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CONSTRUCTIONS IN ALGEBRA
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A. SEIDENBERG*1)

ABSTRACT. It is shown how to construct a primary decomposition and to find the

associated prime ideals of a given ideal in a polynomial ring. This is first done

from a classical, and then from a strictly constructivist, point of view.

An early high point in the tradition of constructive mathematics often associated

with the name of Kronecker is the paper [l] of Hermann, in which the various ideal-

theoretic notions in a polynomial ring k[X., • • •, X ] over a field k ate considered.

For example, given ideals A and B, Hermann shows how to construct A O B and

A :B. Here the ideals A and B are given via (finite) bases, and the problem is

to construct bases for A O B and A : B. It is assumed that one can carry out the

field operations in k (in one step per operation), in other words, that k is explic-

itly given (ci. [il]); throughout we assume, sometimes tacitly, that k is explic-
itly given.

Hermann has also considered the problem of constructing the associated

primes of a given ideal A. The simplest case of this problem comes to showing
how to construct the complete factorization in k[X] of any given polynomial in

one letter X. Ii k is a field for which this can be done, we say that the factori-

zation theorem holds for k, or that k satisfies condition (F). Unfortunately,

Hermann persuaded herself that any explicitly given field satisfies (F). In [10],

van der Waerden pointed out the error; moreover, he showed, with a slight qualifi-

cation, that it is impossible to prove that (F) holds for an arbitrary explicitly

given field. Thus to get Hermann's Theorem 11, which asserts the constructibility
of the associated primes, one has to assume at least that the base field k satis-

fies (F); but even this, as we have shown in [6], does not suffice.

Van der Waerden did not go on to examine the repercussions in Hermann's paper
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274 A. SEIDENBERG

of the error mentioned, and since (hopefully) there is no further overt error,(2) one
might well be left with the impression that all the constructions hold for any explic-

itly given k satisfying (F). This notion has also entered the literature. Thus in

[9] Stolzenberg has sought to construct the integral closure of a finite integral

domain k[x., • • •, x ]; here k is assumed to satisfy (F) (and k(x., • • • , x ) is

also assumed to be separable over k). In [6], however, we have shown that the

construction does not hold with the generality claimed. The difficulty goes back
to Hermann's Theorem 11, which, as already mentioned, requires more than condi-
tion (F).

In the proof of Theorem 10, in making an induction on », the number of inde-
terminates, Hermann adjoins an (algebraic) element x,  to k to get a new base

field ze(x.). But condition (F) may no longer hold for k(x.)\ This error could not

impinge on Hermann's attention, since she thought (F) was automatic.

In [5], we introduced a condition (P) for a field k of given characteristic p:
we recall the definition below and merely remark here that it allows us to tell for

any at, • • •, as in k whether \k?(a^, • • •, a ) : kp] = ps, and is, roughly, equiva-

lent to this. As we will show, all of our constructions hold for a field k satisfying
(F) and (P).

Because of the errors in [l] and the resulting confusion, we have often thought
it would be well if this work would be redone; Hermann's paper is a historically

important, and also admirable, work, but its usefulness as a reference is somewhat

diminished.  Our first object, then, is to supply a new reference for the ideal-theo-
retic constructions in k{X^,- • •, X ]. We are not content, however, to assume (F)
and (P) at the outset, but want to show which conditions enter a given construc-

tion. For example, an ideal A  can be written as the intersection of unmixed ideals

for any explicitly given field k; (F) is sufficient to get a primary decomposition;

and (F) and (P) are necessary and sufficient to get the associated primes. We
also consider some constructions not taken up by Hermann. For example, we show

(2) Professor G. Stolzenberg has kindly informed us of an error in Hermann's Satz 4.

Let zzz = (/-••••>/) be a given ideal in R = k[X.,-"<X ] and q = maxjdeg /.}. Let 1 <
r <_zi, let  g e R, and let  g* = g  homogenized with respect to  X.'-"'X ,   i.e., g* =
X^¡g(Xl/X0.Xr/XQ, XT+l,—,Xn), where s = degree of g in A'j.Ay In the proof
(p. 754), Hermann claims to compute an integer k depending only on n, r and q such that
X^g* - 0 (fi'-"'f*. ) for any g=0 (m). This claim will be seen to be unjustified if one

thinks of a g having small degree in X.f-'X   relative to its degree in all the variables.
However, such an exponent k does exist: in fact, take k to be such that (/Ï./* ) : A'. =

