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CONSTRUCTIONS AND PROPERTIES OF COSTAS ARRAYS

"-4

1. INTRODUCTION

Radar and sonar signals are used to determine both the distance (also called

range) of a target from the observer, and the velocity (also called range rate) at

which the target is either approaching or receding from the observer. The range

is proportional to the round-trip delay time (or time shift) of the signal, and the

velocity is proportional to the doppler (or frequency shift) of the signal.

In a frequency hopping radar or sonar system, the signal consists of one or

more frequencies being chosen from a set {f f'f2"""'fr of available frequencies,

for transmission at each of a set {tl,t 2 ...,t n } of ccnsecutive time intervals.

For modelling purposes, it is reasonable to consider the situation in which m = n,

and where a different one of n equally spaced frequencies {f f'f2""'fn) is transmitted

during each of the n equal duration time intervals {tlt 2 ,...,tn}. Such a signal is

conveniently represented by an nxn permutation matrix A, where the n rows correspond

-. to the n frequencies, the n columns correspond to the n time intervals, and the entry

aij equals 1 if and only if frequency fiis transmitted in time interval tj.

. (Otherwise, aij - 0.)

When this signal is reflected from the target and received back by the observer,

it is shifted in both time and frequency, and from the amounts of these shifts, both

range and velocity are determined. The observer determines the amounts of these

shifts by comparing all shifts (in both time and frequency) of a replica of the

transmitted signal with the actual received signal, and noting for which combination

,.1
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of time shift and frequency shift the coincidence is greatest. This may be thought

of as counting the number of coincidences between l's in the matrix A = (aij) with

.42 l's in a shifted version A* of A, in which all entries have been shifted r units to

the right (r is negative if there is a shift to the left), and s units upward (s

is negative if the shift is downward).

The number of such coincidences, C(r,s), is the (unnormalized) autocorrelation

between A and A*, and clearly satisfies the following conditions:

C(O,O) - n

C(r,s) - 0 if Irl > n or if IsI > n.

0 < C(r,s) < n except when r - s - 0.

(This conforms to the assumption that the signal is 0 outside the intervals

f l. < f < fn and t- < t < tn. If the sequence of frequencies is to be repeated

periodically in time, a singly periodic correlation function can be defined accordingly.

In this context, periodicity in frequency does not appear to be a useful notion.)

In the real world, the returning signal is always noisy. The two-dimensional

autocorrelation function C(r,s), called the ambiguity function in the radar and sonar

literature, should be thought of as the total "coincidence" between the actual

returning noisy signal and the shift of the ideal transmitted signal by r units in

time and s units in frequency. It is useful to think of the signal matrix A = (aij)

asatodmnina epaeo 2  2
as a two-dimensional template of n2 cells, which is opaque at the n -n cells where

a = 0, and transparent at the n cells where aij 1 1. The total signal energy behind
.4. ii

these n windows is siued (via a double integral in time and frequency) to give the

value of C(r,s) when the template is shifted r units on the time axis and s units on

the frequency axis.

Among the 2n
2 matrices of O's and l's of order n, there are only n! permutation

matrices, and some of these are better than others as signal patterns for radar and

*
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'm sonar. For example, the nxn identity matrix I can be shifted one unit up and one
1 n

unit left, and will then produce n-i coincidences with the original matrix. For

large values of n and a noisy environment, the signal pattern In would be almost

guaranteed to produce spurious targets, shifted an equal number of units in both

time and frequency from the real target.

At a minimum, there is a shift of A = (aij) which will make any of the n l's

land on any of then-l remaining l's, so we know that

m min max C(r,s) > 1,

all "codes" (r,s)#(OO)

*' where C(r,s) is the ideal ambiguity function of the permutation matrix itself.

This led J.P. Costas [1] to look for those nxn permutation matrices for which

(1) max C(rs) = 1,
!'. (r, s) (O,0)

as the best possible case. By computer-aided search, he found examples of such

matrices for all n < 12, but was unable to find an example for n = 13, and was

tempted to conclude that these patterns "die out" beyond n = 12.

In subsequent papers ([2], [3]), permutation matrices which satisfy (1) have

been called either constellations or Costas arrays. They are now known to exist for

all n < 31 and for arbitrarily large values of n related to the occurrence of

prime numbers and prime powers. It is conjectured that Costas arrays exist for all

positive integers n.

In this article, a survey of all that is currently known about Costas arrays is

presented. In addition to earlier systematic algebraic methods of construction by

Welch [2], Lempel [2], and Golomb [31, new algebraic constructions by Golomb and

by Taylor are described, along with a sporadic method of Taylor which succeeds in

filling in some of the gaps (e.g. at n = 19, the first case where no systematic

construction is known).

.4 '....%I
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It is convenient to represent the nxn permutation matrix corresponding to a

Costas array, A = (aij ), on an nxn grid, with a dot in the middle of cell (i,j)

2
; n -n

-: if and only if ai j 1 . The Costas condition then says that the--2 lines

connecting pairs of distinct dots are all different as vectors; that is, no two of

these lines are equal in both length and slope.

