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CONSTRUCTIONS IN ALGEBRA
BY

A. SEIDENBERG(1)

ABSTRACT. It is shown how to construct a primary decomposition and to find the
associated prime ideals of a given ideal in a polynomial ring. This is first done

from a classical, and then from a strictly constructivist, point of view.

An early high point in the tradition of constructive mathematics often associated
with the name of Kronecker is the paper [1] of Hermann, in which the various ideal-
theoretic notions in a polynomial ring k[X,,.++, X ] over a field k are considered.
For example, given ideals A and B, Hermann shows how to construct AN B and
A :B. Here the ideals A and B are given via (finite) bases, and the problem is
to construct bases for AN B and A:B. It is assumed that one can carry out the
field operations in & (in one step per operation), in other words, that & is explic-
itly given (cf. [11]); throughout we assume, sometimes tacitly, that & is explic-
itly given.

Hermann has also considered the problem of constructing the associated
primes of a given ideal A. The simplest case of this problem comes to showing
how to construct the complete factorization in k[X] of any given polynomial in
one letter X. If & is a field for which this can be done, we say that the factori-
zation theorem holds for k, or that & satisfies condition (F). Unfortunately,
Hermann persuaded herself that any explicitly given field satisfies (F). In [10],
van der Waerden pointed out the error; moreover, he showed, with a slight qualifi-
cation, that it is impossible to prove that (F) holds for an arbitrary explicitly
given field. Thus to get Hermann’s Theorem 11, which asserts the constructibility
of the associated primes, one has to assume at least that the base field & satis-
fies (F); but even this, as we have shown in [6], does not suffice.

Van der Waerden did not go on to examine the repercussions in Hermann's paper
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274 A. SEIDENBERG

of the error mentioned, and since (hopefully) there is no further overt error,(2) one
might well be left with the impression that all the constructions hold for any explic-
itly given & satisfying (F). This notion has also entered the literature. Thus in
[9] Stolzenberg has sought to construct the integral closure of a finite integral
domain k[xl, ooy, xn]; here %k is assumed to satisfy (F) (and k(xl, ceey, xn) is
also assumed to be separable over k). In [6], however, we have shown that the
construction does not hold with the generality claimed. The difficulty goes back

to Hermann’s Theorem 11, which, as already mentioned, requires more than condi-
tion (F).

In the proof of Theorem 10, in making an induction on =, the number of inde-
terminates, Hermann adjoins an (algebraic) element x; to % to get a new base
field k(xl). But condition (F) may no longer hold for k(xl)! This error could not
impinge on Hermann’s attention, since she thought (F) was automatic.

In [5], we introduced a condition (P) for a field k of given characteristic p:
we recall the definition below and merely remark here that it allows us to tell for
any a;,+++,a_ in k whether [kp(al, ceny as) :k?] = p*, and is, roughly, equiva-
lent to this. As we will show, all of our constructions hold for a field % satisfying
(F) and (P).

Because of the errors in [1] and the resulting confusion, we have often thought
it would be well if this work would be redone; Hermann’s paper is a historically
important, and also admirable, work, but its usefulness as a reference is somewhat
diminished. Our first object, then, is to supply a new reference for the ideal-theo-
retic constructions in k[XI, ey Xn]. We are not content, however, to assume (F)
and (P) at the outset, but want to show which conditions enter a given construc-
tion. For example, an ideal A can be written as the intersection of unmixed ideals
for any explicitly given field k; (F) is sufficient to get a primary decomposition;
and (F) and (P) are necessary and sufficient to get the associated primes. We

also consider some constructions not taken up by Hermann. For example, we show

(2) Professor G. Stolzenberg has kindly informed us of an error in Hermann’s Satz 4.
Let m =(f ++1f) be a given ideal in R= k[Xl:---’Xn] and g =max{deg fi}. Let 1<
r<n, let g €R,and let g*¥ =g homogenized with respect to Xl»m»Xr, ies, g* =
ng(Xl/XO»---er/XO, X”_lv--an), where s = degree of g in Xl’----Xr. In the proof
(p. 754), Hermann claims to compute an integer & depending only on n, r and g such that
Xog =0 (f* f’: ) for any g =0 (m).This claim will be seen to be unjustified if one
thinks of a g having small degree in X an relative to its degree in all the variables.
However, such an exponent % does exxst in fact, take & to be such that (f* f*) Xk =
iy f* ): Xk"“1 Moreover, one can compute k by 20, below. Then arguing as Hermann
does, one can construct polynomials frl :fr : in m such that any g =0 (m) can be

written in the form g= 2 gif”. with [gifri]r < [g]’ for every g; £ 0, where ["]r= degree
in Xl'""Xr'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIONS IN ALGEBRA 275

how for a given ideal A in k[Xl, ceey X"] and in the presence of (F) to construct
AN k[Xl, e X, l]; if A is primary, this can even be done for any explicitly
given base field.(3)

Something still has to be said on what is meant by a construction. According
to Hermann, ‘‘the assertion that a computation can be carried through in a finite
number of steps shall mean that an upper bound for the number of operations needed
for the computation can be given. Thus it does not suffice, for example, to give a
procedure for which one can theoretically verify that it leads to the goal in a finite
number of operations, so long as no upper bound for the number of operations is
known.”’ This is obscure, really, since one has to construct the bounds, so the
question of what a construction is remains; but the intention seems clear enough
in the situations actually dealt with. Moreover in many cases Hermann writes down
bounds which are simple functions of the numerical data, and presumably could
have done so in all.

It may be well to give an example of an argument which some authors would
consider constructive but which Hermann does not, nor (for the present) do we.

Let A=(f,-++,f) and B=(g,+++, g,) be two ideals in K[X;,+++, X ]: to

find a p such that A:B” = A: BP*1, That there is such a p follows from the
ascending chain condition in k[Xl, ceny Xn]; and Hermann in no way takes excep-
tion to the classical reasoning giving us its existence. To actually find p we
could proceed as follows: We compute A :B and compare it with A. If A = A:B,
then p =0 is a desired solution. If A £ A: B, then we compute A: B? and compare
it with A:B. If A:B=A:B?, then p=1 is a desired solution. If A:B<A:B2,
we repeat the procedure, getting a chain A <A:B<A4A: B? <.... This procedure
must terminate, and when it does, we have the desired p. But, as said, Hermann
does not allow this to count as a construction.

In the first part of the following wortk (1-72) we adopt a simple classical
point of view and will consider the above remarks as sufficiently indicating our
intent. In every case, formulae giving the bounding functions are written down (or
sufficient indications are given for doing so). The functions are referred to as
multi-recursive. The exact definition of this term is not important: the only thing
important about the bounding functions is that they should be defined without ref-
erence to existence. This will be seen to be the case for all the functions occur-
ring in our proofs.

Although we were initially guided by Hermann’s remarks, we have already
some time ago (cf. {5], [8]) come to the view that her position is untenable. The
constructions are, of course, finite in nature, but the underlying theory is not. If

one accepts the classical reasoning whereby one first gets the existence of the

A3 Subsequently, we have shown that condition (F) can be removed; see footnote 4.
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276 A. SEIDENBERG

desired object, then we can see no reason for not accepting the above considera-
tions for finding a p such that A:B° = A: BP*! as a construction. At the same
time we maintained a lively conviction that the considerations should not count as
a construction! The way out is to reject the classical mode of reasoning. This
requires, of course, a radical shift in point of view. The essential point of this
second view is that existence can only be guaranteed by a construction (and not,
as often classically, by an axiom). Construction comes first, then the declaration
of existence.

In the second part of the work (73—96), we have gone over our constructions
from the new point of view. The result is that we get not only our constructions
but also the whole theory of polynomial ideals over a field in strictly finite terms.

Notation. A set of subscripted letters is often abbreviated by the same letter
without a subscript: thus the n-tuple X,,..-, X, is abbreviated to X. Capital
letters are reserved for indeterminates: thus the Xl’ ceey, Xn in k[Xl, veey Xn] are

indeterminates.

Constructions holding for an arbitrary explicitly given base field &.

1. Given a system of homogeneous equations fi18y *o+/f;;8,=0, i=1,
ooy Ty /ij € k[Xl, cen, Xn] = k[X], one can construct a &[X]}-module basis for the
solutions (g,+++, g.), g € k[X]. Moreover, this can be done in a number of steps
depending only on n, r, s, and d = max deg fi (or, also, only on a bound for these).
By a step is meant a field operation in k.

Proof. Let u be an indeterminate over k and suppose (g,(; X),+++, g (4; X))
is a solution over k(x). Multiply the g (u; X) by a common denominator, so that
one may suppose the g(u, X) are in k[u, X]. Now in the g{u, X) consider the
coefficients of any power of u. Then this gives a solution. Hence from a basis of
solutions over k(x) one can get a basis over k. So k may be assumed infinite.

We may suppose the r equations are linearly independent over k(X), and by

notation that

faeohy,

A= : £0.
fogef

rr

Moreover, since % is infinite, by a nonsingular homogeneous linear transformation
we may assume that A is regular in (X,,+++, X ) i.e., the coefficient of the high-
est power of X in A is free of X,s+++» X__,. Then we can bring the equations
to the equivalent form:

Agy=Casdg g +eee+ (g,

Ag, = (- )g et (g,
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CONSTRUCTIONS IN ALGEBRA 277

where the (-.) are in [X]. Now we note the existence of solutions
(6119 > 81y A Oreves Osevey g yaeees ggyi Oreees 0, A

These permit us to bound the degrees in X of the sought 8 p10" " B and hence
also the degrees of g,,-+, g . Now one can rewrite the equations in terms of
Xl,..., Xn-l'

As to the number of steps, it is clear from the proof so far that the number ¢
of steps needed is a function only of n, r, s, and 4 (and not of the coefficients of
the /ii)' Moreover, ¢ = ¢(n, r, s, d) may be assumed to be monotone increasing in
each of its variables. In fact, if, for example, ¢ = ¢(r) is a function of say one
variable that is to serve as a bound, we may suppose ¢(r) is monotone increasing
by replacing &(r) by r+ ¢()+ ¢p(r~1) +++++ ¢(0). Thus we may suppose ¢ =
&(n, 1, s, d) is monotone increasing in each variable. If b > maxin, r, s, d}, then
&(b, b, b, b) will also be a desired bound.

Remark. The proof does not hold for the ring of integers Z at the base instead
of k. For we would need not merely that coefficient of the highest power of X in
A should be free of Xysoees X,_1»but that it should be a #nit in Z. Thus our
problems remain unsolved for the ring of integers at the base.

2. Given two ideals A = ([1,- cey [r), B= (fr+1,-- o /s) in k[Xl,- ooy Xn],
one can coastruct A N B. ’

Proof. Obviously, it suffices to find the (gl, ceey gs) such that g,f, +.--+
gr/r'—' g1+1f1+l Fooet gs/s'

Remark. Here, as throughout this section, one can make a statement as in 1
on the number of steps.

3. Similarly, one can construct A:B.

4. Given a system of nonhomogeneous equations

[ilgl+'”+[isgs=bi’ i=lyece,r, /,‘," biEk[Xp“" Xn]=k[X]1

one can decide whether the system has a solution in k[X], and if it does, one can
find one.

Proof. As in the homogeneous case, we may assume % is infinite. We may
as well assume that rank of coefficient matrix = rank of augmented matrix, or that
the system has a solution in (X). Then we may assume the system to be in the
form:

Mg =( g, +eees (o o)g we

Ag, =( g+t (cdg v,

where the (..) are in k[X]. Since & is infinite, we may assume A to be regular.
Subtracting solutions of the corresponding homogeneous system, we may bound the
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278 A. SEIDENBERG

degrees of the g, in X . Then we can rewrite the system in terms of X,,+--, X, 1

5. Given an ideal A = (/l,- ‘e, /s) and an element & in k[Xl,- oy Xﬂ], one
can decide whether b is in A, and if it’'is, one can find 8120 & in A[X] such
that b=g,f, +++++g_f . In particular, one can decide whether A = (1).

This is an immediate application of 4.

6. By the dimension of a prime ideal P in k[X;,+++, X ] one means the
degree of transcendency of E[X)/P over k. By the dimension of any ideal A # (1)
one means the maximum of the dimensions of the associated primes. Thus dim A =
max {7| Xil’ e, Xir ate algebraically independent over & mod A}. For A = (1) one
places dim A = -1,

Given A = (/1, ceey /s) in k[Xl, cee, Xn], one can decide whether X, -, X,
are algebraically independent over k mod A. In particular, one may find dim A, the
dimension of A. If X,,+-+, X_ are algebraically dependent over & mod 4, one can
find an f €k[X ,+++, X ]~ 0 such that f € A.

Proof. One has but to consider the ideal k(Xl, cee, Xr)[X”l, cev, Xn]A.

7. If A is O-dimensional, one can put a bound on the dimensions of k[X1/k[X]A
as a k-linear space.

Proof. By 6, one can find f; €A[X ] -0, i=1,..+, n, such that f(X) €A.
Then I degree f, is a desired bound.

8. Let X=X, (ie.,n=1), R=k[X], S=k(X), RZ  ++++ RZ  a free R-
module with Z,s+++, Z_ as free generators, m = (ll’ veey ll) a submodule; here
l,= fil(X)Zl +eeet f, (X)Z_, with fij € k[X]. Then one can construct Smn 3 RZ..

Proof. Let rank ||f;.|| = r. By the so-called “‘Elementarteilersatz” (cf. [12]),
one can find free generators ZI' sy ZS' of X RZ, and a new basis l{ sy l"
of m such that li’ = gi(X)Zi' with g, € k[X]. Then, clearly, Sm N < RZ, = (Z; s
ez,

Remark. Here we need a constructive form of the ‘*Elementarteilersatz,” and
not merely a statement of existence, but the familiar proof of [12] is already of the
desired form.

9. Let »> 2. Place

R=kXppeees X ] S=kX )X, 000, X ],

|3

Consider a free R-module, with ZI,- ooy Zs as free generators. Let 11. = filzl +

Rn=k[xl’...’xn—l]’ Snzk(xl)[xz’...’xn—l

vortfiZo i=1,0005ty [ € k[X], and consider the R-module m generated by
ll" ooy lz' Let the matrix (/ij) be of rank 7 and assume (by notation) that D =
det lfij ly 45 j=1,+44, 1, is £ 0. Moreover assume that D is regular with respect
to Xy,e++y X . Consider the R -module » generated by Liypeeesly X 1iseee,

Xolpoves XN eee, XN, Place L5 = ZX, and let ¢ > max{deg [, Then n
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CONSTRUCTIONS IN ALGEBRA 279

is contained in the free R -module generated by the <. » N+ g. Place

i4sj? i=
N =gt - 1. Now we claim:

Sem ﬁZRZ}.=m+ (Sn-n ﬂZRan).

