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Abstract: Herein, we report the successful syntheses of scarcely represented indole-based 
heterocycles which have a structural connection with biologically active natural-like molecules. 
The selective oxidation of indoline nucleus to indole, hydrolysis of ester and carbamoyl residues 
followed by decarboxylation with concomitant aromatization of the pyridazine ring starting from 
tetrahydro-1H-pyridazino[3,4-b]indole derivatives lead to fused indole-pyridazine compounds. On 
the other hand, non-fused indole-pyrazol-5-one scaffolds are easily prepared by subjecting the 
same C2,C3-fused indoline tetrahydropyridazines to treatment with trifluoroacetic acid (TFA). 
These methods feature mild conditions, easy operation, high yields in most cases avoiding the 
chromatographic purification, and broad substrate scope. Interestingly, the formation of indole 
linked pyrazol-5-one system serves as a good example of the application of the umpolung strategy 
in the synthesis of C3-alkylated indoles. 

Keywords: indole-based heterocycles; C2-C3 indole oxidation; aromatization; 
ring-opening/ring-closing; umpolung 

 

1. Introduction 

Given the intriguing structures and the medicinal importance of polycyclic indole-based 
molecules [1–7], we envisioned that the amalgamation of the indole moiety [8–13] with the 
pyridazine ring [14–19] that potentially generates different isomeric scaffolds (a–c) would lead to 
entities endowed with either amplified or new biological activities (Figure 1). A large number of 
reports dedicated to the synthesis of these appealing frameworks and studies on their 
pharmacologic activities appeared in the literature in the past few decades [20–29]. Among the 
heterocyclic architectures a–c, the tricyclic fused indole-pyridazine system c which can be 
considered to be aza-analogous (or bioisoster) of β-carboline, the unique tricyclic pyrido[3,4-b]indole 
core amenable to an important family of bioactive natural products widely distributed in nature [30], 
has attracted our attention. 
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Figure 1. Different isomeric fused indole-pyridazine systems. 

Although many of the above cited examples deal with 5H-pyridazino[4,3-b]indoles (a) [20,21] 
and 5H-pyridazino[4,5-b]indoles or 3H-pyridazino[4,5-b]indol-4(5H)-ones (b) [22–26], the chemistry 
of 9H-pyridazine[3,4-b]indoles (c) [27–29] is much less known. 

Specifically, in 1964, Kobayashi and Furukawa presented the synthesis of various 
3-phenyl-9H-pyridazine[3,4-b]indoles by heating 3-phenacyl-oxindoles and hydrazine hydrate in 
acetic acid solution [27]. In 1992, Shimoji and co-workers synthesized a series of methyl 
9H-pyridazino[3,4-b]indole-3-carboxylates and related compounds using a Diels-Alder reaction of 
3-(1H-indol-3-yl)-2-propenoates with dibenzyl dicarboxylate [28]. Several of these compounds were 
found to have high affinity for the benzodiazepine receptor. Recently, the design, synthesis, 
biological evaluation, and molecular modeling studies of several 
3-aryl-9-acetyl-pyridazino[3,4-b]indoles were reported by Nepali et al. [29]. 

Following our sustained efforts toward the construction of novel azaheterocycles, especially 
around privileged structures [31], we have recently disclosed a zinc-catalyzed synthesis of polycylic 
fused indoline scaffolds through a substrate-guided reactivity switch [32]. With this as a 
background, we herein describe a successful procedure providing the fused indole-pyridazine 
scaffold of type c (Figure 1)through oxidation and hydrolysis processes from previously synthesized 
tetrahydro-1H-pyridazino[3,4-b]indole compounds (1). Surprised to observe a 
ring-opening/ring-closing pathway during the C2-C3 indole oxidation step, a facile and robust 
access to unusual non-fused derivative indole-pyrazol-5-ones 4 starting from the same cycloadducts 
(1) has been also achieved in excellent yields. 

2. Results and Discussion 

In a preliminary experiment, the conversion of tetrahydro-1H-pyridazino[3,4-b]indole 1b to 
fully aromatic 9H-pyridazino[3,4-b]indole 3b was attempted by a two-step process consisting of 
decarboxylation of the ester motif with removal of carbamoyl residue followed by oxidation of 
pyridazine ring under basic conditions. However, although removal of the ester with alcoholic KOH 
efficiently took place affording a mixture of CH/NH tautomers, unexpectedly pyridazine ring 
aromatization did not occur. With this failure in hand, we first turned our attention to the crucial 
C2-C3 indole oxidation step. A variety of oxidizing agents (e.g., DDQ [33], BQ, NBS/TBPB, MnO2 
[34–36], Na2Cr2O7, I2, PCC [37], Pd/C [38], CAN [39] and CuCl2∙2H2O [40]) was investigated (Table 1). 
Common reagents such as BQ, Na2Cr2O7, PCC, Pd/C, I2, and NBS in combination with TBPB, 
although frequently used for oxidation of the indoline ring, proved unsuccessful. With 
stoichiometric DDQ in dioxane, only trace of the aromatic indole-pyridazine 2b was formed (Table 1, 
entry 1). The dehydrogenations reaction yield could be further improved by using toluene and 
CH2Cl2 as solvents (Table 1, entries 2 and 3). Manganese dioxide was reported in the literature to be 
suitable for the oxidation of indolines to indoles [34–36]. To our surprise, when compound 1b was 
subjected to treatment with MnO2 in benzene at 70 °C, the sole demethylated indole derivative 2b’ 
was isolated in 55% yield [41] (see Supplementary Materials). Reducing the amount of MnO2 
displayed an incomplete reaction, decreasing the reaction yield (40% yield) of the obtained product 
(Table 1, entries 6 and 7). 

On the other hand, the use of oxidizing systems such as ceric ammonium nitrate (CAN) and 
catalytic copper (II) chloride dihydrate in DMSO did not afford the expected product 2b, providing 
instead the non-fused indole-pyrazole 4c (Table 1, entries 12 and 13). 
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Entry Oxidant Solvent 
Temp. 

