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Construction of Uniquely Decodable Codes located above the KLWY lower bound and these codes can be used in
for the Two-User Binary Adder Channel conjunction with simple encoding and decoding procedures
The correspondence is organized as follows. We begin with the
Rudolf Ahlswede and Vladimir B. Balakirskyember, IEEE description of codeg/, ) and illustrate the definitions for specific

data. Then we prove a theorem which claims thatV) is a
' _ uniquely decodable code and gives expressiongfpand|V|. Some
Abstract—A construction of uniquely decodable codes for the two-user nymerical results and a discussion about the relationships between our

binary adder channel is presented. The rates of the codes obtained by . : .
this construction are greater than the rates guaranteed by the Coebergh construction and the CT-construction are also presented. After that

van den Braak and van Tilborg construction and these codes can be used W€ d.esl,(.:ribe asimple dgcoding proce.dure. Finally, we point out tq the
with simple encoding and decoding procedures. possibility of enumerative coding which follows from the regularity

Index Terms—Adder channel, coding, decoding, multiple-access chan- of the construction.

nel.
Il. Cobe CONSTRUCTION (u)—(V)
|. INTRODUCTION Let us fix integerst,n > 1 in such a way that is even and

We address the problem of constructing uniquely decodable cog@gstruct the codedf andV using t_he foIIownn_g rules.
for the two-user binary adder channel. Suppose that two independerﬂ") LetC d_enote t_he set (?onS|st|ng of all binary vectors of length
users transmit binary codewords of the same length over the charin@'d Hamming weight/2, i.e.,
and the receiver gets a vector obtained by component-wise arithmetic
sum of these codewords. The decoder has to decide which codeword
was transm?tte_d by (_aach user with t_he error probability zero. . wherewpy denotes the Hamming weight. Construct a code
Systematic investigations of multiple-access channels were initi-
ated by the papers [1], [2] where the achievable rate region for U = U (e @)
memoryless multiple-access channels under the criterion of arbitrarily o
small average decoding error probability was found. The boundary
of this region for the two-user binary adder channel is defined of length¢» repeating. times each component of every vectog C.
the equations (v) Given ans € {0,---,t}, let

C={c={(c1,---,c:) €{0, 1} wrr(c) =t/2} 1)

ceC

R1:1 Rgzl R1+Rz:15 Jq:rJg[t]:|,]|:5}

Where_Rl and R, are the code rates of the users. These equatioaénote the collection consisting of allelement subsets of the set
also give an outer bound on the code rates that can be realized unger. (1 ... ¢} and let

the criterion of the decoding error probability zero, i.e., the rates o
the pair of codes that form aniquely decodable coder the adder () § in o (s—idn
channel. The best known lower bound on these rates was proved by AT = U {10 } ®)
Kasami, Lin, Wei, and Yamamura [3] (this bound will be referred =0
to as the KI__WY lower bound). The first constructions of specifi here1°0°" = 0°" and1°"0° = 1°". Furthermore, let us introduce
codes for this channel were obtained by Weldon [4]. Further resu 3 alphabet
in this direction were established by Khachatrian [5], Coebergh van
den Braak and van Tilborg [6], and other authors. Probably, the code B ={0,1}"\{0",1"}
construction discovered in [6] gives the best known péits, R-)
such that there exist uniquely decodable codes with these rates. Tjfisisting of2” — 2 binary vectors which differ front” and 1”.
construction will be referred to as the CT-construction. Let j; < --- <j, be the elements of the set € 7, and let
We will construct two binary codes{ andV, of lengthtn, where ;' ... ;' e the elements of the set
t andn are fixed integers, in such a way th@t, V) is a uniquely
decodable code for the two-user binary adder channel. Each codeword J = [t)\J.
will be represented as a sequence of binasjuples having length
t; thesen-tuples will be regarded as subblockEhe main point of For all (a,b) € A® x B'~*, define a vector
our considerations is that we do not only prove the statement of an
existence type concerning uniquely decodable codes, but build specific v(a,blJ) = (vi,---,v) € {0,1}"" (4)
codes for fixed andn in a regular way. The rates of these codes are
in such a way that
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Example 1: Lett = n = 2. ThenC = B = {01,10}. The code Proof: Equation (6) directly follows from (1) and (2). Given an
U consists of two codewords s € {0,---,t}, the setJ. consists of(i) elements. For each € 7;
ay _ there ares + 1 possibilities for the vector € A and(2" —2)'~¢
u ' =00 11 possibilities for the vectob € B'~*. Therefore,
v =11 00
N . t n t—s
and the cod®’ consists of all binary vectors of length except0011. Vi= Z <5> (s+1)(2"=2)""
We construct) in the following way. =0