Proof (cf.[1]). Thete are elements in m of the form DZ, + (- -)Z'+l Feeet
(. -)Zs, i=1,+++, 1, where the (..) are in X[X]. Hence any element in RZl Foee
+ RZ is congruent mod m to an element g,Z, +++++ g Z (g, € k[X] with
deg g, <deg D, i=1,.--, 7; here as throughout the proof, deg stands for degree
in X ). Thus given an element /= 81Z ++-++gZ in S.mD 3 RZ,, we may
first suppose deg g, <deg D, i=1,+++,7. Now [ in S.m N3 RZ implies that
there exists an F(X,) in k[Xl] -0 such that F(X ) =a,l +-+-+ a,l, with the
a; in k[X]. Since Dl”z. € Rl ++--+ Rl , we may suppose (by redistributing the
terms) that deg @, , <deg D <gt=N+1 for i>0. We have F(X,)g, = 2;=1 a;f;
Consider these for i = 1,+++, 7, multiply by the cofactors Fki of the kth row of

/11 ‘ '/1r

»/rl ‘ '/rr

k=1,-++,7, and sum to get 3, AX)g;Fy; = Da, + 37 E]” a]./].l.Fkl.. From
this one concludes that also deg a; < N for j<r hence for all j. Hence F(Xl)l €
2R, and l €m+(S -nNE R (). The opposite inclusion is immediate.

Remark. The same statement with the same proof holds if § and S, are
replaced by

R(Xpoeees X X peees X1 and A(X peee, X)X peee, X,
L

respectively, with 1 <m <n.

10. Let »> 1. Place R = k[Xl,--- , Xn], S§= k(Xl)[Xz,---, X ] Consider a
free R-module, with Z,,..+, Z _ as free generators. Let Li=fZ)+ee+ [;sZ ¢
I=1,000,t, /ii € k[X], and consider the R-module m generated by ll’ . lt.
Let the matrix (f ) have rank r and assume that D = det l/ |, iyj=1yeee,rnis
# 0. Assume that k is infinite. Then for some homogeneous nonsmgular linear

transformation X = cllX1 Feeot cinxn over k, one can construct
] ! !
KXDIX e, X1 e mn 3 RZ,

Proof. For n =1, we already have the result from 8, so let » > 2 and make
an induction on n. Since k is infinite, after an appropriate homogeneous nonsingu-
lar linear transformation, D becomes regular in the new variables; notationally, we
may suppose this to be so already for Xl’ cesy Xn. Hence from 9, we have

S. mﬂZRZ}.=m+ (Sn . nnZRné'k).
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280 A. SEIDENBERG

To complete the construction, however, we must still construct Sn nNZ Rn‘:k'

We have not asserted that this can be done, but by induction, after an appropriate
linear transformation XI.' = cl.IX1 et
struct k(Xl' )[X; yer ey X’; - 1] N3 Rnék: this transformation does not change

Xn_l, i=1,+++,n-1, we can con-

my ny % Ran, D, nor is the regularity condition on D lost. What is changed is that
Xys+++, X, _, must be replaced by X{ RN X:;-l (and in particular, X; by X;);

then one can write:
RXDIX oo X, X 1N RZ = m + (k(x'l)[x'z,. vy X! Ten anngk),

and since one can construct the right-hand side, the proof is complete.

Remark. One can arrange to have Xl' =c, X, + ¢, X, +eetc X with ¢ £0,
where Xl’ veey Xn are the originally given variables. Then k[Xl' R Xz' sty X’:] =
KX 15 Xppeees X, ) and XX yeeey X1 )= kXX 5000, X .

11. Let R, m be as in 10, except that k may be finite. Let u,,-.-, u, (= u)
be indeterminates and place Xl' =u X, +---+u X . Then one can construct

k(u, X'l) [Xz’ veey Xﬂ] emn Y k) [X]Zi'
Proof. Let ¢ be a single indeterminate and let
Lek(t, X VX y5eeey X, 1o mn 3 ROIX]Z,.

Write [ in the form I = ({77 4 17+D7+1 L L) /A1), where the I are in S k[X]Zi
and d(t) € k[¢]. Then the I, are in k(Xl)[Xl, cee, Xn] mN> RZ . In fact, since
d(t)l is in k(1, X NXpeee,s Xn] -m NZ k(1)[X]Z , we may as well suppose d(2) = 1.
There exists an F(t, Xl) € k(t)[XI] — 0 such that

1) F(:, Xl)l =a,(s, X)ll doeet at(t, X)lt,

where the a (¢, X) are in k()[X]. Clearing denominators, we may suppose F and
the @, are in K[z, X]. Let F=F t°+ F_t5*! 4. ., with the F, in #[X] and
F_ # 0. Comparing the coefficients of t"+° of the two sides of (1), we see that
1N ¢ k(xl)[xz’ . Xn] n RZ . Subtracting I from 1, we see that I7+1) ¢
KX MX,5e++, X 1 N2 RZ ; etc. Hence from a basis of k(t, X )NX,5+-+5 X 1+
mN X k(t)[X]Zl. we can derive a basis for k(Xl)[Xz, oo, Xn] mNI k[X]Zl.. Thus
we may adjoin an indeterminate to k(u) and later remove it.

Following 10, to get a regularity condition on m we make a transformation
X'.' =u X et u, X , where the u;; are indeterminates. After this, to get a
regularity condition on n, we make another transformation X:.' = v“Xl’ Fooet
Vi lxr'z-l’ i=1lyeeeyn=1, X: = X:z , with the v, further indeterminates; etc.,
till we get variables X(l"'l), cee, XSI"' D, Let K= k(z, v,---) and X} = X(l""l).
By the argument in 10, then, we can construct K(X’; )[Xz, cee, Xn] mNZ K[X]Zi;

here, if X’i‘ = u’i‘lXl oot u’;nxn we have to observe that u‘;l # 0 (see the remark
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CONSTRUCTIONS IN ALGEBRA 281

in 10). Let U, V,-+. be the matrices such that X' = UX, X" = VX',+.+; and let
x(r=1 (2 x*) = U*X and let U* = (u’x'.‘,.). Since U* =...WVU, the u’;,. are rational,
in fact linear, functions of the . with coefficients in k(v, w,+++); and vice-versa,
so that k(v, wy«++; ) = Ry, wy oo 2¥), and k(X, vy wy e+ ; &) = (X, v, wy-o o5 &%)
Hence

dt k(x, Vy Wyer ey u*)/k(x’ Uy w"")=n2;

and the u%; are algebraically independent over KX, v, w,++-), in particular u}; # 0.
Let u’' abbreviate the (n — 1)n quantities u i> 1. Since U* =...WVU, we see
that u’i‘j =aup+ b,. with a, b]. € ku', v, w,+++]. Upon specializing V, W,«..
to the identity matrix, the matrix U* specializes to U; and u’i‘i to uy ., whence

a; # 0. Hence

% *
K=k, vy w0 )= R see ey 2] sty vy wyees)s

By the first paragraph of the proof, we can delete ', v, w,+++ from K, i.e., we can
construct

k(utl,--o ’ u*ln, X’:)[Xz,--- ’ Xn] em ﬁZk(u’:l,- sey u?n) [X]Zi‘

Since u*,-.., u* are algebraically independent over k(X), we can just as well
11 1n & y P )
write #y,+++, u  instead of ufpseey u’i‘n, and the proof is complete.

Remark. In [8], we showed that after the transformation Xi' =u Xy +eeetu, X,
not only m but also » and all the subsequent modules already have the desired
regularity property.

12. Let R = k[Xl,- ey Xn] and m = (ll" .y lz)’ a submodule of the free
R-module X RZ . Then one can construct EXmn X k[X]Zi.

Proof. Let uy,+++, u, be indeterminates and place Xl' =u Xy +eeeru X .
Since k(ul,---, uy Xpseeos Xn) = k(ul,---, U, X{, Xypeees Xn), we have
dt k(z, X{)/k=7n+1, so k(u, X;) is explicitly given. We now work over this field
and make an induction on n. Hence we can construct

E(u, X)m ('\Zk(u, X{)[Xz,n sey Xn]Zl. =m,.
From a basis of m; we can derive a basis in p) k[X]Zl.; we omit the simple consid-
erations, of a type already encountered, for proving this. Hence we have a sub-
module m, of T k[X]Zl. such that m, = k(z, Xl')[Xz,- ++y X_Im,. By 11, we can
construct m; N b k(u)[X]Zl., so we now have k(z, X)m N 2 k(u)[X]Zi. Now we
delete Upseeey U, tO complete the proof.

13. Let R and m be as in 12, Let Xl.' su X 4eeet ul.an, i=1y0eeyq,

where ¢ <7 and the u;. are indeterminates. Then one can construct

k(ll’ X'l’. sy x;)[x sy Xn]m nzk(u)[X]Zl.

g+1?
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282 A. SEIDENBERG

Proof. The case g = n is 12, and for g < n, the proof follows precisely the
lines of 10 and 11.

14. Let A be a given ideal in k[XI, ceey Xn] and let Xt.' =u X et u; X
i=1,0¢+, s, where s <7 and the u,. are indeterminates. Then one can construct

Ry Xae ooy XOIX_ 90005 X 1A 0 R@IXD
This is just the case s =1 of 13.

15. The ideal A(z, X{,+++, XX
in k[X] which can be constructed..

JSRTEREF Xn]A N k(2)[X] of 14 has a basis

Proof. This is rather immediate using the normal decomposition theorem, but
we give an alternate proof which will be useful later (cf. 76).

We have a basis of k(u, Xl" cee, X;)[X]A N k(2)[X] = B which we may suppose
consists of elements in klux, X]. Let f(z, X) be one of the basis elements; it suf-
fices to show that the coefficients of f, regarded as a polynomial in the U are
in B. We have an E = E(z, X{5+++, X[) € Rlu, X{,+++, X1 = 0 such that Ef €
k[, X]A. Then a(Ef)/auij and E(?(E/)/auij are in klu, X]A, whence Ezaf/auij €
ku, X]A and af/aui]. € B. In the case of ch 0 it follows that the coefficients of f
are in B. In the case of ch p > 0, one writes [ as a polynomial in the uf'l., k=
0,1,---, p = 1, with coefficients in k[x?, X]; and concludes, as before, that these
coefficients are in B. Replacing E by EP, writing v for %, and repeating the argument
several times, one soon comes to the desired conclusion.

Remark. If R and § are rings with RCS and A is an ideal in R such that
§-A NR = A, then we frequently write A for §.-A also, as this can usually be
done without confusion; in particular, we may do this if R = k[Xl, ceny, Xn] and
S= k(u)[Xl, cesy Xn], where # stands for some indeterminates. Then if A = Q1 N
e N Q441 A...NQ is anormal decomposition of A (of 14 and 15) into primary
ideals and Q Lttt @, are the primaries of dimension < s, then, using familar proper-
ties of quotient rings, one sees that the intersection of k(u, X l" seey X;)[Xs+l, ceey Xn]A
with Rz)X] is Q,N-++NQ; and the intersection with HX] is also Q,N++NQ..

16. Let A be an ideal in k[Xl, ceey, Xn] of dimension 7> 0 and assume it has
a 0-dimensional prime (something we can decide by computing A(z, X ;)[Xz, ey X 1A
N kw)X] and comparing this with k(z)[X]A). Let A = Q,N-++NQ N-c.NQ be
a normal decomposition of A and let Qg 100> Q, be the O-dimensional primaries.
Place B=Q,N-.-NQ_, n= Qs4t
dimensional ideal n' such that A = B N n'.

A...N Q.. Then one can compute B and 0-

Proof. Let Xl' = qu1 Yoot uIan, where the u,; are indeterminates. Then
k(u“,-- .y uln, xll)[xly XZ" “0y X"]A N k(ull’. ‘% uln)[X] = k(ull’... ] uln)[X]B'

Hence we can find an El in k[uu,---, Uy Xl'] — 0 such that EB CA so BC
A:E1 (in k(uu,---, ”ln)[X])‘ Now also A: E, CB, sinceif g Ek(uu,---, "ln)[X]
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and gE, €A, then obviously g € B. So A:E, = B. Note also that B: E, = B,
since if gE, € B, then gEi €A and g € B. Now we say:

1) (4, E)nB=A.

In fact, the right-hand side is obviously in the left; conversely, let g €(4, El) N
B. Then g=bE, + a, with b, a € k(uu,--- , uln)[X] and @ € A. Since g € B, gE,
€ A, whence bEi €A. From this bE, € B and b € B. Hence bE, €A and g €A,
so equality is proved.

Now extend the base field with further indeterminates u,;,+++, u,, and
repeat the argument. Since B, i.e., the intersection of the primaries of A of posi-
tive dimension, is uniquely determined, one sees from (1) that the intersection B1

of the primaries of (A, E|) of positive dimension must contain B. Hence we find
(4, E, E)NB =(4,E)) and (4,E,E,))NB=4;

here we are working in k(uu, ceey, uZn)[X] and E2 = EZ(XZ') € k[uu,. ey Uy X1,
where X; =uyX, +++++u, X . Repeating the argument several times, we get
(A, B}y Epyeers E)N B =A, where E, = E(X]), X =u, X +-+++u, X . Then
ny = (A, E,, Ez’ RN En) is O-dimensional and the problem is solved over k(u).

Now let A:B =m (in k[X]); then m is a O-dimensional ideal having the same
primes as n or »,. Since ny<n;:m<n, im? <ouo, by 7 one can compute a p
such that m* C n, (not n!). Now A CB n(4, mP)CA, i.e., A =B N (A, mP), as
desired; this is first obtained in k(z)[X], but since A, B, and m are k[X]-ideals,
it is also seen to hold in k[X]. Then n’ = (4, m”) solves the problem over k.

