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Construction of Uniquely Decodable Codes
for the Two-User Binary Adder Channel

Rudolf Ahlswede and Vladimir B. Balakirsky,Member, IEEE

Abstract—A construction of uniquely decodable codes for the two-user
binary adder channel is presented. The rates of the codes obtained by
this construction are greater than the rates guaranteed by the Coebergh
van den Braak and van Tilborg construction and these codes can be used
with simple encoding and decoding procedures.

Index Terms—Adder channel, coding, decoding, multiple-access chan-
nel.

I. INTRODUCTION

We address the problem of constructing uniquely decodable codes
for the two-user binary adder channel. Suppose that two independent
users transmit binary codewords of the same length over the channel
and the receiver gets a vector obtained by component-wise arithmetic
sum of these codewords. The decoder has to decide which codeword
was transmitted by each user with the error probability zero.

Systematic investigations of multiple-access channels were initi-
ated by the papers [1], [2] where the achievable rate region for
memoryless multiple-access channels under the criterion of arbitrarily
small average decoding error probability was found. The boundary
of this region for the two-user binary adder channel is defined by
the equations

R1 = 1 R2 = 1 R1 +R2 = 1:5

whereR1 andR2 are the code rates of the users. These equations
also give an outer bound on the code rates that can be realized under
the criterion of the decoding error probability zero, i.e., the rates of
the pair of codes that form auniquely decodable codefor the adder
channel. The best known lower bound on these rates was proved by
Kasami, Lin, Wei, and Yamamura [3] (this bound will be referred
to as the KLWY lower bound). The first constructions of specific
codes for this channel were obtained by Weldon [4]. Further results
in this direction were established by Khachatrian [5], Coebergh van
den Braak and van Tilborg [6], and other authors. Probably, the code
construction discovered in [6] gives the best known pairs(R1; R2)
such that there exist uniquely decodable codes with these rates. This
construction will be referred to as the CT-construction.

We will construct two binary codes,U andV, of lengthtn; where
t andn are fixed integers, in such a way that(U ;V) is a uniquely
decodable code for the two-user binary adder channel. Each codeword
will be represented as a sequence of binaryn-tuples having length
t; thesen-tuples will be regarded as subblocks.The main point of
our considerations is that we do not only prove the statement of an
existence type concerning uniquely decodable codes, but build specific
codes for fixedt andn in a regular way. The rates of these codes are
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located above the KLWY lower bound and these codes can be used in
conjunction with simple encoding and decoding procedures.

The correspondence is organized as follows. We begin with the
description of codesU ;V and illustrate the definitions for specific
data. Then we prove a theorem which claims that(U ;V) is a
uniquely decodable code and gives expressions forjUj andjVj: Some
numerical results and a discussion about the relationships between our
construction and the CT-construction are also presented. After that
we describe a simple decoding procedure. Finally, we point out to the
possibility of enumerative coding which follows from the regularity
of the construction.

II. CODE CONSTRUCTION (u)–(v)

Let us fix integerst; n � 1 in such a way thatt is even and
construct the codesU andV using the following rules.

(u) Let C denote the set consisting of all binary vectors of length
t and Hamming weightt=2, i.e.,

C = fc = (c1; � � � ; ct) 2 f0; 1gt: wH(c) = t=2g (1)

wherewH denotes the Hamming weight. Construct a code

U =
c2C

f(cn1 ; � � � ; c
n
t )g (2)

of lengthtn repeatingn times each component of every vectorc 2 C:
(v) Given ans 2 f0; � � � ; tg, let

Js = fJ � [t]: jJ j = sg

denote the collection consisting of alls-element subsets of the set
[t] = f1; � � � ; tg; and let

A(s) =

s

i=0

f1in0(s�i)ng (3)

where100sn = 0sn and1sn00 = 1sn: Furthermore, let us introduce
an alphabet

B = f0; 1gnnf0n; 1ng

consisting of2n�2 binary vectors which differ from0n and 1n:
Let j1< � � � <js be the elements of the setJ 2 Js and let
j01< � � �<j0t�s be the elements of the set

Jc = [t]nJ:

For all (a; b) 2 A(s) � Bt�s, define a vector

v(a; bjJ) = (v1; � � � ; vt) 2 f0; 1gtn (4)

in such a way that

vj =
ak; if j = jk
bk; if j = j0k

(5)

wherej = 1; � � � ; t; and construct a code

V =

t

s=0 J2J a2A b2B

fv(a; bjJ)g:

0018–9448/99$10.00 1999 IEEE
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Example 1: Let t = n = 2: ThenC = B = f01; 10g: The code
U consists of two codewords

u(1) =00 11

u(2) =11 00

and the codeV consists of all binary vectors of length4, except0011.
We constructV in the following way.
s = 0: Js = ;; A(s) = ;; Bt�s = f0101;0110;1001;1010g:

v(1) = v(�; 0101j;) = 01 01

v(2) = v(�; 0110j;) = 01 10

v(3) = v(�; 1001j;) = 10 01

v(4) = v(�; 1010j;) = 10 10

s = 1: Js = ff1g;f2gg; A(s) = f00;11g; Bt�s = f01; 10g:

v(5) = v(00;01jf1g) = 00 01

v(6) = v(00;10jf1g) = 00 10

v(7) = v(11;01jf1g) = 11 01

v(8) = v(11;10jf1g) = 11 10

v(9) = v(00;01jf2g) = 01 00

v(10) = v(00;10jf2g) = 10 00

v(11) = v(11;01jf2g) = 01 11

v(12) = v(11;10jf2g) = 10 11

s = 2: Js = ff1;2gg; A(s) = f0000;1100;1111g; Bt�s = ;:

v(13) = v(0000;�jf1; 2g) = 00 00

v(14) = v(1100;�jf1; 2g) = 11 00

v(15) = v(1111;�jf1; 2g) = 11 11

The pair(U ;V) is optimal in the following sense: any codesU and
V such that(U ;V) is a uniquely decodable code for the binary adder
channel may contain at most one common codeword; thus

jUj+ jVj � 2tn + 1:

In our case,

jUj+ jVj = 17 = 2tn + 1:

III. PROPERTIES OFCODES CONSTRUCTED BY (u)–(v)

Theorem: The code(U ;V) of length tn defined in (u)–(v) is a
uniquely decodable code for the two-user binary adder channel and

jUj =
t

t=2
(6)

jVj =(2n � 1)t
t

2n � 1
+ 1 : (7)

Hence

R1 =
1

n
�

1

tn
log 2t

t

t=2

�1

R2 =
1

n
log(2n � 1) +

1

tn
log

t

2n � 1
+ 1 :

Proof: Equation (6) directly follows from (1) and (2). Given an
s 2 f0; � � � ; tg; the setJs consists of t

s
elements. For eachJ 2 Js

there ares+1 possibilities for the vectora 2 A(s) and(2n� 2)t�s

possibilities for the vectorb 2 Bt�s: Therefore,

jVj =
t

s=0

t

s
(s+ 1) (2n � 2)t�s:

It is easy to check that this equation can be expressed as (7).
The proof is complete if we show that(U ;V) is a uniquely

decodable code. Let us introduce an alphabetB� consisting of the
2n � 2 elements ofB and an element specified as “�,” i.e.,

B� = B f�g: (8)

Let (B�)t denote thetth extension ofB�: For all b� 2 (B�)t, we
introduce the set

V(b�) = fv = (v1; � � � ; vt) 2 f0; 1gtn:

vj = b�j ; if b�j 6= �; and

vj 2 f0n; 1ng; if b�j = �;

for all j = 1; � � � ; tg: (9)

Note thatfV(b�); b� 2 (B�)tg is a collection of pairwise disjoint
sets and get the following proposition.

Proposition 1: Suppose that, for allb� 2 (B�)t, there are subsets
V̂(b�) � V(b�) satisfying the following condition:

(U + v) (U + v0) = ;; for all v; v0 2 V̂(b�):

Then (U ;[b 2(B ) V̂(b
�)) is a uniquely decodable code.

Furthermore, using (1), (2) and (8), (9) we obtain

Proposition 2: Givenb� 2 (B�)t andv; v0 2 V(b�); the following
two statements are equivalent:

1) There existu; u0 2 U such that

u+ v = u0 + v0:

2) There existc; c0 2 C such that

vj = v0j =) cj = c0j

(vj ; v
0
j) = (0n; 1n) =) (cj ; c

0
j) = (1; 0)

(vj ; v
0
j) = (1n; 0n) =) (cj ; c

0
j) = (0; 1); for all j = 1; � � � ; t:

(10)

Let us fix b� 2 (B�)t and, for allv; v0 2 V(b�); define

t01(v; v
0) =

t

j=1

�f(vj; v
0
j) = (0n; 1n)g

t10(v; v
0) =

t

j=1

�f(vj; v
0
j) = (1n; 0n)g: (11)

Hereafter,� stands for the indicator function:�fSg = 1 if the
statementS is true and�fSg = 0 otherwise.