(°C) 
Time 

(h) 2b(2b’)/4c 
Yield 
(%) 

1 DDQ (1 equiv) dioxane rt 2 2b trace 
2 DDQ (1 equiv) toluene reflux 24 2b 21 
3 DDQ (1.5 equiv) CH2Cl2 rt 15 2b 27 
4 BQ (4 equiv) toluene reflux 12 – – 
5 NBS/TBPB (0.4 equiv) CCl4 reflux 5 – –a 
6 MnO2 (10 equiv) benzene 70 48 2b’ 40 
7 MnO2 (25 equiv) benzene 70 24 2b’ 55 
8 Na2Cr2O7 (1 equiv) CHCl3 reflux 12 – –a 
9 I2 (2 equiv) CH3OH reflux 24 – –a 

10 PCC (3.3 equiv) CH2Cl2 reflux 2 – – 
11 Pd/C (1 equiv) AcOEt reflux 24 – –a 
12 CAN (1 equiv) CH2Cl2 rt 24 4c 38 
13 CuCl2∙2H2O (0.1 equiv) DMSO 100 8 4c 80 

a Starting 1b was recovered. 

With these results in hand, also tetracylic compounds incorporating 6 and 8 membered fused 
ring such as 1a and 1c were subjected to optimal oxidation conditions to obtain the relative 
compounds 2a/2a’ and 2c’ respectively (Scheme 1). Intrigued by the possibility of obtaining fully 
aromatic derivatives, the treatment of representative 6, 7, and 8 membered 
tetrahydro-1H-pyridazino[3,4-b]indole 2a, 2b’, 2c’ with alcoholic KOH was also carried out. To our 
delight, the formation of cyclo-fused pyridazino[3,4-b]indoles 3a, 3b’ and 3c’ (via hydrolysis of ester 
and carbamoyl residues followed by decarboxylation with concomitant aromatization of the 
pyridazine ring) was registered with success (43–68% yields) (Scheme 1). 
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Scheme 1. Two-step synthesis of cyclo-fused pyridazino[3,4-b]indoles 3a, 3b’, 3c’. 

Encouraged by the unexpected formation of non-fused indole-pyrazol-5-one 4c during the 
investigation for indoline oxidation to indole, we next focused our attention to exploring this 
transformation. We identified that the use of trifluoroacetic acid (TFA) as common Brønsted acid 
induced the ring-opening of the cycloadduct 1b to give non-fused N-polyheterocyclic compound 4c 
in excellent yield (95%). It was found that all the tetracyclic compounds embedding 6, 7 and 8 
membered-ring well tolerated the acidic environment (Scheme 2). Changing the substituents (alkyl, 
benzyl) on the N-indole ring, the reaction proceeded satisfactorily (4f, 4g, and 4i). Also, the free 
NH-indole was proven to be a good candidate for this reaction furnishing the relative products 4h, 
4j, and 4p in very excellent yields. As expected, conversion to NH-pyrazol-5-one 4e obtained by 
removal of the t-butoxycarbonyl (Boc) protective group was observed under such conditions. The 
wide functional groups tolerance of this procedure was validated from the introduction of 
electron-donor (4i, and 4j) or electron-attractor (4k, 4l, 4m, 4n) substituents on the aromatic 
component which led to the corresponding indole linked pyrazol-5-one systems in almost 
quantitative yields. Interesting to note that no purification of the obtained products by flash 
chromatography column was necessary because of their precipitation from the reaction medium. A 
plausible mechanism could involve TFA-induced ring-opening of the tetrahydropyridazine, 
followed by sequential intramolecular nucleophilic acyl substitution (ring-closing) to form the final 
product accompanied by elimination of an alcohol molecule. This pathway reflects the 
well-established tendency of polycyclic fused indoline structures without 3-substituents to 
rearomatization [42]. Also, the formation of NH tautomeric form of II previously described by our 
group [32] supports this. 
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Scheme 2. Substrate scope for the synthesis of indole linked pyrazol-5-ones 4. 

To illustrate the synthetic potential of this transformation, a one-pot reaction involving the in 
situ formation of [4+2] cycloadduct 1b from N-methyl indole A1 and cyclic azoalkene B1 [32] was 
also performed. The reaction proceeded very well, and desired product 4c was obtained in 93% 
overall yield (Scheme 3). 
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Scheme 3. One-pot synthesis of 4c from N-methyl indole A1 and cyclic azoalkene B1. 

To date, only one example of the synthesis of compound of type 4 was documented in the 
literature [43]. In their work, Shi and co-workers realized an umpolung of C3 indole reactivity, using 
2-indolylmethanols (C) as an electrophile and pyrazol-5-ones (D) as a nucleophile to obtain, under 
the cooperative catalysis of Pd(0) and a chiral phosphoric acid, the strategic C-C bond formation. 

Differently from Shi’s work, in our case the same C-C bond formation is realized exploiting the 
reversal of polarity of the azoalkene (B) system (“umpoled” of carbonyl compounds) [44–47]. Taking 
advantage of the intrinsic reactivity of the pertinent substrates, a new and complementary synthetic 
approach toward these unusual N-polyheterocyclic structures can be successfully achieved (Scheme 
4). We believe that the present method is of operational interest in terms of forming otherwise 
challenging-to-prepare C−C bonds. 
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Scheme 4. Different synthetic approaches to indole linked pyrazol-5-one derivatives 4. 

3. Materials and Methods 

3.1. General 

All the commercially available reagents and solvents were used without further purification. 
Tetrahydro-1H-pyridazino[3,4-b]indoles 1 were prepared via a formal [4+2] cycloaddition reactions 
of 2,3-unsubstituted indoles with cyclic azoalkenes by known procedures [32]. Chromatographic 
purification of compounds was carried out on silica gel (60–200 μm). Thin-layer chromatography 
(TLC) analysis was performed on pre-loaded (0.25 mm) glass supported silica gel plates (Silica gel 
60, F254, Merck; Darmstadt, Germany); compounds were visualized by exposure to UV light. 
Melting points (m.p.) were determined in open capillary tubes and are uncorrected. 
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All 1H-NMR and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively at 25 °C on a 
Bruker Ultrashield 400 spectrometer (Bruker, Billerica, MA, USA). Proton and carbon spectra were 
referenced internally to residual solvent signals as follows: δ = 2.50 ppm for proton (middle peak) 
and δ = 39.50 ppm for carbon (middle peak) in DMSO-d6 and δ = 7.27 ppm for proton and δ = 77.00 
ppm for carbon (middle peak) in CDCl3. The following abbreviations are used to describe peak 
patterns where appropriate: s = singlet, d = doublet, t = triplet q = quartet, m = multiplet and br = 
broad signal. All coupling constants (J) are given in Hz. FT-IR spectra were measured as Nujol mulls 
using a Nicolet Impact 400 (Thermo Scientific, Madison, WI, USA). Low-resolution mass spectra 
(LRMS) was performed on a Waters Micromass Q-ToF instrument (Waters, Milford, MA, USA) 
using an ESI source. Elemental analyses were within ± 0.4 of the theoretical values (C, H, N). 

