“RD-A136 288  CONSTRUCTION AND PROPERTIES OF COSTRS ARRAYS(U) EVZ I
UNIYERSITY OF SOUTHERN CALIFORNIAR LOS ANGELES N
N COMMUNICATION SCIENCES INST S W GOLOMB ET AL.
UNCLUASSIFIED 38 NOY 83 CSI-83-10-81 NGB@14-80-C-0745 F/G 1774

FiLuro

o




sl i A B e S e Jpy el e B B e B W el Sl ad a t _.W

!

3
!
|
|

g
el fu

- )

N
(&

B

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

N qy\ﬁ. e e K -, e S aut 2 R
'. .- .. ‘..l o . ‘-‘ - .v
CRAARIIRIERE A e el RN .
VoA Cil T s i n a tm s atiat ad et ata e




r-::g
g

v, Il. Ve
. s

Ts
]
s

|
le

Lﬁ;
L
;‘.

L Y 3

o L

¢

o"' l" \' ‘il E}.

AU -h'&'b- oy

e

e ARANYYVYY S

'

-
W

AD-A136 200

FILE COPY

[

cS
N

3

}
SECURITY CLASSIFICATION OF THIS§

L P bl St i "Bt A g
e N - A AR T A A T A A A A

RO Ao e

)

b B i v

€ (When Dnt:LEntored)‘

\ <EADNSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER

2. GOVT ACCESS|QNO. 3. RECIPIENT’S CATALOG NUMBER

AD-AVD

4. TITLE (and Subtitle)

’ 5. TYPE OF REPORT & PERIOD COVERED

Final Progress Report

Construction and Properties of Costas 1 July,1980 - 30 Sept.'83)

Arrays 6. PERFORMING ORG. REPORT NUMBER
53-4510-9519
7. AUTHOR(a) g 8. CONTRACT OR GRANT NUMBER(S)
NOOO14-80-C-0745

Solomon W. Golomb and Herbert Taylor

9. PERFORMING ORGANIZATION NAME AND ADDRESS

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089-0272

12. REPORT DATE
November 30,

13. MBER OF PAGES
§ + fi

CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research
Statistics & Probability Program
800 N. Quincy, Arlington, VA 22217

1983

14,

{s. DIES§RIBUTION’STA;¥EME£ N]TL J?ogl 6!hia Report)

15. SECURITY CLASS. (of this report)
Unclassified

MONITORING AGENCY NAME & ADDRESS(If different from Controlling Oftice)

Office of Naval Research
Pasadena Detachment
1030 E. Green St.

15a, DECL ASSIFICATION/ DOWNGRADING
SCHED

Unrestricted :

i’hin document hq

8 been
f 't public rolocn and sul?ﬁwed
n iliibwtion is unlimited.

17.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20 if dillerent from Report)

SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reve:se aide if necessary and identify by block number)

Synchronization patterns, Ambiguity function, Costas arrays,
Fregquency hop patterns, Primitive roots.

—

e

20.

ABSTRACT (Continue on reverse side If recessary and identily by block number)

£~ A Costas array is an nXn permutation matrix which, when
regarded as a freguency hopping pattern (n frequencies vs. n
time intervals) has an optimum ambiguity function, i.e., at most
one coincidence for each shift in both time and frequency.
Several systematic infinite families of constructions for
Costas arrays have been found, all involving primitive roots
in finite fields. A summary of the known constructions is

FORM
DD 1JAN 73

1473

EDITION OF ' NOV 65 1S OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

{When Date Enterad)




ke

L

XY MR D

-y
.l 'y

‘.

o

g By Ay R

a m ;! ~

A ANt

r

SAES.

...

o"

BN Y

Y
»

[

AR -
PALRERENY
S, %% et

Y- I

" Lo
Al B AL S

-

P Ry T
»
4
3 -
1]

r

SEJURITY CLASSIFICATION OF { PAGE(When Date Entered) . (

- B} \

C/presented for all n&£360. The smallest case for which no
construction has yet been found is n=32. The total number
of distinct Costas arrays has been enumerated for n< 12,
and all the individual Costas arrays are illustrated for

}98. These arrays are useful as frequency hopping patterns
fdr radar and sonar signals, and as patterns for achieving
two-dimensional alignment and synchronization.

-‘\—\. .

“

<2 A / / / - ) b
g st Y
/ _ «/?AfJ- o
) .
o . s
s
Unclassified

SECURITY CLASSIFICATION OF Tu's PAGE(When Data Entered)

2t e e danies il Mt St SheCliieti Jov Yok Sl halh SRS JE R R LR A S —1
1
!

)

s

[ .



A -4

A,

’e

4
4
)

| AL

KA

o« ol A X T

T VN

E

., ., e

e e M e e -
i ~n v, 2,0, o,

CONSTRUCTIONS AND PROPERTIES
OF COSTAS ARRAYS

by

Solomon W. Golomb

and
Herbert Taylor

CS1-83-10-01

! This document has been oppmvod
. for public release and sale; its
| distribukion is unlimited.

Communication Sciences Institute
University of Southern California
July 1988 - October 1983

This research was supported in part by the Office of Naval Research, United States
Navy, under Contract No. N0O00O14-80-C-0745.

88 12 21 024

» - - .
....................