In [3], Golomb advanced four conjectures concerning primitive roots in finite

I .fields. Two of these, Conjectures A and D, have direct bearing on the success of

certain methods for constructing Costas arrays. 0. Moreno [4] has recently proved

Conjecture D for all fields of characteristic 2; and as observed by A. Odlyzko,

the methods of M. Szalay [51, and J. Johnson [9], can be extended to show that

Conjecture A holds with at most a finite number of exceptions. Conjecture A is

stated on page 9 of this article, and Conjecture D on page 40.

Costas arrays which satisfy additional constraints, involving either single

or double periodicity, or symmetry, or additional separation requirements on the

l's in the permutation matrix, are considered in this article. A lower bound on the

cross-correlation between any two Costas arrays of order n is obtained. This has

obvious applicability to the case of multiple signals in the same environment.

Finally, it should be mentioned that frequency hop patterns such as the ones

considered here are also useful in spread-spectrum communication systems, where the

objective may be to achieve either jamming resistance, or low probability of

* intercept (L.P.I.). or frequency diversity for a selectively fading channel.

7..%
4
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2. SYSTEMATIC METHODS OF CONSTRUCTION

The finite field with q elements, denoted GF(q), exists when and only when q is

a power of a prime. Detailed proofs (in order of increasing complexity) that the

Welch, Lempel, and Golomb construction methods produce Costas arrays, are contained

in [3]. These proofs depend on the arithmetic of finite fields, and particularly on

two properties of all primitive elements in finite fields.

The element a in GF(q) is called primitive if the successive powers of a (i.e.,

1 2 3 q.. = 1) run through all the non-zero elements of GF(q). For primitive

" a a 9..a 1 u hog l h o

" the two essential facts are:

i
1. For every non-zero element x in GF(q) there is an integer i such that a = x.

2. c = k in GF(q) if and only if i = k(mod q-1).

Equivalently, corresponding to each non-zero x belonging to GF(q), there is-the

uniquely determined "logarithm of x to the base a", which looks like an ordinary whole

number, and belongs to the cyclic group of integers with respect to addition modulo

i
q-l. That is, if a . x, then log x = i.

a

The only information needed to construct a Costas array by any of these methods

is a "log table" for GF(q), consisting of a list of ordered pairs of the form

(x, log x) - (a J,J), for j running through 0,1,2,...,q-2, and corresponding aJ taking

on all the field values except 0.

a. The Welch Construction

For every prime p > 2, the Welch construction yields an nxn Costas array W

.1 with n - p-l, and a Costas array W2 with n f p-2. For certain primes, it also yields

a Costas array W3 with n - p-3.

This construction requires a log table for GF(p) where p is an odd prime, and

the base a is a primitive element of GF(p). (For prime p, GF(p) is simply the field

• "''" " 5" . ..'- - - .'-~ . -. , -.- --.. ",.- . .-" . -. - '. .*: - -' -: - -. :.. , ' " "
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4.

of integers modulo p.)

W1 : (n - p-I) The nxn matrix plotsthe log. That is, udth columns numbered j = 0,1,2,.

..,p-2, and rows numbered i - 1,2,...,p-l, we put a dot in position

(i,j) if and only if i = cJ.

W2: (n - p-2) This is obtained from WI by deleting the dot at (1,0), along with

the top row and left column.

W : (n - p-3) This works only when 2 is primitive in GF(p). Usi = 2, W has

dots at both (1,0) and (2,1). W3 is the result of eting these two

dots, along with the two top rows, and the two left .jumns.

Figure 2.a.l. illustrates W1 with n = 42. Removing the top row and left column from

the figure illustrates W2 with n - 41.

b. The Lempel Construction

This uses a log table for GF(q) where q can be any power p of any prime p,

: and the "logarithmic base" a is a primitive element of GF(q).

L2 : (n - q-2) The nxn matrix has columns numbered j = 1,2,...,q-2 and rows

i 1,2,...,q-2. We put a dot in position (i,j) if and only if

-:.: a- c s j = 1.

I L3 : (n - q-3) This works only when 2 is primitive in GF(q), where q is an odd prime.
:' 2-11 11ilma ta la

Using a 2 will mean that a +a 1, and hence that the dot

at position (1,1) can be deleted from L2 along with the entire top

row and left column.

Figure 2.b.1. illustrates L2 with n = 25, that is with q = 27.

.42
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Taylor variant to the Lempel construction:

T4: (n - q-4) This works only when the primitive a in GF(q) satisfies a 2 1.

Then the dots at (1,2) and (2,1) can both be deleted simultaneously

from L2, along with the two top rows and the two left columns.

Figure 2.b.2. shows an example of T 4 with n - 55, corresponding to q - 59.

