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ABSTRACT

We establish rigorously a sufficient condi-
tion for the existence of a scattering amplitude
corresponding to a given angular distribution for
scalar particles in the elastic region. The con—
dition is

Max gF/lQHF(Q?:)HS@/FHQ)i Sl

We show that if lsinAHI < 0.79 the amplitude is
unique, except for one obvious ambiguity. Further
by examining the cage of a finite,but arbitrarily
large number of partial waves, we make it very
likely +that +the solution ig still unique for
0.79 < sin M 1. We algo discuss the number of
solutions in other situations.
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INTRODUCTICN

The problem of constructing the scattering amplitude from the

exact knowledge of the differential cross-section at a given energy has
A ':)
and very recently by Newton "/, It is a

-

been considered by Crichton '’
problem which is generally thought tc be trivial for the case of scalar
particles in the elastic regilon, but which is in fact very difficuld.
Since I have mysell investigeted this quesiion and got some results which
g0 somewhat beyond those of Ref., 2), I think that it ig of some interest
to report what I know on the subject. I shall txry to make a self-
contained presentation of the question. The problem is this : you take
the simplest situation in the world, the scatiering of ftwo scalar
particles at an energy which is below the first inelastic threshold.

You measure with "infinite" accuracy the differential cross—section at
this energy. The question is whether this fixes the amplitude if you
take intc account the unitarity condition. In fact there arc two

questions :

-
~—

is a given angular distribution acceptable, i.e., does there
exist a unitary scattering amplitude fitting this angular

distribution ?

2) for a given angular distribution is there a unique scattering

amplitude %

About question 2) we know the obvious ambiguity P(s,cos8) - “F*(S,COS@)
which amounts to replace each phase shift by its opposite irn the partial
wave expansions. But apart from this ambiguity, Crichton y has

exhibited a more subtle ambiguity in the reclatively simple case of a
distribution with S, P, D waves. On the other hand, Newton has obtained
a sufficient comdition for uniqueness which, as we shall see, is too
restrictive. Concerning the question of existence, we get the game
sufficient condition as Ref. 2), at the price of a much bigger effort,

because, at least tv us, the character "completely continuous" of the

non—-linear operator involved is not obvious.
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Outside the rather obvious case where solutions do not exist
because the optical theorem is violated, we construct other examples,
without solution, where the optical inequality in the forward direction

ig satisficd.

Finally, we discuss whether the sufficient condition for the
existence of some solution also ensures uniquencss. Although no definite
conclusions can be drawn, we take as an indication of uniqueness the
fact that if the number of partial waves 1s finite (vut arbitrarily large)
the golution can be shown 10 be unique under the sufficient condition

for existence.

GENERAL CONSIDERATIONS

We normalize the scattering amplitude as

F (s ¢s6)

such that
do= L tF(/.S/C@DQJIQ/ )
A 4%5L’ |

¢

| e, 7
F(g/ (o8) = ) Q0+)e J?Srmdé é(mé} (2)

]
where the Cjﬁ's are real.

)
%

We shall use the notation P(12) +to denote F(s,cos@12) where

@12 is the angle between direction 1 and direction 2.

We shall also write

FO2)= [FOD] epidD) o
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Under these circumstances, in the elastic region, the unitarity

condition can be written

F(i2

k_‘ p—

S (i) [’ F(2) = 1A,

F(z 3)) (4)

<3 [(12)- ¢ (23)

For given |F| +his is a non-linear cquation for d.

Por various reasons, wnich will appear later, we shall mainly

Max ZiLIT ]:F(:B)HFCZE)I dse,
() 702

Under these circumstances, we have [sin¢I<< sin.r, ioeey ~r4‘< o <<+ fﬂ
if we dimpose ReF(e::O):> 0.
L

- <, (5)
.,mr{{i 5

Tet us prove, however, that continuous solutions are necessarily
such that under condition (5) ¢ stays between O and f4 [if g(o) is
taken to be between - /2 and +7T/é}.

