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Abstract

We give a construction of a non-degenerate polynomial F ∈ R[x, y, z] and a set

A of cardinality n such that |Z(F ) ∩ (A×A×A)| � n
3
2 , thus providing a new

lower bound construction for the Elekes–Szabó problem. We also give a related
construction for the Elekes–Rónyai problem restricted to a subgraph. This consists
of a polynomial f ∈ R[x, y] that is not additive or multiplicative, a set A of size n,
and a subset P ⊂ A×A of size |P | � n3/2 on which f takes only n distinct values.

Mathematics Subject Classifications: 52C10

1 Introduction

Throughout this paper, we write X � Y if and only if there exists some absolute constant
c > 0 such that X > cY . If the constant c depends on another parameter k, we use
the shorthand X �k Y . Given a polynomial F (x1, . . . , xn) ∈ R[x1, . . . , xn], Z(F ) =
{(x1, . . . , xn) : F (x1, . . . , xn) = 0} denotes the zero set of F .
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1.1 The Elekes–Szabó Problem

Elekes and Szabó [6] considered the size of the intersection of the zero set of a polynomial
F (x, y, z) ∈ R[x, y, z] of degree d with a Cartesian product A × B × C ⊂ R3, where
|A| = |B| = |C| = n. By the Schwartz–Zippel Lemma (see for instance [9, Lemma A.4]),
we have

|Z(F ) ∩ (A×B × C)| �d n
2. (1)

This bound cannot be improved in general. For example, if F (x, y) = x+ y+ z, A = B =
{1, . . . , n}, and C = {−1, . . . ,−n}, then |Z(F ) ∩ (A × B × C)| � n2. More generally,
if the equation F (x, y, z) = 0 is in some sense equivalent to an equation of the form
ϕ1(x)+ϕ2(y)+ϕ3(z) = 0, then we can choose A,B,C so that |Z(F )∩(A×B×C)| � n2.
The following definition makes this property precise.

Definition 1. A polynomial F (x, y, z) ∈ R[x, y, z] is degenerate if there are intervals
I1, I2, I3, and for each i there is a smooth (infinitely differentiable) function ϕi : Ii → R
which has a smooth inverse, such that for all (x, y, z) ∈ I1× I2× I3 we have F (x, y, z) = 0
if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0.

Elekes and Szabó [6] showed that if the polynomial is not degenerate in this sense, then
the bound (1) can be improved to n2−η for some η > 0. A quantitative improvement to
η = 1/6 was obtained by Raz, Sharir and de Zeeuw [9], leading to the following statement.

Theorem 2 ([6, 9]). Let F ∈ R[x, y, z] be a polynomial of degree d. If F is not degenerate,
then for any A,B,C ⊂ R of size n we have

|Z(F ) ∩ (A×B × C)| �d n
2−1/6.

Not much attention has been paid to lower bound constructions for this theorem.
Elekes [3] noted that for F = x2 + xy + y2 − z and A = {1, . . . , n} we have |Z(F ) ∩ (A×
A×A)| � n

√
log n (actually, Elekes formulated this in a different way, which we mention

in the next section; see [15] for more discussion). This was the only known lower bound
for Theorem 2, and some have suggested that the upper bound could be improved as far
as O(n1+ε) for an arbitrarily small ε > 0; for instance, the fourth author wrote this in [15].

The main purpose of this paper is to show by means of a simple example that this
is not the case, and that in fact the bound in Theorem 2 cannot be improved beyond
O(n3/2). Our main result is the following theorem.

Theorem 3. There exists a polynomial F ∈ R[x, y, z] of degree 2 that is not degenerate,
such that for any n there is a set A ⊂ R of size n with

|Z(F ) ∩ (A× A× A)| � n3/2.

In Section 4, we briefly discuss possible extensions of this theorem to polynomials in
more variables.