Note: When q - pk with p prime and k > 1, GF(q) is not the ring of integers modulo

q. Rather, it can be represented as a k-dimensional vector space over GF(p).

c. Golomb Construction

This construction uses two log tables for GF(q), where the two bases a and 8

are both primitive elements in GF(q), and q can be any power of any prime.

G2 : (n - q-2) The nxn matrix has columns numbered j = 1,2,...,q-2, and rows

i = 1,2,...,q-2. We put a dot in position (i,j) if and only if

a i +O8 1.

G 3: (n q-3) If al+B= 1, (that is, a+ - 1), then there is a dot at position

(1,I) which can be deleted from G2 , along with the top row and left

column. Conjecture A (reference [3]) asserts that it is always

possible to find primitive a and 8 in GF(q) with a+$ = 1.

Figure 2.c.I. illustrates G3 with n = 24, that is with q = 27.

k
G (n q-4) This works only when q = 2 , and c+B = 1, in the field GF(q). Here

the basic arithmetic is modulo 2, so that al+a 1 implies a2+2 1.

Then the dots at (1,1) and (2,2) can both be deleted from C 2, along

with the two top rows and the two left columns.
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Figure 2.c.2. illustrates G4 with n - 28, q - 32.

Golomb Variant:

GV: (n - q-4) This works only when the primitive elements a and 8 satisfy

L 1l+0 - 1 and 2+1 - 1 in GF(q). Since -1 - q-2 in the arithmetic

of the logarithms (exponents), there will be a deletable dot at

(2, q-2) after deleting the dot at (1,1) from G2 .

G*: (n = q-5) This construction always follows Gt. When a+6 - 1 and a 2 +- 1

5-+

then necessarily also a-l +82 = 1 in GF(q). Thus, after (1,1) and

(2, -1) are deleted, along with their respective rows and columns,

there will be another deletable dot at (-1,2).

Figure 2.c.3. illustrates Gg with n - 144, q = 149.

Taylor variant to the Golomb construction:

T (n - q-l) Add a corner dot at one of (0,0) or (0, q-l) or (q-l, 0) or (q-l,q-1).

This is possible when q 0 2k and the conditions at one of the corners

do not prevent it.

TO: (n - q) Add two corner dots at (0,0) and (q-l,q-1), or at (0,q-l) and

(q-l,O). This is possible when q - -l(mod 6) and when not prevented

by the condition (Appendix II) on the two corners. Figure 2.c.4

illustrates T0 with n - q = 47.

d. Adding a Corner Dot to W

The Welch construction W is singly periodic, and hence there is a chance that

one of the (p-l)x(p-l) windows for one of the primitive roots may allow the addition

of a corner dot. In fact the only examples of Costas arrays we have for n = 19 and

-- . . ...---.. . . .... . - . . . - . . . . - . . . . . . .- ,. . .
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n - 31 were found as instances of this sporadic occurrence. Figure 2.d.1. and

Figure 2.d.2. exhibit them.

e. Table of known constructions

Up to n = 360, Figure 2.e.1. tabulates for each n which constructions, if any,

are known to exist.

6,,
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3. COSTAS ARRAYS WITH SPECIAL PROPERTIES

a. Periodic Constructions

Repeating the 2x2 Costas Array in both directions over the entire plane gives

a doubly periodic checker-board pattern with a Costas Array in every 2x2 window.

For any n > 2, however, there does not exist a doubly periodic pattern with a Costas

Array in every nxn window. (A proof of this result is given in [11].) The nearest

approximation to such a pattern is given by the extended Welch construction, as follows.

Let p be an odd prime, with primitive root a. Put a dot in position (i,j) iff

i = Mi(mod p). The resulting infinite integer matrix of dots and blanks has the

property that in every pxp window there are p dots with no repeated vector difference.

(Each pxp window fails to be a Costas Array by having one empty row and one row with

two dots.)

Singly periodic patterns, (p-l)x-, exist which have a Costas Array in every

(p-l)x(p-l) window, where the windows are only left-right shifted. The only known

examples are those arising from the extended Welch construction, but the possibility

of other examples has not been entirely ruled out.

b. Non-attacking Queens

For n > 1 we have found no example of a Costas Array consisting of non-

attacking Queens. It would even be interesting to find a Costas Array for n > 10

having only one occurence of a Queen attack. (Another sort of near miss is shown in

Figure 3.b.l.)

If an application could be satisfied with "semi-Queens", then we already have an

infinite supply from the Lempel construction. A "semi-Queen" would attack its row and

is.



25

.4.

4.'

"10

0

Nine non-attacking Queens on a 1Ox1O board,
with distinct differences

Figure 3.b.1



b%. - '. ... ....-. -' . ...-. ,- ..*: . --. '.- .. -... -......... .. : . .. , . -. ,

26

column but only the diagonal parallel to the main diagonal. Symmetry prohibits two

dots in any line parallel to but off of the main diagonal, because reflection would

repeat their difference vector. In the Lempel construction with q any power of an

x
odd prime, there will be exactly one solution to ax+x 1, for each primitive a,

and hence exactly one dot on the main dtagonal. With q a power of two, there will

be no solution to x+ax = 1, and hence no dot on the main diagonal.