17. Let A be r-dimensional, 7> 0. Let A=Q, N...NQ N...NQ bea
normal decomposition of A, and let Q,,+++, O _ be the r-dimensional primaries.
Then one can construct Q, N...NQ .

Proof. One applies 14 and 15 for s =r.

18. Let A be r-dimensional, r > 0. We can test whether A is unmixed, by 17,
and if it is not we can find the least s for which A still has s-dimensional primes;
assume this situation. Let A=Q, N...N QSI N +++NQ, be a normal decomposi-

tion, and let Q -5 0, be the s-dimensional primaries. Place B=Q, N ...

g
N Qsl’ n=0_ s::;\ +++NQ,. Then one can construct B and an unmixed s-dimen-
sional ideal »' such that A =B N »'.

Proof. One first computes B, by 14 and 15, then an ideal m in k[Xl, ooy Xn]
having the same primes as = (m=A:B). Now in k(u, Xl', ceey X;)[Xs+l, ceny Xn],
for a p one can compute, A = B N (A, m”). In K[X], (A4, m”) is s-dimensional,
but may not be unmixed. Let » be the intersection of the s-dimensional primaries

of (A, m”). We can compute n. Then
k(us Xlly‘ LI X;)[Xs+l’.- .y Xn]n = k(u’ X;,‘ sey X's)[xs+1” sy Xn](As mP)

and the contraction is n. Hence A=B Nn.
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19. Given an ideal A in k{XX, -+, X ], one can write it as the intersection
of (constructed) unmixed ideals.

This is a corollary of 18.

20. Let A, B be two ideals in k[Xl, vee, X"]. Then one can calculate an
integer p such that A:B” = A:BP*!,

Proof. Since A:B’=A:B*! implies A:B'*! = A:B'*?, the chain A CA:B
CA:B?C... is strictly increasing till we come to equality. By 19 we may assume
that A is unmixed, of dimension r, say. Then the ideal A: Bi - Ci’ if not = (1),
is also unmixed r-dimensional. Then the strictly ascending chain A <C; <C, .-«

remains strictly ascending in k(x, Xl" cee, X")[X sooy X 1, where Xl.' =u, X, +

’
st uinxn, i=1,.++, 1, and the u,. are indeterr;;:lates. In this ring, however,
the ideals A, Cl" .+ are O-dimensional, so by 7 we get the desired bound p.

21. Let bl’ oo, bz be polynomials in k[Xl, ey, Xn] of degree at most N,
for a given integer N. Then the (bl’ ceey bz)’ over all possibilities, are in one-to-
one correspondence, via the coefficients of the b, with the points in an affine
space over k; say (bl’ ey bt) corresponds to P(bl’ ceey bt). Consider a system
of equations: 18, ++++ [, 8, =b, i=1,.-+,1 as in 4. Then the points
P(bl’ cen, bs) for which there is a solution (81’ ceny gs), g; € k[X], fill out a k-
linear space, and one can construct a basis for this space. Otherwise said: The
conditions that the system have a solution are linear and homogeneous in the coef-
ficients of the bi, and one can construct a k-basis for the conditions. )

Proof. That the P(bl, cee, bz) fill out a linear space is obvious, and it is
merely a question of constructing a basis for this space. If & is finite, we can
write down all possibilities for (bl, ceey bl) and test, by 4, for which ones the
corresponding linear system has solutions. If % is infinite, then, following the
lines of 4, Proof, one sees how to write down the desired basis (or conditions).

22. Let A = (/1" . /s) be an ideal in k[Xl,- . Xn], n> 1. If at least one
n- 1]'

Proof. We are looking for the g =g,f; +-+-+ g f  with g € k[X] and with

of the f, is regulacin X,,--, X , one can construct A N k[Xl,-- - X

degxn g = 0. Clearly we may assume f_ # 0 and that it is regular in Xpperos X _ye
Using the regularity of /_, we can depress the degree in X of g,+++5 8 _,
and thus put a bf)und on the degree in X of gy,---, g . Writing g, = b 8 X;
and f, = 3 /l.]. X;, the condition degxn g = 0 can be rewritten as a homogeneous
linear system in the 8t By 1 we can construct a basis for the (- -+, gip"" -),
and the corresponding g give a basis for (f},- -+, /) NA[X[,-oo, X 1] (cf. [7,
Lemma 2]).

23. Let A =(f;,-++,f,) be a primary ideal in k[X ,.++, X ]. Then one can
construct A N k[Xl,- . Xn_l].

Proof. Let s =dim A. If s =0, one can find an { € k[Xn] -0 in A. [ is regular
in X 1

+++, X ,soby 22 one can construct A nk[xl,..., X

19 ne1
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For s >0, we make an induction on s. If every X ,i=1,--.,7n -1, is alge-
braic over k& mod A, one can find a gi(xi) € k[Xi] ~-0in A, i=1,--.,n=1. Let
gEAN k[XI, e X 1] be an element sought; reducing g mod (gl’ cee, gn-l)’
we may suppose degxi g< degxi g;=d, i=1,---,n~1. Let b,---, b, be the
power products of the X, with degxi bi < degxi g; forevery i and j, i=1,...,
n—1, j=1,-+., M. It is then a matter of finding the Cprtes Cy such that clbl +
oot cyby =118, +++ /.8, has a solution (g,-+, g.) with g, € k[X]. This
can be done by 21.

If at least one Xl., i=1,-+«, 2~ 1, is not algebraic over & mod A, let X{ =
) X; +ee-+u, X _,, where the u, are indeterminates. Since A is primary, one
notes that k(z, X)[X]4 N k@)[X] = A. Thus it suffices to construct k(u, X)[X]A
N k[Xl, ey Xn_ 1]. Since A has dimension s — 1 over k(x, Xl'), we can construct
k(u, Xl')[Xz, cee, Xn]A N k(u, XI')[XZ, sy X 1] = A’. It rtemains to construct A’
(\k[Xl,- e X l]. We have a basis g;,---, g, for A' and may suppose g €
k{u, Xl" Xppeoos X _ l] C klu, Xppeeos X _ l]. When these are written as polynomials
in Upsreeyu, with coefficients in k[Xl, oo, Xn_ 1], one sees that the coefficients
are in A, hence in A’. Thus one has an ideal A” in k[Xl, N X"_ l] such that
k(x, xll)[xz’ ceey X"_ I]A” = A'. By 15 one can construct &z, X;)[Xz,..., xn_ I]A"
NRXppeees X, )

Remark. The problem of constructing A N k[Xl, ey X l] for an arbitrary
ideal in A[X .-, Xn] was posed in [9). If k satisfies condition (F), then one
can find a decomposition of A into primaries (see 36 below), and the problem can
be solved for such fields k. Whether the construction can be done for any explicitly
given field & we do not know.(4)

24, Definition. A finite integral domain k[xl, vee, xn] is said to be given if
one is given (or knows) a finite basis for the ideal of relations satisfied by x,,---
v+, % over k. The field k(xl, ceey xn) is then also said to be given (relative to k).

A given field k(xl, TN xn) is explicitly given, but not vice versa.

By 23, if {i},+-+, il is a given subset of {1,---, n}, with i #1i, if j£k,
then the field k(xil, cee, xx.s) is given if k(xl’ ces, xn) is.

25. If k(xl, .-+, x_) is given, one can decide whether x_ is algebraic over

(4) Now we see how to do this, but will let what we have written stand, in order not
to disturb the structure of the text. Let m = ([1'""ft) be a given ideal; we propose to
construct m N k[szmrX"]. Let fll""'flq be the polynomials constructed in footnote 2

(forr=1). Let gemn k[XZ""’Xn]’ i.e., g=0 (m) and [g]l = 0; and write it as stated:
g= Igif“ with [gifli]l S.[g]l for every 8; #£ 0. Then the f“ with [fli]I =0 will be

seen to be a basis for m N k[Xz""'Xn]' This part of the argument was communicated to
us by Professor Stolzenberg.
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k(xl, cees X, l); and if it is, one can find the defining equation for x, over
R(xyyeeeyx )

Proof. Let (/1, cee, [s) be a basis for the k[Xl, caey, Xn]-ideal P of relations
satisfied by x,,+++, x_ over k; and, by 23, let P be the k[Xl,- e X l]-ideal
of relations satisfied by Xyseeey X _, OVer k. We also designate by Po the exten-
sion of P, to k[Xl, cee, Xn]. Then

(ll(xl’“.’xn-l’ Xn)’.“’/s(xl"..’xn-l' Xn))= P/Po

in k[xl, TP S X”].. We can decide whether P/P0 =(0); and x, is algebraic
over k(xl, vees X _ l) if and only if P/Po # (0); assume this case. Then P/P0
generates a prime principal ideal in k(xl, tees X 1)[Xn], and using the Euclidean
algorithm we can get a single generator for it. This generator yields the desired
defining equation.

It will be convenient to say that 0 = 0 is the defining equation for a transcen-
dental element.

Remark. The argument can be considerably simplified if one assumes condi-
tion (F) for k; 23 was brought in in order to avoid (F).

26. Let a sequence of fields k(xl), k(xl, xz), con, k(xl, ves, xn) be deter-
mined by giving, for each i, the defining equation of x, over k(x;,+++, xi_l);
here x; may be transcendental over k(xl, IR 1). Then one can construct a
basis for the ideal P of relations satisfied by Xyseeey X, OVer k.

Proof. By induction we may suppose we have a basis f;,+++, f  for the ideal
P, of relations satisfied by %5+, % _, over k; we also designate by P the
extension of (/1, ceesf) to k[Xl, . Xﬂ]. Let F(xl, ST Xn) =0 be the
defining equation of x  over k(xl, sees X 1). Here we may suppose F €
kX ppeees X 1y F=D(Xppeeey X _IX™ 4D (X 5eeey X, DX™ 1 iees and,
dismissing the trivial case that x, is transcendental over k(xl, SRR 1), that
D(xl, ceey xn_l) #0. Let G ekX, ..., Xn] with G(xl,---, xn)=0. For some p
we have D?G = AF + R, where A, R €R[X seees Xn] and degxn R< degxn F.
Moreover, R(x;y+cc5 % _ ;s Xn) vanishes for X =x , whence R(xj,+++, X1 Xn)
=0 andR € Py. Thus G €(P, F):DP. Conversely, any element in (P, F):D?,
for any p, is in P, so P = Up ((PO’ F):Df) and P = (Pys F):D” for large p.
By 20, then, P can be constructed.

Definition. If a field k(xl, ceey, xn) is determined by giving, for each i, the
defining equation for x, over k(xl, ey X, 1), then the field k(xl, ceey xn) is
said to be canonically given (relative to k). (Thus by 25 and 26 the field
k(xl, caey xn) is given if and only if it is canonically given.) In the case that &
is a prime field of given characteristic, the canonically given field k(xl, e, xn)

is said to be absolutely given.
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27. Let the field k(x;,+++, x_) be given and let y,,+++, y_ be (given) ele-
ments in k(xl, ooy xn). Then one can construct a basis for the ideal of relations
satisfied by y,s+++, y  over k.

Proof. By 25 we can find the defining equation of x; over k(xl, ceesx,_g)
Moreover, if y; = a(xl, cee, xn)/b(xl,- cey xn) with @, b € k[Xl, cos, Xn], then
b(xl’ veey xn)yi - a(xl, cee, xn) = 0 is the defining equation of y,; over
k(xl, XXPERE TIIRRPS P l). Hence by 26 we can construct the ideal of relations
satisfied by Xyseeey X 5 Yystny Yy, OVer k; and then by 25 the ideal of relations
satisfied by y,+-+, y  over k.

28. Definition. Let A be an unmixed r-dimensional ideal in k[Xl, tee, X"]
with r < n, so that if Xi' = u“Xl Feesd ul.an, i=1,¢0+, 7+ 1, with the g

indeterminates, then
kluy Xopeoos XDIXIAO RDIXI= A and ks Xpeee, X)X N R@)XT = Q).

The ideal k@)[X]A N k(u)[Xl', coey, r+l] is, as one proves, a principal ideal (F).
The generator F may be taken in klz, X+ -, '+1] and primitive as a polynomial
in Xl’" . Xr' with coefficients in klz] (i.e., the coefficients should have 1 as
greatest common divisor). Such a polynomial, though still not unique by a factor
in k, is called the ground-form of A.

In the case A is a prime ideal P, the ground-form F is obviously irreducible.
Let k[X]/P = k(x) and let x' = U, %+ + umxn, i=1yees, 7+ 1., Then
Flu; x 1, ceey x ) 0, and since dt k(u x . xr'+l)/k(u) =7, Flu; Xl',---, X:+l)
is the 1rreduc1ble polynomial satisfied by xl, N x"” over k(u).

29. Let A # (0) be an unmixed ideal in k[Xl, cee, Xn] (so that dim A =7 <n).
Then one can construct the ground-form of A.

Proof. We treat separately the case r=n-1 andr<n-1. f r=n-1, then
A is principal, A = (F); and when F is written in terms of (generically) transformed
variables and normalized, we get the ground-form, Now let r <7 -1 and let X l' =
ullxl Foeed uinxn, i=1,+¢+,n, with the Ui indeterminates. Since any element
in A - 0 becomes regular in X{, ceey X’;_ 1» by 22 we can construct A N
k(u)[Xl', coey X':_ l]. If r = n = 2, then this intersection is a principal ideal (F),
and F, when normalized, gives the ground-form. If r <2 -2, we repeat the argu-
ment, so that if X" =v, lxl' Feoot um_an_l, i=lysee,n=-1, X =X' e with
the v . further mdetermmates, we can construct A N k(z, o)X e Xn 2]
Eventually we construct k(z, v,- )[X(""'l) .ee Xiﬁ;"l)] Wnte X* for
x{(n=r=1) et U, V, W,... be the matrices of the transformations X — X', X' —
X', X' = X",+++; and let X* = U*X, so that U* =... WVU. Observing that
kv, wyeos; u) = By, wye o+ ; 2*) and that v, w,+++, u* are algebraically indepen-

dent over k(X), one sees first that one can construct A N kv, wy++«; u*)[X*l‘, cesy Xj+1],
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hence A N k(w*)[X},-++, X¥ ;] and 4 N k@)X e, X:u]. This soon gives the
ground-form.

Basic properties of the ground-form. This section is not constructive in intent,
but merely recalls some basic facts.