The construction of the polynomial F in the above statement is closely related to a
construction of Valtr [14], which first appeared in the context of the Erdős unit distance
problem. Other constructions throughout this paper also use similar ideas.
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1.2 The Elekes-Rónyai Problem

Before the work of Elekes and Szabó [6], Elekes and Rónyai [5] considered the question
of bounding the image of a polynomial f ∈ R[x, y] restricted to a Cartesian product,
assuming that f does not have a certain special form, which is specified in the following
definition.

Definition 4. A polynomial f(x, y) ∈ R[x, y] is additive if there are polynomials g, h, k ∈
R[t] such that f(x, y) = g(h(x) + k(y)), and it is multiplicative if there are polynomials
g, h, k ∈ R[t] such that f(x, y) = g(h(x) · k(y).

Elekes and Rónyai [5] proved that if f ∈ R[x, y] is not additive or multiplicative,
then for every A,B ⊆ R with |A| = |B| = n the image |f(A,B)| is superlinear in n.
The current state of the art for this problem is the following result of Raz, Sharir and
Solymosi [8].

Theorem 5 ([5, 8]). Let f ∈ R[x, y] be a polynomial of degree d. If f is not additive or
multiplicative, then for any A,B ⊂ R of size n we have

|f(A,B)| �d n
4/3.

Elekes [3] noted that if f(x, y) = x2 + xy + y2 and A = {1, . . . , n}, then |f(A,A)| �
n2/
√

log n. This is the best known upper bound construction for Theorem 5, which
suggests that we may have |f(A,B)| � n2−ε for all positive ε. This conjecture is widely
believed, see for instance Elekes [3] or Matoušek [7, Section 4.1]. The construction that
we give in the proof of Theorem 3 does not translate into a construction that disproves
this conjecture.

Nevertheless, we show that there is a polynomial that takes only a linear number of
values on a certain large subset of the pairs in A × A. This approach is partly inspired
by work of Alon, Ruzsa and Solymosi [1] concerning constructions for the sum-product
problem along graphs. See also [12] for a slightly improved construction.

Let G be a bipartite graph on A and B with edge set E(G) ⊂ A×B. For a polynomial
f ∈ R[x, y] we define the image of f along G to be fG(A,B) = {f(a, b) : (a, b) ∈ E(G)}.
Our result is the following.

Theorem 6. There exists a polynomial f ∈ R[x, y] of degree 2 that is not additive or
multiplicative, a finite set A ⊂ R of size n, and a bipartite graph G on A× A, such that

|E(G)| � n3/2 and |fG(A,B)| 6 n.

2 The Elekes–Szabó problem

In this section we prove Theorem 3.
Define

F (x, y, z) = (x− y)2 + x− z.
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We set A = {1, . . . , n} and we consider the intersection of F with A × A × A. Consider
the subset

T =
{

(k, k + `, k + `2) : k, ` ∈ Z, 0 6 k 6 n/2, 0 6 ` 6
√
n/2

}
⊂ A× A× A.

Each choice of k and ` determines a distinct triple in T , and so we have |T | � n3/2. For
each triple in T , we have

F (k, k + `, k + `2) = (k − (k + `))2 + k − (k + `2) = 0,

so T ⊂ Z(F ). Therefore we have

|Z(F ) ∩ (A× A× A)| � n3/2.

It remains to show that F is not degenerate in the sense of Definition 1. We will use
an idea introduced by Elekes and Rónyai [5], which is that this type of degeneracy can
be verified using the following straightforward derivative test; see for instance [6, Lemma
33] or [15, Lemma 2.2].

Lemma 7. Let f : R2 → R be a smooth function on some open set U ⊂ R2 with fx and
fy not identically zero. If there exist smooth functions ψ, ϕ1, ϕ2 on U such that

f(x, y) = ψ(ϕ1(x) + ϕ2(y)),

then
∂2 (log |fx/fy|)

∂x∂y
(2)

is identically zero on U .