Indeed, assume m1n<< ) 5; nax? open if (ﬁmax mln) <'2 9

clearly fron (4), sing is positive. If, on the other hand,

¢ﬁax— min 27 then

gﬂm%mm > g/m“ L@/\(CFH%«-%FW}

X S e Pron > O

lw%lm g‘*wﬁsw

le€oy

which is absurd.
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THE QUESTION OF EXISTENCE

In a problem where you have to solve a non-linear equation like

(4), it is useful to consider the non—-linear operation

i.e., C})/: O <q>

S )7 IECI 0] = (909-43) A
(12

and @ belongs to some function space. @' 1is only well defined if one

has a prescription to get it from sing'. This is the casc if (5) is
fulfilled. Then if @ is taken to be a continuous function o‘<y(e)<fr4
g1 () bvelongs to the same space.

To show the existence of a solution to the non~linear equation,
(4), one wants +to apply the Leray-Schauder principle 3), For this one
has to show that the convex closure of 0{g) or of any iterate 000 (g)
is compact, and for this the simplest thing to do is to use the Ascoli-
Arzela theorem, l.e., to show that the functions in the space are bounded

(which is obvious) and equicontinuous (which ig not obvious 1.

In the present case we proceed ag follows @ to a given
£
corresponds Fﬁ = |Plexpif. Now
7 4

[

S . of >,
> (20+0e (’b;vy'm Uc{) P; [tot&) o

Fy =

and hence
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Of course Oj denendg en X but
{ < .

| / B
S (2 0+ a?) < jde ¥ o

depends only on |F| and not on .

Now, from the inequality

A (o6)-Fles (e LBl

N\ Swf-‘ %el

established in Appendix I, it follows that

y / = ?; n | '
hE - Ry e BBl Fldg o

i q)) ',HM’{/' "b”n 1/\/’[ k’+n~

Voo }
If we except ©=0 and ©=/{ , condition (i1) is precisely an equi-
continuity condition. However, we must get rid of the singularities at
the extremities. Assume now that ;F(@)i also satisfies a Holder

condition

} : ; , o
H- N\l e < A (12)
Froo-Fla)< cle-e.

Then, under condition (5)9 cne can also show that

$er-¢reylce M8l
NG
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The space we shall consider now is the space of the @' plus their
convex closure, which we shall call ¢!, Clearly since the initial
~ ~
space ¢ is convex, @' is a subspace of @ and @g" = 0(g') is a
A~

subspace of @'. Then we have

’}WFH( Cf)”/! 4.,)
E‘: (1~ P (@f “(22) dsis

o
énr
and hence

B (12) — (1D

< C yw r’z} IF(ZQ‘)/# 2
F/Mé g%esj/q

f

{ /% [F(22)] 5{3’23
[ b, P 6] Y

(14)

< 9;1(

if |®(32)| 4is bounded.

~—

Pal
Hence the space of the @" and ¢", its convex closure, is made

of equicontinuous functions and is compact.

To apply the Leray-Schauder principle, we must also check that

0 is continuous. If we take as the norm of ¢ its maximum, thig is

rather trivial :
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T~ T
‘P: m{isz, ‘“

Iy J 713 /ﬂzsﬁ//?w[iw oty
e [9,02)-9,(3)]
\ ,
< ([N e [ 4,-9.)

(15)
Hence if

Sup 2 [IF(12]f 2]z <1

(12|

there exists at least one unitary amplitude with modulus IF[.

Though this condition is only a sufficient condition for the
existence of a solution, 1t is clear that the numerical consitant, 1,

cannot be changed, because in the forward direction condition

L o
— j IT'(¢I~¢)[ L/gBEE (16)

an

<

is necessary.