30. Let P #(0) be a separable prime ideal in k[Xl, ey Xn], i.e., if k[X1/P
= k[x], we are assuming that k(x) is separable (i.e., separably generated) over k.
Let X/ =u, X, +---+u, X ,i=1,++,r+]1, with the u,; indeterminates, and
let Fu; X{,- . X:H) be the ground-form of P. Then F is separable in Xr'+1
(over k(u, Xl',- . X")). Moreover, if x: = U %y +eeetu, %, then xr'+l is a
primitive element of k(u, x) over k(x, xl', cee, x").

Proof. Introduce further indeterminates and write xi' S U Xy et U X o,
i=1,.++, n. Then k(u, x) = k(u, x*), k(u, x') is separable over k(«), and some r,
hence by symmetry any r, of the xl', ten, x': form a separating transcendency
basis of k(u, x')/k(x); cf. [13, p. 104, Theorem 30]. Hence x:+1 is separably
algebraic over k(x, xl' SR x"). Thus the defining polynomial of x: 41 over
k(u, "1" ey x") is separable, and as this is F(z; xl', ceey xr', Xr'“), the first
assertion follows. Now from F(u, x{, ceey x"+l) = 0, taking the partial with respect

to U, we get dF /ou + 8F/3x"+1 -x, = 0. Since aF'/axr'+l # 0, the second

r+li
statement follows.

31. Distinct r-dimensional primes (r < #) have distinct ground-forms.

Proof. Let P be an r-dimensional prime, x a generic point over k&, We con-
sider first the case that k(x)/k is separable. Let xl.' =u Ky ket U X, i=1,
«+«+,r+1, be as in 30, and let F be the ground-form of P. We have seen that
a{:/aurq.li

1 [
Xiseevy %, . Now (xl,---, x

+ aF/c?:c:+1 -x, =0 (and GF/axr'+l # 0), so we can recover the x; from
r'+1) is a generic zero of F(u, X")/k(u). Any other

generic zero (x},+++, x* ) of (F)/Ku) is a conjugate of (xl', cony x7'+1)/k(u),

and hence
_ aF/aurHl e aF/auH»ln
aF/aX;ﬂ aF/aX'rﬂ X'=x*

conjugate of (x,,+«+, x )/k(u). We can recover P from (xy5+++5 x,) or equally
well from any of its conjugates over k(). From F we can get a generic point
(x%, ¢+, x¥,;) of (F)/k(u), and from x* and F we can get a generic point of
P/k(u) and P itself. Hence we can recover P from F. Hence if Pl’ P2 are two
distinct separable primes, their ground-forms must be distinct.

In the general case, let k* = perfect closure of k. Let P, P, be the given
primes. Over P, (i=1,2) in k*[X ,.-+, X ] there lies exactly one prime P}.
The ground-form of P, is a power of that of PY. The primes P}, P} have distinct
ground-forms by the case considered. Hence so do P, P,.

32. The ground-form of a primary ideal is a power of the ground-form of its
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associated prime; and the ground-form of the intersection of several r-dimensional
primary ideals Q,,-+-, O having distinct associated primes is the product of
the separate ground-forms.

This is immediate.

Constructions holding for a base field & satisfying condition (F).

33. Consider the following problem. Given an f € k[X] - 0, X = X,, to con-
struct the complete factorization of [ over k. If this problem has a positive solu-
tion for k, we say that condition (F), or, also, the factorization theorem, holds for
k. For example, any prime field of given characteristic satisfies (F).

34, If (F) holds for k, then one can also completely factor any polynomial in
k[Xl, ceey Xn] — 0. Hence if (F) holds for &, then it also holds for a simple tran-
scendental extension of k.

We recall Kronecker’s proof: ) )

Kronecker's trick. Let f=2 Cil"'inx; ... X;", Cigerip € k, be the polyno-
mial to be factored. Let t be an integer greater than any exponent i]. in f. Let X
be a new indeterminate, to a power-product X;l oes X;" associate

Xi1+izz+-- . +int""1,
andto f=3 cil"‘inxil ces X:" associate
i 4eee +i”t”"l

[ 1
[=zci1"'inx .

From [’ we can recover f. Any factorization of { gives rise to a factorization of
f', from which we can recover the factorization of f. Since f' has only a finite
number of factorizations, all of which we can write down, we can recover all pos-
sible factorizations of f.

35. If (F) holds for k, then it also holds for a simple separably algehraic
extension k(0) of k. :

This is known from [11], but it will be well to recall the proof. Let, then,
F(8, Z) € k(0)[Z] be the polynomial to be factored; we may suppose F to be monic.
Let u be an indeterminate. Form the norm of F(6, Z — u0) and factor it completely
in klu, Z1:

N(F(8, Z - u6)) = F,(u, Z) +++ Fluy Z).
We form GCD (F(0, Z ~ uf), F), i=1,+++, t; if this is not 1 or F9, Z - uf), we
can factor F(, Z - uf) properly, and placing u =0, we get a proper factorization
of F(9, Z). Hence we may assume GCD (F(9, Z - »0), Fi) =1 or F8, Z - uf)

and F,(u, 2)=0 (F(6, Z - u0)). In this case, F(6, Z) is irreducible. In fact, sup-
pose F(0, Z) = g0, Z)b(0, Z) with deg, F =n>m=deg, g >0. We have

NF(8, Z - uf) = Ng(0, Z - uB) Nb(6, Z ~ ub).
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We may assume Ng(f, Z — u6) =0 (Fl)’ so that Ng(8, Z - uf) =0 (F(0, Z - u0)).
Regarding solely the terms of greatest degree, we get N(Z - u0)™ =0 (Z - 40)",
whence N(Z — 20) = 0 (Z - 46)?, a contradiction.

36. Let A be an unmixed 7-dimensional ideal in k[Xl, ceey, Xn], r<n. Ifk
satisfies (F), then one can construct the associated primary ideals of A. Hence
for any ideal A one can construct a normal decomposition into primary ideals,

Proof. Given A=Q, N...N Q> unmixed, r-dimensional, we can construct its
ground-form F and factor it (over k(«)) into a power-product of irreducible polyno-
mials: F=cF}!...F},
associated primes Pl"' . Pt and F;l,-n . F:’ those of Ql""’ Qt. Then Ql =
A :F';2 cee F:’; and similarly for the other Q..

Remark. Let (F') be the condition on k that one can write any polynomial in

c € k. Here Fl’ BRI Fz must be the ground-forms of the

k[Xl, ceey Xn], effectively, as the product of primary ideals. Then one sees that
it is (F'), rather than (F), which is necessary and sufficient for the construction
of a primary decomposition. Later (see 54) we shall give an example showing that
F"H really is weaker than (F).

37. Given a primary ideal, we can put a bound on its exponent.

Proof. Reduce to the case of dimension 0 and apply 7. However, we have
already dealt with a more general situation in 20.

38. Let A be an ideal in k[Xl, ey Xn]. If k& satisfies (F), then one can
construct k(Xl)[XZ, IR Xn]A N k[Xl, oo, Xn].

Proof. We can construct a normal decomposition A = Q; N...N Q, for A,
Then we can find which Q; are such that k(X,)[X]Q; NE[X] = (1); let these be
Q¢,10°°0» @, For the other Q , k(Xl)[X]Ql. N EX] = Q, and Q, NeeeNQ_ is the
desired ideal.

Remark. It would be interesting to know whether this construction can be done

for any explicitly given base field &.

Constructions holding for a base field £ satisfying conditions (F) and (P).

39. Consider the following problem. Given a finite system of linear homoge-
neous equations 3 a X. =0 with a € k: to decide whether this system has a
nontrivial solution in k%, and if it does to find one. If this problem has a positive
solution for k, we say that condition (P) bolds for k; for example, condition (P)
holds for any absolutely given finite field (p = characteristic of k).

40. If the condition (P) holds for k, then it also holds for any canonically
given extension of & {cf. [5, p. 12]).

Proof. It is sufficient to consider a succession of simple extensions of the
following types: (i) a simple transcendental extension, (ii) a simple separably
algebraic extension, (iii) extension by a pth root.

First consider type (i). Now the «; are in k(z) and we seek a solution in
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E?(u?). There will be one such if and only if there is one such in k?[2?]. We may
also assume

aijek[u], a.= (up)+a (u")u+---+a ()1,

ijp-1

Replace the given system by the equivalent system % al.!.kX]. = 0. So now we may
assume the a; € k{z?]. Let {A,} be a maximal k"-linearly independent subset of
the set of coefficients of the a. ij» SO that we can write a; = p a”k ) a”k €
EP[4?]. Then 3 al.]. ;= 0 is an equivalent system with the coefficients in kP[u?].
Extracting the pth roots of the left-hand sides, we get a system over k() and seek
a solution in k(z). This can be resolved.

Now consider case (ii). The coefficients are in k(6), the unknowns in EP(§?).
Write X, = X0 + X, 6 +eeet X, 0(5 Dt where [k(0): k] = s and the unknowns
are in la’.’J Rewnte the equanons m terms of 1,6,++, 05! to get an equivalent
system over k& with solutions to be in k%,

In case (iii) we have equations over k(al/ ?) and seek a solution in &%(a).
Here a €k, we can test by the assumption on % whether it is in k[’., and we sup-
pose it is not. Writing the coefficients in the form ¢, + clal/p +eerkCy g ale-v/v
with ¢, € k, we can get an equivalent system with coefficients in & (smce k?(a)
C k). Now we write each X, as X, =X, + X, j@a +++++ le_lap !t get a sys-
tem with coefficients in & and solutions to be in kp.

41. If conditions (P) and (F) hold for k, then they hold for any canonically
given extension of k.

Proof. As in 40, we need consider only extensions of types (i), (ii) and (iii).
As noted in 34 and 35, condition (F) carries over to extensions of types (i) and
(ii). In case (iii), let F € k(a'/?)[X]. Let G be a factor of F, F = GH; we may
assume F, G, H monic. Then F? = GPH?. We can factor F? over k and so have
a finite number of candidates for G®. Any such must be a polynomial in X?. Sup-
posing it such, its coefficients must have their pth roots in k(a!/?), and this is
sufficient. By (P), this can be decided.

42. If conditions (P) and (F) hold for k, then given a primary ideal Q in
KX s+++, X ], one can construct its associated prime.

Proof. As the assertion is obvious for #» = 1, we make an induction on »; and
for > 1, an induction on dim Q. If dim Q >0, adjoin #,;X; +++++# X to the
ground-field, reducing the dimension. There remains the case that dim Q0 =0. In
this case, first get a g € k[X;]1 ~ 0 such that g =0 (Q) and then an irreducible
/€ k[XI] ~ 0 such that f° €Q for some p. Then Q and (Q, f) are both primary
with the same associated prime, Now take residues mod f to reduce =.

Alternate method. In the case dim Q >0, one can find an X, say X, alge-
braically independent over k£ mod Q. Then examine k(X )[X,,+++, X 10. If P is
the associated prime of 0, then by induction on n one can find &(X,)[X,,+++, X ]P.
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Let (f;,+++, /) be a basis of this ideal with f, € k[X]. Then we can find a nor-
mal decomposition (f(,+++, f)=PNQ;N...NQ in k[X]. We can find the
primaries here, one of which is P. Which one? All but P go lost in k(Xl)[Xz,-- o X"].

Remark. Condition (F) is not needed in 42; see 45, below.

43. If k satisfies (P), then elements EITIRETR in k can be checked for p-
independence (i.e., one can check whether [kp(zl, ey zs) : k?] = p%); and if they
are p-dependent, then one can construct an equation exhibiting this. Conversely
if any z,,++-, z_ in k can be checked for p-independence, and if they are p-de-
pendent, an equation exhibiting this can be constructed, then condition (P) holds
for k.

~ Proof. Elements Zy,+++, z are p-independent if and only if the power-products
zll1 ceez 'S, 0 < z <p-1,are lmearly independent over kP, If (P) holds for k,
this can be decrded and in the case of dependence, one can write down a nontriv-
ial relation X Cil---iszlll . -z;s =0, with 0 <, <p-1 and Cipormig € k?. In the
latter case, we may also note the following: if z,+-+, z__, are p-independent,
but Z e+, Z are not, then we can (constructively) write z in the form

i i
_Z i,,,,s-1 : - {4
Zs— Ci ...is-lzl zs..l ’ 05 ’,SP 1: cil .e7 Ek .

For we already have a polynomial F(zl, cenyz

Z and satisfied by z; also ZP — z‘s’

<. 1> Z) over kP of degree <p in
is satisfied by z .. Hence we can soon get
z_ in the desired form (by taking a GCD, etc.).

For the converse, let (P") be the condition like (P) except that it refers to a
single equation. Then (P’) and (P) are equivalent. In fact, (P) obviously implies
®". Conversely, let (P') hold and let 3 ai’.X,. =0 be a finite system with
a; € k, to be solved nontrivially in k?. From the a, one can pick out a maximal
kP-linearly independent subset {)\kl: this can be done with (P') alone. Then we
can write a, = 3 al.].k/\k, @i € kP, and our given system is equivalent to
2a,

linear system to be resolved. So (P') and (P) are equivalent. Now let (P "y be the

”k ;= 0. Extracting the pth roots of the left-hand sides, we get a simple

condition that any elements z,,+-+, z_ in & can be checked for p-independence,
and in the case of p-dependence, one can write down an equation exhibiting this:
then (P') and (P") are equivalent. In fact, (P" obviously implies (P". Con-
versely, let (P") hold for k and let '\1’ ceey )\l be elements in k. By (P") we can
find a p-basis amongst the )\i for k"()\l, cee, )\t): say these are )tl, seey A, SO
that kP ,---, A )= KPAgy--+5 ) and [kp()t s A k] = ps By the remark
in the previous paragraph we can write /\s+1, sy A, (and Apeees Ay, too) as
kP.linear combinations of )\11 )\' %, 0< 1’ <p-1. Thus /\ s A, are kP-linear
combinations of elements linearly mdependent over kP, The problem is now a

linear one over k?, and the proof is complete.
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44, Let p=chk>0. For any aysevcya, € k, the ideal (X‘;-al,---, Xf'—an)
is primary; and it is prime if and only if ay,+++,a, are p-independent.

We omit the simple proof.