It may be useful to note that we can describe exactly which Queen attacks do

occur in the Lempel construction. Each dot at (i,j) attacks the dot at (j,i), and

no others. This is illustrated in Fig. 3.b.2with GF(3 3.

c. Shearing

Distinctness of differences will be preserved by any nonsingular linear

transformation, such as multiplying by a complex number, or applying the matrix

1l to shear the integer lattice. There area few Costas Arrays which shear by
019

, [~ - into other Costas Arrays. Figure3.c.l shows the Lempel construction for

GF(ll) with a - -3 sheared into what appears to be a 90 rotation of itself.

To be shearable by into another Costas Array, the array needs to have

one dot in each of n consecutive lines parallel to the main diagonal, since these

lines will become columns after shearing. Rows remain rows, and columns become

lines at right angles to the main diagonal, so that the figure could be sheared

again by to produce yet another Costas array. The array of Fig. 3.c.1 goes

through a cycle of four different patterns, as do all but one of the known shearable

arrays for n > 1. "But one" refers to the array of Figure3.c. 2 which, sheared

alternately by ( (vertical), goes through a remarkable

cyleraeyb (horizontal) andL

cycle of twelve patterns.

LiMef
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d. Honeycomb Arrays (non-attacking bee-Rooks)

Shear-compression by [3/2 -1/2] will convert the square grid (Gaussian integers)

into the triangular grid (Eisenstein integers), or square cells into hexagonal cells.

When it happens on an nxn board that n non-attacking semi-Queens occupy n consecutive

lines parallel to the main diagonal, then we can delete the unoccupied diagonal lines

and apply shear-compression to convert the board into a "honeycomb array" with n lines

parallel to each of the three pairs of opposite sides. The semi-queens get converted

into n non-attacking "bee-Rooks". The pattern of Figure 3.c.1 becomes a honeycomb

array with non-attacking bee-Rooks, as illustrated in Figure 3.c.3.

On the honeycomb board having n parallel lines we have a quick proof that the

maximum number of non-attacking bee-Rooks is n. If there were more than n bee-Rooks

on the board, then at least one line would contain at least two bee-Rooks attacking

each other.

The number of empty cells attacked by a bee-Rook placed in the middle of the

board is larger than the number attacked by one near the edge. This happens because

in the conversion from square to honeycomb we deleted some diagonal lines. Now on

the honeycomb board some elementary counting problems become non-trivial.

Let us define a "bee-Duke" on the board with hexagonal cells as a piece which

can move to any one of the six adjacent cells. (This is the natural analog to the

Duke defined in [14]. ((The "Duke" also appears in Winning Ways, and in R.A. Epstein's

Theory of Games and Statistical Logic.)) ) The distance between two cells in the

hexagonal Lee metric is then defined as the minimum number of bee-Duke moves needed

to go from one cell to the other. In terms of this metric a "Lee-sphere of radius r"

consists of a center cell together with all the cells at distance < r from the center.

For all the known honeycomb arrays, with n non-attacking bee-Rooks on a board having

n lines parallel to each of the three pairs of opposite sides, the honeycomb board is

in fact a Lee sphere, but we have not proved that this must always be the case.

'--. -~ .. . . . . ...... ................... " -.... "."...
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1%

Computing six or seven terms and looking in Neil Sloane's Handbook of Integer

Sequences [15] has led us from honeycomb arrays to some old questions which are not

well-known today.

The CUBAN PRIMES of Cunningham [13] show up when we simply count the number of

cells on a honeycomb board when it is a Lee sphere of radius r. The number is always

3 3
1 a difference of two consecutive cubes, (r+l) -r , and often prime: whether

* infinitely often or not is an old question, still unanswered.

The ZERO SUM ARRAYS of Bennett and Potts [12] arrive at the problem of counting

the number N(r) of configurations of n = 2r+l non-attacking bee-Rooks on a honeycomb

board which is a Lee sphere of radius r. On a square nxn board with n non-attacking

rooks the corresponding number of configurations would be simply n!, but on the

honeycomb board it is not so simple. With the aid of a computer they found answers

up to r - 7, as tabulated below. Let n(r) be the number of configurations inequivalent

under the dihedral group of symmetries of the hexagon.

r 0 1 2 3 4 5 6 7

N(r) 1 2 6 28 244 2544 35600 659632

, n(r) 1 1 1 5 29 224 3012 55200

Counting HONEYCOMB ARRAYS presents a new problem with the requirement that all

differences be distinct among 2r+l non-attacking bee-Rooks on a honeycomb board of
1%

radius r.
[.

