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Construction of Universal Modal World
based on Hyperset Theory

Toru Tsujishita

August 1, 1994

Introduction

When cognitive agents live in a world, the knowledge states of the agents are
important components of the the global status of the world. Thus the global
state S of the world consists of the state of the external environment e € E
and the knowledge states ¢; of the agents living in the world:

S = (o, ,an,e).

Now what is the knowledge state a; of the agent 7 One possible interpre-
tation is that it is the subset of the global state of the world which seem
possible for the agent 7. Such an object as S can not be formulated as a set
in the usual set theory, since the validity of knowledge, i.e., S € a;, implies
S 5 -.-3 8, which is incompatible with the foundation axiom.

Fortunately, a new set theory, called hyperset theory, is recently estab-
lished by Aczel [1], which does permit us to think such set S as above.

In this note, we construct a universal modal world carrying KT modal
logic (cf. [4]) in the universe of hypersets. We construct it as the largest fixed



point of a natural set continuous class operator. In this modal world, not only
the knowledge formulas but also the those expressing common knowledge
have simple and natural interpretation.

This modal world can be regarded also as a universal KT Kripke structure,
since every KT Kripke structure has a unique equivalent model in it. This
implies in particular that a knowledge formula is valid if and only if it is
true in this universal modal world which preserve the interpretation of the
knowledge formulas. '

An illustrative example of this new model of modal logic, applied to the
famous Muddy Boys Puzzle, can be found in [6].

We note that, in the usual set theory with foundation axiom, modal
worlds can be constructed only cumulatively ([2, 3]). In such well-founded
modal worlds, not all knowledge formulas can be interpreted simultaneously.
Moreover it is not possible to interpret common knowledge formulas.

We show that the hierarchy of modal worlds constructed in the usual uni-
verse of sets ( [3]) are the images of certain natural maps from this universal
modal world.

Although we confined ourselves to the KT modal logic, our approach is
effective for most of the variants of modal logic, such as S4 and S5.

1 Anti-foundation axiom

We shall work in the hyperset theory ZFA. This is an axiomatic set theory
having the Zermero-Fraenkel axioms except for the foundation axiom, which
is replaced with the Anti-Foundation Axiom of Aczel. (cf. [1] for details.)
In ZFA, we can uniquely solve any system of set equations: Let X be a class
of atoms and { a, |z € X } be a system of X-sets. Consider the system of
set equations:

(1.1) - z=a;, z€X



Then there exist unique family of sets { b, | z € X } such that

by = ay[{ bz/z }] .(Vy € X),

where a[{ b,/z }] denotes the set obtained from an X-set a by substituting
b, to z.

We denote the class of all the hypersets by V and the class of all the
subsets of a class X by pow X.

2 Knowledge operator K; g

Let I and E be sets. An element i of I denotes an agent and an e € F stands
for a state of external world. We assume I = {1,...,n } for simplicity of
notation. For each class X , we define ‘

K;pX := (pow X)! x E.
Since this is obviously set continuous, i.e.,

KX = U Kz z,
=X,  is a set

it has a unique largest fixed point WI,E:
Wie =K1z WiE.

By ZFA, this fixed point is not empty, since it has S." (e € E) as its elements,
where S, is defined as the solution of the set equation

~(2'1) a:=({:z:},---,{:z},e).

Let U be the subclass of W g consisting of S’s satisfying S € m;.S for all
¢ € I. The class U is not empty, since it includes S..

Define now
K1 5X := ((pow X)! x E) U,
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which is obviously set continuous.

Define
' W[,E = U Z.

zCKj,Ez

Note that Wy g is not empty, since S, € Wp.

By Theorem[6.5] of 1], we have

Proposition 2.1 (1)

Wis = ((pow (W) x E) Y.
(2) X c KX implies X C Wik

Let 7; : W g—pow W; g and 7g : W g—E be natural projections.

We call a class X coclosed if X C K1 gX. Then W g is by definition the

union of coclosed set.

Proposition 2.2 For each subset = of Wy , there is a largest coclosed
subset of x, which we call the coclosure of x and denote it by z.

