s = s p a n { z } u { B j \ j o d d } ,

s' = s p a n [ z } u { C j \ j o d d } ,

H = span {z}u{//j |0=j=7 even} .

Then 5, s', and H are clearly infinite-dimensional Heisenberg subalgebras of §
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4. The Fundamental <f-Module as a Fock Space

In [3b], Kac introduced a family of cf-modules called standard modules. The
standard modules cannot be viewed as cf-modules. The "smallest" of these is called
the fundamental module V. V is an infinite-dimensional irreducible cf-module
generated by a nonzero vector v0 with the following properties:

(4.1) hQ v0 = v0 ,

The vector v0 is called a highest weight vector of K V is spanned by elements of the
form

(4.2) f i l f ί 2 . . . f ί ι v0,

where each ίm is either 0 or 1. We assign the element (4.2) principal degree equal to
—j. In particular, υ0 itself has principal degree zero. (The useful concepts of
principal specialization and by implication, principal degree, for standard cf-
modules were introduced in [6].) For every integer /, let V be the span of all
elements (4.2) of principal degree/. Note that ^ = (0) if;>0. Every element of V}

will be said to have principal degree j.
We next recall a basic result from [6] concerning the generating function of the

dimensions of the spaces V}. (This generating function is a kind of "character".) The
proof (in [6]) uses the Weyl-Kac character formula [3b] and the method of
principal specialization.

Proposition 4.3. For an indeterminate q we have

Σ (dimV_])qJ= ]~[ (1 — 4 2 j ~ 1 )~ 1

In particular, dim V_ is the number of partitions of j into odd parts (i.e., the number
of ways of writing j as a sum of nonincr easing positive odd integers).

Definition. Let T: V-^V be a linear operator. Then T is said to have degree j^TL if
T(Vk)ζVk + j for all fceZ.

The following result, concerning the elements introduced in § 3, is
straightforward.

Proposition 4.4. For every odd integer j and every even integer /c, the Lie algebra
elements B and C3 have degree j as operators on V, and the element Hk has degree k.
Moreover z has degree zero, and in fact z acts as the identity operator on V.

It is an important fact that V actually remains irreducible under *. The proof of
this fact will use degree considerations. The uniqueness of the Heisenberg
commutation relations will then give us a concrete model for V. (This approach
would work just as well with 5' in place of s. However, it would not work with H
because V is not irreducible under H.)

Define a multi-index α to be a sequence α(l). α(3), α(5),... of nonnegative
integers such that only finitely many of them are nonzero. For a multi-index α,
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define By__ to be the linear operator

B^B^B^...
on V, and define B\ to be the linear operator

oα(l) na(3) r>α(5)
ni ^3 D5 '"

on K Also, for multi-indices α and β define

and

where all sums and products are over all positive odd integers and we use the

convention that the binomial coefficient L I is zero if a and b are nonnegative
\b)

integers with a<b. Note that by Proposition 4.4, B\ has degree | |α| | , and #α_
has degree — | |α | | .

Using the commutation relations in the Heisenberg Lie algebra s, together
with the fact that Bj v0 = 0 for positive odd j and the fact that z v0 = v0, we easily
obtain :

Lemma 4.5. For all multi-indices α and β we have

B\

In particular,

while if |α ^|j8| and /iφα, then

Corollary 4.6. Let V be the s-submodiile of V generated by v0. Then V is
irreducible under s, and V has as a basis {By_ v0}, where α ranges through the set of
multi-indices.

Now the element B*__ -VQ of V has degree — I I a l l . Thus V r\V_ (j a nonnegative
integer) has a basis consisting of those B*_ υ0 such that I I a l l =j, and the number of
such α is exactly the number of partitions of j into odd parts. By Proposition 4.3, it
follows that

and so we must have V'=V. Thus we have proved :

Theorem 4.7. The fundamental Q -module V is irreducible under the Heisenberg
sub algebra s.
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Now let Z be the polynomial algebra (Γ[x l 5Λ:3,λ'5,...] on the infinitely many
variables x l 5 x 3 ,x 5 , . . . . For a multi-index α, write

and

For /eZ, write L(/) for the operator on Z which multiplies a given polynomial

b y /
It is clear (from the standard realization of the Heisenberg commutation

relations) that the linear map τ defined by (for all odd ,/>0)

(4.8) τ:B.}

τ :zι— >L(1)= the identity operator

is an isomorphism of s onto the span of

{L(l)}u{L(x J.)l/oddJ>0}u{5/δx J.l/oddJ>0} .

Then Lemma 4.5, Corollary 4.6, and Theorem 4.7 imply the "'uniqueness of the
Heisenberg commutation relations" in the present setting:

Theorem 4.9. The linear map τ' defined by

τ':By__'V0^2^xΛ

(y an arbitrary multi-index J is an isomorphism of V onto Z. // τ is as in (4.8) then

for all w e e and veV. Hence V and Z are isomorphic as ^-modules.