Proposition 3: If v; v0 2 V(b�) and

t01(v; v
0) 6= t10(v; v

0) (12)

then there are noc; c0 2 C such that statement (10) is true.
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TABLE I
THE RATES (R1; R2) OF SOME UNIQUELY DECODABLE CODES DEFINED BY

(u)–(v), THE SUM RATS R0

1 + R0

2 FOR THE CODES WHOSE EXISTENCE

IS GUARANTEED BY THE CT-CONSTRUCTION, AND THE DIFFERENCES

BETWEEN R2 AND THE VALUES R̂2 DEFINED BY THE KLWY L OWER

BOUND ON THE MAXIMAL RATE OF UNIQUELY DECODABLE CODES

Proof: Since all vectorsc; c0 2 C have the same Hamming
weight, we obtain

t

j=1

�f(cj ; c
0

j) = (0; 1)g =

t

j=1

�f(cj; c
0

j) = (1; 0)g: (13)

If these vectors satisfy (10) givenv; v0 2 V(b�); then using (9), (11),
and (13), we conclude thatt01(v; v0) = t10(v; v

0); but this equation
contradicts (12).

Let us fix b� 2 (B�)t, denote

J = fj 2 [t]: b�j = �g; s = jJ j;

and suppose thatj1< � � � <js andj01< � � � <j0t�s are the elements
of the setsJ and Jc: Assign

V̂(b�) = fv 2 V(b�): (vj ; � � � ; vj ) 2 A(s)g

where the setA(s) is defined in (3). Then, for allv; v0 2 V̂(b�);
v 6= v0; either t01(v; v0)> 0 and t10(v; v0) = 0; or t01(v; v0) = 0
and t10(v; v0)> 0: Therefore, based on Proposition 3, we conclude
that, for all v; v0 2 V̂(b�); there are noc; c0 2 C such that
statement (10) is true, and using Proposition 2 obtain that the sets
U + v; v 2 V̂(b�); are pairwise disjoint. Finally, Proposition 1 says
that (U ;[b 2(B ) V̂(b�)) is a uniquely decodable code and, as is
easy to see,

b 2(B )

V̂(b�) = V

whereV is defined in (4) and (5).

The rates(R1; R2) of some uniquely decodable code are given in
Table I. ForR1 2 (1=3; 1=2), the pair

R1; R̂2 =
log 6

2
�R1

belongs to the KLWY lower bound. We show the differenceR2�R̂2

and the values of the sum ratesR0
1+R0

2 of the codes(U 0;V 0) whose
existence is guaranteed if we use the CT-construction with givent
and n: The sum rates of all codes presented in Table I are greater
thanR0

1 + R0
2 and the points(R1; R2) are located above the curve

obtained using the KLWY lower bound.

Remark (on the CT-Construction):The authors of [6] described a
rather general construction which “almost” contains our construction
(u)–(v) whent � 4, meaning that we fix the Hamming weight of
each element of the setC, while this weight should be divisible by
t=2 in the CT-construction (if we consider the caseq = 2; r = 0 [6,
p. 8]). Then the expressions for the cardinalities of the codes given
in Theorem 2 are reduced (in our notations) to

jU 0j =2 +
t

t=2

jV 0j =(2n � 1)t
t

2
�

t=2�2

i=0

t

i
(t=2� i� 1)�i(1� �)t�i

+

t=2�2

i=0

t

i
(t=2� i� 1)�t�i(1� �)i

where� = 1=(2n � 1) and t is even. The difference in the code
rate betweenU andU 0 vanishes whent is not very small. However,
our change makes it impossible to apply Lemma 5 one-to-one (the
statement: “(6) is equivalent to. . .,” fails to be true), and we can
improve the result forjV 0j. For example, consider the caset = 4 and
set (in the notations of [6])

n = s =2 D(0) = f00g D(1) = f11g E = f01;10g

yyy =(00; 00; 01; 01) ddd = (00;00) ddd0 = (11; 11):

Then (see [6, p. 5]),

w�(ddd) = w�(ddd0) = (ddd; ddd0) = 0

and the vectors(00; 00; 01; 01); (11; 11; 01; 01) cannot simul-
taneously belong toV 0: Nevertheless, this is possible for the
code V:

IV. DECODING ALGORITHM

The codes derived in (u)–(v) can be used with a simple decoding
procedure. Letz = (z1; � � � ; zt) 2 f0; 1; 2gtn denote the received
vector, wherezj 2 f0; 1; 2gn for all j = 1; � � � ; t: We will write
0 2 zj and 2 2 zj if the received subblockzj has0 and 2 as one
of components, respectively.