({%••••'f* )'. Xq+ .Moreover, one can compute k by 20, below. Then arguing as Hermann
does, one can construct polynomials / ,»••■»/      in zzi such that any g = 0 (m) can be

written in the form g = Z g./ . with [g ./ .]   < [g]    for every g. 40, where [" ]  = degree
in A, »•••»X .1 r

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIONS IN ALGEBRA 275

how for a given ideal A in £[Xj,> • •, X ] and in the presence of (F) to construct
A O k[X.,. • •, X _.]; if A is primary, this can even be done for any explicitly
given base field.(3)

Something still has to be said on what is meant by a construction. According
to Hermann, "the assertion that a computation can be carried through in a finite

number of steps shall mean that an upper bound for the number of operations needed
for the computation can be given. Thus it does not suffice, for example, to give a
procedure for which one can theoretically verify that it leads to the goal in a finite
number of operations, so long as no upper bound for the number of operations is
known." This is obscure, really, since one has to construct the bounds, so the
question of what a construction is remains; but the intention seems clear enough
in the situations actually dealt with. Moreover in many cases Hermann writes down
bounds which are simple functions of the numerical data, and presumably could
have done so in all.

It may be well to give an example of an argument which some authors would
consider constructive but which Hermann does not, nor (for the present) do we.
Let A = (/,,•••,/ ) and B = (g.,. • •, g ) be two ideals in k[X,,•••, X ]: to
find a p such that A : Bp = A : Bp+ . That there is such a p follows from the
ascending chain condition in k[X., - • •, X ]; and Hermann in no way takes excep-
tion to the classical reasoning giving us its existence. To actually find p we
could proceed as follows: We compute A : B and compare it with A. If A = A : B,

then p = 0 is a desired solution. If A 4 A : B, then we compute A : B    and compare
it with A:B. If A:B=A: B2, then p = 1 is a desired solution. If A:B < A : B2,
we repeat the procedure, getting a chain A < A : B < A : B   <• • •. This procedure
must terminate, and when it does, we have the desired p. But, as said, Hermann
does not allow this to count as a construction.

In the first part of the following work (1—72) we adopt a simple classical
point of view and will consider the.above remarks as sufficiently indicating our
intent. In every case, formulae giving the bounding functions are written down (or
sufficient indications are given for doing so). The functions are referred to as

multi-recursive. The exact definition of this term is not important: the only thing
important about the bounding functions is that they should be defined without ref-
erence to existence. This will be seen to be the case for all the functions occur-
ring in our proofs.

Although we were initially guided by Hermann's remarks, we have already
some time ago (cf. [5], [8]) come to the view that her position is untenable. The
constructions are, of course, finite in nature, but the underlying theory is not. If
one accepts the classical reasoning whereby one first gets the existence of the

0) Subsequently, we have shown that condition (F) can be removed; see footnote 4.
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276 A. SEIDENBERG

desired object, then we can see no reason for not accepting the above considera-

tions for finding a p such that A : Bp - A : Bp*    as a construction. At the same

time we maintained a lively conviction that the considerations should not count as
a construction!   The way out is to reject the classical mode of reasoning. This
requires, of course, a radical shift in point of view. The essential point of this

second view is that existence can only be guaranteed by a construction (and not,

as often classically, by an axiom). Construction comes first, then the declaration

of existence.
In the second part of the work (73—96), we have gone over our constructions

from the new point of view. The result is that we get not only our constructions

but also the whole theory of polynomial ideals over a field in strictly finite terms.
Notation. A set of subscripted letters is often abbreviated by the same letter

without a subscript: thus the »-tuple X., • • •, X    is abbreviated to X. Capital
letters are reserved for indeterminates: thus the X.,---, X    in k[X,,--', X ] are

i 22 i n
indeterminates.

Constructions holding for an arbitrary explicitly given base field k.

1. Given a system of homogeneous equations /..g. +• • • + fsg   =0, i = 1,

" ', r, f.. £ k[X., • • •, X ] = k[X], one can construct a ¿[X]-module basis for the
solutions ig., • • •, g ), g. £ k[X]. Moreover, this can be done in a number of steps1 S J
depending only on », r, s, and d = max deg /.. (or, also, only on a bound for these).
By a step is meant a field operation in k.