Remark. The ground-form of (X‘l’ —agyeee, Xf‘ - an) is X{p - u’l’al ——em
ufzan. This is irreducible if [k?(a): k?] > p. Hence a primary ideal not a prime may
very well have an irreducible ground-form. This is not possible, however, for a
primary ideal Q whose associated prime P is separable, since if P is separable
and A is the ideal generated by the coefficients of its ground-form, then it is
known [3, p. 131, Theorem 5] that A = PN Q, N...NQ_, with the primes of Q,,
+++, Q  embedded.

45. Consider the problem: Given a primary ideal Q in k[Xl, ceey Xn], to con-
struct its associated prime (cf. 42). A necessary and sufficient condition for this
problem to have a positive resolution is that k satisfy (P).

Proof. The necessity follows from 44 and 43: to test the p-independence of
@y,+++, a, we merely have to test whether (Xg —apyeee, Xft - an) is equal to its
associated prime; moreover, if @yyeceya, _ are p-independent but @rstevsa,

are not, then X? — a_ is a pth power in
n n
1
KX ppeee s X VXD ~ayyeee ,XP —a V= k(al/?, .0 6l /)X ],

one can construct its pth root, and from this get a desired expression for a, as an
element of kP(ay,-+-,a__,).

As for the sufficiency, the proof is by induction on n. First, for n =1, let
(F) be a given primary ideal in k[X], X = X,. We may assume F is monic. We
make an induction on deg F. If F is not a polynomial in X?, then dF/dX # 0; and
F/GCD (F, dF/dX) is the desired polynomial. If F is a polynomial in X?, we
first test whether it is a pth power: we have merely to test whether each coeffi-
cient is a pth power. If F is a pth power, F = F‘l’, then deg F; <deg F, and we
achieve a reduction. If F is not a pth power, then F = F;, where 7 £0 (p) and
hence F, is a polynomial in X?. Place X? = Y, F(X) = G(Y). Then (G(Y)) is
primary and we need only study G. Hence again we have a reduction, and the proof
for =1 is complete.

For n> 1, we make an induction on dim Q. If dim Q > 0, then (as in 42) we
adjoin ule +oeot uan, u; indeterminates, to the base field, to achieve a reduc-
tion in dim Q. If dim Q = 0, then by 23 we can find Q N k[Xl] = (g); and, by the
foregoing, an irreducible f € k[X,] such that g = ¢f”, c € k. Now we complete the
proof as in 42 (first proof).

46. Consider the problem: Given an ideal A in k[Xl, N Xn], to find its
associated primes. A necessary and sufficient condition for this problem to have
a positive resolution is that & satisfy (F) and (P).
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Proof. The necessity of (F) follows immediately from the case n = 1; the
necessity of (P) follows from (the first part of) 45. The sufficiency follows from
36 and 42.

Remark. Since any prime field of given characteristic satisfies (F) and (P),

all of our constructions hold for an absolutely given base field.

Independence of the conditions (P) and (F).

47. Example of an explicitly given field not satisfying (F). In [10] van der
Waerden showed that it is out of the question to establish (F) for an arbitrary
explicitly given field. We reproduce his argument as we shall have to use it several
times. Let, then, E (= E(n)) be a property of positive integers having the follow-
ing properties: For any positive integer we can decide whether E(n) holds, but we
do not know how to decide whether there exists an n for which E(n) holds. For
example, let E(n) be the assertion that in the decimal expansion of 7 the nth,

(n + Dth,y-++, (n + 98)th digits are all nines. Let by=2,py=3, p3= 5,94 be
the sequence of positive primes and let x,, x,,+++ be a sequence of numbers
defined as follows: if E(n) does not hold, we define x_ = (pn)%; if E(n) does
hold, we define x = (- 1)%. If, now, we could establish (F) for k= Q(xl, Xpyes D,
where Q is the rational number field, then we could decide whether there is an n
for which E(n) holds, for there is such an 7 if and only if X2 + 1 factors properly
in E[X].

From an intuitive point of view, van der Waerden’s argument is about as con-
vincing as one could want, short of an actual counterexample. Actually, his argu-~
ment can be strengthened, from a classical point of view; and one can even, on the
basis of a widely accepted definition of computable, give an actual counterexample;
see [6]. However, partly for simplicity, we here limit ourselves to van der Waerden’s
argument. From [6] it will be clear how to modify our arguments, if this is desired.

Remark. Scrutinizing van der Waerden’s argument, one may wonder what the
role of the p, is: if instead of (pﬂ)l/2 one adjoins 0, one comes to the same con-
clusion. Thus, as one sees, the distinction is not between finite and infinite
extensions of a prime field &, but rather between explicitly given and canonically

given extensions of k.

48, Lemma. Let L/k be separable (i.e., elements in L linearly independent
over k remain such over kY/? so that L and k'/? are linearly disjoint over k).
If a system of equations 3 ai.X(J =0, a € k, has a nontrivial solution in L,

then it has a nontrivial solution in k (p = ch k).

For the simple proof, we refer to {5, p. 211.

49. Example of an explicitly given field satisfying (P) but not (F). In the
case of characteristic 0, (P) is vacuous, so 47 gives an example. However, one
will want an example in positive characteristic. Let, then, E = E(n) be as in 47.
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Let &, be a prime field of characteristic p =3 (or any prime p not having—1 as
quadratic residue). Define a sequence of fields recursively as follows: &, =k, ,
if E(i) does not hold and k.=k,_ ((—- 1)%) if E, does hold. Clearly k= U k; is
an explicitly given field. Now glven a finite system p3 a; Xp 0, let k_ contain
the a, .. By 40, k satisfies (P), so we can decide whether the system has a solu-
tion m km, and 1f it does, can find one. By 48, this allows us to decide whether
the system has a solution in &, and if it does, to find one. Hence k satisfies (P).
On the other hand, as in 48, we cannot decide whether X2 + 1 factors properly
over k.

50. Lemma. Let k, be a prime field of ch p #0. Let a, b be indeterminates
over k, and let K= ko(a, b). In the polynomial ring K[X, Y], the polynomial Y? ~
a - bX? is (obviously) irreducible. Let (x, y) be a generic zero over K of (Y? -
a -~ bX?). Then K is algebraically closed in K(x, y).

Proof. Let g € K(x, y) be algebraic over &, write:
g = (a,(x) + al(x)y Fooet dp__l(x)yp-l)/c(x),
with a(x), c(x) € K[x]. Then ¢” is in K(x) and hence in K. Then

ah(x) + ab(x)a + bxP) + <o v + az_l(x)(a +6x2)P 71 2 ula, b)cP(x).

Clearing appropriate denominators in ko[a, b], we may suppose the a; and c to
be in & [a, b, x] and, changing g by a factor in k [a, b, that u(a, &) is in
k [a, b] Comparing the coefficients of a™®+®=1) o0 both sides, we see that

sp+(p-2)

=0 (c) in & [a, b, x]. Then comparing the coefficients of a we

p—l

see that a =0 (c) etc., so we may assume c¢ = 1. Now comparing the coeffi-

p—-2 "~
cients of p*0+(P- 1), we see that « = 0; and then successively that a
-1 y

a, are zero. So g = a(x) € K(x), whence g € K. o

51. Example of an explicitly given field satisfying (F) but not (P). Let E =
E(n) be as in 47. Let k, be a prime field of given characteristic p £0,leta, b
be indeterminates, and let K, = k,(a, b). Define a sequence of fields K, K, K,,
+++ recursively as follows: K = K (x, (a + bxp)l/p) with x tran:,cendental over
Ki— if i is the least integer for whzch E(i) holds; and otherwise K, = K, _,. Let

= K, Each K, and also K, is either = (a, b) or=k (u, b, x, (a + bx")l/")

= ky(b, x, (a + bxp)l/"), a pure transcendental extension of k, with degree of
transcendency 3. Hence each K, satisfies (F). Since, by 50, each K; is algebra-
ically closed in Ki+l’ any complete factorization of a polynomial over K; remains
such over Ki 1» Whence also K satisfies (F). On the other hand, we cannot decide
whether Y? — aZ? — pX? = 0 has a nontrivial solution in K, for there is such a
solution if and only if there exists an i such that E(i) holds. Hence K does not
satisfy (P).
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52. Example of an explicitly given field K satisfying (F) but containing an
a such that K(a'/?) does not satisfy (F) (cf. [6]). The field K of 51 also applies
here, since b!/? € K(a!/?) if and only if E(i) holds for some i.

53. Example of a primary ideal Q in a polynomial ring over an explicitly given
field K satisfying (F) such that its associated prime cannot be constructed. Let
K be the field K of 51, and let O = (X? -~ a, YP = b) in K[X, Y]. If the associated
prime could be constructed, then we could decide whether a, b are p-dependent,
but a, b are p-dependent if and only if E(i) holds for some 7, and this cannot be
decided.

54, Example of an explicitly given field k satisfying (F'), of 36, but not (F).
Let k= K(a!/?), where K, @ ate as in S1 and 52. Then & = K(a'/?) does not
satisfy (F), by 52. On the other hand, let F Gk[X » X ]-0 Since K satis-
fies (F), we can construct a complete factonzatxon of F” in K[X s X ], F? =
cF "l... F ; we may assume F, F - F monic, whence c= 1 F, ;4 F. for
i ;4] Then r,=0(p) for every i and F= Frl/p o "s’? polds in k[X » X 1
Here (F ) and (F i/ ) are primary, so one gets the desxred primary decomposmon

in k[Xl, .oy Xn]

Computation of some bounds.

55. Let [, gy ++oo+ [, 8,=0, i=1yeevyr, [ € k[X;,+++, X ], be the sys-
tem considered in 1, and let d > max{deg / }. Then there is a k[X]-module basis
%(') “y g(s')) g(') € k[X], for the solutlons, in fact the basis constructed in 1,
such that n(rd)2"~ -1 is a bound on deg g’. . Here the bound is a simple, in fact,
primitive recursive function of », r, d.

Proof. In 1 we wrote down some solutions (g 15 ++5 gy, 850,04+, 0),-++,
(gsl’ sees 8 0,+++,0, A). One finds here that degxn 8 <rd and deg A < rd.
Ve then place a bound on the degrees in X of the sought g,,-++, g : one finds
that 7d — 1 is such a bound. Then the g, are written as polynomials b3 8;; XL of
degree rd — 1 in X _ with coefficients in k[Xl, . ] Each equation g, +
oot f, 8:,=0 then gives rise to rd equations in the g i3 and altogether we get
2d equations. Let M(n, 1, d) be a sought bound. Then one sees that M(n, r, d) =
rd + Mn = 1, 1*d, d) yields a recursive relation for a possible M. Noting that for
n=0, MO, r, d) = 0 is allowable, we find rd + (rd)? + (rd)* +.. .+ (m’)znﬂl as a
formula for M(n, r, d). This is < alrd)?™ !

56. Let A ={(f;,+++,/), B= (f”l, *5 f,) be two ideals in A[X;,-+-, X b
and let d > max {deg f; . Then A N B has a basis of elements of degree < nd?"”
+d and A:B has a basis of elements of degree <n((d+ d)2™ L,

Proof. The formula for A N B is a direct application of 55. As for A: B, if B
has a basis of s elements one gets directly that ﬂ(sd)zﬂ“l is a desired bound.
Now the number of power products of degree <d in n letters is (4*+"), which is
<{(d + n)". One may replace s with (d +n)". "
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57. Let f gy + oo+ [; 8, =bp i=1yeee,n [0 b, €R[X s+ +5 X ], be the
system considered in 4. Then the system has a soluuon in K[X] only if it has one
with degx g; < n(rd) 2™

The proof is like that of 55.

58. Let A = (/l,-- ,/ ) be an ideal in k[Xl, » X ] and let d>
max {deg /ij" Then X,,.++, X _ are algebraically dependent over £ mod A only if
there isan f € k[Xl,- . Xr] - O in A with deg f < Add + l),,_,)zr-l-

Proof. We consider the equation f,g, +-+++ [ g + Bsy1 = 0 with the g,
sought in k[XI, ceey, X']. This equation can be replaced equivalently by d + 1
equations with coefficients in k[Xl, o Xn_ l], and eventually by (4 + 1)*~7
equations with coeffrcxents in k[Xl, X,]; the bound 4 remains a bound. By
55, Add + 1)"")2' is a desired bound.

59. Let X =X, R=k[X], S=kX), RZ; +--++RZ _, m= (Iypeees )y 1=
/il(x)zl +eoet [, (X)Z, my =S NZRZ, beasin 8 and let d> max {deg /l.’.(.
Then there is a polynomial F with deg F < td such that Fm, Cm.

Proof. In the proof of 8, one can take the g such that 8,1 =0 (g,) for i=
l,+e<, r=1. Then F = g_is adesired F.

Remark. To get a bound on F one does not need the additional observation
of the proof, but the bound td simplifies some future calculations.

60. Let R=&[X ,-+, X, ], m=(11,..., Dy L= fyZy+ooot [, Z 0 Xy
uXg+eeoru X, m =k(u,X')[X X]mﬂERZ be as in 11, andlet
g > max deg ff 1. (Here deg stands for the degree in all the variables X,,+-+, X .)
Then there is an Fe k(u)[X 1-0 of degree < (g1)*" ! such that Fm, C m.

Proof. Let U, iy j= 1, ., n, be indeterminates (with uy;= u].) and call the
variables Xl', s "l the transformed variables. From 9 we can write Sm N
p RZ =m+ (S nNZR C ), where it is understood that one is workrng with the
transformed varrables over k(u), so that § = ku, X )[Xz’ '] R
KX yee-s Xn-l] etc. By 11, Remark, the module S n N E Rné is already
prepared for an induction. Moreover, an F for § » N IR C is also an F for
SmNZ RZ . Now the first step in constructrng F is to replace Lyseees 1, by
prresd th- lX'q’ , thus ¢ forms by t%q forms The bound q
remains a bound. Thus a second step replaces t? g forms by ¢t q and aftern — 1
steps, we get (t)2"" /q forms with coefficients in k(u)[Xl']. By 59 we get the
desired results, at least over B(u) = k(. .., Upiree ). One can unload the super-

Liyeesyl

fluous variables by the first paragraph of 11.
Remark, Since m, = m:F, applying 55 one sees that m, has a basis
6 )y o (i) 2n=1y20-1 !
81 Zy +eo+ gy Z with deg g <nls(gn™ )™ .
61. By a rational step, or more simply step for the constructions not involving
conditions (F) or (P), we mean a field operation in the base field k. Later we
give a different definition for step if (F) or (P) is involved.
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62. The number of steps required for the constructions of 55~60 can be
bounded by simple, in fact primitive recursive functions of the numerical data
(n, 1,s,d, q,1).