As pointed out in Ref. 2), an angular distribution which violates
this condition is unacceptable. Tet us now give an example where (16)
is satisfied but for which there is no solution. Take |F(9)] ==;> ()
where f(TT) 0 and d4f/d.os® is Ffinite and non-mero around € = ?VZ

Then for CX small enough there is no acceptable unitary amplitude. We

/%C/J[fz)/ <g zjﬁff(i},)ﬁ(zg) A,
{(/9

1l

have
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~ L
Por cos(122;> —1-%;;2 we have

Hence, for

] \}fwﬁb(ﬁ;

Thus we have

A ™
{i(‘~\\f,}/l-
N

200~
Y
cos(12)/> ~143A 2 wo have

&

| 20y [ _
N<e AF e <A

2_,

2 f(é // ) ( -“""é”f wt)dest [I-1]

For C) smal

~J+>‘i/

-2AJ {(uo6) ) ( tob)d &

3y

q

1 enough, the right-hand side is positive and hence e
S+ g =) !

cannot vanish in the backward directiocn, which is a contradiction.

4, THE UNIQUENE

S S P LO BJJ.L.J;u

Let us

.

which is ths
is unique fo
is, however,
later a hour

unique as io

state first the best result obbained in this direction

at, except for the obvious ambiguity P--§", the solution

r sin’q < 0,79 [in Rer. 2) one gete sin M <’l/\/ 5]. It
. . { N
quite clear that this can be inproved and we shall give

istic argument to support our belief that the solution is

ng as  sin M <1,

[
§

tart, let us establish the uniqueness for sin }< /¥ 2

which is casy. Let P and G Dbe twe solutions. We have
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[ 7
—_ G‘\)JJJF: — f‘j-..c,. C)"f}" ] (‘fC’ t + Q"j'wj 5 '( .
411 2 . "33‘ d %
~ - —
: \‘! ‘{:’ : i, ,_, 3 ( A'\{« "!" Ay ~i,~ . 47
I+ \,ﬂw RS (; _}% 2 }) 1 G‘/Z 5/’ (17)
We also have from ,‘ ‘,C:{‘ ";_“' (/j"j

C} — (:7¢w‘ft-#~}muf7>(;2%ufj"]%\6;> -(18)

19)

_"")' e 1 !}G‘ ok |
\ ﬂq/ ;szw J(aﬂ&c)m

1 I\
£

( =
" 23 2

Notice that ReF+ Re ¢ is always positive. Hence

b ] Taa[ b |G J(,qam

but Z—lﬁ_ Re F d Q = Re fo’ is the § wave real part which has to be less
than + in modulus. Thus

[7%\ T (H‘ < Max /\}w F«'}w@’/ J%;//% (20)
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10.

Sc for g 4:1 the goluticn 1g unicue. This method has the

inconvenience that it doeg not p

that the iteration converges because

rov
we already assume that we have a true solutlon,

Let us now try o go further, But first we shall study the
problem in differential form. i.e., we shall ask curselves whether there
can be two solutions vary close o one ancther., In mathematical language
we lock at the Fréchet derdivative of the non-linear operator. Tet

A#(8) be the prase difference betwecn the two solutions. We have
g 2)| Coo 7)(; 1) Ay 2)
f

— /5 . v (21)
= 2l [Fey)]s !Q‘)/r»)"?(’v-% o

and

H:(’ ZJZ S 91y :?%c i[f:ll Df A2 e jj (1%)- Cj/(&ﬂj ’@E;)

- - . . - e e 5 .
Now we shall try to exploit sin 4+ cos” { =1 and for this
Yo

purpose we replace (21) and (22) by Schwarz inequalities :

- ,‘wa‘ o 312"'
)‘F(ll)‘ EW C’/(!,Jj Z_‘L“P (62%}
1
g_._l__ (; .,"2>‘§ S r\jl/’\_‘f'f‘ :’L\'Ad) Ny d—”j
\{_H_] J(H:‘x‘f"f' (’34 -4\’)( !(‘é.) ;Lg
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1.