Proof. Let u be an indeterminate over k and suppose ig.iu; X), • • •, g («; X))

is a solution over k(u). Multiply the g(u; X) by a common denominator, so that

one may suppose the g(u, X) ate in k[u, X], Now in the g(u, X) consider the

coefficients of any power of u. Then this gives a solution. Hence from a basis of
solutions over k(u) one can get a basis over k. So k may be assumed infinite.

We may suppose the r equations are linearly independent over k(X), and by
notation that

A =

fll'-'flr

'rl ' r;

4o.

Moreover, since k is infinite, by a nonsingular homogeneous linear transformation

we may assume that A is regular in (Xj, • • •, X ) i.e., the coefficient of the high-
est power of X    in A is free of X., • • •, X  _ ,. Then we can bring the equations
to the equivalent form:

A«! = (• • )gr+i + ... + (•• )gs

Agr =(•• )gT+l +••• + (• -)gs,
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CONSTRUCTIONS IN ALGEBRA 277

where the (• •) are in k[X], Now we note the existence of solutions

(gn>-°-> g\T\ A> Of •■ 0),...,(gsl,""»gsr; 0,.-., 0, A).

These permit us to bound the degrees in X    of the sought g    ,, • « «, gs, and hence
also the degrees of g,, • • •, g . Now one can rewrite the equations in terms of

xi>-"> xn_r
As to the number of steps, it is clear from the proof so far that the number <p

of steps needed is a function only of n, r, s, and £2* (and not of the coefficients of

the /..). Moreover, tf> = <f>(n, r, s, d) may be assumed to be monotone increasing in
each of its variables. In fact, if, for example, <f> = r/>(r) is a function of say one

variable that is to serve as a bound, we may suppose tß(r) is monotone increasing

by replacing tfi(r) by r + <ß(r) + <p(r — 1) + • • • + cp(Ö). Thus we may suppose <f> =

<f>(n, r, s, d) is monotone increasing in each variable. If b > max{?2, r, s, d], then

<f>(b, b, b, b) will also be a desired bound.
Remark. The proof does not hold for the ring of integers Z at the base instead

of k. For we would need not merely that coefficient of the highest power of X    in

A should be free of X,, • • •, X     ,, but that it should be a Z2722i in Z. Thus our1 n-1'
problems remain unsolved for the ring of integers at the base.

2. Given two ideals A = (fv • • •, f), B « (/   p - • • t fs) in k[Xv •.., Xj,
one can construct A O ß.

Proof. Obviously, it suffices to find the (g., • • •, g ) such that g.f. +•• • +

Srfr^Sr+ifr+1+---+gsfs-
Remark. Here, as throughout this section, one can make a statement as in 1

on the number of steps.
3. Similarly, one can construct A : B.

4. Given a system of nonhomogeneous equations

/fl«l + * ' * + fisgs = &,"    * - If • t r, fip b. £ k{Xv..., Xj = k[X],

one can decide whether the system has a solution in k[X], and if it does, one can
find one.

Proof.  As in the homogeneous case, we may assume k is infinite. We may

as well  assume that rank of coefficient matrix = rank of augmented matrix, or that

the system has a solution in k(X). Then we may assume the system to be in the
form:

ASi = (• -)gr+i + ••• + (• -)gs +Cj

Ag, =('-)gr+1 + ••• + (•• hs + cs,

where the (• •)  are in k[X], Since k is infinite, we may assume A to be regular.
Subtracting solutions of the corresponding homogeneous system, we may bound the
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278 A. SEIDENBERG

degrees of the g. in X . Then we can rewrite the system in terms of X,," •, X _.
5. Given an ideal A = (/,,•••, / ) and an element b in ze[X,, • • •, X ], one

can decide whether   b is in A, and if if is, one can find gj,- • •, gs in ¿[X] such
that b = g.f. +• ••+ g  f . In particular, one can decide whether A - (l).

This is an immediate application of 4.
6. By the dimension of a prime ideal P in ze[X,, • • •, X ] one means the

degree of transcendency of k[X]/P over k. By the dimension of any ideal A 4 (1)

one means the maximum of the dimensions of the associated primes. Thus dim A -

max{r| X. , •••, X.   are algebraically independent over k mod A}. For A = (1) one

places dim A - —1.
Given A = (/,,...,/ ) in ze[X., • • •, X ], one can decide whether X., • • •, X

are algebraically independent over k mod A. In particular, one may find dim A, the
dimension of A. If X,,•• •, X   are algebraically dependent over k mod A, one can

find an / £ ze[Xj, • • •, X^ - 0 such that f £ A.
Proof. One has but to consider the ideal kiX.,• • •, X )[X    .»•••, X ]A.
7. If A is O-dimensional, one can put a bound on the dimensions of /e[X]/ze[X]A

as a ¿-linear space.