Proof. This could be established by following the proofs in 111, but the
counting of the number of steps in 55, for example, can be simplified by noting
that once one has a bound on deg g, i=1,-++, s, the system can be converted
into a homogeneous linear system. Similar remarks hold for 56—58. In 59 one will
have to place a bound on the number of steps required to put an 7 X s matrix with
entries from k[Xl] into the desired canonical form. This problem is too straight-
forward to be taken up here, as is the problem of computing a bound on the number
of steps required to write down a basis for a homogeneous linear system of 7 equa-
tions in n unknowns.

Remark. In 60 one will note that something new is afoot, since having a bound
on deg F does not linearize the problem of finding m,. To find m,, one will have
to know F itself.

63. Let f; 18y ++++[;.8,=0, i=1,2++, 5, be the system considered in 1
and 55, so that n(rd)?"” " is a bound on deg gg.i) of some k[ X]-module basis for the
solutions. Then there is a simple, in fact primitive recursive, function F(», s, r, d)
that bounds the number of steps needed to produce a basis {(g(li), ceny ggi))} and
at the same time bounds the number of elements in the basis produced. Let m; =
E(u, X{)[Xz, e, Xn]m nX RZ, be as in 11 and 60, so that there is an F = F(Xl')
of degree < (qt)zn-l such that m; = m: F. Then there is a simple, in fact primi-
tive recursive, function G(n, s, t, q) that bounds the number of steps needed to
produce a basis {/}, 19 g(li)Zl Feeet ggi)Zs, for m; and at the same time
bounds the number of elements in the basis produced.

The proofs are immediate.
64. Let R = k[Xl,---, Xn], m= (ll""’ lz)’ li =f.1ZI 4ot f. Z_ beasin

i is” s
12, and let 4 > max {deg fij}' Let G(n, s, t, d) be a function given by 63 for bound-
ing the number of steps needed to produce a k[Xl-module basis for m; =
ku, X{)[Xz, NN Xn]m N2 RZ, and which also bounds the number of generators

produced. Let B(n, s, t, d) be a function defined recursively by
B, s, t, d) = F(1, s, t, d),

Bln, sy t,d) = Fln—1, s, Bln =1, s, t, d), 2 B0~ bsitsd) ),

Then B(n, s, t, d) is a bound on the number of steps in a canonical construction
for producing a k[X]-module basis of k(X)m N % RZ and is also a bound on the
number of generators produced. Thus B is primitive recursive.

Proof. Let B(n, s, t, d) be a sought bound for the construction in 12. The
proof first extends the base field and finds m| = ku, Xm N 2 bz, X{)[Xz, vae, Xn]Zi.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIONS IN ALGEBRA 299

This takes at most B(n — 1, s, ¢t, d) steps and produces at most B(n —~ 1, s, t, d)
generators. Next 11 is applied. Let ¢, = fl(Xl')/gl(Xl'),- cnyc, = fm(Xl')/gm(X;)
be a set of elements in k(, Xl') written as quotients of polynomials. If d >

max {deg f; deg gl}, then any rational operation on the set produces another in
which 2d is a bound. Hence for m, one gets a basis in % k[X]Zi with
2Btn=1,5,6,d) g 25 2 bound on the degrees in question. Now the recursion formulae
are obvious.

65. Let A = (fl,- ooy /z) be an ideal in k[Xl, see, Xn]. Then there is a primi-
tive recursive function B(n, d) and a normal decomposition A =Q, N..-NQ
such that s and the exponents of the Q; are < B(n, d) and such that the @, and
their associated primes have B(n, d), or fewer, generators of degree < B(n, d).

Proof. A difficulty occurred in 12 because of a change in base field; but after
that, through 29, no new impediment intervenes for computing the desired bounds.
In 36, which constructs a normal decomposition for an unmixed ideal, one needs
to factor the ground-form F; but here we are not making a construction, and only
need a bound on the degrees of the factors of F. A similar remark holds for get-
ting the desired information on the associated primes (the homomorphism of 42
causes no difficulty). The number ¢ does not enter because we may suppose ¢ =
(n+d).

d

66. For the constructions involving (F) or (P), in the general case we define
a step as a field operation in the base field & or an application of (F) or (P); in
the case of an absolutely given field &, by a step we mean an addition, subtrac-
tion, or multiplication in Z. In either case one could easily put a bound B on the
number of steps required for any of our constructions, but in the latter case B will
be a function also of a bound b on the coefficients in the data (also of the data
defining &), cf. [6, p. 14].

Specialization arguments. In this section we recall some specialization argu-
ments of Krull [2]. The section does not, for the moment, have a constructive
intent, though later we shall modify it for constructive purposes.

67. Let k be an infinite base field, ¢, a single indeterminate (as with Krull)
or several indeterminates. Let f(z, X) € k(t)[Xl, ey Xn] and a; € k, where a =
(..., @y +). If f(t, X) can be written in the form g(t, X)/d(t) with g € &z, X],
d € k[t] and d(a) # 0, we define f(a, X) by substitution. Let A() be an ideal in
kDIX], A() = {f(s, X)}. We define A(a) to be the set of f(a, X) insofar as these
are defined; then A(a) is obviously a k[X]-ideal. For an ideal A(2) = {f(z, X)}
in k[¢, X] we define A(a) as {f(a, X)}. Similar definitions can be given for a sub~
module m(2) of a free E(t)[X]-module.

A property P = P(t) is said to hold almost always if P(a) holds for at least
one a (a, € k) and if there is a polynomial h(z) € k2] - 0 such that P(a) holds
whenever 5(a) £ 0.
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68. Let A(1) be an ideal in k()[X,,-+, X_]. Then A(?) has a basis [} (s, X),
veey /;(z, X) such that for all a (a; €k) we have A(a) = (f](a, X)y«+~, /:'(a, X).
And for any basis /l(t’ X)yeoey /s(t, X) almost always A(a) = (/l(a, X)yeoo,

/s(a, X)).

Proof. We recall Krull’s proof. Let B(t) = A(#) N k[, X]. One first observes
that for all a (a; € k), Bla) = A(a), which is obvious. Let [} (z, X),+++, [* (2, X) be
a basis of B(t). Then obviously B(a) = (,"i= (a, X)yeoe, /;(a, X)), whence the first
part of the theorem (Satz 1 of [2]) follows. Now let /l’ ceey /s be any basis of
A(2). Then one has equations: [¥t, X) =27 _ c.(t, X)f (¢, X), and since f*(a, X)
=% ¢, (a, X)f (a, X) holds almost always, the second part follows.

Remark. We have recalled Krull's proof, as later it makes us abandon the
theorem.

69. Let the system [, gy +++++ [, 8 =0, i=1,eeeyr, [ €RAXp5eee, X ]
= k(2)[X], have {(g(li), cee, ggi)) s g(.i) € k(1 X), as a k(1) X]-basis for its solu-
tions., Then, almost always, {(g(li)(a, X)yeoo, g&i)(a, XM} is a k[X]-basis for the
specialized system {f,,(a, X)g; +++++ [{a, X)g =0} Let A(2), B(t), C(2), D(2)
be ideals in k()[X] with A(2) N B(2) = C(2), A(¢):B(2) = D(¢). Then almost always
A(a) N B(a) = C(a) and A(a):B(a) = D(a). If A(t) is unmixed r-dimensional with
F(t, X) as ground-form, then almost always A(a) is unmixed r-dimensional with
F(a, X) as ground-form.

Proof. Let {(g} @..., g’;(i))l be the basis for the solutions found by the
canonical process of 1. If ¢ is specialized to @ in such a way that certain coef-
ficients (in k(#)) do not become zero, then the canonical process for the special-
ized system [, (a, X)g, +++++f, (a, X)g =0, i=1,..., 1, is parallel to that for
the general system and so leads to {(g} (g, X)y-e-s gz(i)(a, XM} as a basis for
the solutions of the specialized system. Now let l(g(lj), ceey ggj))¥ be another basis
for the solutions of the general system. The elements of this basis can be written
in terms of those of the other and vice versa; and these relations continue to hold
almost always. Hence {(g(li)(a, X)yeee, ggi)(a, XM} is almost always a basis for
the solutions of the specialized system. This proves the first point and the others
are proved similarly.

Remark. The constructions through 29 yield properties that hold almost
always; on the other hand, those involving (F) or (P) do not. Thus a primary
ideal may fail to remain primary, a normal decomposition to remain a normal de-
composition, a prime to remain prime upon specialization. Still, the ground-
form can be made a basis for their study, as well as for a study of the be-
havior of a prime ideal under extension of the base field, cf. [3]. An unmixed
r-dimensional ideal A remains unmixed r~dimensional upon extension of the
base field, since starting from a given basis of A, the canonical process

showing that A is unmixed r~dimensional remains such over the extended
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field. This proof was missed in context by Krull (cf. [3, Note 7, p. 134]); a different
proof was given in [4, p. 37]. Also, the ground-form remains the same upon exten-

sion of the base field.

The leading coefficient ideal and subcoefficient ideal of a given ideal. The
constructions of this section hold for any explicitly given field &.

70. Let A be an ideal in k[Xl, ceey Xn]. By the ith leading coefficient ideal
L (A) we mean the set of coefficients of X; in the polynomials f in A with
deg, =i, together with 0. The ith leading coefficieng ideal is contained in the
(i + 1)th, and their union is the leading coefficient ideal L(A) of A. By the ith
subcoefficient ideal S (A) we mean the set of coefficients of Xi in the polynomials
[ in A with subdegreexn f = i, together with 0.

71. Let fi,-+«, [, €k[X s+, X ], n> 1, with one of the f, regular in X,

++» X, and let d > max{deg /;}. Then for every i one can construct LUfyseees [N
within a number of steps depending only on n, s, d and ¢ (or, also, only on a
bound for these). One may also construct polynomials b(') aes b(’) in A of
degree i in X whose leading coefficients will generate Lz((/l’ *s /), and one
can bound the deg b9 in terms of n, s, d and i (or, also, on a bound for these).
Similar assertions hold for S {(f;,+++, /), even without the regularity assumption.
All bounds may be taken to be primitive recursive.

The proof is like that of 22. In the case of S, one has merely to consider
elements of the form g f; ++-++ g f  with max {deg gji < i, so one needs no
regularity assumption to depress the degrees of the g ..

72. Let fi,+++, [, be asin 71 and let A =(f;,+++, [)). Then one can con-
struct L(A) within a number of steps depending only on n, s and d. Correspond-
ingly one has a bound on the least p for which LP(A) = Lp +1(A) =+++, on the
number of elements in some basis of L(A), and on their degrees. All bounds may
be taken to be primitive recursive.

Proof. By 20 we can calculate a p such that A :XZ: A :Xﬁ*l. Consider
the Sk(A), k < p, and polynomials BR, ..., hg:) in A of subdegree k (in X )
whose coefficients of X’c yield a basis of S,(A); and let d be a bound on their
degrees, for & < p. Then L fA) = L(A). In fact, let g €A with degx g=d'>d.

Subtracting from g appropriate R[X e X )-linear combinations of the b(k)

we get a g’ in A of the same degree in X"nanld with the same leading coeffx-
cient; so we may suppose g=0 (Xp“) Then g/Xn is also in A, whence Ld,(A)
Ly l(A) and the assertion L (A) L(A) follows.
Remark. Thus for A we have an integer e, depending only on 7 and 4,
which is a bound on the least p for which Lp(A) = Lp +1(A) =« and is also a
bound on the degrees of some polynomials of degree p, p—1,--. in X whose

leading coefficients yield bases for Lp(A), Lp-l(A)’ eev, (We will then have
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L _(4) = L(A), e will be a bound on the degrees of the elements in some bases of
L _(4), L,_,(A),+++; and there will be polynomials in A of degree < 2e and of
degree e, e~ 1,.++ in X whose leading coefficients yield bases for Le(A),
L,_,(4),++..) We may assume e(n, d) is monotone increasing in each of the vari-

ables n, d and is primitive recursive.

The theory of polynomial ideals in strictly finite terms. In this section we
show how to remove every nonfinite form of reasoning from our constructions. The
constructions themselves are, of course, already in finite terms, but the underlying
theory is not. The main way a nonfinite form of reasoning enters is through Hil-
bert’s considerations on ascending chains of ideals—this is the only serious dif-
ficulty., Now Hilbert used these considerations to show that every ideal in
k[Xl, e, Xn] has a finite basis, but this is no difficulty since for us an ideal is
always given via a finite basis. However, his considerations also come in tacitly
in the structure theorems, for example, in the normal decomposition theorem.
Therefore we have to go over our proofs and, for example, remove each use of the
normal decomposition theorem. We go over the proofs seriatim.

73. There is no occasion for comment until we come, in 6, to the construction
of dim A for an ideal A £ (1) in k[Xl, ey Xn]. Classically, one defines dim A
by considering the associated primes P,,+++, P_ of A and placing dim A =
max {dim Pi}, where dim P, =dt (k[X]/Pl.)/k. This definition is not available to us.
However, classically, dim A = max{7| k(Xil, e, Xi,)[x]A #£ (1)}; and we could
take this equation as defining dim A. Call this Definition I. Now let Uy i,j=
1,-++, n, be indeterminates and let Xi' = uilxl Feeot uian be the ‘‘transformed”’
variables. Then also dim A = max {r| k(z, Xll, ey X:)[X]A # (D} and we could
also take this equation to define dim A. Call this Definition II. Classically it is
obvious that the definitions are equivalent, but for us it is not obvious. This may
be an interesting problem, but not an essential one. We merely have to pick some
definition: we take Definition II, as this one is best adapted to our proofs.

One has: n(Def I) < /(Def II). The proof is a simple specialization argument.
If ADef I) = 0, then equality holds. The proof is a simple linear algebra argument.

74. Let ugyee, u, be indeterminates, ui' =a, Uyt a; U, i=lyeee,m,
a; € k, det (“z‘;‘) # 0; write A for (az.].). Let [ € k[ul, ceey un]. Then: if f(Ax) =0,
then f=0. Similarly, if b= (bl" o, bn), b, €k, and f(Au + b) = 0, then f=0.