,,,,,

(24)

and hence

’*f(.ZQf CAD qbf}p) (Zﬂcf( %))
l , | ,

" 52;77)(“?(*334 Fnlda, — IF0217 sug0z)
[ ’ r .
- or | FODIF ) ’EJ
S

o 2 - T P
[g%TJ(/F(:'s)!;'F(af)fr;‘_f‘gj~— F{12) L&wCPO 7)]
¥ ‘ e
— (25)
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We notice that in (25) the last fraction is a homographic function of

]
sin“g(12). Now we haove

o §k7’5|!T(( MJLL aﬁ ﬁfﬂ%)”f?%@)&f@z
b o
H(12)] | ;{f (12)]

and it is easy 1o see that it ie the minimum of sing which makes the

right-hand side of (25) maximum. Hence, using also (5)

quzﬂ1A¢mz>f3§

| [FOlir] Ao -bg0oldsy

. 2
(S0 1)

t 2
R C LRI

Now integrate the righi-punid side gnd letft~hand side of (27} with

dg& /4 enad af? /47 , W ozet s
Aerx(’iFr(' 4 7 4=7 e / (J‘ﬂ7 ) -
k- J( FCral|ad(13) m J 1F2)de,

—_ .Z;qu( 3) ACM Q}) (28)

o <
» |c
x & [\’S’/&t C !-()
| — C}fjtjfi, gli“fz;ﬁxw~

68/867/5



Therefore we get

/ ~~ ‘; '\17:* . (—\g
/ Sl A R o
el Lieldo

SRS S a—
™ . o

i~ ~ N (- o
L dua p Coo 7= L J
i i

i
Now it is eagy to see that since

' ' & ‘j N
4T IWCO D1 > Gw . ) I‘“F{ B F22)

we have
H {ﬁ‘ . £ p - ~ ‘
{
4 j sl -+ (? é/{/ﬂ/l - .
Gy T 1S -
‘I J
Hence, a condition to have isclated solutions is
P W
{ F i :
2{{;y¢4ﬁiﬂ )
1 - f s
—n < | (29)
[~ Jw o Co fa
{ H

H

which corresponds to
/’ ! r —3 3
L 019
At {“i N YT (30)

What matters in this improvement with respect to (20) is that we
g0 beyond the threshold 3m1F/ReI%§; 1. Then the imaginary part of the
§ wave is not any more uniquely determined by its real part and we

o

might have expected ambiguities.

We should also notice that 1/4ﬂ IF!de. ig strictly less than
sin r&/ except if we have a pure & wave scattering. So the condition

to have isolated solutions

Z !\%/z ,U}(j _'ﬁ"ﬁfdgf
G /
- ~

{ ” = ~ b T
j = LD f wa
i

(31)

—
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14.

is slightly better than (29). In fact, conditions (29) or (31) can be
shown to be conditions for the unnigqueness of the solution. This ig

. s - i
somewhat more painful to do because of notations ;  if IFle # and

iy -
,F!e are solutions, we have

FOrD)f S PO+ QY o) P2) *k{J'n)

e e

4’,.-

(irsecie A0 -4/ Y9 o
| (32)

ém 2

[
L
x(ﬂ[? 9 -pe2) - PO+ Q.

P

and

F(12>] L L '2?)*‘ LI)(? D ¢, PO )
2

=5 firc S S 465101200
1 2~

~

A St PO3) - 22) +1z) — P2 A5,

2

Using the Schwarz inequality as before, we get
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15,

] Hrp0y] %”ﬁ () 402 ]

/émﬁﬁ 2»)//#?(/@/ ZCP(I%) Q//(/s) qﬂ(ulfﬁﬁy,j

oy

><‘H7 f)f:(:;): FOL3 G, )
_irCor” G 42 )] e [$ODZ Y0V
o [1FODIIFG ) e SRCIERIDR 4(2)+ ()4