..... "

- m e Pa LAt i el ot i L aatd Lol bl -."n":i_""'v'_r. Sl ~ e - CAacbie e gt 4 it ".7'- v hC T BRI

0. TABLE OF CONTENTS

Page
1. 1Introduction 1
2, Systematic Methods of Construction : 5
a. The Welch Construction 5
b. The Lempel Construction 6
Taylor variant 9
c. Golomb Construction 9
Golomb variant 12
Taylor variant 12
d. Adding a cormer dot to Wl 12
e. Table of results up to n = 360 19
3. Costas Arrays with Special Properties 24
a. Periodic Constructions 24
b. Non-attacking Queens 24
c. Shearing 26
d. Honeycomb Arrays (non-attacking bee-rooks) 31
e. Non-attacking Kings 34
f. Symmetric Arrays 40
4. C(n) and c¢(n): The Number of Costas Arrays 43
Pictures of all Costas Arrays up to 8x8 45
5. Unsolved Problems 49
REFERENCES 51
APPENDIX I SOME BASIC POLYNOMIAL ALGEBRA OVER 53
FINITE FIELDS

APPENDIX II ALGEBRAIC EXCLUSIONS AND TERMINAL CASES 55

C L T ——

' ‘oen dov 4

.5 CRdxr ’?/1

C T Ci
.amuvianc ed -

'
--3‘!‘:!‘_&{’0:1 _
hatat

- e

Y Py

: Availadgieyy é‘:‘:""‘"

Av:T aneer T
Speceal

e




ey B W

oty Yol o

D Nl N =

Y

[ ey ipy g tre s

o e a

3 ofary

LIST OF ILLUSTRATIONS

Figure Description Page
2.a.1. Wl with p = 43, n = 42 7
2.b.1. L2 with q = 27, n = 25 8
2.b.2. ’l‘4 with q = 59, n = 55 10
2.c.l. G3 with q = 27, n = 24 11
2.c.2, G4 with q = 32, n = 28 13
2.c.3. Gg with q = 149, n = 144 14
2.c.4. T0 with q = 47 = n 15
2.d.1. Sporadic corner dot added, p = 19 =n 17
2.d.2. Corner dot added to Wl, p=31=n 18
2.e.1. Table of known constructions up to n = 360 19-23
3.b.1. Nine nonattacking Queens on a 10%10 board 25
3.b.2. Queen attack in Lempel construction 27
3.c.1. An example of shearing 28
3.c.2. A cycle of twelve by shearing 29
3.c.3. Shear-compression 30
3.d.1. The first six honeycomb arrays 32
3.d.2. Honeycomb array with r = 7 35
3.4.3. Honeycomb array with r = 10 36
3.d.4. Honeycomb array with r = 13 37-38
3.e.l. Non-attacking Kings for n < 8 39
3.f.1. | Symmetric Golomb type 41
3.£.2. Symmetric with main diagonal empty 42
4.1. Pictures of the Costas arrays from 1x1l to 8x8 45-48
i1

........



5
}3 CONSTRUCTIONS AND PROPERTIES OF COSTAS ARRAYS
3
N
3
.\.
&
i 1. INTRODUCTION
tr Radar and sonar signals are used to determine both the distance (also called
. range) of a target from the observer, and the velocity (also called range rate) at
A
ﬂh which the target is either approaching or receding from the observer. The range
1

is proportional to the round-trip delay time (or time shift) of the signal, and the

velocity is proportional to the doppler (or frequency shift) of the signal.

In a frequency hopping radar or sonar system, the signal consists of one or

more frequencies being chosen from a set {fl,fz,...,fm} of available frequencies,

for transmission at each of a set {tl’t2""’tn} of ccnsecutive time intervals.

oL 0N

For modelling purposes, it is reasonable to consider the situation in which m = n,
and where a different one qf n equally spaced frequencies {fl,fz,...,fn} is transmitted

during each of the n equal duration time intervals {tl,tz,...,tn}. Such a signal is

i conveniently represented by an nxn permutation matrix A, where the n rows correspond

i? to the n frequencies, the n columns correspond to the n time intervals, and the entry
2 ‘1j equals 1 if and only if frequency fiis transmitted in time interval tj‘

\é (Otherwise, aij = 0.)

ﬁ When this signal is reflected from the target and received back by the observer,
g it is shifted in both time and frequency, and from the amounts of these shifts, both

range and velocity are determined. The observer determines the amounts of these

0 I AR

shifts by comparing all shifts (in both time and frequency) of a replica of the

M4

transmitted signal with the actual received signal, and noting for which combination
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of time shift and frequency shift the coincidence is greatest. This may be thought
of as counting the number of coincidences between 1l's in the matrix A = (aij) with
1's in a shifted version A* of A, in which all entries have been shifted r units to
the right (r is negative if there is a shift to the left), and s units upward (s

is negative if the shift is downward).

The number of such coincidences, C(r,s), is the (unnormalized) autocorrelation

between A and A*, and clearly satisfies the following conditions:

c(0,0) = n
C(r,s) = 0 if |r| > n or if |s| > n.

0 < C(r,8) < n except when r = 8 = 0,

(This conforms to the assumption that the signal is 0 outside the intervals

f1 <f :_fn and gptst. If the sequence of frequencies 1s to be repeated
periodically in time, a singly periodic correlation function can be defined accordingly.
In this context, periodicity in frequency does not appear to be a useful notion.)

In the real world, the returning signal is always noisy. The two-dimensional

autocorrelation function C(r,s), called the ambiguity function in the radar and sonar

literature, sho&ld be thought of as the total "coincidence" between the actual
returning noisy signal and the shift of the ideal transmitted signal by r units in
time and s units in frequency. It is useful to think of the signal matrix A = (aij)
as a two-dimensional template of n2 cells, which is opaque at the n2-n cells where

aij = (0, and transparent at the n cells where aiJ = 1. The total signal energy behind
these n windows is summed (via a double integral in time and frequency) to give the
value of C(r,s) when the template is shifted r units on the time axis and s units on

the frequency axis.

Among the 2n2 matrices of 0's and 1's of order n, there are only n! permutation

matrices, and some of these are better than others as signal patterns for radar and




AN

sonar. For example, the nxn identity matrix In can be shifted one unit up and one

unit left, and will then produce n-1 coincidences with the original matrix. For

large values of n and a noisy environment, the signal pattern In would be almost
guaranteed to produce spurious targets, shifted an equal number of units in both
time and frequency from the real target.