3.2. Two-Step Procedure for the Synthesis of 3 

3.2.1. Procedure for the Oxidation of Indolines 1 to Indoles 2 

To a stirred solution of compound 1 (0.5 mmol) in benzene (1 mL), MnO2 (25 eq) was added and 
the reaction was subsequently warmed up to 70 °C (oil bath). The reaction mixture was kept at this 
temperature until the reagent had been completely consumed as monitored by TLC (20 h). The crude 
mixture was then filtered and purified by column chromatography on silica gel using hexane-ethyl 
acetate as the eluent to afford product 2 (or 2’). 

Ethyl 6-carbamoyl-7-methyl-2,3,4,6,7,11c-hexahydro-1H-indolo[2,3-c]cinnoline-11c-carboxylate (2a). Yield 
26% (46.1 mg) as a whitish solid; m.p. 179–181 °C; 1H-NMR, 400 MHz, CDCl3): δ 1.18 (t, J = 7.2 Hz, 3 
H), 1.49–1.89 (m, 4 H), 1.96–2.01 (m, 1 H), 2.47 (dt, J1 = 14.4 Hz, J2 = 5.2 Hz, 1 H), 2.69–2.75 (m, 1 H), 
3.45–3.52 (m, 1 H), 3.72 (s, 3 H), 4.05–4.20 (m, 2 H), 5.14 (br, 1 H), 6.58 (br, 1 H), 7.09 (dt, J1 = 8.0 Hz, J2 = 
1.2 Hz, 1 H), 7.17 (dt, J1 = 8.0 Hz, J2 = 1.2 Hz, 1 H), 7.29 (d, J = 8.0 Hz, 1 H), 7.66 (d, J = 8.0 Hz, 1 H) ppm; 
13C-NMR (100 MHz, CDCl3): δ 14.1, 22.9, 26.0, 33.4, 33.6, 35.4, 50.8, 61.8, 96.5, 109.9, 119.8, 120.1, 121.3, 
123.6, 131.3, 136.8, 154.4, 156.2, 170.5 ppm; IR (Nujol, cm−1): νmax 3491, 3363, 1734, 1703; MS (ESI): m/z 
355 [M + H]+; anal. calcd. for C19H22N4O3 (354.40): C 64.39, H 6.26, N 15.81; found: C 64.25, H 6.32, N 
15.94. 

Ethyl 6-carbamoyl-2,3,4,6,7,11c-hexahydro-1H-indolo[2,3-c]cinnoline-11c-carboxylate (2a’). Yield 17% (28.9 
mg) as a whitish solid; m.p. 159–161 °C; 1H-NMR, 400 MHz, CDCl3): δ 1.22 (t, J = 7.2 Hz, 3 H), 1.51–
1.89 (m, 4 H), 1.95−2.02 (m, 1 H), 2.48 (dt, J1 = 13.2 Hz, J2 = 4.8 Hz, 1 H), 2.62 (d, J = 13.2 Hz, 1 H), 3.34 
(d, J = 13.2 Hz, 1 H), 4.09–4.29 (m, 2 H), 5.26 (br, 1 H), 6.79 (br, 1 H), 7.07–7.14 (m, 2 H), 7.32 (d, J = 7.2 
Hz, 1 H), 7.63 (d, J = 7.2 Hz, 1 H), 10.13 (s, 1 H) ppm; 13C-NMR (100 MHz, CDCl3): δ 14.3, 23.3, 26.8, 
34.3, 36.4, 50.4, 61.8, 91.9, 111.1, 119.2, 120.2, 121.1, 123.8, 129.6, 132.7, 151.8, 155.1, 170.6 ppm; IR 
(Nujol, cm−1): νmax 3455, 3425, 3297, 1720, 1686; MS (ESI): m/z 341 [M + H]+; C18H20N4O3 (340.37): C 
63.52, H 5.92, N 16.46; found: C 63.69, H 5.84, N 16.34. 

Methyl 7-carbamoyl-8-methyl-1,2,3,4,5,7,8,12c-octahydrocyclohepta[5,6]pyridazino[3,4-b]indole- 
12c-carboxylate (2b). Yield 27% (47.8 mg) as a whitish oil; 1H-NMR (400 MHz, DMSO-d6, 25 °C): δ 
1.00−1.10 (m, 1 H), 1.17–1.29 (m, 1 H), 1.40−1.49 (m, 1 H), 1.58–1.67 (m, 1 H), 1.75–1.82 (m, 1 H), 
1.89−1.97 (m, 1 H), 2.17–2.24 (m, 1 H), 2.55−2.63 (m, 1 H), 2.77–2.83 (m, 1 H), 3.06–3.13 (m, 1 H), 3.53 
(s, 3 H), 3.61 (s, 3 H), 6.99 (br, 2 H), 7.05 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.13 (dt, J1 = 8.0 Hz, J2 = 0.8 
Hz, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.56 (d, J = 7.2 Hz, 1 H); 13C-NMR (100 MHz, DMSO-d6, 25 °C): δ 
23.6, 28.9, 29.3, 32.3, 32.6, 33.4, 52.5, 52.6, 94.7, 109.9, 118.4, 119.9, 120.6, 122.7, 133.8, 136.3, 153.1, 
158.9, 171.7; IR (Nujol, cm−1): νmax 3488, 3375, 1729, 1708; MS (ESI) m/z 355 [M + H]+; anal. calcd. for 
C19H22N4O3 (354.40): C 64.39, H 6.26, N 15.18; found: C 64.26, H 6.34, N 15.29. 