3
It can be shown (rather painfully) that if sin F <i (J3/2) —

then the maximum of

[c;’},ﬁﬂf%)fff(zg)ldsg _IF() /LEM"l/C?(/z)'H[/(,z_)) O{;ﬁ;(ﬁ;‘f,{ﬂ}\)
) /'F(”Z) (C?‘)(ll)ﬂm%m))

iz obtained by giving to ¢ and their minimum value, This is the

case under condition (29). Then one has

IP( 12)] %@Cf)‘(:z) L{/[,ZJ
ﬁr( 2| {’(gg)l S P19~ W:s) gﬁ@g)ﬂbm

()')
y np)
| — 9‘5«74. %Q}u
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16.

and it is then easy tc get condition (29) for uniqueness. Condition (31),

. - R . i \
on the other hand, apvlies ouly for 31nr&,\ (V 3/2).

The question wnow remainsg ¢ what happeuns for 0079<< sin ri 4110

Tet us first notice that 1f two solutions are such that they never

intersect (except for € = 0), fi.e., Ag >0, Then from (33) we get
! ? e
= AP '\4};1“/4 Son Qe
L 3 5 - o VY - 5
> L MeX <</ < / .
g - C . by

so that A;ﬁ = 0 1s the only sclution. Also, if we follow the chain
from (23) to (28), we see that a series of majorizations has been made,
gome of them being extremely drastic (such as applying the Schwarz
inequality to JhAB where A and B are very different). So my own
conviction [és opposed to the hypotiiesis made in Rel. 22] is that as
long as sin <\1 ‘the golution ig unique. This view will be supported

by examining the case where the number of partial waves is finite,

On the otlier hand, 1if

[F(25/40

is larger than unity, then there is no reason vo have a unique solution
and in fact an explicit ccunter—exanmple hias been given by Crichton 1),
with only S, P and D waveg, We shall stﬁdy the question of these
ambiguities in the following Section and restrict ourselves to the case

of a finite number of paritial wavegs.

Before coming to this, we wish to comment a bit more on the case

Im F at all angles [if the convention ReF (e:o)> G is made]. But

in addition tc that, we have

sin W“<~1° First of all, it is obvious that in this case one has Relﬂ> 0,
/>O
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17.

Hence Re f> ;Ro fﬂ: :r’_"or ,(’_7, 0. Similerly

wag W-— L %F(cmé)r z(@seﬂw

and hence Im J_'O> Im fﬁ,> 0 for g) 0. [t is easy %o see on the
Argand diagrem of (the cirele [T f~ %)

Imf < IRG.L ié&' or P/

j@// < I’E (34)

it
for ,{_> 0. Therefore only the S

condition (5) prevents any resonance.

J.

that this imposes

wave is allcwed to resonate. 30

otice that (?4) can be improved for even wa Then

1+2I-‘£ (cos@)) and hence for ¥ evem, Ref B ~—1;
YT //4.
rd

Nomme et

o, &I (35)
& N L \ L

However, this does not prevent the

Pl

total crosg—sc
One can build examples with very large total

tal cross—sections satisfying
Re F)O9 Im E‘)O at all angles, for instance

cction from being large.

foF= 2 zleerie” B (we)

4
with 3 very small and x very close to one
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18.

THE CASE OF A PINITE NUMPER OF PARTTAL WAVES

The situation in which thoe scattering ampiitude is built of a

finite number of partisl waves ig of courssz exceptional, more precisely

of zero measure amons oll scathering ampliifuvdes, and also, from a
physical point of viow inconsieten®t with 21l famous principles, in

particular crossing symmetry. Notice also that gven if the differentisl

cegb, 1t is most of the

s}

cross—~section ig given by a polvoomisi i

time dmpossiblc to £it it with a finite number of partial waves, because

-

if 2L is the degres of the pelyanomial in cos® we would have L

partial waves, i.c., L unknown for L algebraic equations.

However, in spite of all this, we shall study this case because,
if you put no restriction on the mazimum angular momentum, the set of
scattering amplitudes with a finite number of partial waves is dense in
the set of all scattering amplitudcs. Any reasonable scattering amplitude
can be approximated arbitrarily well by a finite number of partial wave

amplitudes.