Proof. The coclosure can be defined as the largest fixed point z of the set
continuous operator @ : X + N K; gX. Then z = 2N K| gz, which imply
that z is coclosed. Moreover, for any coclosed subset z C =, we have z C @z,
which implies z C z. _ q.e.d.

We recall a fact which we need to show that WI,E and W, g include
solutions of set equations of certain types. Let ® be a set continuous class

operator. An X-set a is called K g -local if for every class B and every
family of sets { ¢, € B |z € X }, alc,/z] € PB.

—



Proposition 2.3 Suppose the X-sets in the RHS of the set equation (1.1)
is ®-local, then its solutions belong to the largest fixed point of ®.

3 KT Kripke structures

Atuple K = (W,Ry,--+, Ry, ¢€) is called a KT Kripke structure of type (I, E)
if W is a class, R;’s are reflexive binary relations on W and ¢ : W—E is a
map. '

A coclosed class X defines a KT Kripke structureX(X) defined by
K:(X) = (X’Rh T Rm 6)) |

where

R; = { (S,T) | mS>T }

The reflexivity is guaranteed by S € U. Especially the W; g defines a KT
Kripke structureX; g.

4 Interpretations of Knowledge Formulas

The set of knowledge formulas is defined, using the BNF, as

pu=L1]p|le—e| K,

where p and ¢ stands respectively for a subset of £ and a knowledge formula.

A knowledge formula can be interprefed by a KT Kripke structureas
follows: Let K be a KT Kripke structure. We define

K,S kL
K,SkEp (dzeée(S)Gp
K.SEpri—pr £5K,S K grorK,S ko
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K,S 'k Kip ELVT[(S,T) e Ri= K, T k= ¢)].
We write

KEe (g)IC,s}:goforallS'EW

= &k [= ¢ for all KT Kripke structureKripke structure X .

By the reflexivity of R;’s, we have

E Kip—e,

for every formulat .

A knowledge formula ¢ efines a subclass of the modal space Wy g by
[l :={S€Wie [K1g,S ¢ }.

This can be described directly as follows:

[L] = 0,
[p] = =5'p,
[pi—pa] = [p1]° U [,
[Kip] = =7 'pow [¢].

In W, g, we can also interpret the common knowledge formula. A com-
mon knowledge formula is defined by

pu=L|ple—e|Kip|Cop.
We define [C¢] as the coclosure of [p]. Then
[Ce] = [p] (1 K1,5[Co]
=[] pow [Co] (- - -7 pow [C].

Hence

SECep<= SEeAKCoA---ANK,Cop,

which means exactly that ¢ is a common knowledge at S.
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5 Universality of W g

Let K (i = 1,2) be KT Kripke structures of type (I, E). A map f : Wi—W,
is called a simulation from X; to Ky if (f x f)R! € R?foralli € I and when ‘
f(S) = 5" and (S',T") € R? then there exists T € W such that f(T) =
and (S,T) € R}

A simulation map from a KT Kripke structureX = (W, Ry, .-+, Ry, €) to
K1,E is exactly a decoration, i.e., a family of sets { d(S) | S € W } satisfying

d(S) = ({d(T) [ (5, T) € Ry },---,{d(T) | (5,T) € R, },¢€S).

Theorem 5.1 Every KT Kripke structurehas a unique simulation map from
itself to K1 .

Proof.  This is essentially a special case of the special final coalgebra
theorem of Aczel, although a KT Kripke structureis not a K g -coalgebra
because of the conditions of reflexivity and transitivity of R;’s.

Let zs = d(S) (S € W) be the solution of the set equation
zs=({zr [(S,T) €R1 },--+,{2r | (5,T) € Rn },€S).

Put W := {d(S) | Se€ W }. Then W is coclosed and hence W C W; g
by proposition(2.1). We define then d : W—W by S +— d(S). The map d
is obviously a decoration, whence a simulation. The uniqueness is obvious
since any decoration is a solution of the above set equation. q.e.d.