Suppose that F (x, y, z) = (x − y)2 + x − z is degenerate, so in some neighborhood
I1 × I2 × I3 we have F (x, y, z) = 0 if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0. Then,
since ϕ3 has a smooth inverse on I3, we can write ψ(t) = ϕ−1

3 (−t), so that F (x, y, z) = 0
is equivalent to z = ψ(ϕ1(x) + ϕ2(y)). At the same time, F (x, y, z) = 0 rewrites to
z = (x− y)2 + x, so on I1 × I2 × I3 we have

ψ(ϕ1(x) + ϕ2(y)) = (x− y)2 + x.

We now check if the expression (2) is identically zero on I1 × I2 × I3. We have

log |fx/fy| = log

∣∣∣∣2(x− y) + 1

−2(x− y)

∣∣∣∣ = log |2x− 2y + 1| − log |2x− 2y|,

so

∂2 (log |fx/fy|)
∂x∂y

=
∂

∂x

(
−1

x− y + 1/2
+

1

x− y

)
=

1

(x− y + 1/2)2
− 1

(x− y)2
.

This expression equals zero only when y−x = 1/4, so it does not vanish on any nontrivial
open set. Thus (2) is not identically zero, and by Lemma 7 this contradicts our assumption
that F is degenerate.
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3 The Elekes–Rónyai problem along a graph

We now prove Theorem 6, concerning the image of a polynomial along a subset of a
Cartesian product.

Define the polynomial
f(x, y) = (x− y)2 + x.

Set A = {1, . . . , n} and let G be the bipartite graph on A× A with the edge set

E(G) =
{

(k, k + `) : k, ` ∈ Z, 0 6 k 6 n/2, 0 6 ` 6
√
n/2

}
⊂ A× A.

We have |E(G)| � n3/2. Applying f along any edge gives a non-negative integer

(k − (k + `))2 + k < n.

This shows that
|fG(A× A)| 6 n.

It remains to prove that f is not additive or multiplicative. We could again do this
using Lemma 7, but here we can use a more elementary approach. We treat the two cases
separately.

Additive case: Suppose f(x, y) = g(h(x) + k(y)). Note that g, h and k must have
degree at most 2. We cannot have deg(g) = 1, since then f(x, y) would not have any
cross term xy. If deg(g) = 2, then deg(h) = deg(k) = 1. We can write

g(t) = a2t
2 + a1t+ a0, h(x) = b1x+ b0, k(y) = c1y + c0,

with b1 and c1 non-zero. Then we have

f(x, y) = (x− y)2 + x = a2(b1x+ b0 + c1y + c0)
2 + a1(b1x+ b0 + c1y + c0) + a0. (3)

Calculating the coefficient for the y term on the right hand side and comparing with the
left hand side, it follows that

2a2(b0 + c0) + a1 = 0. (4)

On the other hand, calculating the coefficient for the x term on the right hand side of (3)
and comparing with the left hand side, it follows that

b1(2a2(b0 + c0) + a1) = 1.

Since b1 6= 0, this contradicts (4).
Multiplicative case: Suppose f(x, y) = g(h(x) · k(y)). We cannot have deg(g) = 2,

since then h or k would have to be constant, and f(x, y) would not depend on both
variables. Therefore we have deg(g) = 1. In this case, we must have deg(h) = deg(k) = 1.
We can write

g(t) = a1t+ a0, h(x) = b1x+ b0, k(y) = c1y + c0

and
(x− y)2 + x = f(x, y) = a1((b1x+ b0)(c1y + c0)) + a0.