Remark. For each odd positive 7, let cj be any nonzero complex number. Then the
images of Eί and B_ may be replaced by jc (cjcx^ and t r 1 L(x^ respectively.

The fundamental module V has now been identified with the Fock space Z in
such a way that 5 acts as the creation and annihilation operators. In § 5, we shall
determine how the rest of cf acts on Z.

5. The Exponential Generating Function for §

The notions of degree for elements of V and for operators on V of course carry
over to the corresponding notions of degree for elements of Z and for operators on
Z. In particular, for a multi-index α, xαeZ has degree - l α l l . (Note that our
conventions force us to assign negative degrees to monomials in Z.) Also, the
operator L(xy) has degree — H a l l , and the operator Dy has degree I I a l l . We easily
see:

Proposition 5.1. Every homogeneous operator of degree j from Z to itself can be
written as a sum
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for some scalars d(μ, v), where the sum ranges over all multi-indices μ and v such that

I I v I I - I I μ l l = ; .

(Note that even if the above sum is infinite, it is still a well-defined operator of
degree j from Z to itself.)

For all jeZ, we now define

_ ί Cj if j is odd
j [Hj if j is even .

By Proposition 4.4, the operator X on F is homogeneous of degree 7, and so

v v Λ , μ V

*/= Σ rf//MO

for some scalars £/; (μ, v) We shall use the bracket relations (3.1) to compute the
dj(μ,v).

Let α and /? be multi-indices such that l l β l l — I I a l l =j. Below k will always range
through the positive odd integers and, unless indicated otherwise, all sums and
products are over k. We have

(5.2) [] (ad BJ ( k ) Π (ad B _ /<% = 2'* ' f WχG

by (3.1). On the other hand, in view of Theorem 4.9, this operator also equals

- M + \β\

It is easily checked that

and

where we adopt the convention that x" ' = 0 and Dv = 0 if }'(/<) <0 for some k. Using
these remarks the above expression simplifies to

Now this operator has degree zero, and when we apply it to the constant
polynomial leZ, only one term in the sum is nonzero. We get the constant

polynomial



Construction of the Affine Lie Algebra A\ί} 51

Similarly, when we apply (5.2) to 1, the result is

2l α ' + Wd 0(0,0).

Equating these two constants, we find that

Hence

(5.3) X . =

In order to compute d0(0,0), we simply apply X0 = H0 = ̂ (hί—h0) to the
highest weight vector r0e K which corresponds to leZ under the identification of
V with Z (Theorem 4.9). From (4.1), we find that

(5.4) d0(0,0)=-|.

From (5.3) and (5.4) we get:

Theorem 5.5. Let jeZ. As an operator on Z = (F[x1,x3,x5,...],

Xj=-2 Σ {l\L(^klk}^

where k ranges through the positive odd integers.

Now note that as an operator on Z,

exp(— ]Γ(θ/£xk)) = Σ (~ Σ(δ/δxk)Γ/m

= Σ Σ Π(~(^xfc))v(k)/v

where v ranges through the set of multi-indices.
Also, let Z be the algebra C[[x1?x3,x5,...]] of formal power series in the

variables X 1 ? x 3 ,x 5 , Then exp(]ΓL(4xfc//c)) is a well-defined operator from Z to
Z . We have

exp(£L(4x,,/k))= £ (£L(4xk/fc))"/n!
i ^ O

= Σ Σ YίL(4χk/kY

where // ranges through the set of multi-indices.
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For every operator A :Z-»Z and every jeZ, it is clear what we mean by the
homogeneous component A. (using our usual notion of degree). Then A is the formal

infinite sum £ A.. Also, for each 7, Aj(Z) is contained in the subspace Z of Z , i.e.,
jeZ

Aj is a linear operator taking Z to itself. Theorem 5.5 thus has the following
reformulation :

Theorem 5.6. Let Y be the well-defined operator

Y = - \ exp (Σ L(4xk/k)} exp ( - £ (d/dxk))

from Z = (C[x 1 ?Λ: 3,Λ; 5,.. .] to Z =(C[[x l,x3,x5,...]], where k ranges through the
positive odd integers. Then

i.e., the j-th homogeneous component Ύj of Y is X p for alljeZ.

Remark. Y may be thought of as an "exponential generating function" for the Lie
algebra cf .

Summarizing and recalling Theorem 4.9, we have :

Theorem 5.7. The Lie algebra & has as a basis the elements B±k (k odd positive),
Xj = Cj (j o d d j , X j = Hj (j even) and z (as defined in §3), and these elements can be
realized as the following differential operators on C[x1,x3,x5....] :

where Y. is as described in Theorem 5.6.

Remark. If we let

and

for positive odd/c (see the remark following Theorem 4.9), then Y is replaced by

- i exp(£ L(2xk/kck)) exp( - X 2ck(δ/SXk)) .

In particular, we can let

and
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and then the exponential generating function becomes

where the summations are over all positive odd integers k.
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