We call a KT Kripke structureX is minimal if every simulation map from |
K to other KT Kripke structureis injective.

Corollary 5.2 The image of the decoration of a KT Kripke structureis a
minimal KT Kripke structure.



Proof. Let ¢ : K—X' be an simulation. Let d’' be the decoration of K.
Then d’' o ¢ is a decoration of K , whence it must be the identity, which is
obviously a decoration. This implies that ¢ must be injective. q.e.d.

6 Invariance of Interpretation under Simu-
lation Maps

- The importance of Theorem3.1 is due to the fact that a simulation map
preserves the interpretation of knowledge formula.

Proposition 6.1 Let K' (i = 1,2) be KT Kripke structures and f be a
simulation from K! to K2. Then

(6.1) K48 o= K4 f(S) E o

for all knowledge forfnula ®.

Proof. It suffices to show that if (6.1) is valid for ¢, then it is valid also
for K;p. But

K:Z)f(S) '= KzSD
means that for all T” satisfying (f(S),T") € R?,

(6.2) K, T' k= .

But, by the simulation condition of f, we can find T for each such T" satisfying
f(T)=T'and (S,T) € R}. Thus (6.2) is equivalent to

Ko, (T =K, Tk
for all T with (S,T) € R}. This means exactly

K:1, S F I{,QO



q.e.d.

We say that a knowledge formula is valid if it is true in all KT Kripke
structure.

Corollary 6.2 A knowledge formula is valid if and only if Wi g |= ¢.

7 Relation with cumulative modal worlds

In {2, 3], modal worlds are defined cumulatively. Let us briefly recall the
definition. We will denote by E the set of all truth assignment to primitive
propositions. Define a family of sets { VelneN } inductively by

Vo = E, (1)

Vigr = Vaxpow (V). (2)
We denote the projections from V1 to the first and the second factor
by mr and =y, respectively. ‘
Since
Va1 = Vo x pow (Vo)! x pow (V;)! x -+ x pow (Vo)
an element of V,; cé,n be expressed as |

(fO)""fn)
with fr € pow (Vk_l)I for k 2 1.

A subset V, C V, is defined by the extensionality condition : For all
0O<k<nandiel,

Ji(@) = { (g0, 1 9k-1) | (g0, +,9n-1) € fu(3) for some gi, -+, gn_y }.



An element of V,, is called an n-world in [3].

We define now KT modal worlds. Define a subset W, C V, by the knowl-
edge condition: Forall0 < k<nand:€1,

(for s fx) € fra(4)-

We construct, for each m € N, a map
Ot WE—Vin,

inductively by

wy = 7g:Wig—E,
Wmp1 = @m X POW (@n)Y,
namely,
wm+1.5' = (me,g),
with

9@)={w,T |TemS} foriel
Theorem 7.1 @w,(W;ig) = V,.

Proof. Consider the following system of set equations

m(fO)"'7fm> = (""A(foa"'1fm)i"°°’7f0)

for the family of unknown sets:

{m(fO""afm) |<f07"')fm) € Vm, mEN }a

where

A(fO)" : )fm),' = { w(go,' ot agn—l> l (gO,;' "gn——l) € fn(z) }
for n > 1 and A(fo) = 0. Let

z(f01"'7fm>=S(fO)"')fm>

10



be its unique solution. Then by Proposition 2.3 S(fo,--, fm) € Wi g and
7z'iS(fCh e afm) = { S(go, tte ,gm—1>, ' (907 ot agm—l) € fn(Z) } )

Now we show

(71) wks<f0)"'afm>=(f0"")fk) forkSm-

by double induction on k and m. For m = 0, (7.1) is obvious. Suppose, for
some M > 1, (7.1) has been established for all k¥ and m with ¥ < m < M.
Since

wOS(an"’,fM) = 7rE'S<f0a"'1fM> = f01

(7.1) with m = M is true for k¥ = 0. Suppose (7.1) with m = M holds for
k <{. Then :

TR(@er1S(fo, -+, far)] () = weu{ S{g0,-- 1 9Mm-1) | (g0, 9m—1) € fm(3) }

{ (gOa Tt ’gf) I (go, U ,gM-l) € f]\!(z) }
= fi41  (by the extensionality condition).