At a minimum, there is a shift of A = (a,,) which will make any of the n 1's

1j

land on any of then-1remaining 1's, so we know that

min max C(r,s) kd 19
all "codes" (r,s)#(0,0)
where C(r,s) is the ideal ambiguity function of the permutation matrix itself.
This led J.P. Costas [1] to look for those nxn permutation matrices for which

@)) max C(xr,s) =1,
(r,s)¥(0,0)

as the best possible case. By computer-aided search, he found examples of such
matrices for all n < 12, but was unable to find an example for n = 13, and was |
tempted to conclude that these patterns ''die out" beyond n=12,

In subsequent papers ([2], [3]), permutation matrices which satisfy (1) have !

been called either constellations or Costas arrays. They are now known to exist for

all n < 31 and for arbitrarily large values of n related to the occurrence of
prime numbers and prime powers. It is conjectured that Costas arrays exist for all
positive integers n.

In this article, a survey of all that is currently known about Costas arrays is
presented. In addition to earlier systematic algebraic methods of construction by
Welch (2], Lempel [2], and Golomb [3], new algebraic constructions by Golomb and
by Taylor are described, along with a sporadic method of Taylor which succeeds in
filling in some of the gaps (e.g. at n = 19, the first case where no systematic

construction is known).
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It is convenient to represent the nxn permutation matrix corresponding to a

Costas array, A = (aij)’ on an nxn grid, with a dot in the middle of cell (i,3)

nz-n
> lines

if and only if aij = 1. The Costas condition then says that the
connecting pairs of distinct dots are all different as vectors; that is, no two of
these lines are equal in both length and slope.

In [3], Golomb advanced four conjectures concerning primitive roots in finite
fields. Two of these, Conjectures A and D, have direct bearing on the success of
certain methods for comstructing Cosgas arrays. O. Moreno [4] has recently proved
Conjecture D for all fields of characteristic 2; and as observed by A. Odlyzko,
the methods of M. Szalay [5], and J. Johnson [9], can be extended to show that
Conjecture A holds with at most a finite number of exceptions. Conjecture A is

stated on page 9 of this article, and Conjecture D on page 40.

Costas arrays which satisfy additional constraints, involving either single
or double periodicity, or symmetry, or additional separation requirements on the
1's in the permutation matrix, are considered in this article. A lower bound on the
cross—correlation between any two Costas arrays of order n is obtained. This has
obvious applicability to the case of multiple signals in the same environment.
Finally, it should be mentioned that frequency hop patterns such as the ones
considered here are also useful in spread-spectrum communication systems, where the
objective may be to achieve either jamming resistance, or low probability of

intercept (L.P.I.), or frequency diversity for a selectively fading channel.
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2. SYSTEMATIC METHODS OF CONSTRUCTION

The finite field with q elements, denoted GF(q), exists when and only when q is
a power of a prime. Detailed proofs (in order of increasing complexity) that the
Welch, Lempel, and Golomb construction methods produce Costas arrays, are contained
in [3]. These proofs depend on the arithmetic of finite fields, and particularly on
two properties of all primitive elements in finite fields.
The element o in GF(q) is called primitive if the successive powers of o (i.e.,
1 2 3 q-1

A 50 30 yees s = 1) run through all the non-zero elements of GF(q). For primitive

a the two essential facts are:

1. For every non-zero element x in GF(q) there is an integer i such that ai = X.

2. ai = ak in GF(q) 1if and only if i = k(mod q-1).

Equivalently, corresponding to each non-zero x belonging to GF(q), there is -the
uniquely determined "logarithm of x to the base &', which looks like an ordinary whole
number, and belongs to the cyclic group of integers with respect to addition modulo
q-1. That 1is, if ai = x, then logax = i,

The only information needed to construct a Costas array by any of these methods
is a "log table" for GF(q), consisting of a list of ordered pairs of the form
(x, logax) = (aj,j), for § running through 0,1,2,...,9-2, and corresponding aj taking

on all the field values except O.

a. The Welch Construction

For every prime p > 2, the Welch construction yields an nxn Costas array Wl
with n = p~1, and a Costas array w2 with n = p~2. For certain primes, it also yields
a Costas array W3 with n = p-3.

This construction requires a log table for GF(p) where p is an odd prime, and

the base a is a primitive element of GF(p). (For prime p, GF(p) is simply the field

L TR ,'-.‘ o e e ta I I - . . R 4
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of integers modulo p.)

WI: (n = p-1) The nxn matrix plots the log. That is, with columns numbered j = 0,1,2,.
«+3p-2, and rows numbered 1 = 1,2,...,p-1, we put a dot in position

(1,§) 1f and only 1f 1 = oJ.

(n = p-2) This 1s obtained from Wl by deleting the dot at (1,0), along with

the top row and left column.

W,: (n = p-3) This works only when 2 is primitive in GF(p). Usi == 2, wl has

dots at both (1,0) and (2,1). W3 is the result of .eting these two

dots, along with the two top rows, and the two left .iumns.

Figure 2.a.l. illustrates Wl with n = 42, Removing the top row and left colummn from

the figure illustrates Wz with n = 41.

“‘;'.! LN

.
. %

'.‘.

OO

b. The Lempel Construction

This uses a log table for GF(q) where q can be any power pk of any prime p,

and the "logarithmic base'" a is a primitive element of GF(q).

Ly: (n = q-2) The nxn matrix has columns numbered j = 1,2,...,q9-2 and rows
i=1,2,...,q-2. We put a dot in position (i,j) if and only if

cthjs 1.

L,:

(n = g-3) This works only when 2 is primitive in GF(q), where q is an odd prime.
Using a = 2-1 --% will mean that al+a1 = ], and hence that the dot
at position (1,1) can be deleted from L, along with the entire top

row and left column.