Methyl 7-carbamoyl-1,2,3,4,5,7,8,12c-octahydrocyclohepta[5,6]pyridazino[3,4-b]indole-12c-carboxylate (2b’). 
Yield 55% (93.6 mg) as a white solid; m.p. 181–183 °C; 1H-NMR, 400 MHz, DMSO-d6): δ 1.10–1.23 (m, 1 
H), 1.38–1.47 (m, 2 H), 1.65–1.74 (m, 2 H), 1.89–1.93 (m, 1 H), 2.19–2.35 (m, 2 H), 2.65–2.71 (m, 1 H), 
2.84–2.90 (m, 1 H), 3.57 (s, 3 H), 6.93−7.01 (m, 2 H), 7.26 (s, 2 H), 7.44–7.50 (m, 2 H), 11.21 (s, 1 H) ppm; 
13C-NMR (100 MHz, DMSO-d6): δ 22.9, 29.2, 29.6, 33.7, 33.8, 51.5, 52.4, 89.9, 112.2, 117.7, 119.5, 120.1, 
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123.1, 131.0, 133.4, 150.9, 154.1, 171.9 ppm; IR (Nujol, cm−1): νmax 3491, 3430, 3297, 1734, 1707; MS 
(ESI): m/z 341 [M + H]+; anal. calcd. for C18H20N4O3 (340.38): C 63.52, H 5.92, N 16.46; found: C 63.39, 
H 6.01, N 16.57. 

Ethyl 8-carbamoyl-2,3,4,5,6,8,9,13c-octahydro-1H-cycloocta[5,6]pyridazino[3,4-b]indole-13c-carboxylate (2c’). 
Yield 45% (82.9 mg) as a white solid; m.p. 192–194 °C; 1H-NMR, 400 MHz, CDCl3): δ 1.15 (t, J = 7.2 Hz, 
3 H), 1.18–1.24 (m, 1 H), 1.35–1.55 (m, 4 H), 1.61−1.81 (m, 2 H), 1.94–2.01 (m, 1 H), 2.33−2.48 (m, 2 H), 
2.65–2.71 (m, 1 H), 2.87−2.93 (m, 1 H), 4.01–4.20 (m, 2 H), 5.07 (br, 1 H), 6.76 (br, 1 H), 7.06–7.14 (m, 2 
H), 7.32 (d, J = 8.0 Hz, 1 H), 7.60 (d, J = 8.0 Hz, 1 H); 10.13 (s, 1 H) ppm; 13C-NMR (100 MHz, CDCl3): δ 
14.2, 23.7, 24.2, 24.9, 28.3, 31.3, 32.9, 52.1, 61.7, 89.6, 111.2, 118.9, 120.3, 121.2, 124.3, 131.1, 132.8, 154.6, 
155.0, 171.5 ppm; IR (Nujol, cm−1): νmax 3410, 3276, 3220, 1724, 1698; MS (ESI): m/z 369 [M + H]+; anal. 
calcd. for C20H24N4O3 (368.43): C 65.20, H 6.57, N 15.21; found: C 65.06, H 6.63, N 15.30. 

3.2.2. Procedure for the Preparation of Fused Indole-Pyridazine 3 from 2 

To a stirred solution of KOH (10 eq.) in alcohol (3 mL), the compound 2 (or 2’) (0.2 mmol) was 
added and the mixture was refluxed until the disappearance of the reagent (TLC check, 7 h). The 
crude mixture was then filtered and purified by column chromatography on silica gel to afford 
product 3(or 3’). 

1,2,3,4,5,8-Hexahydrocyclohepta[5,6]pyridazino[3,4-b]indole (3a). Yield 43% (20.5 mg) as a yellowish solid; 
m.p. 167–169 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.92–1.96 (m, 3 H), 2.07–2.09 (m, 3 H), 2.13–2.20 
(m, 2 H), 3.99 (s, 3 H), 7.31–7.36 (m, 1 H), 7.68−7.74 (m, 2 H), 8.20 (d, J = 8.0 Hz, 1 H) ppm; 13C-NMR 
(100 MHz, DMSO-d6): δ 21.6, 22.5, 25.7, 27.9, 29.8, 109.9, 116.4, 118.3, 120.4, 125.1, 129.4, 130.5, 141.5, 
151.1, 152.2 ppm; IR (Nujol, cm−1): νmax no significant signals were detected; MS (ESI): m/z 238 [M + 
H]+; anal. calcd. for C15H15N3 (237.39): C 75.92, H 6.37, N 17.71; found: C 76.03, H 6.45, N 17.59. 

1,2,3,4,5,8-Hexahydrocyclohepta[5,6]pyridazino[3,4-b]indole (3b’). Yield 52% (24.7 mg) as a yellowish 
solid; m.p. 180–182 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.66–1.71 (m, 2 H), 1.75–1.81 (m, 2 H), 1.88–
1.94 (m, 2 H), 3.30–3.34 (m, 2 H), 3.39–3.43 (m, 2 H), 7.26 (t, J = 8.0 Hz, 1 H), 7.53 (d, J = 8.0 Hz, 1 H), 
7.59 (t, J = 8.0 Hz, 1 H), 8.35 (d, J = 8.0 Hz, 1 H), 12.10 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 
26.8, 26.9, 30.2, 32.2, 34.9, 113.1, 115.3, 119.1, 121.2, 125.0, 130.7, 138.7, 142.4, 153.3, 156.4 ppm; IR 
(Nujol, cm−1): νmax no significant signals were detected; MS (ESI): m/z 238 [M + H]+; anal. calcd. for 
C15H15N3 (237.29): C 75.92, H 6.37, N 17.71; found: C 76.07, H 6.44, N 17.62. 