How whnen the number of partial waves is finite, the construction
procedure the most simple conceptually (if not practically) is to start

from the highest wave : we have

Ly P o0 P

. . . . ' 12 .
and obviously c,. 1is proportional to [T ", One can then for instance
s
choose Re T 0. The next coefficient c2T ’ is proportional to
4
* v . ] , . . . .
Re:ﬂLfL_1: so it gives us the projection of fL—1 on the direction of
fI“ We have thercfore an ambiguity (see Figure)o In fact, once a choice
J
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19.

. -)(- N
ig made, one gets Re f a 80 on. S0, kunowin C C.. ceo 3C
s One 8 1 fg.p end s 20y € Cri1Cnp0rere0Copy
we have a priori 2L solutions. Then Cos CqoevresCy give additional
constraints which in most cases cannot be satisfied and in the remaining
. . . L . .
cases hopefully pick =& unique solution among the 2 candidates, a fact

which is not always true as shown by Crichton.

What we want to show is that if condition (5) is fulfilled and 1if
there ig a2 meximum L, however large it may be, the solution is unique.
In fact, the only conditions we shall use are Im:% ()\2 and IkaF(cos€£> o
]
for ~1<<‘oose <f+1, hen what we shall prove is that for any i?;> 0

<g(~9;—:ﬂ

is the phase shift corresponding to the highest wave. Then

(\"\
where (¢ .
the ambiguity described in the Figure cannot occur and Re\féfél) Tixes
entirely ﬁz/,

We start from

+H

Refrbefy =+ ﬁi 1o j et

J |
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20.

Re P(cos®) is by assumption a polynomial of degree I which does not

vanish in -1 +1. HNotice in particular thai

)

‘ Y () L
KD.F( (o) — K(’Lf‘)(za«ﬂ} ii%ﬂf‘b@"* T (se)

where K(L) is the coefficient of (CUSQ)L in PI(COSG) :
L (2[_}(
N — T
e /}
27 (L

Now let us notice that Ffor éz;Z’

| + @[uméf)} s f@ (40)

(see Appendix II).

(39)

Then, taking into account (38)9 we are reduced to the problem of

finding the minimum of Rc:f +}kz§2 now1ug that

%* J>f<("-3 “J(Li( L+') [( ><3 [ (x)dx

— |

where r7 (X\ is a bo1f10m1al of degresz Ly positive for —1<< X <(+1
and such that ‘{7 (x)] ~ ¥ for x - ®.

The answer to thig question is easy to find., It is shown in

Appendix III that the minimum is obtained — for T even - by taking
— — - 2.
I =c -’jp)’/!(x\“&: Topl
L L Lf; L =< R.:H(X)
or VA ) . 2.
f 5t j S N
C("’Xﬂ i’(ﬂ = -x) |1, I(X')J
2 2. -

68/867/5



27,

for T odd

e [14+X) ﬁ; X
L . ’ Lﬁ_,,

2

3

L.

emy

2' |
6(}

~

r—

or

e

{
| e
- Lz

FENG

where the P_ ’F are Jacobl polynomisls. One finds in this way

K‘Lfn T‘Kﬁ > C(‘——)i'&%‘m (41)

here c¢(L) is given in Appendix III, and we only need to know that

CUﬁiaC@Q;;i v Lo

and hence

2 2% > l,f Koty | + % /“ | (42)

]
i
AT

Wow condition (36), which ensures

poe)

the uniquenegs of the solution
is equivalent ‘o

)5/1/)" (f: ,/ Jrc/ d\‘ (43)
L N

once the sign of Re fL is fixed,

While (42) gives ,
{ ~ | . ' | |
S 24, | 1= |5 [feod,

this gquantity can be shown to be less than 00351; &t least as long as
I(SIJ <f%;, which as we know 1s necegsgarily the cage if ReF o

and
ﬁnE;>(3 in all the range of integration.
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The conclusion is : for L;> 2, ,ft> 1, once a choice ig made

for the sign of Re:@L, T, is cempletsly fixed; without ambiguity.

o .