Figure 2.b.1. illustrates Ly, with n = 25, that is with q = 27.
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i A log table for GF(27)

Figure 2.b.1
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Taylor variant to the Lempel construction:

(n = q-4) This works only when the primitive o in GF(q) satisfies a2+u1 =1,

4
Then the dots at (1,2) and (2,1) can both be deleted simultaneously
from L2’ along with the two top rows and the two left columns.

Figure 2.b.2. shows an example of 'I‘4 with n = 55, corresponding to q = 59.

Note: When q = pk with p prime and k > 1, GF(q) is not the ring of integers modulo

q. Rather, it can be represented as a k-dimensional vector space over GF(p).

c. Golomb Construction

This construction uses two log tables for GF(q), where the two bases o and B

are both primitive elements in GF(q), and q can be any power of any prime.

G2: (n = q-2) The nxn matrix has columns numbered j = 1,2,...,q9-2, and rows
i=1,2,...,9-2. We put a dot in position (i,j) if and only if
G3: (n = q-3) If a1+81 = 1, (that is, o+f = 1), then there is a dot at position

(1,1) which can be deleted from G2, along with the top row and left
column. Conjecture A (reference [3]) asserts that it is always

possible to find primitive o and B in GF(q) with o+f = 1.

Figure 2.c.l. illustrates G3 with n = 24, that is with q = 27.

GA: (n = q-4) This works only when q = Zk, and o8 = 1, in the field GF(q). Here

the basic arithmetic is modulo 2, so that a1+81 = 1 implies a2+82 = 1,
Then the doﬁs at (1,1) and (2,2) can both be deleted from GZ’ along

with the two top rows and the two left columns.
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12

Figure 2.c.2. illustrates G4 with n = 28, q = 32.

Golomb Variant:

‘g Gz: (n = q-4) This works only when the primitive elements o and B satisfy

g u1+31 = 1 and azfﬁjl = 1 in GF(q). Since -1 = q-2 in the arithmetic

; of the logarithms (exponents), there will be a deletable dot at

¥ (2, q-2) after deleting the dot at (1,1) from G2.

}f Gg: (n = q-5) This construction always follows GZ. When a+8 = 1 and a2+B-1 =],

s then necessarily also a_l +62 =1 in GF(q). Thus, after (1,1) and
(2, -1) are deleted, along with their respective rows and columns,

; there will be another deletable dot at (-~1,2).

\

,_

;% Figure 2.c.3. illustrates G§ with n = 144, q = 149.

f% Taylor variant to the Golomb construction:

4 T1: (n = q-1) Add a corner dot at one of (0,0) or (0, q-1) or (q-1, 0) or (q-1,q-1).
This is possible when q # Zk and the conditions at one of the corners

C]

by do not prevent it.

4

4

TO: (n = q) Add two corner dots at (0,0) and (q-1,q-1), or at (0,q-1) and

(q-1,0). This is possible when q = -1(mod 6) and when not prevented

DR 2 SN

by the condition (Appendix II) on the two corners. Figure 2.c.4

illustrates TO withn = q = 47.

d. Adding a Corner Dot to W1

The Welch construction W. is singly periodic, and hence there is a chance that

1
one of the (p-1)x(p-1) windows for onme of the primitive roots may allow the addition

of a corner dot. In fact the only examples of Costas arrays we have for n = 19 and

................................
.......
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- n = 31 vere found as instances of this sporadic occurrence. Figure 2.d.1. and

Figure 2.d.2. exhibit them.

o e. Table of known constructions

Up to n = 360, Figure 2.,e.l, tabulates for each n which constructions, if any,

2

i

are known to exist.
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3. COSTAS ARRAYS WITH SPECIAL PROPERTIES

a. Periodic Constructions

Repeating the 2x2 Costas Array in both directions over the entire plane gives
a doubly periodic checker-board pattern with a Costas Array in every 2x2 window.
For any n > 2, however, there does not exist a doubly periodic pattern with a Costas
Array in every nxn window. (A proof of this result is given in [11].) The nearest
approximation to such a pattern is given by the extended Welch construction, as follows.

Let p be an odd prime, with primitive root o. Put a dot in position (i,j) iff
i:= aj(mod p). The resulting infinite integer matrix of dots and blanks has the
property that in every pxp window there are p dots with no repeated vector difference.
(Each pxp window fails to be a Costas Array by havingone empty row and one row with
two dots.) |

Singly periodic patterns, (p-1l)xo, exist which have a Costas Array in every
(p-1)x(p-1) window, where the windows are only left-right shifted. The only known
examples are those arising from the extended Welch comnstruction, but the possibility

of other examples has not been entirely ruled out.

b. Non-attacking Queens

For n > 1 we have found no example of a Costas Array consisting of non-
attacking Queens. It would even be interesting to find a Costas Array for n > 10
having only one occurence of a Queen attack. (Another sort of near miss is shown in
Figure 3.b.1.)

1f an application could be satisfied with "semi-Queens", then we already have an

infinite supply from the Lempel construction. A "semi-Queen' would attack its row and

PO TR AT SRR SRR - P
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column but only the diagonal parallel to the main diagonal. Symmetry prohibits two

dots in any line parallel to but off of the main diagonal, because reflection would

repeat their difference vector. In the Lempel construction with q any power of an

:
.
LR NS
R PO P

odd prime, there will be exactly one solution to a4a* = 1, for each primitive a,
and hence exactly one dot on the main diagonal. With q a power of two, there will
be no solutiontoa’+a™ = 1, and hence no dot on the main diagonal.

It may be useful to note that we can describe exactly which Queen attacks do
occur in the Lempel construction. Each dot at (i,j) attacks the dot at (j,i), and

no others. This is illustrated in Fig. 3.b.2 with GF(33).

c. Shearing

o Distinctness of differences will be preserved by any nonsingular linear

N transformation, such as multiplying by a complex number, or applying the matrix

[%'i] to shear the integer lattice. There area few Costas Arrays which shear by
.; [; _i] into other Costas Arrays. Figure3.c.l shows the Lempel construction for
- GF(1l) with a = -3 sheared into what appears to be a 90° rotation of itself.