5=0. 7, =0, A = ¢, B"~" = {0101,0110,1001,1010}. It is easy to check that this equation can be expressed as (7).

The proof is complete if we show thdif, V) is a uniquely

(1) — . .
v =v(=,0101|0) = 01 01 decodable code. Let us introduce an alphaBetconsisting of the

o =y (—,0110|0) =01 10 2" — 2 elements of3 and an element specified as,™i.e.,
v =(=,1001]0) = 10 01 5 = 5| ). ®)
v =y(=,1010[0) = 10 10
Let (B*)" denote thetth extension of3*. For all b* € (B*)", we
s=1. J, = {{1}.{2}}, A® = {00,11}, B~ = {01,10}. introduce the set
o® =0(00,01[{1}) =00 01 V() ={v = (v, -, v) €{0,1}":
v =0(00,10[{1}) =00 10 vj = bj, if bj # x, and
v =u(11,01|{1}) =11 01 vj € {07, 1"}, if b =
8) —o(11,10[{1}) = 11 10 forallj=1,---,t}. 9
0! =v(00,01]{2}) = 01 00 Note that{V(b*), b* € (B*)'} is a collection of pairwise disjoint
210 =2(00,10[{2}) =10 00 sets and get the following proposition.
eR) =0(11,01|{2}) =01 11 R Proposition 1: Suppose that, for ali* ¢ (B*)*, there are subsets
L,(12) —o(11,10){2}) = 10 11 V(b*) C V(b") satisfying the following condition:

U+ U+d')=0, forallv,o’ € V(b").
s=2. 7. = {{1,2}}, A®) = {0000,1100,1111}, B'~ = . (U + o) (Yt +0) v, € V)
(13 =0(0000,—|{1,2}) = 00 00 Then (U,U[,*G(B*)t.]}(b*)) is a uniquely decodable f:ode.
14) Furthermore, using (1), (2) and (8), (9) we obtain
o = (1100, —]{1,2}) =11 00 t ,
5 Proposition 2: Givenb* € (B*)" andv, v" € V(b*), the following
(15) _ — — ’
v =e(1L - [{1.2h) =11 11 two statements are equivalent:
The pair(i4, V) is optimal in the following sense: any coddsand 1) There existu, u’ € U such that

V such that(i4, V) is a uniquely decodable code for the binary adder I A
channel may contain at most one common codeword; thus utv=u tu.

tn

2) There existe, ¢’ € C such that

In our case, Ui == ‘] =€
('UJ"/'U,IJ' = On n) l]) (1'0)
- tn
A+ 1V =17T=2"+1. (vj,v) = (1",0") = c;) (0,1, forallj=1,---,t
(10)

Ill. PROPERTIES OFCODES CONSTRUCTED BY (U)—(V)