On the other hand

TR [@er1S(fo, -, f)] () = @eS{fo,--, far)
: = (fo, -, fe) (by the induction hypothesis).

Hence
wl+15(f0a Tt an) = (fO, Tt ,fla f£+1>-

This concludes the proof of (7.1) and also proves Imw,, includes V,,.

We prove now
(7.2) Imw,, C V,
by induction on m. For m = 0, we have
Imwy = Imrg = E.
Suppose (7.2) is true for m < M. Let
oS = (foy+ -+ fir_1)

11



for an § € W g. Since

wM-IS = (f07 tt 7fM—2)s
we have (fo,---, fm—-2) € War_1. It suffices to show that

(7.3)  fm—2(8) = { (g0, - 9m-3) | (90, > 9M—3,39Mm-2) € far—1(3) }

But
fM_z(i) = { waf—2d IT €mS }
= { TLOM-11" | TenS }
= 7('L*{ wy1T |T€ TS }
v = 7an:fM—l(i),
which means exactly (7.3). q.e.d.

We have a similar result for modal worlds with knowledge condition:

Theorem 7.2 w,, (W) = W,.

Proof. The proof is similar to the previous one. Consider the following
system of set equations :

fE(fo,"' 7fm) = ("'aB<f07"'7fm);‘1""f0>
with unknown sets

{x(fO,""fm) I(fO;"')fm) € Wm) mEN }a

where

B(fO)"')fm>,' — {“’(fO""’fm)}
U{ (g0, 19m1) | (g0, 1Gm-1) € Fum() }.

Let
z(foy+ -+ fm) = S(fo,- -, fm)

12



be its unique solution. Then, by Proposition 2.3, the set S(fo,---, frn) is in
WI,E and

i3 (for -+ -5 fm) = { S(for -5 fm) TU{ S{g0, -+, m—1) 1{g0,--+, 9m—1) € £ (9) }-
As before we can show
@S (for++s fm) = (for o, fi)  for k<m
using the knowledge condition. This proves that wW g includes W,,. Since
wWiE CoWig C Vi,
we have only to check that the knowledge condition is satisfied by
| <f0,“",fm—1) = S

for S$ € W g. But S € 7;S implies

(fO)"')fm—2> = wm—ls .
€ {wmaT |TemS } (by S €mS)
= fm—l(i)-

q.e.d.

Finally we note that w,, preserves the validity of knowledge formulas
with depth less than or equal m. We recall that

depth(p) = 0if p € pow (E)
depth(L) = 0
depth(¢1—¢,) = max(depth(¢p;),depth(yp,))
depth(I(;p) = depth(e)+ 1.

For (fo, -, f;) € Viy1 and a formula ¢ with depth(p) > r, the satisfia-

bility relation
(fO,""fr> I=(P

13



is defined inductively by

(fo,-=» fr) | piffo€p (p€pow (E)),

(fosoos fe) ¥ L

(fo,o 0 i) B @r1—waif (fo,o- i) Epror (fos-+ f) E 2

(fo, -, fr) | Kipif (go,-+,9r-1) = ¢ for each (90,5 9,1) € fr (7).

Theorem 7.3 Ifdepth(yp) < r +1 then,

SEe & wnuSEe
forSe Wrg.

Proof. By induction on r. The nontrivial part of the proof is to show
SE Kip < w15 | K.
Let @, 415 = (fo, -+, f+). Then
(@) ={wT |TemnS}
be definition. Hence

v EKp < wTkeforalTenS
< T E¢foralT € xS by induction hypothesis
< Sk Kp.

q.e.d.

We remark that we can also construct universal modal world for S5 modal
logic. We simply replace the U by the subclass V of W ¢ consisting of S’s
satisfying

e Sem foralliel,

[ UTGW.’S 7r,~T C 7r,'S,

o If T € 7;S then S € m;T.

for all ¢ € I. This class is also non empty since S, € V.
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