This is a contradiction, since there is no x2 or y2 term on the right hand side.
This completes our proof that f is not additive or multiplicative, which completes our

proof of Theorem 5.
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4 Extensions to more variables

4.1 Four variables

One can consider the same problems for polynomials in more variables. Raz, Sharir and
de Zeeuw [10] proved that for F ∈ R[x, y, s, t] of degree d and A,B,C,D ⊂ R of size n,
we have

|Z(F ) ∩ (A×B × C ×D)| �d n
8/3, (5)

unless F (x, y, s, t) = 0 is in a local sense (similar to Definition 1) equivalent to an equation
of the form ϕ1(x) + ϕ2(y) + ϕ3(s) + ϕ4(t) = 0.

A construction of Valtr [14] (see also [13, Section 5.3]) essentially shows that for

V (x, y, s, t) = (x− y)2 + s− t

one can set A = B = {1, . . . , n2/3} and C = D = {1, . . . , n4/3}, so that

|Z(V ) ∩ (A×B × C ×D)| � n8/3.

This would show that (5) is tight, if it weren’t for the fact that A,B and C,D have
different sizes. (A similar, older, construction of Elekes [4, Example 1.16] achieves the
same with the polynomial xy + s− t, but is less relevant to us here.)

If we require that A,B,C,D have the same size (and then we may as well assume
that they all equal A ∪ B ∪ C ∪ D), then we can take Valtr’s polynomial V (x, y, s, t)
together with the set A = {1, . . . , n}. Similarly to in our proof of Theorem 3, considering
quadruples of the form (k, k + `,m,m + `2) with 1 6 k,m 6 n/2 and 1 6 ` 6

√
n/2, we

get
|Z(V ) ∩ (A× A× A× A)| � n5/2.

It is not hard to verify (as in our proof of Theorem 3) that V (x, y, s, t) is not degenerate
in the sense of [10], so this gives a lower bound construction for (5), which is the best
known.

Note that the polynomial F (x, y, z) in our proof of Theorem 3 can be obtained from
Valtr’s polynomial V (x, y, s, t) by setting s = x and t = z.

4.2 More than four variables

For more than four variables, we do not have a statement that is entirely analogous to
Theorem 2 or (5). Bays and Breuillard [2] proved a similar statement for any number
of variables, but without an explicit exponent, and with a different description of the
exceptional form. Also, Raz and Tov [11] extended Theorem 5 to any number of variables,
with an explicit exponent.

Because for the Elekes–Szabó problem in more than four variables we do not have
explicit exponents, and also because the appropriate definition of degeneracy is not clear,
we only briefly touch on constructions for more variables here.
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There are various ways of extending our constructions to more variables; one can for
instance take the polynomial

F (x1, . . . , xm) = (x1 + · · ·+ xm−1)
2 + x1 − xm

and the grid Am, where A = [−n, 2n]. Consider the set

T =
{

(k1, k2 − k1, . . . , km−2 − km−3, `− km−2, k1 + `2) : 0 6 ki 6 n, 0 6 ` 6
√
n
}
.

Then we have T ⊂ Z(F ) ∩ Am, which implies∣∣Z(F ) ∩ Am
∣∣� nm− 3

2 .

This should be compared with the Schwartz–Zippel bound |Z(F ) ∩ Am| � nm−1. A
potential Elekes–Szabó theorem in m variables, i.e. an explicit version of the result of
Bays and Breuillard, would give a bound of the form |Z(F ) ∩ Am| � nm−1−ηm for some
ηm > 0, under the condition that F is not degenerate in some sense. Presuming that our
polynomial F is not of this form, it would show that we must have ηm 6 1/2.
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arXiv:1806.03422, 2018.

[3] G. Elekes, A note on the number of distinct distances, Period. Math. Hungar. 38,
173–177, 1999.

[4] G. Elekes, SUMS versus PRODUCTS in Number Theory, Algebra and Erdős Geom-
etry, Paul Erdős and his Mathematics II, Bolyai Society Mathematical Studies 11,
241–290, 2002.

[5] G. Elekes and L. Rónyai, A combinatorial problem on polynomials and rational func-
tions, J. Combin. Theory Ser. A 89, 1–20, 2000.
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