H * *\T , ’1/ * 4
Theorem: The code(t/, V) of length tn defined in (u)—(v) is a  -ot US fxb™ € (B7)" and, for allv, v € V(b7), define
uniquely decodable code for the two-user binary adder channel and

tor (v, v ZX{ U5 7])—(0 ")}
|u|=<t>

t/2 ©)
. tio(v,v') = ZX{(W,U;) =(1",0M)}. (11)
1% :(2"—1)f{2n_1+1}. 0 =1
Hereafter,x stands for the indicator functiony{S} = 1 if the
Hence statementS is true andy{S} = 0 otherwise.
-1 i ’ (1%
: ),V b
R = 1 ilog 9t t Proposition 3: If »,»" € V(b*) and
n tn t/2 . ,
1 t()l(l),l’ ) 7/: tm(v,'v ) (12)
2 = —1 —l 1
R, n og(2" = 1)+ tn 8 |:2“ 1 + :|

then there are ne, ¢’ € C such that statement (10) is true.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:53:31 UTC from IEEE Xplore. Restrictions apply.



328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

TABLE | Remark (on the CT-Construction)The authors of [6] described a
THE RATES (R1, R2) OF SoME UNIQUELY DECODABLE CODES DEFINED BY rather general construction which “almost” contains our construction
! ! . . . .
(UI)‘g’)'THE Sum RaTs Ré_l‘_"ofiz FOR THE CODESWHODSE ExisTENCE (u)—(v) whent > 4, meaning that we fix the Hamming weight of
S GUARANTEED BY THE - l\!STRUCTION AND THE DIFFERENCES . . . ...
BETWEEN R AND THE VALUES Ry DEFINED BY THE KLWY L OWER each element of the sé_’t; whlle this w§|ght should be divisible by
BOUND ON THE MAXIMAL RATE OF UNIQUELY DECODABLE CODES t/2 in the CT-construction (if we consider the cage- 2,7 = 0 [6,

p. 8]). Then the expressions for the cardinalities of the codes given
in Theorem 2 are reduced (in our notations) to

tn | t R, R, Ri+R, | R{+Ry | Ry— R
t
=2+ (t/2>
28 | 14 | 0.419458 0.881856  1.301315 | 1.299426 | 0.008833
32 | 16 || 0.426616 0.875699  1.302315 | 1.301048 | 0.009834 . 2 v v
36 | 18 || 0.432480  0.870463  1.302943 | 1.302071 | 0.010462 V0)i=@"-1"|=- Z t2-i-Dr(1-m)'"
40 | 20 | 0.437382 0.865946  1.303328 | 1.302714 | 0.010847 2 =

44 | 22 | 0441549  0.862002 1.303550 | 1.303109 | 0.011069 .
48 | 24 || 0445141  0.858521  1.303662 | 1.303339 | 0.011181 e _ s
52 | 26 || 0.448272 0.855424 1.303696 | 1.303457 | 0.011215 + > <7->(f/2—l—1)1T (1-m)
56 | 28 || 0.451030 0.852646  1.303676 | 1.303497 | 0.011195 =0\’

60 | 30 | 0453480 0.850138  1.303618 | 1.303482 | 0.011137 n . . .
64 | 32 || 0455672 0.847861 1.303533 | 1.303428 | o.o11052  Wherew = 1/(2" —1) and? is even. The difference in the code

68 | 34 || 0457646 0.845783  1.303428 | 1.303347 | 0.010947 rate betweed/ andl/’ vanishes whe is not very small. However,
72 | 36 | 0.459434 0.843876 1.303311 | 1.303248 | 0.010820  our change makes it impossible to apply Lemma 5 one-to-one (the
76 | 38 || 0.461063  0.842121  1.303184 | 1.303134 | 0.010702 statement: “(6) is equivalent to..,” fails to be true), and we can
80 | 40 | 0.462553  0.840498  1.303051 | 1.303012 | 0.010570 improve the result fof)’|. For example, consider the caise- 4 and
set (in the notations of [6])

n=s=2 D" ={00} DY ={11} E={01,10}

t/2

Proof: Since all vectorse,c’ € C have the same Hamming y =(00,00,01,01) d=(00,00) d = (11,11).
weight, we obtain R ' i
. . Then (see [6, p. 5]),
D> odle,¢) = (0.1 = > x{(es,¢h) = (1,00}, (13) w*(d) = w (d) = v(d.d) =0
Jj=1 =1