Proof. By 6, one can find /. £ k[X .] - 0, i = 1, • • •, », such that /.(X.) £ A.
Then II degree /. is a desired bound.

8. Let X = Xj (i.e., « = l), R = k[X], S = k(X), RZj +• ■• + RZs a free R-
module with Z.,' ••, Z    as free generarors, m = (/,..., / ) a submodule; here

I. = f..iX)Z, +•••+ f.iX)Z. with /.. £ k[X]. Then one can construct Sm n 2 RZ..Z 2 í X ZS S ZI Z

Proof. Let rank ||/.. || = r. By the so-called "Elementarteilersatz" (cf. [l2]),
one can find free generators Z, , • • •, Z     of S RZ . and a new basis /,,•••, /

of 222 such that l'. = g(.X)z'.   with g. e ze[X]. Then, clearly, Szzz O S RZ . = (Z|,
...   Z')

Remark. Here we need a constructive form of the "Elementarteilersatz," and
not merely a statement of existence, but the familiar proof of [12] is already of the
desired form.

9. Let » > 2. Place

R = ¿[Xj,-.-,Xn],        S = kiXA[X2, ... ,Xj,

R   =¿[X ,...,X     ],      5   =¿(X )[X ,... ,X    ,].
22 1 n—l n 12 «—I

Consider a free R-module, with Z,, • • •, Zs as free generators. Let   /. = f-¡Z. +

•••+ fisZs, i «■ 1, • • •, t, f.. € &[X], and consider the R-module zzz generated by
/j j • • •, /,. Let the matrix (/..) be of rank r and assume (by notation) that D =

det 1/,-y I» h j = 1> • • • » r, is j¿ 0. Moreover assume that D is regular with respect
to X,,...,X . Consider the R -module » generated by !.,'••, I, X [.,•••,

Xnlt>   "' XflV' • • ' Xnlt- PIa"e ti+sj - Z2X1 and let ? ^ maxldeg /"..!. Then »
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CONSTRUCTIONS IN ALGEBRA 279

is contained in the free R-module generated by the Ç,.    ., / = 0, • • •, N + q. Place
N = qt - 1. Now we claim:

S - m nZRZrm+ (Sn. n nZ^k)-

Proof   (cf. [l]). There are elements in 777 of the form DZ. + (• ")Z    . +• • • +

(• .)Z , i = 1,..«, r, where the (• •) are in k[X], Hence any element in RZ. +• • •

+ RZ    is congruent mod 777 to an element g,Zj +•••+ gsZs (g¿ £ k[X] with

deg g . < deg D, i = 1, • • •, r; here as throughout the proof, deg stands for degree

in X ). Thus given an element / = gyZ. +• • •+ gZ    in S• m D 2 RZ,, we may

first suppose deg g. < deg D, i = 1, • • •, r. Now / in S • m O 2 RZ . implies that
there exists an F(X.) in k[Xy] - 0 such that F(Xj)/ = ayl^ +• • •+ a I   with the
a. in k[X], Since Dl    . £ Rl. +•■•+ Rl , we may suppose (by redistributing the
terms) that deg a    . < deg D <qt= N + I for 2 > 0. We have F(Xy)g. = 2'_j af..
Consider these for i = 1, • • •, r, multiply by the cofactors F, . of the kúi row of

"fll'-'fd

frl fr

k m 1,..., r, and sum to get  2¿=1 HXj)g¿Ffe¿ = Dak + 2^=I lj>ra.f..Fk.. From
this one concludes that also deg a. < N for j < r, hence for all j. Hence FÍXy)l £

2 R Cu and I £m + iS >72nS R £,). The opposite inclusion is immediate.
Remark. The same statement with the same proof holds if S and S    ate

replaced by

¿(X.,.-.,X   )[X       ,...,X ]    and    kiX,,•••, X  )[X   ..,..., X    .],1 771771+1 71 1 771771+1 77 —i

respectively, with I < m < n.