2,3,4,5,6,9-Hexahydro-1H-cycloocta[5,6]pyridazino[3,4-b]indole (3c’). Yield 68% (34.2 mg) as a yellowish 
solid; m.p. 195–197 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.18–1.31 (m, 2 H), 1.38–1.44 (m, 2 H), 1.70–
1.81 (m, 2 H), 1.83–1.95 (m, 2 H), 3.24–3.29 (m, 2 H), 3.31–3.41 (m, 2 H), 7.29 (t, J = 8.0 Hz, 1 H), 7.55 (d, 
J = 8.0 Hz, 1 H), 7.61 (t, J = 8.0 Hz, 1 H), 8.21 (d, J = 8.0 Hz, 1 H), 12.12 (s, 1 H) ppm; 13C-NMR (100 
MHz, DMSO-d6): δ 25.5, 25.7, 26.5, 28.3, 31.4, 31.7, 111.8, 116.3, 118.5, 120.2, 124.6, 129.2, 133.5, 140.9, 
153.8, 154.9 ppm; IR (Nujol, cm−1): νmax no significant signals were detected; MS (ESI): m/z 252 [M + 
H]+; anal. calcd. for C16H17N3 (251.32): C 76.46, H 6.82, N 16.72; found: C 76.32, H 6.89, N 16.60. 

3.3. General Procedure for the Synthesis of Indole Linked Pyrazol-5-ones 4 

To a stirred solution of compound 1 (0.2 mmol) in methylene chloride (2 mL), TFA (2.5 eq) was 
added at room temperature. The reaction was refluxed until TLC indicated the disappearance of the 
reagent (TLC check, 2 h). Removed the solvent under reduced pressure, the crude mixture was 
diluted with water and extracted with EtOAc (2 × 10 mL). The organic phase was dried with Na2SO4 
and solvent was evaporated in vacuo. The compound 4 was collected by precipitation as a white 
solid, filtered, and washed with ethyl ether. 

3a-(1-methyl-1H-indol-3-yl)-3-oxo-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carboxamide (4a). Yield 92% (57.2 
mg) as a white solid; m.p. 192–194 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.39–1.52 (m, 1 H), 1.58–1.78 
(m, 3 H), 1.92–1.99 (m, 1 H), 2.21 (dt, J1 = 13.2 Hz, J2 = 5.6 Hz, 1 H), 2.59 (d, J = 12.8 Hz, 1 H), 2.82 (d, J = 
12.8 Hz, 1 H), 3.80 (s, 3 H), 7.02 (t, J = 8.0 Hz, 1 H), 7.18 (t, J = 8.0 Hz, 1 H), 7.24 (d, J = 8.0 Hz, 1 H), 7.26 
(br, 1 H), 7.45 (d, J = 8.0 Hz, 1 H), 7.53 (br, 1 H), 7.57 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 
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20.9, 27.0, 28.0, 32.6, 33.5, 54.3, 105.7, 110.3, 117.8, 119.5, 121.7, 125.1, 129.1, 136.9, 149.7, 166.5, 176,8 
ppm; IR (Nujol, cm−1): νmax 3399, 3251, 1726, 1702; MS (ESI): m/z 311 [M + H]+; anal. calcd. for 
C17H18N4O2 (310.35): C 65.79, H 5.85, N 18.05; found: C 65.64, H 5.92, N 17.92. 

3a-(1-methyl-1H-indol-3-yl)-3-oxo-N-phenyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carboxamide (4b). Yield 
90% (69.6 mg) as a white solid; m.p. 220–222 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.44–1.57 (m, 1 H), 
1.59–1.75 (m, 2 H), 1.86 (dt, J1 = 13.2 Hz, J2 = 5.6 Hz, 1 H), 1.96–2.01 (m, 1 H), 2.26 (dt, J1 = 13.2 Hz, J2 = 
5.6 Hz, 1 H), 2.68 (d, J = 12.8 Hz, 1 H), 2.85 (d, J = 12.8 Hz, 1 H), 3.81 (s, 3 H), 7.04 (dt, J1 = 8.0 Hz, J2 = 0.8 
Hz, 1 H), 7.09 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.18 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.27–7.38 (m, 3 H), 
7.46 (d, J = 8.0 Hz, 1 H), 7.57 (d, J = 8.0 Hz, 2 H), 7.62 (s, 1 H), 9.82 (s, 1 H) ppm; 13C-NMR (100 MHz, 
DMSO-d6): δ 20.9, 27.1, 28.0, 32.6, 33.5, 54.5, 105.6, 110.4, 117.9, 119.7, 120.1, 121.7, 123.9, 125.2, 128.9, 
129.2, 137.0, 137.4, 147.0, 167.2, 176.6 ppm; IR (Nujol, cm−1): νmax 3236, 1744, 1709; MS (ESI): m/z 387 
[M + H]+; anal. calcd. for C23H22N4O2 (386.45): C 71.48, H 5.74, N 14.50; found: C 71.35, H 5.83, N 14.62. 

8a-(1-Methyl-1H-indol-3-yl)-1-oxo-4,5,6,7,8,8a-hexahydrocyclohepta[c]pyrazole-2(1H)-carboxamide (4c). 
Yield 95% (61.6 mg) as a white solid; m.p. 131–133 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.28–1.35 (m, 
1 H), 1.48–1.69 (m, 4 H), 1.76–1.85 (m, 1 H), 2.15–2.23 (m, 1 H), 2.37–2.46 (m, 2 H), 2.69–2.75 (m, 1 H), 
3.78 (s, 3 H), 7.02 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.17 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.24 (br, 1 H), 
7.31 (d, J = 8.0 Hz, 1 H), 7.44 (d, J = 8.0 Hz, 1 H), 7.46 (s, 1 H), 7.53 (br, 1 H) ppm; 13C-NMR (100 MHz, 
DMSO-d6): δ 24.7, 25.9, 28.5, 29.3, 32.6, 32.8, 58.5, 106.9, 110.3, 118.4, 119.5, 121.7, 124.8, 128.5, 136.9, 
149.4, 166.7, 176.6 ppm; IR (Nujol, cm−1): νmax 3425, 3267, 1729, 1683; MS (ESI): m/z 325 (M + H)+; anal. 
calcd. for C18H20N4O2 (324.38): C 66.65, H 6.21, N 17.27; found: C 66.51, H 6.28, N 17.39; found: C 
66.64, H 6.17, N 17.27. 