Sinceuj 2 f0n; 1ng for all j = 1; � � � ; t; each received subblock
cannot contain both0 and2 symbols. Thus the decoder knowsuj if zj
contains either0 or 2. The number of subbocks1n in u corresponding
to the received subblocks1n can be found using the fact that the total
Hamming weight ofu is fixed to betn=2: These remaining subblocks
can be discovered based on the structure of the setsA(0); � � � ;A(t):
A formal description of the decoding algorithm is given below.

1) Set

J1 = fj 2 [t]: zj = 1ng; Jc
1 = [t]nJ1:

2) For all j 2 Jc
1 , set

uj =
0n; if 0 2 zj
1n; if 2 2 zj ;

and

w0 = jfj 2 Jc
1 : 2 2 zjgj:

3) Set

w = t=2� w0

and represent the elements ofJ1 in the increasing order, i.e.,

jJ1j = k; j1; � � � ; jk 2 J1 =) j1< � � � <jk:
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Set

uj =
0n; if j 2 fj1; � � � ; jk�wg
1n; if j 2 fjk�w+1; � � � ; jkg:

4) Set

v = (z1; � � � ; zt)� (u1; � � � ; ut):

Example 2: Let t = n = 2 (see Example 1). If the first received
subblock contains0 then the codewordu(1) was sent by the first
sender, and if it contains2 then this codeword wasu(2): Similarly,
if the second received subblock contains0 or 2 then the decoder
makes a decisionu(2) or u(1): The codewordv 2 V is discovered
in these cases after the decoder subtractsu from the received vector.
At last, if the received vector consists of all1’s then there are
two possibilities:(u; v) = (u(1); 1100) and (u; v) = (u(2); 0011):
However,0011 62 V, and the decoder selects the first possibility.

V. ENUMERATIVE CODING

Enumerative procedures were developed in source coding to make
the storage of a code book unnecessary at both sides of the com-
munication link and essentially reduce computational efforts [7]–[9].
In this case, the encoder having received a message calculates the
corresponding codeword, and the decoder calculates the inverse func-
tion. Our decoder does not use the code book to decode transmitted
codewords, and an enumerative algorithm for messages completely
escapes the storage of code books. We present this algorithm below.

First, we construct one-to-one mappings

f(m)!U

f
(s)
1 (mJ)!Js

f
(s)
2 (ma)!A(s)

f
(s)
3 (mb)!Bt�s

where m;mJ ; ma; and mb are integers taking values in the
corresponding sets:m 2 f1; � � � ; jUjg; mJ 2 f1; � � � ; jJsjg;
ma 2 f1; � � � ; jA(s)jg; mb 2 f1; � � � ; jBt�sjg; and s = 0; � � � ; t:

The structure of the possible mappingsf (s)2 (ma) and f
(s)
3 (mb)

is evident; the mappingsf(m) and f
(s)
1 (mJ) are based on the

enumeration procedures for binary vectors having a fixed Hamming
weight [7]–[9].

Let (m;m0) be the message to be transmitted over the binary adder
channel, wherem 2 f1; � � � ; jUjg andm0 2 f1; � � � ; jVjg: Encoding
and decoding of the messagem are obvious: we assign

f(m) = u f�1(u) = m:

Let us consider encoding and decoding of the messagem0: Denote

K0 =0

Ks+1 =Ks +
t

s
(s+ 1) (2n � 2)t�s; s = 0; � � � ; t� 1

and

M (s)
a = s+ 1 M

(s)
b = (2n � 2)t�s

for all s = 0; � � � ; t: Furthermore, for all integersq � 0 andQ � 1,
introduce the function

�(q;Q) = q �Qbq=Qc:

The enumerative encoding procedure is given below.

1) Find the maximal value ofs 2 f0; � � � ; t � 1g such that
m0>Ks, denotems = m0 �Ks � 1, and set

mJ = bms=(M
(s)
a M

(s)
b )c+ 1

ma = b�(ms;M
(s)
a M

(s)
b )=M

(s)
b c+ 1

mb =�(�(ms;M
(s)
a M

(s)
b );M

(s)
b ) + 1:

2) Set

J = f
(s)
1 (mJ) a = f

(s)
2 (ma) b = f

(s)
3 (mb):

3) Construct the vectorv(a; bjJ) in accordance with (4) and (5).

The enumerative decoding procedure goes in the opposite direction.