R : ) T
As for fo’ it 1s cleax that Im fo is given by Im F(Q:O)— - (2(_+1)Im%,a
1
; JE . .
Now the knowledge of Rc(zoiT) gives two values of fo which do not have
opposite real part, cxcept 1f T, :ﬂTr/?g which is a priori excluded.
Only one value of ZRe fC will thercfore fit with the Inlfo obtained

by subtraction.

We believe that this result is a strong indication that if condition
(5) is fulfilled {actually ReF > 0 and hn3§> 0 are sufficient condi-
tions), the solution is unique. Indeed, the maximum number of partial
waves dlsappears from our result and we can approximate a scattering
amplitude arbitrarily well with a finite number of partial waves., As
it is stated, this result is not rigorous but it could be that somebody

with sufficient mathematical knowledge can make it rigorous.

To get ambiguitics, RePF or ImF or both must vanish somewhere
in the physical region, and this is precisely what happens with the

examples given by Crichton in Ref. 1) s the two sets

‘ 0
4 =-23%20" &= g% 4 =20

- o
d:?_::Z.C?

o

/ O C
41: 98 SO c{z~%1§33'

give the same angular distribution. Onc can check that both amplitudes

have the structures
i
{
{ 215 .

BS

d, —
,gz?e j/wj; (b= 2,
’ )

where Rez1 and lz1!2 are given as functions of C§\2° This is the

most general form of the ambiguity for I = 2.
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23,

One might want to have an upper limit for the number of solutions
which would not depend on L. We shall not try to get the best possible
condition but just show that simplec conditions exist. Por instance,

suppose that the integral

—+|
T o [ [Heedly, »
=), Vsw6

exists, which 1s obvious 1f F remains finite. Then we have

(45)

and for

So two things can happen : eithesr I <:L and then wgﬁhave 2L solutiong,
\ 53 ! II..- 7 [ —W- x
or L LO and then ,iLi < 7 and as long as c}é < +s Be :E"éfL
fixes entirely %Z/. Sc we have at most
27
solutions, which is of coursc a possibly very large number, but which is
independent of T, Again, I have a tendency to believe that this result

holds even if the number of partial waves is infinite.
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CONCLUSIONS

We have seen that necither the uniquencss nor the existence of
the solution is casy. We have made it very likely that the sufficient
condition (5) for the existence of a solution is at the same time a
condition for uniquencss. The problsm would be a nice, well-defined,
nmathematical problem for a good applied mathematician. Unfortunately
this race 1s becoming more and more rare in the Western hemisphere.
From the point of vicw of physics, one can wonder whether we are not
losing our time since : continuity with cenergy, Coulomb interference,
and inaccuracy of experimental data change considerably the problem.
Let me point out, however, that in a case of uuniqueness like that of
condition (29), one can control the uncertainties, il.e., give explicit
upper bounds for the uncertainty on ¢ corresponding to the uncertainty

on IF!°
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APPEIDIX I

The gquestion is to find a bound on ’P (30391 )—-P (00392), which

vanishes when 91—92——>O and is at the same time indepengﬁnt of /Z .

1) We know that 4)

1 (M@/< V TT?@-’/) V';'Ze

ACORACT <V;@[ %}m

2) We also have

L,
[ (08)-Bleced= [ Ffws)eos
) C/ﬁé’/

7+,
G ) *2

; using 0.76sing <e

5

and since, according to Szegd
/ NG
we get for O<’@1, '92 <_2_'3[_T‘

e !2, AT, 2
/ o (o)) "P@[M?J/@/M*’@/Qz/“ @z// o
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Hence multiplying (AI,T) by (AI,Z), we get for

P(m@) ;(u >( ot fé 6, | (AL.3)
& “ G K

and it is quite clear that if we replacc (AIGB) by

1

(%@) {Mﬁ) <wwf V { (AT, 4)

m-,_-___~.————t%~—»
(‘§5v1{§ S e%_aj “

N . / , *’T .
Eq. (AI.4) holds for O <91 and 92<< 5 and K3 <ie1 and 92 <:HT .