Proof. If f(Au) =0, then f(A A~ 14) = 0, whence the first statement follows;
the second is proved similarly.

Remark. This will cover anything we need from the theory of transcendency
through 95, though in 82 we get a full theory.

75. To use the method of reduction of dimension by extending the base field

we should prove:
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If A has dimension r over k and ¢ <1, then k(z, Xl', cee, X;)[X]A has dimen-

sion 7 — t over k(u, Xl',- ey X:).
Proof. Let V be the matrix of the transformation X;’ = Xl" e, X:’ = Xt',
"
Xi=%n ;
so that W = VU is the matrix of the transformation: X =w X, +eoevw X ,i=

m n
1,+++, n. Note that the w; are algebraically independent over k(v, X); see 74.

L [ . . .
Xt+1 +eeet v, X , i=t+1,000,n where the v;; are indeterminates,

We have to prove:

k(u, Vs X{a"' ’ X't’ X;I+la"" X:)[X”]A ;é (1)
and

k(u$ Vy X;a' °*y X;, Xt’-ll-l’. tey Xr'-'l»l)[X”lA = (1)-

This follows upon observing that k(v, u) = k(v, w), that u; = w, determine an
automorphism of k(v, X, u) over (v, X), and that A has a basis in &[X].

76. There is now no difficulty through 15, after which we can construct
Kluy X155 X JIXIA 0 R@IX] and Az, X{,-++, X DIX1A 0 RIX].

Classically, one defines the depth of A £ (1) to be the minimum of the dimen-

sions of the associated primes and one proves:
depth A = max{s | k(x, X{,- vey X's)[X]A n kX1 = Al

We now take this equation as the definition of depth of A. Clearly: depth A <
dim A. We say A is unmixed if depth A = dim A. If ¢ <'s = depth A, then the
depth of A diminishes by ¢ upon extension of the base field to &(u, X{, vevy X;);
the proof is like that of 75.

77. We come now to the crucial points 16 and 18. In 16, dim A > 0,
depthA = 0 and we wish to write A = B N\ » with dim B = dim A, depth B> 0,
dim » = 0. In 16, the equation k(un, seea Uy, Xl')[X]A N k[X] = B was derived,
but now we take it as defining B, so dim B =dim A and depthB > 0. As in 16
we get an E, = E,(X]) such that (4, E|) N B = A. Then we repeat the argument
togetan E, = EZ(XZI) such that (4, E,, Ez) NB; = (A, El)‘ In 16 we proved

B, O B using a structure theorem; now we prove it as follows. We have

k(u“,- Ty s Uystte s Uy s X'l)[X]A N k@)x] = B.

Applying the automorphism over k& that interchanges uy; and uy; for j=1,000,m,
we obtain:

k(u“,-- LY ulﬂ, Zl21,“ *y u2n9 X;)[X]A N k(u)[X] = B

since k(un, ey By Ugrstees Uy s X;)[X](A, El) N EL)IX] = B, by definition;
and since (4, El) DA, we get B, D B. Hence we get (4, E,, Ez) NB=A, and
eventually (4, EjsEgyveey En) N B = A, which gives the desired result over
k(u). To get it over k, before we used a structure theorem, but now we use a

specialization argument.
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The specialization theory of Krull as previously outlined in 6769 is not
quite in suitable form since, at least in the absence of condition (F), we do not
know how to construct the ideal B(#) = A(#) N k[, X] of 68. However, a slight
modification will suffice. First, for an f € k()[X], f = g(t, X)/dt) with g € K[z, X]
and d € k[t], we define f(a, X) as gla, X)/d(a) provided da) £ 0 (we need not
concem ourselves with rewriting f). For an ideal A(t), we do not attempt to define
A(a), but if A(t) = ({,(£, X)y-++, f (t, X)), we can speak of the ideal (/l(a, X)y oo,
/s(a, X)) almost always. The definition of almost always is the same as before
except that one should be able to construct the polynomial b; and to construct an
a= (al, @gyeee ), a; € k, such that h(a) # 0 (a condition assured by assuming k

infinite). Now using our canonical constructions, it is obvious that if

(/l(t) X),' b} /s(ts X)) = (/S+1(t’ X)" A ] /u(t, X)),
then almost always

(fl(a, X)y' bR ] /S(a, X)) = (/s+l(a’ X),' ety /u(ﬂ, X))
and if
(/'l(t, X),‘ LY /s(t’ X)) [a] (gl(t, X),' L) gu(t, X)) = (bl(t, X)a‘.‘ vy bu(ty X)),

then almost always

(ll(a’ X)" A ] /s(a, X)) N (gl(a, X)y A ] gu(a, X)) = (bl(a’ X),"‘ 9 bv(a, X))o

Hence from (4, El(u, Xl'), caey En(u, X’;)) N B = A, we get, specializing u to a
(aij € k),

¢)) A, E(@, X )see, E (0, X NN B=A

almost always; here instead of A and B we should have written (/l’ ceey /S) and
(gl, e, gu) with /i, 8; € k[X], but the slight abuse in notation should cause no
great confusion. In specializing u to a, we also take care that det (ai].) #£0.
Then (1) gives the desired result over &, at least if & is infinite.

For % finite, observe that the above proof does not require & to be infinite,
but merely that £ have ‘‘enough’’ elements; and the proof also tells how much
“enough’’ is. Hence we construct a finite, normal extension field k(f) having
enough elements; the primitive element 6 and its distinct conjugates 6, = 6, 0,,
N Gs are available to us. If an ideal A(9) in &()[X] has a basis in k[X] and
if a(@, X) = ao(X) + al(X)G Fooet as_l(X)Os' 1 a, € k[X], is in A(6), then so are
“(01" X), whence so are the ai(X). Thus if A@) =(.., ai(O, X),+++) and a;=a,
+a, 0+-cra; _ 105~ 1, then A(0) has a basis in [X] if and only if it is the
extension of A’ = (.., @ yees ); and if so, then A’ is the contraction of A(f) to
k[X]. One has a O-dimensional ideal n(f) such that A = B N n(6). Hence also
A=Bn n(ﬁi) and A=B N ("(61) Ao n(@s)). One proves in the familiar way
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that n=n(0,)N--.N n(f ) is invariant under every automorphism of k(6) over k,
and hence that 7 is the extension of an ideal n’ in k[X]; dim »’ =0. Then A = B
N n' as desired.

78. In 18 we had an ideal A withdim A =7, deptH A = s; hete s <r and (to
avoid a trivial case) let us suppose s <r. We then wrote A = B N n, with dim B =
dim A, depth B > depth A, and #n unmixed of dimension = depth A. The proof was
a simple reduction to dimension zero by extending the base field, but we do not
see, from our present point of view, how to duplicate this technique, and will have
to find a different way. (We do not see how to get the relation A=B N (A, m°) of 16.)

By definition k(x, Xl', e, Xs'+l)[X]A Nk{X] =B (so dim B = dim A,
depth B > depth A), from which we find an E1 = E;(X;, ooy s+l) such that
A:E,=B and (asin 16) A=B N (4, El)' Now with a new set of indeterminates
v and new transformed variables, we repeat the argument and find (as in 16): A =
BN (A, E,, Ez)' Let us repeat this construction over and over. We say that we
can find an M such that (4, El’ EZ""’ EM) =(4, El""’ EM+1); here M <
g(n, d), where n = nunber of x, d is a bound on the degrees of elements in a given
basis of A, and g is multi-recursively defined. We may note that Hilbert's theorem
on ascending chains says that an M exists, though it does not tell us how to find
one; and anyway, we may not use Hilbert’s theorem. We postpone to 79 an explana-
tion of how to find a suitable M.

We have, then, (A,El,---,EM)=(A,E1, Eppy)e

the successively new indeterminates for E,, E2 <s Eypo EM+1 respectively; and

). Let u, v,+++, ¥,z be

Xiu, va’ «++, the transformed variables. We now specialize Uy Uy+ vy ¥y, but not

z, to k, assumed infinite, and in such a way as to get

@, El(xt’"' ’ X:+1)” tt EM(X:* 0y Xt*+1))

x*
s+1)’ M+1(Z;X1z""’ s+1z))’
M+l #0,and A=Bn (4, E . EM)' Since (4, El"" , EM) has a basis in
k[X] and contains the element EM+1(z; Xiprs X

= * * = ok
= (4, E1(X1"" ’Xs+1)"" ’ EM(XI

s+lz)’ the ideal has dimension
<'s. Using an induction on r (and that depth A = s), one now easily proves that
A, EI’ «vs, E M) is s-dimensional; and one can construct its s-dimensional part.
Subject to 79, the proof is complete for infinite k, and finite k are taken care of as before
(cf. 78).

Remark. Since classically it is obvious that dim(4, E,) < dim A, one might
seek improvements in 78.

79. We come now to a finitist version of Hilbert’s theorem on ascending chains.
We have proved this theorem in [7] and [8], but it will be well to recall the proof,
especially as we already have all the ingredients for the proof, except for one com-

binatorial argument.
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Theorem. Let {(i) be a nonnegative integer for i =0, 1,+++ and consider
ascending chains of ideals AO < Al <oee< As in k[Xl,- sy Xn], where Ai bas
a basis of elements of degree < {(i). Then there is a multi-recursively defined
function-functional g depending only on n and [ such that the length of any such
chain is < gln, f) = g,\). (Formulae for defining such a g are given in the proof.)

Proof. In 72, for an ideal A in k[X], we found a p such that A:X” =
A: Xp +1 , but for the proof referred to 20. However, we can just as well work with
the transfotmed variables X zlxl teeotu, X (u i indeterminates) and by
79 get a p such that A: le A: X'p"’l. We can, then, as in 72 find L(A) and
have the function e(n, d) of 72, Remark Then e; = eln, /(i) is a corresponding
bound for A.. We shall occasionally write e/(n) for e(n, {). Understood that we
are working over k(x) with the transformed variables, it will be convenient to
write k for k(u) and X, for Xi'.

If f is not already monotone increasing, we may replace it by a function /'
defined as follows: /'(0) = f(0), f'G+ 1) = (') + f(i + 1) + 1. Thus we may
assume [ monotone increasing. We do this. Then /j(i) = f(j + i) is a function
like f for A <A;+l

For 1nduct1ve purposes, we generalize our theorem. Instead of just one chain
A, <A <..., we will consider a finite set of (not necessarily strictly) ascend-
ing chains of ideals: Af)’) C A(lt) CeesC Ait), t=1,+++, m. We say that the set is
strictly ascending if for each i, i =0, 1,+++, s = 1, there is at least one ¢ for
which A(i‘) < A(ii)l' The length of such a set of chains is by definition s + 1. Our
theorem is now to be understood as asserted for any strictly ascending set of m
chains. The function f gives a bound f(?) for all the A(‘), t=1,+++, m; we may
assume [ monotone increasing. The bound g (f) is to be replaced by a bound
g,(m, ). The function e, continues to apply to the A(‘) for t=1,000, m.

The function f may be allowed to involve =, m.

We remark that if A, B are ideals with A C B, and Li(A) = Li(B) for every
i, then A = B.

For any integer j, we get an ascending chain of ideals L (A(')) CL (A(t)) C
«eoCL (A(')) and thus, for t=1,.++, m, m chains; altogether, for i< e, we get
(e + l)m ascending chains (e, any integer). We have Lef(o)(A(t)) L(A(t)) for
t=1,-++, m; and consider the chains for j < e,(0). Assume for a moment that

e,,(0)(/\(‘)) = L(A(’)) for the (s + L)m ideals A(t) Then clearly the (e 0) + )m

chains L].(AE)’)) C...C L,.(Agt)), i< e/(O), t=1,+++, m, gives a strictly ascend-
ing set. By induction we have a bound g _ l((e‘/(O) + Dim, e/) on s+ 1; we may
assume that gn_l(i, e/) is monotone increasing in i and, inductively, that

g -l(i’ e') < 8, l(i, e") for any monotone increasing functions e’y " such that
e'(j) < "(j) for all nonnegative integers j, otherwise put, we can say that if
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s+1>g,_,((e/(0) + 1)m, e)), then for at least one pair (7, £) with i <1+

g _1((e ) + Dm, e ) L, (0)(A 0y < Le (i )(A(‘) and also L (A(t)) <

Le/(l)(A(t)) In this way we would get a strlctly ascending set

e;(0)

L, ofacL,  dDyc..cL,_, (4%,
e/(o) 0 el(ll) iy el(zp) i,
we suppose iy, iy, -+« to be taken successively as small as possible. Then i, <
l+g, _ ((e/(O) + L)m, e/)' and by the monotonicity of e, we have a bound
e (1+g,_ ((e 0) + Dn, e /)) on the degrees of the elements in some bases of the

e/(ll)(A(‘)) S1m11arly,

i - (ii +1)<1+ gn_l((ef(i].) + 1)m, e, )

i.
7

Define a function A(j) as follows:

K0)=0, AH(j+1)=5j) +g

n~l

((e/(h(i)) + Dm, e ).
b{7)

Using the monotonicity properties of g __,, one sees by induction that z']. < B(j).

Hence we have a bound e/(b(]')) on the degrees of the elements in some bases of

the Le/(i,-)(AE';-))' Hence, too, we have the bound g, _,(m, e/(b)) =1l+bonls+p.

Bringing the two parts of the argument together, we get

b) + g, _, (le (5(5)) + 1)m, e/b(b)) =bb+1)=hg, _ (m e A6,

which is monotone as required, as a desired bound on s + 1.
Having now established 78 (or 18), there is no further difficulty through 22.
80. Classically we have the following theorem: An ideal is primary if and
only if it is unmixed and its ground-form is a power of an irreducible polynomial.
We now take this theorem as defining primary. We retain the classical definition
of prime. A prime ideal is primary.
Remark. Our definition of primary is adapted to our work with condition (F).
81. Coming to 23, we encounter a difficulty, and, in fact, we abandon 23 for
a primary ideal A, though we want it, and retain it, for A prime.(3) The proof
now is very much as in 23, except that in 23, in the case dim A = s > 0 (A, prime)
and at least one of Xl’ coe, Xn__1 is not algebraic over k mod A, we adjoined
Xl' =u X +e+o+u,_ X _, tothe base field and said that dim A =s~1 over
K, Xl'), in order (by induction on s) to say that we can construct
k(u, Xl')[Xz, cee, Xn]A N klz, X;)[Xz, sy X l]. With our present definition of
dimension, the assertion on the dimension of A is not clear. However, we first

make an induction on n! Then again it is clear that we can construct

(5) As already noted in footnote 4, we can construct 4 N k[Xlw-an__ 1] for any ideal

A over any explicitly given field k.
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k(u, X{)[XZ, ces, Xﬂ]A N k(u, X;)[Xz, ey X l], since here n has been reduced.