If these vectors satisfy (10) givenv’ € V(b"). then using (9), (11), @nd the vectors00, 00. 01, 01). (11,11, 01, 01) cannot simul-
and (13), we conclude thai; (v,v') = t10(v, v'), but this equation @neously belong to)". Nevertheless, this is possible for the

contradicts (12). O codeV.

. * *\ T
Let us fixb™ € (B7)", denote IV. DECODING ALGORITHM

J={j €[t]: b = +}, s =|J, The codes derived in (u)—(v) can be used with a simple decoding
and suppose that < --- < j. andjj < --- < ji_, are the elements procedure. Let: = (zi,---. %) € {0,1,2}"" denote the received
of the setsJ and.J°. Assign vector, wherez; € {0,1,2}" for all j = 1,---,t. We will write

. " R 0 € z; and2 € z; if the received subblock; has0 and2 as one
V(D) = {v € V): (vjy,--osv,) € AT of cor]nponents, ?espectively. ’

where the setd®) is defined in (3). Then, for alb,v' € V(b*), Sinceu; € {0",1"} for all j = 1,---,t, each received subblock
v # ', eithertor (v,v") >0 andtio(v,v') = 0, or te1(v,v') = 0 cannot contain both and2 symbols. Thus the decoder knowsif z;
andtio(v,v") > 0. Therefore, based on Proposition 3, we concludeontains eithef or 2. The number of subbocks" in « corresponding
that, for all v,»' € V(b*), there are noc,c’ € C such that to the received subblocks' can be found using the fact that the total
statement (10) is true, and using Proposition 2 obtain that the sEt@mming weight ofu is fixed to befn /2. These remaining subblocks
U+, ve V() are pairwise disjoint. Finally, Proposition 1 sayscan be discovered based on the structure of the.4€ts - - -, A®.
that (U, Uy« g(p+ye Y)(b*)) is a uniquely decodable code and, as i# formal description of the decoding algorithm is given below.

easy to see, 1) Set
U vey=v Ti={iellz =1 Ji=[\].
b*e(s*)f ) ]
whereV is defined in (4) and (5). o 2 ForalljeJi, set
. . . o, ifoez
The rateq R:, R2) of some uniquely decodable code are given in uj = {1 if2c ZJ
Table I. ForR, € (1/3,1/2), the pair ' ‘7’
- and
(Rl,é2=1°b6—31) e
2 w =1{j € Ji:2 €z}

belongs to the KLWY lower bound. We show the differerdee— 2. 3) Set

and the values of the sum rat&s + R’ of the codegi/’, V') whose

existence is guaranteed if we use the CT-construction with given w=1/2—-w
and n. The sum rates of all codes presented in Table | are greater
than R} + R} and the point§ R1, R2) are located above the curve
obtained using the KLWY lower bound. |Ji| = ki, sje € i = j1 < -+ <Jk.

and represent the elements.Af in the increasing order, i.e.,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:53:31 UTC from IEEE Xplore. Restrictions apply.
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Set The enumerative encoding procedure is given below.
0%, i € {1 s jnew) 1) Find the maximal value o € {0,---,t — 1} such that
- £} : g g b ? =W . ! [~ e = L ~
uj { 17, 0 J € {hmwtio s in ke m' > K., denotem, = m' — K, — 1, and set

my = |_77L5/(Z\/[(£S)1M,§S))J +1
Mo = [A(ma, MO M) /M | + 1
V= (21, 2) — (W10, ug). my = A(A(m.. Z\'[C(LS)Z\/[[ES))? A’IIES)) +1.