To be shearable by [; _i] into another Costas Array, the array needs to have
one dot in each of n consecutive lines parallel to the main diagonal, since these
lines will become columns after shearing. Rows remain rows, and columns become
lines at right angles to the main diagonal, so that the figure could be sheared
again by [} g] to produce yet another Costas array. The array of Fig.3.c.l goes
i) through a cycle of four different patterns, as do all but one of the known shearable

arrays for n > 1. '"But one" refers to the array of Figure3.c.2 which, sheared

:i alternately by [; -i (horizontal) and [} g (vertical), goes through a remarkable
>

‘e cycle of twelve patterns.
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d. Honeycomb Arrays (non-attacking bee-Rooks)

/2 -1/
0 1

into the triangular grid (Eisenstein integers), or square cells into hexagonal cells.

Shear-compression by [? %] will convert the square grid (Gaussian integers)
When it happens on an nxn board that n non-attacking semi-Queens occupy n consecutive

lines parallel to the main diagonal, then we can delete the unoccupied diagonal lines

and apply shear-compression to convert the board into a "honeycomb array"” with n lines
parallel to each of the three pairs of opposite sides. The semi-queens get converted

into n non-attacking ''bee-Rooks'. The pattern of Figure 3.c.l becomes a honeycomb

array with non-attacking bee-Rooks, as illustrated in Figure 3.c.3.

On the honeycomb board having n parallel lines we have a quick proof that the
maximum number of non-attacking bee-Rooks is n. If there were more than n bee-Rooks
on the board, then at least one line would contain at least two bee-Rooks attacking
each other.

The number of empty cells attacked by a bee-Rook placed in the middle of the
board is larger than the number attacked by one near the edge. This happens because
in the conversion from square to honeycomb we deleted some diagonal lines. Now on
the honeycomb board some elementary counting problems become non-trivial.

Let us define a “bee-Duke" on the board with hexagonal cells as a piece which
can move to any one of the six adjacent cells. (This is the natural analog to the
Duke defined in [14). ((The "Duke" also appears in Winning Ways, and in R.A. Epstein's

Theory of Games and Statistical Logic.)) ) The distance between two cells in the

hexagonal Lee metric is then defined as the minimum number of bee-Duke moves needed
to go from one cell to the other. In terms of this metric a '"Lee-sphere of radius r"
consists of a center cell together with all the cells at distance < r from the center.
For all the known honeycomb arrays, with n non-attacking bee-Rooks on a board having
n lines parallel to each of the three pairs of opposite sides, the honeycomb board is

in fact a Lee sphere, but we have not proved that this must always be the case.
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Computing six or seven terms and looking in Neil Sloane's Handbook of Integer
Sequences [15] has led us from honeycomb arrays to some old questions which are not
well-known today.

The CUBAN PRIMES of Cunningham [13] show up when we simply count the number of
cells on a honeycomb board when it is a Lee sphere of radius r. The number is always
a difference of two consecutive cubes, (r+1)3-r3, and often prime: whether
infinitely often or not is an old question, still unanswered.

The ZERO SUM ARRAYS of Bennett and Potts [12] arrive at the problem of counting
the number N(r) of configurations of n = 2r+l non-attacking bee-Rooks on a honeycomb
board which is a Lee sphere of radius r. On a square nxn board with n non-attacking
rooks the corresponding number of configurations would be simply n!, but on the
honeycomb board it.is not so simple. With the aid of a computer they found answers
up to r = 7, as tabulated below. Let n(r) be the number of configurations inequivalent

under the dihedral group of symmetries of the hexagon.

r 0o 1 2 3 4 5 6 7
N(r) 1 2 6 28 244 2544 35600 659632

nr) 1 1 1 5 29 224 3012 55200

Counting HONEYCOMB ARRAYS presents a new problem with the requirement that all
differences be distinct among 2r+l1 non-attacking bee-Rooks on a honeycomb board of

radius r.
Let H(r) = the total number of honeycomb arrays of radius r.

Let h(r) = the number of honeycomb arrays of radius r inequivalent under

the dihedral group of symmetries of the hexagon.

The next table exhibits the full extent of our knowledge about H(r) and h(r).
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r 0 1 2 3 4 5 6 7
H(r) 1 2 0 8 4 7 17 >2
h(r) 1 1 o0 2 2 1 7 >l

T 8 9 10 11 12 13 ... 22
H(r) 70?7 2 71 >2 7.7 >2
h(r) ? ? >1 ? ? >1 ?..7 >1

The first six honeycomb arrays are pictured in Figure 3.d.1 The only ones
known for radii 7, 10, and 13 are pictured in Figures 3.d.2, 3.d.3,and 3.d.4, respectively.
The example with radius 22 is used in section 2 to illustrate the TO construction for

the prime number 47 (Figure 2.c.4.).

e. Non-attacking Kings

Another special property is that every pair of dots be separated by a distance

> 3 in the Lee metric of coding theory. This makes the Costas Array a configuration
of non-attacking chess kings. There are only five of these for n < 8, shown in
Figure 3.e.l.

In the Costas Arrays derived from the Welch construction (for p > 7) at leas’
one pair of attacking Kings will always appear, as a consequence of'the following
fact about odd prime fields: For any primitive root a in GF(p) there exists exactly
one j such that aj+1-aj =],

To obtain a Costas Array of non-attacking Kings by systematic construction we
can use the "T4 variant," that is, a Lempel type construction where some primitive
a in GF(q) satisfies a2+ul = 1, With no Queen attack parallel to the main diagonal

in any Lempel type array, as mentioned in b., a fortiori there will be no King

attack in the Ta variant after removing the rows and columns containing (1,2) and

2,1.
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b
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A honeycomb array with r = 10

Figure 3.d.3
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f. Symmetric Arrays

In all examples of the Lempel type, ai+uj = ] implies that both (i,f) and
(3,1) are dots in the array, whence these arrays are always symmetric. The reduced
arrays with q-3 in the L3 case or q-4 in the T4 case are also symmetric, since the
dot or pair of dots deleted were from (1,1), or, respectively, from both (1,2) and
2,1 éimultaneously.