3a-(1-methyl-1H-indol-3-yl)-3-oxo-N-phenyl-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamid
e (4d). Yield 90% (72.1 mg) as a white solid; m.p. 166-168 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.35–
1.45 (m, 1 H), 1.50–1.71 (m, 4 H), 1.78–1.87 (m, 1 H), 2.23–2.31 (m, 1 H), 2.43–2.55 (m, 2 H), 2.77–2.85 
(m, 1 H), 3.79 (s, 3 H), 7.05 (t, J = 7.2 Hz, 1 H), 7.09 (t, J = 7.2 Hz, 1 H), 7.18 (t, J = 7.6 Hz, 1 H), 7.33 (t, J = 
8.0 Hz, 2 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 8.0 Hz, 1 H), 7.50 (s, 1 H), 7.58 (d, J = 8.0 Hz, 2 H), 9.78 
(s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 24.7, 25.7, 28.4, 29.4, 32.5, 32.8, 58.7, 106.7, 110.3, 
118.6, 119.6, 120.1, 121.7, 123.9, 124.9, 128.6, 128.8, 136.9, 137.3, 146.7, 167.4, 176.4 ppm; IR (Nujol, 
cm−1): νmax 3251, 1739, 1708; MS (ESI): m/z 401 (M + H)+; anal. calcd. for C24H24N4O2 (400.47): C 71.98, H 
6.04, N 13.99; found: C 71.90, H 6.15, N 14.15. 

3a-(1-methyl-1H-indol-3-yl)-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazol-3(2H)-one (4e). Yield 97% (54.6 
mg) as a white solid; m.p. 250–252 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.20–1.31 (m, 1 H), 1.41–1.63 
(m, 4 H), 1.77–1.85 (m, 1 H), 1.98–2.05 (m, 1 H), 2.25–2.34 (m, 2 H), 2.56–2.63 (m, 1 H), 3.77 (s, 3 H), 
6.98 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.14 (dt, J1 = 8.0 Hz, J2 = 0.8 Hz, 1 H), 7.32 (d, J = 8.0 Hz, 1 H), 7.37 
(s, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 11.14 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 24.8, 26.3, 28.7, 
29.4, 32.4, 32.9, 55.4, 108.3, 109.9, 18.7, 119.0, 121.3, 125.2, 128.1, 136.8, 165.9, 178.9 ppm; IR (Nujol, 
cm−1): νmax 3165, 1714; MS (ESI): m/z 282 [M + H]+; anal. calcd. for C17H19N3O (281.35): C 72.57, H 6.81, 
N 14.94; found: C 72.43, H 6.90, N 15.02. 

3a-(1-ethyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide (4f). Yield 
93% (62.9 mg) as a white solid; m.p. 191-193 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.27–1.38 (m, 1 H), 
1.36 (t, J = 7.2 Hz, 3 H), 1.45–1.68 (m, 4 H), 1.77–1.85 (m, 1 H), 2.16–2.24 (m, 1 H), 2.40–2.46 (m, 2 H), 
2.68–2.75 (m, 1 H), 4.21 (q, J = 7.2 Hz, 2 H), 7.01 (dt, J1 = 7.2 Hz, J2 = 0.8 Hz, 1 H), 7.16 (dt, J1 = 7.2 Hz, J2 
= 0.8 Hz, 1 H), 7.25 (br, 1 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.49 (d, J = 8.0 Hz, 1 H), 7.51 (s, 1 H), 7.53 (br, 1 H) 
ppm; 13C-NMR (100 MHz, DMSO-d6): δ 15.3, 24.7, 25.9, 28.5, 29.3, 32.8, 40.4, 58.5, 107.1, 110.3, 118.5, 
119.5, 121.6, 124.9, 126.9, 135.9, 149.4, 166.7, 176.7 ppm; IR (Nujol, cm−1): νmax 3384, 3175, 1734, 1683; 
MS (ESI): m/z 339 [M + H]+; anal. calcd. for C19H22N4O2 (338.40): C 67.44, H 6.55, N 16.56.; found: C 
67.29, H 6.62, N 16.43. 

3a-(1-benzyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide (4g). 
Yield quant. (80.0 mg) as a white solid; m.p. 181-183 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.30–1.41 
(m, 1 H), 1.44–1.67 (m, 4 H), 1.77–1.83 (m, 1 H), 2.14–2.21 (m, 1 H), 2.43–2.49 (m, 2 H), 2.71–2.77 (m, 1 
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H), 5.44 (s, 2 H), 7.02 (t, J = 8.0 Hz, 1 H), 7.12 (t, J = 8.0 Hz, 1 H), 7.19–7.33 (m, 6 H), 7.35 (d, J = 8.0 Hz, 1 
H), 7.45 (d, J = 8.0 Hz, 1 H), 7.59 (br, 1 H), 7.70 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 24.8, 
25.7, 28.4, 29.4, 32.9, 49.2, 58.5, 107.5, 110.8, 118.6, 119.7, 121.8, 125.2, 126.9, 127.4, 128.2, 128.5, 136.3, 
137.9, 149.4, 166.7, 176.6 ppm; IR (Nujol, cm−1): νmax 3409, 3257, 1759, 1724; MS (ESI): m/z 401 [M + H]+; 
anal. calcd. for C24H24N4O2 (400.47): C 71.98, H 6.04, N 13.99; found: C 72.12, H 5.95, N 13.85. 

3a-(1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide (4h). Yield 
quant. (62.1 mg) as a white solid; m.p. 201–203 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.17–1.81 (m, 6 
H), 2.14–2.22 (m, 1 H), 2.30–2.45 (m, 2 H), 2.68–2.82 (m, 1 H), 6.98–7.57 (m, 7 H), 11.35 (s, 1 H) ppm; 
13C-NMR (100 MHz, DMSO-d6): δ 24.7, 26.0, 28.5, 29.3, 32.7, 58.6, 107.8, 112.0, 118.2, 119.4, 121.6, 
124.4, 124.5, 136.6, 149.5, 166.8, 176.8 ppm; IR (Nujol, cm−1): νmax 3404, 3287, 3257, 1734, 1703; MS 
(ESI): m/z 311 [M + H]+; anal. calcd. for C17H18N4O2 (310.35): C 65.79, H 5.85, N 18.05; found: C 65.94, 
H 5.79, N 17.91. 