-Let H(r) - the total number of honeycomb arrays of radius r.

Let h(r) - the number of honeycomb arrays of radius r inequ.valent under

the dihedral group of symmetries of the hexagon.

The next table exhibits the full extent of our knowledge about H(r) and h(r).

4 - - o',:. , - - . '' .;',-- '> .-.-. >.. . .? -- 2 --- - :? - ' -2. .? :-? - - -:.i '-



°J

34

r 0 1 2 3 4 5 6 7

H(r) 1 2 0 8 4 ? ? >2

h(r) 1 1 0 2 2 ? ? >1

r 8 9 10 11 12 13 ... 22

H' H(r) ? ? > 2 ? ? >2 7>2

h" h(r) ? ? >1 ? ? >1 >. ?_1

The first six honeycomb arrays are pictured in Figure 3.d.1 The only ones

, known for radii 7, 10, and 13 are pictured in Figures 3.d.2, 3.d.3,and3.d.4, respectively.

The example with radius 22 is used in section 2 to illustrate the T0 construction for

the prime number 47 (Figure 2.c.4.).

e. Non-attacking Kings

Another special property is that every pair of dots be separated by a distance

> 3 in the Lee metric of coding theory. This makes the Costas Array a configuration

of non-attacking chess kings. There are only five of these for n < 8, shown in

Figure 3.e.l.

In the Costas Arrays derived from the Welch construction (for p > 7) at leas.

one pair of attacking Kings will always appear, as a consequence of the following

fact about odd prime fields: .For any primitive root a in GF(p) there exists exactly

one j such that a +a - 1.

To obtain a Costas Array of non-attacking Kings by systematic construction we

can use the "T4 variant," that is, a Lempel type construction where some primitive

, a in GF(q) satisfies a2 +Ia 1 1. With no Queen attack parallel to the main diagonal

in any Lempel type array, as mentioned in b., a fortiori there will be no King

-, attack in the T4 variant after removing the rows and columns containing (1,2) and

., (2,1).

. o .*p . ~ * .. * ..
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f. Symmetric Arrays

In all examples of the Lempel type, at 4U= 1 implies that both (i,j) and

(J,i) are dots in the array, whence these arrays are always symmetric. The reduced

arrays with q-3 in the L3 case or q-4 in the T 4 case are also symmetric, since the

dot or pair of dots deleted were from (1,1), or, respectively, from both (1,2) and

(2,1) simultaneously.

2k

The Golomb type constructions give symmetric arrays in every case where q - p

k

is an even power of a prime. If a is any primitive root, then aP = 8 will also be

a primitive root, and if ai+Bi 1 it follows that (ai+a
p J)P = ap +k 0i J

4
-a -1.

A dot goes at (i,j) iff a dot goes at (J,i), so the array is symmetric. One of

these is illustrated in Figure 3.f.1. In Conjecture D of [3], Golomb conjectured

that GF(p 2k ) can always be generated over GF(p k ) by finding a primitive quadratic

of trace 1, f(x) - x2 -x+g, over GF(pk). The roots a and B of f(x) will then be

primitive in GF(p 2k ) with a+O - 1, and aB - g will be primitive in GF(pk ). (See the

Theorem in p. 54, in Appendix I.) In [4], Moreno has proved this conjecture when

p - 2, for all values of k.

An even more special nxn Costas Array is one which is symmetric and has the main

diagonal empty. Of course n must be even. These are given systematically by L 2 when

q is a power of 2, and by L 3 when 2 is a primitive root of an odd prime p. In

Fig. 3.f.2, the exhibit of all such arrays for n < 8 includes one 8x8 example which

is not given by any known systematic symmetric construction. It is not known whether

any of these special arrays exist for n = 12.

*1 ., -.- ; -' ,,; .- . - , .. :/ / .,. .-: ,.. - .. . .... .. - .? --.-. .?.:.:.?.,. ,.:. ... ..,, .- .-, . . .,.:
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4. C(n) AND c(n): THE NUMBER OF COSTAS ARRAYS

Let C(n) - the total number of nxn Costas arrays.

Let c(n) = the number of nxn Costas arrays inequivalent under the dihedral group

of symmetries of the square.

We can prove that the limit superior (lim sup) of C(n) is infinite because the

Welch construction guarantees C(n) > 2n when n+l is an odd prime.

On the other hand we have no actual proof that C(32) is not zero, or that C(n)

is not zero infinitely often. (That is, we cannot show lim inf C(n) > 0.)

The exact values of C(7), C(8), C(9), and C(1O) were first brought to our

attention by Richard Games and Michael Chao, who found them by computer in the summer

of 1983 at the Mitre Corp. All values of C(n) for n < 12 were first found by

John P. Costas of the General Electric Company. The currently known values of C(n)

* and c(n) are as follows.

n 1 2 3 4 5 6 7 8 9 10 11 12

c(n) 1 1 1 2 6 17 30 60 ? ? ? ?