The Golomb type constructions give symmetric arrays in every case where q = ka

is an even power of a prime. If a is any primitive root, then apk = 8 will also be
1,3 1, 053,05 | pf, 3 1,3

a primitive root, and if ¢ +8” = 1 it follows that (a +a” ~) =g “40” = g 4a” =1,

A dot goes at (1,j) 1iff a dot goes at (j,1), so the array is symmetric. One of

these 18 1llustrated in Figure 3.f.1. In Conjecture D of [3], Golomb conjectured

that GF(ka) can always be generated over GF(pk) by finding a primitive quadratic

of trace 1, f(x) = xz-x+g, over GF(pk). The rootz a and g of f(x) will then be

primitive in GF(ka) with o+ = 1, and af = g will be primitive in GF(pk). (See the

Theorem in p. 54, in Appendix I.) 1In [4], Moreno has proved this conjecture when

p = 2, for all values of k.

An even more special nxn Costas Array is one which is symmetric and has the main
diagonal empty. Of course n must be even. These are given systematically by L, when
q is a power of 2, and by L3 when 2 is a primitive root of an odd prime p. In
Fig. 3.f.2, the exhibit of all such arrays for n < 8 includes one 8x8 example which

is not given by any known systematic symmetric construction. It is not known whether

any of these special arrays exist for n = 12,

-------
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Symmetric with main diagonal empty

Figure 3.f.2
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4., C(n) AND c(n): THE NUMBER OF COSTAS ARRAYS

Let C(n) = the total number of nxn Costas arrays.
Let c¢(n) = the number of nxn Costas arrays inequivalent under the dihedral group

of symmetries of the square.

We can prove that the limit superior (lim sup) of C(n) is infinite because the
Welch construction guarantees C(n) > 2n when n+l is an odd prime.

On the other hand we have no actual proof that C(32) is not zero, or that C(n)
is not zero infinitely often. (That is, we cannot show lim inf C(n) > 0.)

The exact values of C(7), C(8), C(9), and C(10) weren;;::t brought to our
attention by Richard Games and Michael Chao, who found them by computer in the summer
of 1983 at the Mitre Corp. All values of C(n) for n < 12 were first found by

John P. Costas of the General Electric Company. The currently known values of C(n)

and c(n) are as follows.

n 1 2 3 4 5 6 7 8 9 10 11 12

c(n) 1 1 1 2 6 17 30 60 ? o ? ? ?
C(n) 1 2 4 12 40 116 200 444 760 2160 4368 7852
C(n) 1 1 .66 .5 .33 .16 .039 .011 .002 .0006 .00011 .000016
n!

The value C(7) = 200 corrects an error in [2].

C(n)
n!

It is worth noting how rapidly is approaching zero, since it represents the
probability that a randomly chosen nxn permutation matrix will be a Costas array. If
the growth rate C(n+l) < 3.C(n) persists, it will make this probability less than 10-21

when n = 32.

......
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Up to n = 8 the pictures in Figure 4.1 exhibit one representative of each of the
c(n) equivalence classes. (Two arrays are equivalent under the dihedral group of the
square if one can be transformed into the other by any combination of rigid rotations

and reflections.)
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2
2
o S. UNSOLVED PROBLEMS
{
- Is C(n) asymptotic to some well-behaved function of n? In the following list
e
;} of conjectures, proof or disproof of any of those marked OPEN would constitute
- significant progress on this question. (Of these, we believe question 5 may be the
.f easiest to settle.)
%,
3
N -1. C(n) > 1 is true for infinitely many n. PROVED TRUE
X 0. C(n) > 1 is true for all n > N, for some positive
t
‘% integer N. OPEN
N
" 1. C(n) > 1 for all n > 1. OPEN
_'h
4
‘: 2. C(n) is monotonic increasing. OPEN
oh)
. 3. 1lim sup C(n) = »., That is, C(n) has an infinite
N
b
_3 subsequence which is unbounded above. PROVED TRUE
l‘
-
= 4. Eé%l is monotonic decreasing. OPEN
5. C;?) > 0 as n» =, OPFN
o 6. Qﬁ%l goes monotonically to 0 as n > «. ' OPEN
2
' 7. 9$El-+ 8 as n +» =, OPEN
5 c(n)
A
< The next three are simply existence questions.
t:
i 8. Do any other singly periodic Costas arrays exist besides the ones given by

the Welch construction?

I S
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{The conjectured answer to question 8 might have been YES before it turned out

to be NO for n < 16, and NO for all odd n.)

9. Do honeycomb arrays exist for infinitely many n?

10. Do anynxn Costas arrays exist (for n > 1) which are configurations of non-

attacking queens?

For (9.) we conjecture YES, and for (10.) NOT SO SURE.

-
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APPENDIX I. SOME BASIC POLYNOMIAL ALGEBRA OVER FINITE FIELDS

Lemma 1. (Fermat's ''Little" Theorem)
For every element a ¢ GF(q), al = ain GF(q).
Proof. 1) 0% = 0.
ii) The non-zero elements of GF(q) form a group of order q-1 under
multiplication. Hence aq-1 = 1 for all a # 0 in GF(q).

Thus al = a for all a ¢ GF(q). ]

Lemma 2. Let f(x) = aoxn+alxn_1+a2xn_2+...+an_1x+an be a polynomial over GF(q).

