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It is a basic question, in the theory of group rings, to describe construc­
tively the group of units of the integral group ring ZG of a finite group G. 
Let 

U(ZG) = U = {ueZG\ there exists v € ZG with uv = 1} 

be the unit group of ZG. Bass and Milnor [1] have given generators for 
a subgroup of finite index in U if G is abelian. We shall do the same for 
nilpotent groups with a few exceptions arising from the Sylow 2-group of 
G. 

We begin by describing two key classes of units of ZG. 
(a) THE BASS CYCLIC UNITS. Let a e G be an element of order d. Let 

\G\ = n, <p(n) = m, where (p is the Euler function. For a natural number /, 
less than d and relatively prime to d, the element 

u = (1 + a + • • • + ai'x)m + ((1 - im)/d)â, à = 1 + a + • • • + ad~x 

belongs to ZG as im = 1 (mod d) since <p(d) \ (p{ri) when d \ n. Moreover, 
u is a unit as seen by applying various characters of (a). These units 
correspond to the cyclotomic units and Bass [1] has proved that if G is 
cyclic then a subset of units of the above type obtained for all (a) gives 
a linear independent set of generators of a subgroup of finite index in U. 
We call the units obtained by varying (a) and /, the Bass cyclic units of 
ZG. 

(b) THE BICYCLIC UNITS. Let a, b € G. Then 

ua,b = 1 + ( a - l)6â 
is a unit whose inverse is 1 - (a - \)ba. It is easily seen that ua>i, ^ 1 if 
and only if b does not normalize (a). These units are called the bicyclic 
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units of ZG. They together with the Bass cyclic units turn out to essentially 
play the same role for nilpotent groups as the Bass cyclics do for abelian 
groups. 

In order to state our first main theorem we denote by H*;, k > 3, the 
Hamiltonian quaternion algebra over the real field Q(C2*-« + C -̂i)> where 
f2*-i is a primitive 2fc_1th root of unity. 

THEOREM 1. Let G be a nilpotent group such that the rational group 
algebra QG has no simple Wedderburn components which are 2x2 matrices 
over Q or Q(i) or 2r x 2r matrices, r > 0 over Hk, k > 3. Then the Bass 
cyclic units and the bicyclic units ofZG generate a subgroup of finite index 
in U(ZG). 

All nilpotent groups of odd order clearly satisfy the hypothesis of Theo­
rem 1. If G is a 2-group some restrictions are necessary for the conclusion 
to hold. It is possible to construct groups G whose rational group algebra 
has, 2 x 2 rational matrices, as a simple component and for which the 
theorem is not true. For instance, if G is the group of order 16, given by 

G=^a>b\a4 = l = b4
fa

b = a-1) 

then QG = 4Q© 2Q(/) © Q2x2 © Q2x2 and G has an epimorphic image Dg> 
the dihedral group of order 8. Corresponding to this a representation of 
G is given by 

T(a) = 

Then 

T{uabia) = A = 

0 1 
- 1 0 

3 - 2 
2 -1 

T(b) = 

T{uasb,a) = 

'1 
0 

0' 
- 1 

- 1 - 2 1 
2 3_ B. 

It is easily checked that under this representation the Bass cyclics are all 
mapped onto / and the bicyclics generate the group 

"1 8" 
0 1 ' 

'1 0" 
8 1_ ,A2,B 

' ) • 

which turns out to be of infinite index in SL(2,Z). This means that in 
such cases we have to look for some more generators. 

Now, a few words to the proof of Theorem 1. We use the congruence 
theorems of Bass-Milnor-Serre [2] and Serre [4] and an extension thereof 
which is due to Vaserstein [5] and [6]. To state those let O be the ring of 
integers in an algebraic number field K9 which is finite dimensional over 
Q. For an ideal g of 0, we denote by E(Q) the subgroup of SL(n, O) 
generated by all g-elementary matrices / + qeim, q e Q, I ^ m, e\m a 
matrix unit and by E(Q) its normal closure in SL{n, O). If n > 3 then the 
normal subgroup of E(0) generated by E(Q) is normal in SL(n, O) and 
hence coincides with Ë(Q). 

LEMMA. Assume that n > 3 or n — 2 and K is neither rational nor 
imaginary quadratic. Then 

(1) (SL(n, O) : E(Q)) < oo for any nonzero ideal Q ofO. 
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(2) Every noncentral subgroup ofSL(n, O) normalized by a subgroup 
of finite index contains E(Q) for some nonzero ideal Q ofO. 

(3) Ifn > 3, thenÊ(Q2) < E(Q), in particular, (SL(nfO): E(Q)) < oo. 
(4) If n = 2, then (S£(2,0): E{Q)) < oo. 

Let B\, B2 be the subgroups of U generated by the Bass cyclics and the 
bicyclics respectively. Let B — {B\,B2). We first observe that the simple 
components of QG are matrices over commutative fields. We then use a 
theorem of Bass [1] to deduce that it is enough to show that B2 contains 
a subgroup of finite index in SL(n, O) for every component Knxn, n > 1. 
In order to prove this, we have the following main propositions. 

PROPOSITION 1. (SL(n,0): U(B2)) < oo for all projections II: QG -• 
Knxn, n>\. 

PROPOSITION 2. For two different projections Yl\ and II2, there is an 
element b e B2 such that Yl\(b) = 1, 112(e) = 1 + xeim, x ^ 0, / ^ m. 

These results depend on a new and canonical way of writing an abso­
lutely irreducible representation T of a /?-group G as an induced repre­
sentation. Namely, depending on T we find a maximal subgroup M oî G 
together with an irreducible representation V of M inducing T such that 
among other properties T and V have the same character field. To state 
this, let us denote by |y|i the number of eigenvalues equal to one of a 
square matrix Y. We define three groups 

Q2k — (a,b: a2 = I,a2 = b2,ab = a~l), the generalized 

quaternion group of order 2k, k > 3 

D2k = (a,b: a2 = 1 = b2, ab = a - 1) , the dihedral group 

of order 2k, k > 3 

Z)-+1 = (a,b I a2k = 1 = b2,ab = a2""'"1) of order 2k+l, k>3. 

PROPOSITION 3. Assume that G is a p-group different from Q2k, D2k, 
D~+l. Let T be an absolutely irreducible faithful representation of G of 
degree pn, n > 1. Then there exists a maximal abelian normal subgroup A 
in G, an element ae A of order p, a maximal subgroup M of G containing 
A, and an irreducible representation V of M such that T = ind^ V, V(a) = 
1, \V{ab)\x =0(Vb<£M). 

This proposition has another consequence, which settles a conjecture 
that has been around a while but which, to our knowledge, has not been 
affirmed in the literature yet. The result for p-groups, p a regular prime, 
goes back to Schur [3, p. 518]. 

THEOREM 2. If G is a nilpotent group having Schur index one for every 
representation then each representation of G is realizable over the algebraic 
integers in its character field. 

The proofs will appear elsewhere. 
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