C(n) 1 2 4 12 40 116 200 444 760 2160 4368 7852

C(n) 1 1 .66 .5 .33 .16 .039 .011 .002 .0006 .00011 .000016

The value C(7) = 200 corrects an error in [21.

It is worth noting how rapidly C(n) is approaching zero, since it represents the

probability that a randomly chosen nxn permutation matrix will be a Costas array. If

the growth rate C(n+l) < 3.C(n) persists, it will make this probability 
less than 10

when n i32.

.4
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:' Up to n - 8 the pictures in Figure 4.1 exhibit one representative of each of the

c(n) equivalence classes. (Two arrays are equivalent under the dihedral group of the

. sur foecnb tasomdit h ohrb n obntino ii oain

* and reflections.)
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5. UNSOLVED PROBLEMS

Is C(n) asymptotic to some well-behaved function of n? In the following list

" of conjectures, proof or disproof of any of those marked OPEN would constitute

significant progress on this question. (Of these, we believe question 5 may be the

easiest to settle.)

-1. C(n) > 1 is true for infinitely many n. PROVED TRUE

0. C(n) >1 is true for all n > N, for some positive

integer N. OPEN

1. C(n) >1 for all n > 1. OPEN

2. C(n) is monotonic increasing. OPEN

3. lir sup C(n) = -. That is, C(n) has an infinite

subsequence which is unbounded above. PROVED TRUE

4. C(n) is monotonic decreasing. OPENn!

C n!

6. C(n) goes monotonically to 0 as n . OPENn!"

7. C(n) 8 as n OPEN

c(n)

The next three are simply existence questions.

8. Do any other singly periodic Costas arrays exist besides the ones given by

the Welch construction?
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(The conjectured answer to question 8 might have been YES before it turned out

to be NO for n < 16, and NO for all odd n.)

9. Do honeycomb arrays exist for infinitely many n?

10. Do anynxn Costas arrays exist (for n > 1) which are configurations of non-

attacking queens?

For (9.) we conjecture YES, and for (10.) NOT SO SURE.

.

I.'

r),
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* APPENDIX I. SOME BASIC POLYNOMIAL ALGEBRA OVER FINITE FIELDS

Lemma i. (Fermat's "Little" Theorem)

* For every element a c GF(q), aq - a in GF(q).

Proof. i) 0q - 0.

ii) The non-zero elements of GF(q) form a group of order q-1 under

q-
multiplication. Hence a - 1 for all a 0 0 in GF(q).

Thus aq  a for all a E GF(q). M

' a~n aln-l a~n-2+
Lemma 2. Let f(x) = 0x +a1x +a2x +...+alnix+an be a polynomial over GF(q).

(That is, ai E GF(q) for i = 0,1,2,...,n.) Then {f(xl/q)}q = f(x).

Proof. If there is a field GF(q) of q elements, then q = p for some prime p

and some positive integer k, and the additive structure of GF(q) is that of

k-dimensional vectors modulo p. It is easily shown that the binomial coefficient

() satisfies (q) = 0 (mod p) for all r, 1 < r < q-l. Hence, over GF(q),
r r
(u+v)q = uq+vq .

Then f(x)q = (a 0x n)q+ (axn-)q+(a2xn-2)q+...+(an_Ix)+(an)q = f(xq ) over

GF(q), where we have used aq = ai from Lemma 1. From f(x)q = f(xq), the result
i

immediately follows. U

Lemma 3. Let f(x) = (x-c)(x-8) be the factorization in GF(q 2) of the quadratic

polynomial f(x) = x2+Ax+B which is irreducible over GF(q). Then a = 8q and

q

Proof. By Lemma 2, f(xq ) _ f(x)q = (x.a)q(x-8)q = (xq-aq)(xq-sq). Thus

f(x) = f(xl/q)q = (x-aq)(x-sq), and the roots aq, 8q of f(x) must be the same

(in some order) as a,8. But if aq = a (and aq = ) then a (as well as a) is

a root of xq-x 0 0, which, as an equation of degree q, has at most q roots in

GF(q 2). By Lemma 1, all q elements of GF(q) are roots of xq-= 0, so that

• L.'" .'-" ." "-. 'j 'j, .' - .- .- , - , % ,% .- ,
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a (and B) are already in GF(q), and f(x) would factor over GF(q) into linear

factors (x-a) and (x-$), contradicting the hypothesis that f(x) is irreducible

over GF(q). Hence a q - and aq . a. N

Theorem. If f(x) = x -x+g is an irreducible polynomial over GF(q) whose roots are

primitive elements of GF(q 2), then g is a primitive element of GF(q).

Proof. Write f(x) = (x-a)(x-B) with a,B c GF(q2 ). By Lemma 3, B = a= . Then

g = aB = aq + l . Let r be the smallest positive exponent such that gr = 1. If

r < q-l, then r(q+l) < (q-l)(q+l) = q2-1, and we have 1 = gr a r(q+l)

contradicting the assumption that a is a primitive element of GF(q2

Corollary. The roots of f(x) = x2-x-1 over GF(q) fail to be primitive elements of

GF(q 2) unless either q = 2 or q = 3.