(That is, a, € GF(q) for i = 0,1,2,...,n.) Then {f(xl/q)}q = f(x).

i
Proof. 1If there is a field GF(q) of q elements, then q = pk for some prime p

and some positive integer k, and the additive structure of GF(q) is that of
k-dimensional vectors modulo p. It is easily shown that the binomial coefficient

(3) satisfies (g) 0 (mod p) for all r, 1 < r < q-1. Hence, over GF(q),

(ut)? = und, .
Then f(x)q = (a,.xM) W (a xn-l)q+(a xn-z)q+...+(a )M (a )3 = £(x9) over
0 1 2 n-1 n
GF(q), where we have used ag = a, from Lemma 1. From f(x)q = f(xq), the result
immediately follows. a

Lemma 3. Let f(x) = (x-a)(x-B) be the factorization in GF(qz) of the quadratic

polynomial f(x) = x2+Ax+B which is irreducible over GF(q). Then o = g% and
q

B=o.

Proof. By Lemma 2, £(xY) = £ = x-0)3(x-)Y = (x3-aY) (x%-8Y). Thus

f(x) = f(xl/q)q = (x-03) (x-g%), and the roots uq, 8% of f(x) must be the same
(in gome order) as a,B8. But if ol = g (and Bq = B) then o (as well as B) is

a root of xq-x = (0, which, as an equation of degree q, has at most q roots in

GF(qz). By Lemma 1, all q elements of GF(q) are roots of x3-x = 0, so that




e e s ¥
YR

v
»
a8

T ‘r‘wﬂi-
PRSP P

T Cw o
ST .

.........

54

a (and B) are already in GF(q), and f(x) would factor over GF(q) into linear
factors (x-a) and (x-8), contradicting the hypothesis that f(x) is irreducible

over GF(q). Hence uq = 8 and Bq =q, o

Theorem. If f(x) = xz—x+g is an irreducible polynomial over GF(q) whose roots are
primitive elements of GF(qz), then g is a primitive element of GF(q).

Proof. Write f(x) = (x-a)(x-B) with a,B ¢ GF(qz). By Lemma 3, B = a%. Then

+
1 1. Let r be the smallest positive exponent such that gr =1, 1If

r ot

g =aB =a
r < q-1, then r(q+l) < (q-1)(q+l) = qz-l, and we have 1 = g

contradicting the assumption that o is a primitive element of GF(qZ). ]

Corollary. The roots of f(x) = xz—x—l over GF(q) fail to be primitive elements of
GF(qz) unless either q = 2 or q = 3.
Proof. If f(x) is reducible over GF(q), its roots are in GF(q), and cannot be
primitive in GF(qz). If f(x) is irreducible over GF(q), then the Theorem
applies, and ~1 must be a primitive element of GF(q). Since (—1)2 = 1, we find
q-1 < 2, so that q < 3. Thus GF(2) and GF(3) are the only candidates. It turns

out that f(x) = x2-x-1 is primitive over GF(2) and over GF(3). L

Exercises. 1. Let f(x) = (x—al)(x-az)...(x-ak) be the factorization, in GF(qk), of
the polynomial f(x) which is irreducible of degree k over GF(q). Then the set of
roots, {al,az,u3,...,ak}, is the same set as {al,ug,agz,...,a?k-l}.

2. Suppose f(x) = (x-al)(x—az)...(x-ak) is an irreducible polynomial
of degree k over GF(q). Show that all the roots Qpslnseeesly have the same
primitivity t, as elements of GF(qk). That 1is, az =] for 1 =1,2,...,k, while

a: ¥ 1 for 1 < s <t. Moreover, t is an integer factor of qk—l, and is not an

integer factor of qm—l, for any m ¢ {1,2,...,k-1}.
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APPENDIX II. ALGEBRAIC EXCLUSIONS AND TERMINAL CASES

a. Conditions Which Prevent Adding a Corner Dot to a Golomb Construction

Adding a dot at (0,0) or (0,q-1) or (q-1,0) or (q-1,q-1) is prevented if and
only if the G, construction contain dots at (a,b), (x,y), and (a+x,b+y). In this

case, a dot cannot be added in the same quadrant as the midpoint between (a,b) and

x,y).
When +%+8P = 1 and o®+87 = 1, we have o™ 48" 40%Y4a™s? = 0 and «®* 48"V = 0.
Let k be the number (coprime to q-1) such that B = ak. Then we have

07X = a%k(b'y), which holds if and only if -‘1;—1 = (kb-a)-(ky-x) .
These conditions give us the following tests.

TEST(0,0): A dot cannot be added at (0,0) if and only if there exist dots

(x,y) and (a,b) in G, such that:

q-1
1. 2

2. atx < q-1

(kb-a) - (ky-x)

3. bty < g-1

TEST(0,q-1): A dot cannot be added at (0,q-1) if and only if there exist dots (x,y)
and (a,b) in G, such that:
1. Hél = (kb-a)-(ky-x)
2. atx < q-1

3. bty > g-1

TEST(q-1,0): A dot cannot be added at (q-1,0) if and only if there exist dots
(x,y) and (a,b) in G2 such that:
1. Lo ab-a)-(ky-x)
2. atx > q-1

3. b'.'y < q-l




et Ak S A o

TEST(q-1,q-1): A dot cannot be added at (q-1,q-1) if and only if there exist dots
(x,y) and (a,b) in G, such that:
1. S%l = (kb-a)-(ky-x)
2. atx > q-1

b.1l T1 never works for q = Zk > 4

Proof: Whenever ai+8j = 1, the simplified binomial theorem over GF(Zk) tells us

that a21+82j = 1. Having dotsat (i,j) and (21,2j) prevents adding a corner dot in the

quadrant that contains (i,j). For n = 6 all the G2 constructions have dots in all
four quadrants by inspection. For n = 2m > 6, having dots in all quadrants is a
property of all nxn Costas arrays, as a consequence of the fact that for m > 3 any

two mxm Costas arrays must have a difference in common. (This fact is proved in [11].) ®

k
b.2 EG never works when q = 3

Proof: There will be a dot at the exact center of the (q-2)x(q-2) array because

o ;
a =g = -1, and in GF(3"), (-1)+(-1) = 1. Therefore we cannot add dots at both