3a-(5-methyl-1-propyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide 
(4i). Yield quant. (73.3 mg) as a white solid; m.p. 195–197 °C; 1H-NMR (400 MHz, DMSO-d6): δ 0.80 (t, 
J = 7.2 Hz, 3 H), 1.30–1.41 (m, 1 H), 1.44–1.63 (m, 4 H), 1.72 (sex, J = 7.2 Hz, 2 H), 1.79–1.86 (m, 1 H), 
2.10–2.18 (m, 1 H), 2.33 (s, 3 H), 2.38–2.47 (m, 2 H), 2.67–2.78 (m, 1 H), 4.10 (t, J = 7.2 Hz, 2 H), 6.97 (d, 
J = 8.4 Hz, 1 H), 7.10 (s, 1 H), 7.28 (br, 1 H), 7.37 (d, J = 8.4 Hz, 1 H), 7.43 (s, 1 H), 7.57 (br, 1 H) ppm; 
13C-NMR (100 MHz, DMSO-d6): δ 11.1, 21.3, 22.9, 24.8, 25.7, 28.4, 29.4, 32.9, 47.1, 58.5, 106.2, 110.2, 
118.1, 123.1, 125.2, 127.7, 127.9, 134.7, 149.5, 166.7, 176.7 ppm; IR (Nujol, cm−1): νmax 3369, 3175, 1734, 
1688; MS (ESI): m/z 367 [M + H]+; anal. calcd. for C21H26N4O2 (366.45): C 68.83, H 7.15, N 15.29; found: 
C 68.99, H 7.06, N 15.16. 

3a-(5-methyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide (4j). 
Yield quant. (64.9 mg) as a white solid; m.p. 209–211 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.23–1.37 
(m, 1 H), 1.40–1.69 (m, 4 H), 1.73–1.84 (m, 1 H), 2.15–2.23 (m, 1 H), 2.32 (s, 3 H), 2.39–2.45 (m, 2 H), 
2.69–2.75 (m, 1 H), 6.93 (d, J = 8.4 Hz, 1 H), 7.09 (s, 1 H), 7.28 (d, J = 8.4 Hz, 1 H), 7.31 (br, 1 H), 7.37 (d, 
J = 2.4 Hz, 1 H), 7.56 (br, 1 H), 11.21 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 21.4, 24.7, 25.9, 
28.5, 29.3, 32.8, 58.6, 107.2, 111.7, 117.8, 123.1, 124.3, 124.7, 127.8, 134.9, 149.5, 166.8, 176.8 ppm; IR 
(Nujol, cm−1): νmax 3399, 3328, 3272, 1729, 1714; MS (ESI): m/z 325 [M + H]+; anal. calcd. for C18H20N4O2 
(324.37): C 66.65, H 6.21, N 17.27; found: C 66.52, H 6.13, N 17.39. 

3a-(6-chloro-1-methyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide 
(4k). Yield 96% (68.9 mg) as a white solid; m.p. 229–231 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.29–
1.35 (m, 1 H), 1.44–1.67 (m, 4 H), 1.72–1.82 (m, 1 H), 2.15–2.23 (m, 1 H), 2.34– 2.48 (m, 2 H), 269–2.76 
(m, 1 H), 3.78 (s, 3 H), 7.07 (dd, J1 = 8.8 Hz, J2 = 2.0 Hz, 1 H), 7.23 (br, 1 H), 7.33 (d, J = 8.8 Hz, 1 H), 7.51 
(s, 1 H), 7.57 (br, 1 H), 7.60 (d, J = 2.0 Hz, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 24.7, 25.9, 28.4, 
29.3, 32.7, 32.8, 58.4, 107.4, 110.3, 119.8, 119.9, 123.5, 126.7, 129.6, 137.4, 149.3, 166.5, 176.3 ppm; IR 
(Nujol, cm−1): νmax 3420, 3262, 1754, 1724; MS (ESI): m/z 359 [M + H]+; anal. calcd. for C18H19ClN4O2 
(358.82): C 60.25, H 5.34, N 15.61; found: C 60.41, H 5.27, N 15.50. 

3a-(5-cyano-1-methyl-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide 
(4l). Yield 99% (69.2 mg) as a white solid; m.p. 176-178 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.23–1.38 
(m, 1 H), 1.40–1.79 (m, 5 H), 2.26–2.55 (m, 3 H), 2.76–2.82 (m, 1 H), 3.84 (s, 3 H), 7.25 (br, 1 H), 7.54 (d, 
J = 8.4 Hz, 1 H), 7.57 (br, 1 H), 7.65 (s, 1 H), 7.66 (d, J = 8.4 Hz, 1 H), 7.88 (s, 1 H) ppm; 13C-NMR (100 
MHz, DMSO-d6): δ 24.6, 26.0, 28.5, 29.4, 32.7, 32.8, 58.4, 101.7, 108.5, 111.9, 120.3, 124.2, 124.3, 124.4, 
131.1, 138.6, 149.3, 166.2, 176.0 ppm; IR (Nujol, cm−1): νmax 3399, 3302, 1739, 1724; MS (ESI): m/z 350 [M 
+ H]+; anal. calcd. for C19H19N5O2 (349.38): C 65.32, H 5.48, N 20.04; found: C 65.47, H 5.37, N 19.96. 

Methyl 
3-(2-carbamoyl-3-oxo-2,3,3a,4,5,6,7,8-octahydrocyclohepta[c]pyrazol-3a-yl)-1-methyl-1H-indole-5-carboxylat
e (4m). Yield 98% (74.9 mg) as a white solid; m.p. 201–203 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.25–
1.38 (m, 1 H), 1.45–1.83 (m, 5 H), 2.22–2.43 (m, 2 H), 2.49–2.56 (m, 2 H), 2.73–2.85 (m, 1 H), 3.82 (s, 3 
H), 3.84 (s, 3 H), 7.25 (br, 1 H), 7.55 (d, J = 8.8 Hz, 1 H), 7.59 (s, 1 H), 7.79 (dd, J1 = 8.8 Hz, J2 = 1.2 Hz, 1 
H), 8.17 (d, J = 1.2 Hz, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 24.7, 26.0, 28.0, 29.4, 32.8, 33.0, 
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51.8, 58.5, 108.8, 110.4, 120.9, 121.6, 122.5, 124.4, 130.3, 139.3, 149.3, 166.3, 166.9, 176.3 ppm; IR (Nujol, 
cm−1): νmax 3440, 3343, 1754, 1709; MS (ESI): m/z 383 [M + H]+; anal. calcd. for C20H22N4O4 (382.41): C 
62.82, H 5.80, N 14.65; found: C 62.98, H 5.74, N 14.53. 