Proof. If f(x) is reducible over GF(q), its roots are in GF(q), and cannot be

primitive in GF(q 2). If f(x) is irreducible over GF(q), then the Theorem

2
applies, and -1 must be a primitive element of GF(q). Since (-1) = 1, we find

q-1 < 2, so that q < 3. Thus GF(2) and GF(3) are the only candidates. It turns

out that f(x) = x2-x-1 is primitive over GF(2) and over GF(3). a

'1 k
Exercises. 1. Let f(x) - (x-al)(x-a2)...(x-ak) be the factorization, in GF(q), of

the polynomial f(x) which is irreducible of degree k over GF(q). Then the set of
2 k-l

roots, {al,a 2,c3P... Pak) is the same set as {aa 1 ,ac1 ,...'a I .

2. Suppose f(x) = (x-al)(x-a 2) ...(x-ak) is an irreducible polynomial

of degree k over GF(q). Show that all the roots al,a2,...,ak have the same

primitivity t, as elements of GF(q k). That is, a1 = 1 for i = 1,2,...,k, while
s kl

a1  1 for 1 < s < t. Moreover, t is an integer factor of q -1, and is not an

integer factor of q M-1, for any m c {1,2,...,k-l}.

- -.4 ' -.-.-- : .- :. .;. . .,. .. , .. :.... .:.'.-: .. : . . ... .. ,. .. - . . .... . • ..
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APPENDIX II. ALGEBRAIC EXCLUSIONS AND TERMINAL CASES

a. Conditions Which Prevent Adding a Corner Dot to a Golomb Construction

Adding a dot at (0,0) or (O,q-1) or (q-l,O) or (q-l,q-1) is prevented if and

only if the G2 construction contain dots at (a,b), (x,y), and (a+x,b+y). In this

case, a dot cannot be added in the same quadrant as the midpoint between (a,b) and

(x,y).

When -t a+ba = 1 and a yx i= 1, we have aa i=0 and a.-xb-y 0

k
Let k be the number (coprime to q-l) such that 8 = .• Then we have

a-x = a q+k(b-y), which holds if and only if q-2 (kb-a)-(ky-x).

These conditions give us the following tests.

TEST(0,0): A dot cannot be added at (0,0) if and only if there exist dots

(x,y) and (a,b) in G2 such that:

1. q21 = (kb-a)-(ky-x)

,*1 2. a+x < q-1

3. b+y < q-l

TEST(O,q-l): A dot cannot be added at (0,q-l) if and only if there exist dots (x,y)

and (a,b) in G2 such that:

1. = ffi (kb-a)-(ky-x)

2. a+x < q-1

3. b+y > q-1

. TEST(q-1,0): A dot cannot be added at (q-l,O) if and only if there exist dots

(x,y) and (a,b) in G2 such that:

1. q2 f (kb-a)-(ky-x)

*: 2. a+x > q-1

3. b+y < q-l

----
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TEST(q-l,q-l): A dot cannot be added at (q-l,q-l) if and only if there exist dots

(xy) and (a,b) in G2 such that:

1. q- (kb-a)-(ky-x)

2. a+x > q-1

3. b+y > q-1

k

b.l T never works for q > 4

Proof: Whenever aldS J 
- 1, the simplified binomial theorem over GF(2

k ) tells us

that a 2182i = 1. Having dots at (ij) and (21,2j) prevents adding a corner dot in the

quadrant that contains (ij). For n = 6 all the G2 con.tructions have dots in all

four quadrants by inspection. For n = 2m > 6, having dots in all quadrants is a

property of all nxn Costas arrays, as a consequence of the fact that for m > 3 any

two mxm Costas arrays must have a difference in common. (This fact is proved in [II1.) U

b.2 T. never works when q - 3

Proof: There will be a dot at the exact center of the (q-2)x(q-2) array because

" = = -1, and in GFOF3 ), (-l)+(-i) = 1. Therefore we cannot add dots at both

(0,0) and (q-l,q-l), nor at both (0,q-l) and (q-l,O).

b.3 T 0 never works when q E l(mod 6)

Proof: Let us write q - 6m+l, and let a and 8 be primitive in GF(q). We have

3m 3m .- 3m -3m . _ m -M M, -m

*- a . . . .a 1, while a # -1 8m . We see that a ,a-,8m, - are all

primitive sixth roots of unity; that is, roots of x -x+1 = 0. Therefore either
" m+inin- -mm--mi

a+S - anda +- 1,orelse am+0 1 and -m+ m =1. (The two distinct

primitive sixth roots of unity sum to 1.) In either case, we cannot add dots at both
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(0,0) and (q-l,q-l), nor at both (0,q-l) and (q-l,0). U