4) Set

Example 2: Let ¢ = n = 2 (see Example 1). If the first received 2) Set

subblock containg) then the codeword:”) was sent by the first T=Ff9Mms  a=fm.) b= m).
sender, and if it containg then this codeword was'®’. Similarly, ‘

if the second received subblock contaiisor 2 then the decoder 3) Construct the vector(a, b[.J) in accordance with (4) and (5).
makes a decision® or «(*). The codewordv € V is discovered
in these cases after the decoder subtradi®m the received vector.
At last, if the received vector consists of dlls then there are

The enumerative decoding procedure goes in the opposite direction.
1) Find.J,a, andb from v. Denotes = |.J|.

two possibilities:(u,v) = («¥,1100) and (v, v) = («'¥,0011). 2) Set
However,0011 ¢ V, and the decoder selects the first possibility. mr=FNUT) ma = (£ a) my = (1) 0).
3) Set

V. ENUMERATIVE CODING ) ) ( )
Enumerative procedures were developed in source coding to make m' =Ko+ (my = DMI M + (ma = 1M,
the storage of a code book unnecessary at both sides of the com- +(mp—1)+ 1. (14)
munication link and essentially reduce computational efforts [7]-[9].
In this case, the encoder having received a message calculates thExample 3: Let t = n = 2 (see Example 1). Then
corresponding codeword, and the decoder calculates the inverse func-

tion. Our decoder does not use the code book to decode transmitted Ko =0
codewords, and an enumerative algorithm for messages completely i 2 -
escapes the storage of code books. We present this algorithm below. Ky =0+ 0O+ 127" =4
First, we construct one-to-one mappings
- . 2 2—1 ‘

F(my) = T,
és)(ma) L A®
£ (my) = B

Letm' = 11. Thens = 1 sincell > K, and11 < K. Therefore,
my =11-4-1=6
my=16/(2-2)]+1=2

where m,myj, mq, and m,; are integers taking values in the ma = [A(6,4)/2]+1=2

corresponding setsm € {1,---,||}, ms; € {1,---,|T:|},

ma € {1, A}, my € {1,---,|B |}, ands = 0,---, L.

: i ) (),

The §tructure of the_poss}ble mapp(lgg‘é (mq) and £3° (myp) since M — Mb(.q) — 92 and

is evident; the mappingg(m) and f;” (m) are based on the

my =A(A(6,4),2)+1=1

enumeration procedures for binary vectors having a fixed Hamming A(6,4) =6—4]|6/4] =2
weight [7]-{9]. _ _ A(2,2) =2-2[2/2] =0.
Let (m,m') be the message to be transmitted over the binary adder
channel, wherer € {1,---, |t/|} andm’ € {1,---,|V|}. Encoding Suppose that
and decoding of the message are obvious: we assign .
g ¢ g M (1,2) = ({1}, {2])
fom)y=u £ '(u)=m. (2 (1,2) = ((00),(11))
£ (1,2) = ((01),(10)). (15)

Let us consider encoding and decoding of the messageenote

Then we assign
Ko =0

. T=51"@={2}
I\'YS_H =K, + <b>(6’+1)(2n—2)f_5, 9:0571'—1 a:fzm)(?):(ll)

b=f"(1) = (01)

and
and construct the codeword using (4)and (5)
y (s) — M (:.) — (¢ no_ t—s
MY =s+1  M,"” =(2"-2) v(a,b).J) = (01, 11).
forall s = 0,---,¢. Furthermore, for all integerg > 0 and@ > 1, Let us consider decoding of the messagewhenv = (11, 10).
introduce the function We discover that
Alg,Q) =g - Qla/Q)- J={1} a=(11) b=(10).
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Hence,s = |J| = 1 and Hierarchical Guessing with a Fidelity Criterion
e Neri Merhav,Senior Member, IEEERon M. Roth,Senior Member, IEEE
my = (f1( )) {1H =1 and Erdal Arikan,Senior Member, IEEE
m, = (f5)7' (1) = 2
mp = (fél))_1 ((10)) =2 Abstract—In an earlier paper, we studied the problem of guessing
P a random vector X within distortion D, and characterized the best
m =4+(1-1)-2-24+2-1)-24+2-1)+1=38 attainable exponent E(D, p) of the pth moment of the number of