1) Find J; a; and b from v: Denotes = jJ j:
2) Set

mJ = (f
(s)
1 )�1(J) ma = (f

(s)
2 )�1(a) mb = (f

(s)
3 )�1(b):

3) Set

m0 =Ks + (mJ � 1)M (s)
a M

(s)
b + (ma � 1)M

(s)
b

+ (mb � 1) + 1: (14)

Example 3: Let t = n = 2 (see Example 1). Then

K0 =0

K1 =0 +
2

0
(0 + 1)22�0 = 4

K2 =4 +
2

1
(1 + 1)22�1 = 12:

Let m0 = 11: Thens = 1 since11>K1 and11 � K2: Therefore,

m1 =11� 4� 1 = 6

mJ = b6=(2 � 2)c+ 1 = 2

ma = b�(6; 4)=2c+ 1 = 2

mb =�(�(6;4); 2) + 1 = 1

sinceM (s)
a = M

(s)
b = 2 and

�(6; 4) = 6� 4b6=4c = 2

�(2; 2) = 2� 2b2=2c = 0:

Suppose that

f
(1)
1 : (1; 2)! (f1g;f2g)

f
(1)
2 : (1; 2)! ((00); (11))

f
(1)
3 : (1; 2)! ((01); (10)): (15)

Then we assign

J = f
(1)
1 (2) = f2g

a = f
(1)
2 (2) = (11)

b = f
(1)
3 (1) = (01)

and construct the codeword using (4)and (5)

v(a; bjJ) = (01;11):

Let us consider decoding of the messagem0 whenv = (11;10):
We discover that

J = f1g a = (11) b = (10):
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Hence,s = jJ j = 1 and

mJ =(f
(1)
1 )�1(f1g) = 1

ma =(f
(1)
2 )�1((11)) = 2

mb =(f
(1)
3 )�1((10)) = 2

m0 =4 + (1� 1) � 2 � 2 + (2� 1) � 2 + (2� 1) + 1 = 8

where (14) and (15) were used.
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Hierarchical Guessing with a Fidelity Criterion
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Abstract—In an earlier paper, we studied the problem of guessing
a random vector XXX within distortion D, and characterized the best
attainable exponent E(D; �) of the �th moment of the number of
required guessesG(XXX) until the guessing error falls belowD. In this
correspondence, we extend these results to a multistage, hierarchical
guessing model, which allows for a faster search for a codeword vector
at the encoder of a rate-distortion codebook. In the two-stage case of this
model, if the target distortion level isD2, the guesser first makes guesses
with respect to (a higher) distortion levelD1, and then, upon his/her first
success, directs the subsequent guesses to distortionD2. As in the above-
mentioned earlier paper, we provide a single-letter characterization of
the best attainable guessing exponent, which relies heavily on well-known
results on the successive refinement problem. We also relate this guessing
exponent function to the source-coding error exponent function of the
two-step coding process.

Index Terms—Guessing, rate-distortion theory, source-coding error
exponent, successive refinement.

I. INTRODUCTION

In [1], we studied the basic problem of guessing a random vector
with respect to (w.r.t.) a fidelity criterion. In particular, for a given
information source, a distortion measured, and distortion levelD, this
problem is defined as follows. The source generates a sample vector
xxx = (x1; � � � ; xN) of a randomN -vectorXXX = (X1; � � � ; XN).
Then, the guesser, who does not have access toxxx, provides a sequence
of N -vectors (guesses)yyy1; yyy2; � � � until the first success of guessing
xxx within per-letter distortionD, namely,d(xxx; yyyi) � ND for some
positive integeri. Clearly, for a given list of guesses, this number
of guessesi is solely a function ofxxx, denoted byGN (xxx). The
objective of [1] was to characterize the best achievable asymptotic
performance and to devise good guessing strategies in the sense of
minimizing moments ofGN(XXX). It has been shown in [1], that for
a finite-alphabet, memoryless sourceP and an additive distortion
measured, the smallest attainable asymptotic exponential growth rate
of EEEfGN(XXX)�g (� > 0) with N , is given by

E(D; �) = max
P

[�R(D; P 0)�D(P 0jjP )] (1)

where the maximum w.r.t.P 0 is over the set of all memoryless
sources with the same alphabet asP , R(D; P 0) is the rate-distortion
function ofP 0 w.r.t. distortion measured at levelD, andD(P 0jjP )
is the relative entropy, or the Kullback–Leibler information diver-
gence, betweenP 0 andP , i.e., the expectation ofln [P 0(X)=P (X)]
w.r.t. P 0.
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