Corollary to b.3

The proof of b.3. shows that the G2 construction will not yield a Honeycomb array

when q El(mod 6).

b.4 A G2 construction will never contain two diagonally opposite corner dots, if

>7

Proof: If a +8 = 1 and a' +8-1 = 1, then a + = 1, and a 2-a+l = 0. Ifl-a

a1 +7- 1  1 and a-1+Y1 = I we can take B = y- and again we find a2-a+l = 0. Thus in

either case a is a root of a 61 = 0. With a primitive in GF(q) and a6 = 1 we conclude

that GF(q) has at most 7 elements. *

b.5 If a G2 construction over GF(q) has dots at (1,3), (3,1), and (2,-i), then

Proof: Starting with a3+8 - 1 and a2 1 
= 1, we have B.Ba l 1 = (1-a2)(_a 3)

-a 2-a 3+a 5 . Thus a 3 a+l, whence a+B = 0. Now using a+B3  1, a3+8 = 1, and

a - - we deduce that -1 = 1, which means that q = 2 and a aB. When a is primitive

2k 3 7
in GF(q) - GF(2 ), a . a+l implies that a 1, and q - 8. •

b.6 If a G2 construction has dots at (1,1), (2,3), and (3,2), over GF(q), then

q-5

Proof: With a+0 - 1 and a2+83 . 1, we have (1-a) 2+83 - 1 = 1-2a+B2+B3, and therefore

82+8-2 - 0 - (0-1)(0+2). Since 8 is primitive, B 0 1, so that B = -2 and a f 3.

At this point we have also gained the information that q must be prime, because one

of its primitive roots is an integer.

'a . a . . '
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3 2
, Now using a3+0 1 we find that a -2 and = 3, so -2 3. Thus 5 =0

in GF(q), and we conclude that q - 5. U

b.7 If a G, construction has dots at (1,2), (2,3), and (3,1) over GF(g), then q f 5

rof W +82 and 23 we have 832 2 2

Proof: With a 1 a 23 a a-a and 8= 1-a. Then

(2-1) a(1-) - a , and therefore 8-1 - a. This tells us that a = -1, so

4
=1, and hence q = 5. U

b.8 For q > 9, T4 never works unless q is a prime whose last digit is 1 or 9

k 2
Proof: Suppose q - p with k >2, and suppose a +a 1 where a is primitive in

GF(p k ). Under these conditions ap 0 a.

Using the simplified binomial theorem, we have (a2+a)p = 1p = 1 = (aP)2 4
p

Thus, a and ap are the two roots of the quadratic x2+x-1 = (x-a)(x-ap ) = 

We conclude that ap+ I . -1.

In the special case p = 2 this can only happen when k 2, so that q = 4.

l ipk
For an odd prime p, 1 implies that = p+l, which is only possible

when k - 2 and p - 3, that is, when q - 9.

For q > 9 we know that T4 cannot work with k > 2 because a cannot then be

primitive. We shall see that in some prime fields, T4 is prevented by the nonexistence

of a.

The quadratic formula tells us that for prime p > 2, x 2+x-1 = 0 has a solution

x = -1i5 in GF(p) if and only if y2 . 5 has a solution y in GF(p). According to
2

the Law of Quadratic Reciprocity, 5 is a quadratic residue of p > 2 if and only if

2
p is a quadratic residue of 5. Thus except for p - 5, solutions to y 2 5 exist in

GF(p) if and only if p 1(mod 5) or p - 4(mod 5); that is, the last digit of p is

either 1 or 9. a

4 .'Z " -. v . . .,,, " . " - . * - . - .. , ' " . - - - ,' - ' ' - ,' - ,. , t . " ,' " - - - ".". " J , - - - - -
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Coment

Checking whether T4 works is made easier by b.3. When p is a prime ending in

1 or 9 we will find y in GF(p) such that y2  5 by looking in the log table. Then

let a - 7-+Y and y - -1-Y so that a2+a = 1 and y2+y = 1. To see if T4 works it, 2 2

remains only to check whether one or both of a and y is primitive.

b.9 Gt and Gf work if and only if T, works and q S l(mod 4)

Proof: G* and G* work if and only if there exist primitive elements a,8 in GF(q)

2 -l
such that a+$ = 1 and a + -1.

Given such a,8 we deduce that 8-1 B - (1-a2 )(1-a) = 1-a2-a+a 3 = 1, and hence that

21 a+l, a - -0- , and a= 1. The primitivity of a -I tells us that T4 works.

The primitivity of both 8-1 and -8-1 tells us that q - l(mod 4).

Conversely, assuming T4 works and q - l(mod 4), we have primitive y such that

y 2+y - 1. Also, y- primitive and q - l(mod 4) implies that -y is primitive. Thus

taking a - -y and 8 - y-lwe have primitive a,$ such that a2+8 - 1 and a+8 1.

I
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