The only case not covered by this is
6, , LT/ 6 20
2 STz 2,1 2%

but then

| (0] - Blewtr)] < 2

and (AI.4) is still valid,
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APPENDIX IT

Tet us prove that

by the author many years ago 6)

So for £>/ 4

B(wme)| < —

(Ol < —

[

and it is easy to show that

68/867/5

| R e
- [1+20 8678 > %’u’é':@

The individual cases are casy :

U—J 2041 quq”(rﬂ “

1 +20 Sue] ™

27.

— | + Cn e il
/= | tine> [z
) 4 3 "“f ,/Lm
{-2 J%_ (1-cmte) > wz_zg
L lm €+ | [ — (O

( —= 7z

é) =3 |- [ — | 0 [ﬂs"mifa—f-f?’c@g
= 2 Z__

The simplest is to use a bound which has been obtained

.
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— N
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even

we have either

o) HN = Ty

-

or

P = (1-x?) [ﬂ_’, x}

where HN/Z and N/¢ are polynomials of degree

N/2 and N/2-1.

In case 0() we can write

N/

My = Z <p //)(x)

L
where the Pg(x) are orthogonal yolynomials on -7 41

weight w. Then

4 NA
/ G < { 7/\./4
W)l ;~\<ﬂ)(~» 4 |C > N
Jrwmfy)or= £ ()14
i W ‘-{.{(‘.w’}\m =

It is clear that only CN/Z

ig fixed by the condition 1(7

with

(AIII.4)

N
Nln’X

for x - ®. (AIII.4) will thereforc be minimized by taking
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”N = U) ><) AM (AT11.5)

If we consider caseAE3>, we shall have to take

P e o

mN:‘:U’XQ) @ﬁ(x) xM (AIII.6)
2

where w(x) = w(x)[j—x2] . What remains to be done is to find

what is the best of the two possibilities. This will depend on

w(x).

-—— § odd :

Then clearly, repeating the same arguments, we find that the

candidates to minimize (AIII,1) are

et (1-%)

2
)”N’
.~, (K) (ATII.7)

)

~
w

where is an orthogonal polynomial with weight = (1-x)w,

w
Pa=1/2
or

R AT

()ﬂ (ATII.8)

‘C?

umf/0+{)

where w = (1+X)w,

-»l

;l/

@
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In the present case w = (1—X2), The P are P'7' Jacobi
polynomials, i.e., derivatives of Legendre polynomials. The P" are

P2’2 Jacobi polynomials, i.¢., second derivatives of Legendre poly-

: o
nomials. The PW aré P“91 Jacobi's., It 1s easy to decide between

possibilities of and f? for n even. One has :

P

l
‘ plz
S

with

K(v)= W,
27 wDT

and hence [§ee Magnus and Oberettinger

' NRe ™ ﬁ .
5(' -x7) ”N A x N
. N
f/ —xY ﬂ’h e

The minimum is therefore given by f—TN.O Hence for L even we have

& [‘ /L t L’) k(L) (ATIT1.9)
L %(uzxw k(s

For large L the coefficient of [Re:ﬁLl is ~ % TTL. What matters

is that it increases with 1L which can be checked by comparing L with

7

L+2. In particular for L even/;z 2 we have
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for T o0dd we have to take

m = L~l (X) ({,X

| =

Again, we shall get insqualities with a coefficient increasing

with I. Iet us therefore look only at L=3. Then
2,1
P ( | Conl /X + 2 )
b “ —
(%) z.
in this way one gets, for L=73

ZZQ ﬁlﬂ t;i f ) j%: (ATII.11)

L= 1o

The conclusion is that one can take (AITI.10) as valid in all

cases, for L) 2.
/4
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