Remark. Once we have the equivalence of our definition of primary with the
classical definition, which, however, we will not get till we come to condition
(P), we can come back to 23 for A primary.

82. There is now no difficulty through 27. Moreover, if k(xl, e, xn) is a
canonically given extension of & and y,+-+, y arein k(x), then one can decide
whether y,,.+-, y  are algebraically independent over k. On the basis of this
one can build up a full theory of transcendency along the lines of the familiar
axiomatic method (cf. [11]).

83. Thete is no difficulty in 28 and 29, whereby we construct the ground-form
of an unmixed ideal. For the moment, we need not discuss 30-32, since our work
with primary ideals, with condition (F) but with (P) absent, never mentions prime
ideals (though 30-32 do enter unofficially in that they motivate our definition of
primary). Points 34 and 35 hold as before.

84. Using condition (F) alone, one can decide whether a given ideal is pri-
mary, This is obvious from our definition, though not from the classical one.

85. Let A # (1) be an ideal in k[XI, BN Xn]. If A is not primary, then one
can find a, b € k[X] with ab €A, a £A, b° EA, p=0,1,2,---.

Proof. There are two cases: (i) A is unmixed, (ii) A is mixed. In the first
case, from the ground-form we can obviously get F, G € k[u, X] = 0 such that
FG €A but F” £A, GP £A, p=0,1,.... By 20 (cf. 79 end), we can test
whether some power of a coefficient of F, or of G, is in A. Let Fl be the sum
of the terms in F a power of each of which is in A, and define G, for G similarly;
F # F,, G £ G,. Then for a p one can compute (F - Fl)p(G—- Gl)p €A. We
order the power products a, B,--- of the . in such a way that a < B and y <&
imply ay < R8 (say, lexiocographically). Let f, g be the first coefficients of
(F-F)", (G~ G)". Then fg €A but [, g° A, 0=0,1,---. Case (ii) is
similar, and even simpler.

86. Coming to 36 and the normal decomposition theorem, we cannot expect, in
the absence of (P), a normal decomposition in the usual sense, since this involves
prime ideals. With (F) alone, however, we can write any ideal A as the intersec-
tion of primaries. First, we test whether A is primary, and if not, then starting
from a given basis of A, we can by a canonical algorithm find a, b € k[X] with
ab €A, a ¢A, b° ¢4, p=0,1,++-. We can then find a p >0 such that 4:5° =
A:bp*l, so that by a change of notation we have ab €A, a ¢ A, b ¢ A, A: b=
A:b%. Then we get A = (A, b) N(A:b); cf. 16. Moreover, A <(4, b) and A <A:b.
If (A, b) or A:b is not primary, we repeat the construction. By the finitist ver-
sion of Hilbert’s theorem on ascending chains, this process must stop.

87. Let k satisfy (F) and let A be an r-dimensional primary ideal in
k[Xl,- ooy Xn]. Let Xi' =u X +ecetu, X ,i=1,-00,n, be transformed
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variables and let ¢ <r. Then K, X -+, X;)[X]A is also primary.

Proof. From 75 and 76 we already know that k(z, X/, ., X:)[X]A is
unmixed, (r — t)-dimensional. Let E = F” be the ground-form of A, with F irre-
ducible. Here

Loyt ' ' ’
F = F(ul,..., u’+l, Xl,..., X'+1) Ek[ul,-..’ u'+l, Xl’... , X'+l],,
where ”i=("i1’ ree, ”in)' Using the notation of 75, one can see that

E(uppeeerupw Xiseovs Xjy Xy poees X2) s in Ka, v, X700+, XIXIAL

TS LARAE R AT

Because of the automorphism Ui bW,
ij

' '] " ”n
F(”1’° U Wty Wy Xppees Xp X preees Xr+1)

is irreducible, and remains irreducible as a polynomial in X! _,«.+, X"
) ) [; t+1 ' r+l
k(u, v, Xppeeos Xz)' This is enough to show that k(x, Xppeees Xt)[X]A is primary.
! L 1
Actually, E(ul,-- T U W gyttt W Xl,-- . Xl, Xz+l’
form; to prove this, it is still necessary to check a primitivity condition. As this

over
" .
cee, X") is the ground-

is a secondary issue, we may omit the details.

88. As long as we work with condition (F) alone, we do not attempt the con-
structions involving the associated prime of a primary, hence we do not try to
duplicate 37, which places a bound on the exponent of a primary ideal A. Let,
however, A be an r-dimensional primary ideal: then one can place a bound on
the length of chains A <A, <A, <..., where A, is unmixed r-dimensional
(hence primary). In fact, for 7 = 0 this follows from 7, and for r> 0 one makes
a reduction to the case r=0 by 87.

89. We abandon 38 for the moment, as before 23 (cf. 81).

90. Points 39—-41 require no comment, so we come to 42, which asks (with
(F) and (P)) to construct the associated prime of a given primary (a term which,
from our present view, still has to be defined). First let Q be O-dimensional.

We relax the condition that Q be primary and consider any O-dimensional ideal A
in k[Xl,- ..y Xn]. One can then construct a maximal (hence prime) ideal con-
taining A. In fact, we first find an [ € k[X,] - 0 such that f €A. Let f=/{,f,
«+f, be the complete factorization of f. One checks easily that (4, /) £ (1) for
at least one 7; and for such an i, we may replace A by (4, /i)' Changing nota-
tion, we may assume [ € A is irreducible. Taking residues mod f, we complete
the proof by an induction on 2.

In particular, for a O-dimensional primary Q, one can construct a maximal
ideal P containing Q.

91. Let Q be a O-dimensional primary ideal in k[Xl, cery Xn] and let P,
P, be maximal (hence prime) ideals containing Q. Then P, = P, = P and one
can find a p such that PP CQ. If ab € Q, a ¢ Q, then for this p, _bp € Q. The
ideal P is called the associated prime of Q.
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Proof. Let F' be the ground-form of Q, where F = F(u, Xl’) is irreducible.
We have F € P1 and F € P,. Consider first the case that F is separable (in Xl').
Then by the argument of 31 (though one does not first have to prove that P, P,
are separable), one sees that P, = P, =P.

Now let F(u, X') = Glu, X) and let A be the k[X]-ideal generated by the
coefficients of G cons1dered as a polynomial in the u;.» We say that A = P: we
postpone the proof to 92 and 93. It remains, then, to prove that some power of
each coefficient of G is in Q. We order the power products a, B,++. of the 4
in such a way that a <8 and y <& imply ay < 88 (say, lexicographically).
Since G” € Q, one sees that the first coefficient, f,, has a power of it in Q. Then
(G - first term of G)° €Q for an s we can find. Repeating this argument for
H = G - first term of G, we see that the second coefficient of G has a power of
it in Q; etc. So we have a p with P” C Q. Now let ab€Q, a ¢ Q. Then 0 CQ:a,
and since Q:a # (1), we have Q:a C P. Hence b € P and b” € Q. This takes
care of the case that F = F(u, X ) is separable.

If F is inseparable and is a polynomxal in X'?° but not a polynomial in

X"’e+ hence a separable polynomial in X '€ then one sees that F is also a
polynomial in #?°. Thus after adjoining a finite number of p®th roots to & to get
k', F becomes the p°th power of an irreducible separable polynomial. Write
kX1 = 0', k(XIP, = P!, K[XIP, = P]. These all have a power of F!/? as
ground-form. Let P” be the prime in k'[X] having F1/0° a5 ground-form. Then by
the part already proved, a power of Pl is in P2 and vice versa. Hence also (as
one easily sees) in k[X] a power of P, is in P, and vice versa. Hence P, = P,.
The rest of the proof of 91 is as in the separable case.

92. To complete the proof of 91 we first need a lemma.

Lemma. Let f(X)) € k[X ] -0 be a polynomial prime to its derivative (i=1,
sy n) Then (f{(X),+++, [ (X)) is a finite intersection of maximal ideals; and
so is any larger ideal ({15, f 5+++) # (1)

Proof. If f,(X,) is irreducible, then we take residues mod /,(X,) and com-
plete the proof by induction on 7. Otherwise, let f, = g,g,-+-g be the complete
factorization of f,; g,, g; are not associates if i #j. Then (g, fyseeesfpeee) =
n P for each i. Then (/1, /'2,-- ' / geee) = n P . In fact, the left-hand
51de 1s obviously contained in the nght Now let a € n i P,. Then a =
bg, mod(/z,...,/ se++)s SO ag, . 6([1, fppeeesfpe ) Similarly, a(fl/gi) €
(s fyrooesfpeee +) for each i, whence a€fpsfyreesfpree)

93. Let P be a 0O-dimensional prime 1deal in k[Xl, ey X ] and let F(ul, X )
= G(u,, X) be the ground-form of P; here uy'= (uy,+--, n) Let 4 (which we
call the Chow ideal of P) be the ideal generated (in k[X]) by the coefficients of
G regarded as a polynomial in the z, . Then: if F(u), X|) is separable (in Xs
then A =P,
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Proof. Clearly, the coefficients of Flu, Xl.') also generate A. Hence
(F(ul, Xl'), ceny F(un, Xr'l)) C A. Hence (by 92) A is the intersection of 0-dimen-
sional prime ideals: A = P, N...N P _; here we are in k(u)[X]. Moreover, A, P,

s P, and P all clearly have the same ground-form. Hence (by 91 first part)
P1 =+++=P_=Pand A=P.

94. Let Q be an r-dimensional primary ideal in £ Xy, +++, X |, sothat (by 75
and 87) klu, X yeve, X )[X,+19
let P’ be the assocxated prime of Q. Then P’ has a basis in &[X], so that (by

o Xn]Q Q' is 0-dimensional and primary, and

76) one can construct P’ N k[X] = P. Then P is the unique maximal unmixed r-
dimensional (hence primary) ideal in k[X] containing Q; and Q = P if and only if
Q' =P'. If P'°CQ’, then PP CQ; and if ab €Q, a §0, a, b € K[X], then for
this p, v € 0.

Proof. Let G € P'. Multiplying G by an element in k(z, Xl',- ., Xr') -0,
we may suppose G € klz, Xl',- . X"l] C klu, X}5+++, X ). Let us write G =
G(u, X): we wish to show that the coefficients of G regarded as a polynomial in
the u;; are in P'. We order the power-products of the u;; as in 85, Proof. Since
G” €Q' and Q' has a basis in k[X] one sees that a power of the first coefficient
of G is in Q', hence the first coefficient is in P’. Repeating the argument for
H = G - first term of G, we get that the second coefficient is in P': etc. Now we
have P' N k[X1=P. If P'? CQ’, then obviously P” C Q. Hence P is at most
r-dimensional, and since it is the contraction of its extension P', it is an r-dimen-
sional prime ideal. If ab € Q, a ¢ Q, a, b € K[X], then b” € Q' and hence b° €Q.
The rest of 94 is immediate.

P is called the associated prime of Q. Thus we are through 42.

Remark. To decide whether a given ideal A is prime, first check to see
whether it is primary; and if it is, then check to see whether it is its associated
prime.

95. Point 43 requires no comment. As for 44, we first observe that if condi-
tion (F) holds for k, then an ideal (F) £ (1) in A[X], X = X, is primary if and
only if ab €(F), a ¢ (F)= 5%8F € (F). We now take this as defining primary in
k[X]: this changes nothing as far as our results above, where (F) was assumed,
are concerned, but allows us to proceed a bit with primary ideals also over an
arbitrary explicitly given field. Thus for an arbitrary explicitly given field %, x?
- a is always primary: for if fg € (X? - a) and g? ¢ (X? - a), then g? = c(X? - a),
c€k—0,and f €(X? - a).

Now let A= (X2 -a,+++, X0 ~a ) be an ideal in k(X ,+++, X ], p=chk.
Then A N k[Xl,-- . Xn-l] = (th’ —apyee, xt - an_l). In fact, if

ne1

[Xppeees X, V=g (Xppeees X JXE —a)) b eenbg, ((Xppeees X UKD —a, )

n

+ gn(xls" .y Xn)(xfz - an)9
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we may first suppose deg, g, <p for i=1,.-+, 7~ 1; in which case g,=0.
n
Then placing X =0, we get the desired result.
Now we say that Xl'p - ufla1 —vee— ufnan, which is obviously in A, is the

ground-form of A. For A obviously equals (X% -8 a; ~«oo=uf

uﬁlal —.eem uzna"), whence the assertion follows from the last paragraph. Hence

LF 2
an,.. ’Xn -

A is primary.

As before, we omit the proof that A is prime if and only if ay,++-, a, are
p-independent.

Remark. We will not attempt a discussion of 45, as our considerations for the
associated primes of primaries are too tied up with (F) and (P). We also do not
attempt the necessity in 46, though we still want to prove that the associated
primes in an irredundant decomposition of an ideal A into primaries are uniquely
determined.

96. Let A be a given ideal in k[Xl, ceey Xn] and let k satisfy (F) and (P).
Then one can write A as an intersection of primaries with distinct primes: A =
Q,N---NQ;let P,..., P_ be the associated primes. If A = Ql'n ceeN Q: is
another such decomposition, with Pl" vee, P; as associated primes, then {Pl,
cery P l= {Pl', e, P;L Moreover, dim A = max {dim Pi} and depth A =
min {dim P }; and dim P, = degree of transcendency of k[X]/P, over k.

The proof of this now proceeds along familiar lines.

Once we have the equivalence of our definitions of primary, dimension, and
depth with the classical definitions and have the normal decomposition theorem
of 96, we may safely claim to have the whole theory of polynomial ideals over a
field k in strictly finite terms.

Added in proof. In a recent work, Constructive aspects of Noetherian rings,
Proc. Amer. Math. Soc. 44 (1974), 436—441, F. Richman has solved some basic
construction problems for a wide class of rings, including the rings Z[X TARED X"],

where Z = ring of integers.,
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