required guessesG(X) until the guessing error falls below D. In this
correspondence, we extend these results to a multistage, hierarchical
where (14) and (15) were used. guessing model, which allows for a faster search for a codeword vector
at the encoder of a rate-distortion codebook. In the two-stage case of this
model, if the target distortion level is D, the guesser first makes guesses
REFERENCES with respect to (a higher) distortion level Dy, and then, upon his/her first
success, directs the subsequent guesses to distortibn. As in the above-

[1] R. Ahlswede, “Multi-way communication channels,” #nd Int. Symp. mentioned qarlier paper, we provide a si_ngle—k_etter chqracterization of
Information Theory(Tsahkadzor, Armenian SSR, 1971). Budapeslt,he best attainable guessing exponent, which relies heavily on V\_/ell-knovs_/n
Hungary: Publishing House of the Hungarian Academy of Sciencg€sults on the successive refinement problem. We also relate th|s guessing
1973, pp. 23-52. exponent fun_ctlon to the source-coding error exponent function of the

[2] —, “The capacity region of a channel with two senders and twbVvo-step coding process.
receivers,”Ann. Probab, vol. 2, no. 5, pp. 805-814, 1974.

[3] T. Kasami, S. Lin, V. K. Wei, and S. Yamamura, “Graph theoreti%x
approaches to the code construction for the two-user multiple-acces
binary adder channel,TEEE Trans. Inform. Theoryvol. IT-29, pp.
114-130, Jan. 1983.

[4] E. J. Weldon, “Coding for a multiple-access channéhform. Contr, . INTRODUCTION

vol. 36, pp. 256-274, Mar. 1978. In [1], we studied the basic problem of guessing a random vector

[5] G. G. Khachatrian, “On the construction of codes for noiseless synchrgx s Al T ; ;
nized 2-user channelProbl. Contr. Inform. Theoryvol. 11, no. 4, pp. With respect to (w.r.t.) a fidelity criterion. In particular, for a given

Index Terms—Guessing, rate-distortion theory, source-coding error
onent, successive refinement.

319-324. 1982. information source, a distortion measurend distortion leveD, this
[6] P. A. B. M. Coebergh van den Braak and H. C. A. van Tilborg, “Aproblem is defined as follows. The source generates a sample vector
family of good uniquely decodable code pairs for the two-access binagy = (x4, --+, #x) of a randomN-vector X = (Xi, .-+, Xn).

adder channel,TEEE Trans. Inform. Theorwol. IT-31, pp. 3-9, Jan. Then, the guesser, who does not have accesspmvides a sequence

1985. . . . .
[7] V. F. Babkin, “A universal encoding method with nonexponential worlPf V-vectors (guesseg, y», - - until the first success of guessing

expediture for a source of independent messad@sfl. Pered. Inform. & W.it.hin .per-letter distortionD, na.mely,.d(a:, y;) < ND fo.r some
vol. 7, no. 4, pp. 13-21, Oct.—Dec. 1971. English translatrbl.  positive integeri. Clearly, for a given list of guesses, this number

Inform. Transm. pp. 288-294. of guesses is solely a function ofz, denoted byGn (z). The
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where the maximum w.r.tP’ is over the set of all memoryless
sources with the same alphabetRsR(D, P’) is the rate-distortion
function of P’ w.r.t. distortion measuré at level D, andD(P'||P)

is the relative entropy, or the Kullback—Leibler information diver-
gence, betwee’ and P, i.e., the expectation dh [P'(X)/P(X)]
w.r.t. P’
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