(0,0) and (¢q~1,9-1), nor at both (0,q-1) and (q-1,0). .

b.3 Icrnever works when q = 1(mod 6)

Proof: Let us write q = 6m+l, and let o and B be primitive in GF(q). We have

3m 3m -3m «3m m’Bm’B—m are all

a =8 =g = B = -1, while ot # -1 # 8". We see that am,a—

0. Therefore either

primitive sixth roots of unity; that is, roots of xz-x+1

am+am = 1 and a—m+3-m = 1, or else am+6-m = ] and a-m+3m = 1. (The two distinct

primitive sixth roots of unity sum to 1.) In either case, we cannot add dots at both
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(0,0) and (q-1,q9-1), nor at both (0,q-1) and (q-1,0). ]

Corollary to b.3

The proof of b.3. shows that the G2 construction will not yield a Honeycomb array

11}

when q £ 1(mod 6).

b.4 A G2 construction will never contain two diagonally opposite corner dots, 1if

q>7
Proof: If a1+Bl = 1 and o;_]‘+8-l = 1, then a_14vié; =1, and az-a+1 = (0, If

a1+7—1 = 1 and a—1+yl = 1 we can take B = y_l and again we find az—a+1 0. Thus in
either case a is a root of a6—1 = (0, With o primitive in GF(q) and a6 = 1 we conclude

that GF(q) has at most 7 elements. .

b.5 1f a G, construction over GF(q) has dots at (1,3), (3,1), and (2,-1), then

q=28

Proof: Starting with a3+s = 1 and a2+B_1 = 1, we have B-Bil =1= (1ﬁu2)(l-a3) =
2 3.5 3 3 3

l1-a“-a"+a~. Thus o~ = a+l, whence o+ = 0. Now using o+~ = 1, a™+8 = 1, and
a = - we deduce that -1 = 1, which means that q = Zk and a = B. When o is primitive
in GF(q) = GF(Zk), a3 = g+l implies that a7 =1, and q = 8. ]

b.6 If a G2 construction has dots at (1,1), (2,3), and (3,2), over GF(q), then

Q=35

3 3

Proof: With o+g = 1 and a’+g> = 1, we have (1-8)%+g> = 1 = 1-2g+g%+g>, and therefore
82+B—2 = 0 = (B-1)(B+2). Since B is primitive, B # 1, so that g = -2 and a = 3.
At this point we have also gained the information that q must be prime, because one

of its primitive roots is an integer.
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o 3 2

rg . Now using a ™+~ = 1 we find that a = -2 and B = 3, so -2 = 3, Thus 5 =0
3 in GF(q), and we conclude that q = 5. ]

<
'E b.7 If a G2 construction has dots at (1,2), (2,3), and (3,1) over GF(q), then q = 5

Proof: With a+62 = ] and a2+63 = ] we have 63-82 = a-uz and 82 = l-a. Then
-:; 82(8-1) = q(l-a) = aBZ, and therefore -1 = a. This tells us that a2 = -1, so

~
o o = 1, and hence q = 5. ]

! b.8 For q > 9, T, never works unless q is a prime whose last digit is 1 or 9

N k 2
X Proof: Suppose q = p with k > 2, and suppose o +a = 1 where a is primitive in

»

'1 GF(pk). Under these conditions of * a.

'i: Using the simplified binomial theorem, we have (a2+a)p =1 =1-= (ap)2+ap.
?2 Thus, a and of are the two roots of the quadratic xo4x-1 = (x-a) (x-oP) = x2-(a+up)x+up+1-
We conclude that ap+1 = -1,

N
‘23 In the special case p = 2 this can only happen when k = 2, so that q = 4.

o k
N For an odd prime p, P . implies that Eﬁfl'= p+l, which is only possible
,o: vhen k = 2 and p = 3, that is, when q = 9.

j For q > 9 we know that T, cannot work with k > 2 because a cannot then be
'j primitive. We shall see that in some prime fields, T, is prevented by the nonexistence

of a.

The quadratic formula tells us that for prime p > 2, x2+x—l = (0 has a solution

x = :l%ﬁi in GF(p) if and only if y2 = 5 has a solution y in GF(p). According to

| LA,

the Law of Quadratic Reciprocity, 5 is a quadratic residue of p > 2 1f and only if

;i P is a quadratic residue of 5. Thus except for p = 5, solutions to y2 = 5 exist in
..‘

M GF(p) if and only if p = 1(mod 5) or p = 4(mod 5); that is, the last digit of p is
” either 1 or 9. |
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N3

- Comment

w

:23 Checking whether TA works is made easier by b.3. When p is a prime ending in
L3

:k} 1l or 9 we will find y in GF(p) such that y2 = 5 by looking in the log table. Then

let a = :%;1 and vy = :%51 so that a2+u = 1 and 72+1 = 1. To see if T4 works it

@; remains only to check whether one or both of o and vy is primitive.

N
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b.9 G¥ and G* work if and only if T, works and q = 1(mod &)

f Proof: Gg and Gz work if and only if there exist primitive elements o,B in GF(q)
3 -1 . i
i such that o+ = 1 and 02+3 1o, ;

N -
b

Given such a,B we deduce that 6_18 = (1—02)(1—a) = l—az—a+a3 = 1, and hence that

A

éﬁ az = a+l, a = -B-l, and a-2+a-1 = 1. The primitivity of a_l tells us that T4 works.
33 - -

i‘ The primitivity of both 8 1 and -8 1 tells us that q = 1(mod 4).

Conversely, assuming T4 works and q = 1(mod 4), we have primitive vy such that
Yz+1 = 1, Also, Y-l primitive and q = 1(mod 4) implies that -y is primitive. - Thus

taking o = -y and B = Y-lwe have primitive a,8 such that a2+8°1 =1 and o4 = 1. s
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