3a-(1-methyl-5-nitro-1H-indol-3-yl)-3-oxo-3a,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-2(3H)-carboxamide 
(4n). Yield 98% (72.4 mg) as a yellow solid; m.p. 232–234 °C; 1H-NMR (400 MHz, DMSO-d6): δ 1.25–
1.75 (m, 6 H), 2.27–2.44 (m, 2 H), 2.48–2.58 (m, 1 H), 2.72–2.88 (m, 1 H), 3.87 (s, 3 H), 7.25 (br, 1 H), 
7.61 (br, 1 H), 7.68 (d, J = 8.4 Hz, 1 H), 7.75 (s, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 8.40 (s, 1 H) ppm; 13C-NMR 
(100 MHz, DMSO-d6): δ 24.6, 26.1, 28.5, 29.4, 33.0, 33.2, 58.4, 110.1, 111.2, 115.9, 116.9, 123.8, 132.3, 
139.9, 140.9, 149.2, 166.1, 175.9 ppm; IR (Nujol, cm−1): νmax 3399, 3308, 1739, 1719; MS (ESI): m/z 370 [M 
+ H]+; anal. calcd. for C18H19N5O4 (369.37): C 58.53, H 5.18, N 18.96; found: 58.68, H 5.11, N 18.84. 

3a-(1-methyl-1H-indol-3-yl)-3-oxo-3,3a,4,5,6,7,8,9-octahydro-2H-cycloocta[c]pyrazole-2-carboxamide (4o). 
Yield quant. (67.7 mg) as a white solid; m.p. 207–209 °C; 1H-NMR (400 MHz, DMSO-d6): δ 0.89–1.04 
(m, 1 H), 1.36–1.79 (m, 7 H), 2.12–2.26 (m, 1 H), 2.42–2.54 (m, 3 H), 3.79 (s, 3 H), 7.01 (t, J = 7.6 Hz, 1 H), 
7.07 (d, J = 7.6 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 7.37 (br, 1 H), 7.44 (d, J = 7.6 Hz, 1 H), 7.57 (s, 1 H), 7.68 
(br, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 22.4, 25.1, 25.5, 28.0, 28.9, 31.3, 32.6, 57.9, 107.5, 
110.3, 117.3, 119.6, 121.7, 124.7, 128.8, 136.9, 149.3, 167.1, 176.9 ppm; IR (Nujol, cm−1): νmax 3404, 3272, 
1739, 1698; MS (ESI): m/z 339 [M + H]+; anal. calcd. for C19H22N4O2 (338.40): C 67.44, H 6.55, N 16.56; 
found: C 67.29, H 6.48, N 16.67. 

3a-(1H-indol-3-yl)-3-oxo-3,3a,4,5,6,7,8,9-octahydro-2H-cycloocta[c]pyrazole-2-carboxamide (4p). Yield 90% 
(58.4 mg) as a white solid; m.p. 215–217 °C; 1H-NMR (400 MHz, DMSO-d6): δ 0.92–1.03 (m, 1 H), 1.38–
1.80 (m, 7 H), 2.10–2.19 (m, 1 H), 2.41–2.51 (m, 2 H), 2.56–2.60 (m, 1 H), 6.96 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 
1 H), 7.02 (d, J = 7.6 Hz, 1 H), 7.09 (dt, J1 = 7.6 Hz, J2 = 1.2 Hz, 1 H), 7.36 (br, 1 H), 7.39 (d, J = 7.6 Hz, 1 
H), 7.56 (d, J = 2.4 Hz, 1 H), 7.65 (br, 1 H), 11.37 (s, 1 H) ppm; 13C-NMR (100 MHz, DMSO-d6): δ 22.4, 
25.1, 25.5, 28.0, 28.9, 31.2, 58.0, 108.3, 112.1, 117.1, 119.5, 121.6, 124.3, 124.7, 136.5, 149.4, 167.3, 177.0 
ppm; IR (Nujol, cm−1): νmax 3379, 3297, 3241, 1744, 1714; MS (ESI): m/z 325 [M + H]+; anal. calcd. for 
C18H20N4O2 (324.37): C 66.65, H 6.21, N 17.27; found: C 66.49, H 6.30, N 17.38. 

3.4. One-Pot Procedure for the Synthesis of 4c 

A mixture of N-methyl indole A1 (1.4 mmol), cyclic azoalkene B1 (1.0 mmol) and zinc 
dichloride (0.1 mmol) was stirred in dry dichloromethane (2 mL) at room temperature. After the 
disappearance of azoalkene B1 (TLC check), TFA (2.5 eq) was directly added to the reaction 
medium. The reaction was refluxed until TLC indicated the disappearance of the intermediate (TLC 
check, 2 h). Removed the solvent under reduced pressure, the crude mixture was diluted with water 
and extracted with EtOAc (2 × 10 mL). The organic phase was dried with Na2SO4 and solvent was 
evaporated in vacuo. The crude mixture was purified by column chromatography on silica gel to 
afford product 4c in 93% yield. 

4. Conclusions 

In conclusion, successful routes providing indole-based heterocycles such as fused 
indole-pyridazines and non-fused indole-pyrazol-5-ones have been accomplished. Mild and 
practical reaction conditions, wide substrate scope in conjunction with functional group tolerance 
make these protocols particularly attractive. Moreover, crude products are usually obtained in high 
purity and high yield by simple precipitation from the reaction medium. We expect that these 
methodologies and the chemistry described here would be a new addition to the indole chemistry 
and would find wide usage in both organic and medicinal chemistry. 

Supplementary Materials: The following are available online: copies of 1H-NMR and 13C-MNR spectra of all 
newly synthesized compounds; copies of HMQC and HMBC of compound 2b’. 
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