10. Let n > 1. Place R = /e[Xj, • • •, Xj, 5 = MXj)[X2, • • •, Xj. Consider a
free R-module, with Z,,..-, Z    as free generators. Let /. =f..Z. +...+ /. Z ,

2 = 1, • • •, /, /.. 6 ¿[X], and consider the R-module 772 generated by /.,•••, / .
Let the matrix (/..) have rank r and assume that D = det|/..|, 2, j = 1, • • •, r, is

5^ 0. Assume that & is infinite. Then for some homogeneous nonsingular linear
transformation X. = c.,X, +•••+ c. X    over k, one can construct2 11      1 171     71 '

¿(x'j) [x'2,..., x¿] • 772 n 2>zr

Proof. For n - 1, we already have the result from 8, so let n > 2 and make

an induction on n. Since k is infinite, after an appropriate homogeneous nonsingu-

lar linear transformation, D becomes regular in the new variables; notationally, we
may suppose this to be so already for X,, • • •, X . Hence from 9, we have

S . mnY.RZ.~m-r (sn . nn^R^A.
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280 A. SEIDENBERG

To complete the construction, however, we must still construct S   •» H S R £,.r ' ' 22 n*k
We have not asserted that this can be done, but by induction, after an appropriate

linear transformation X .  = c.,X, +• «•+ c.     ,X     ,, z = 1, • • •, n - 1, we can con-2 2l     I 222-1     »2-1 ' ' '
struct ze(X. )[X_ , • • •, X   _,] • » Cl 2 R t,, : this transformation does not change

m, », 2 R £,, D, nor is the regularity condition on D lost. What is changed is that
X.,...,X     ,  must be replaced by Xj, — ,X _j (and in particular, Xj by X,);
then one can write:

kix\)[x'2,..., x'^,, xj n£>z;- = 272 + (kix\)[x'2,..., x'n_j]. nnZRnCky

and since one can construct the right-hand side, the proof is complete.

Remark. One can arrange to have X. = c.X. + c2X2 + ...+. c X    with c. 4 0,

where X,, • • •, X    are the originally given variables. Then k[X. , X2 , • • •, X  ] =
k[X¡, X2, -. -, Xj and kiX¡ )[X2 , • • ., X'J = kix[ )[X2,..., Xj.

11. Let R, 2ZZ be as in  10, except that k may be finite. Let «.,•••, u   (= u)
be indeterminates and place X, = u,X, +•••+ u X . Then one can constructr 111 22     22

zed, X')[X,,...,X ]• 272nI>d)[X]Z,1        ¿ n â-~ i

Proof.  Let t be a single indeterminate and let

l£kit, X1)[X2,...,Xn]. 2zzn5>(i)[X]Z..

Write / in the form / = (/(r)/r + /(r+1)ir+1 +...)/dit), where the lU) are in 2 k[X]Z.

and dit) £ k[t\. Then the I. ate in zé(Xj)[Xj, • • •, Xj • 222 O S RZ¿. In fact, since
dit)l is in kit, Xj)[X2, • • •, X ] • 222 n S kit)[X]Z., we may as well suppose dit) = 1.
There exists an Fit, XA £ 4(z)[Xj] - 0 such that

(1) F(r, XAl = aA\t, X)ll + • • • + a(it, X)lf,

where the ait, X) ate in ze(i)[X]. Clearing denominators, we may suppose F and
the a. are in k[t, X]. Let F = FJs + Fs  jis+1 +• • •, with the F¿  in k[X] and
F   4 0. Comparing the coefficients of tr+s of the two sides of (1), we see that

Z(r) £ ze(Xj)[X2, •. -, Xj n S RZ.. Subtracting l(r)tT from /, we see that /(r+1) £
kiXA[X2,. •., Xj n 2 RZ.; etc. Hence from a basis of kit, XA[X2, • • •, Xj •
»72 D 2 kit)[X]Z . we can derive a basis for &(Xj)[X2, • • •, Xj • m n 2 /é[X]Z .. Thus
we may adjoin an indeterminate to kiu) and later remove it.

Following 10, to get a regularity condition on m we make a transformation

X¿ = "j-jXj +• • •+ uinXn, where the u ..  ate indeterminates. After this, to get a
regularity condition on », we make another transformation X.   =2^.1X.  +-...+-

fjn'_jXn_1, ¿=1, — , » - 1, X    = X   , with the v.. further indeterminates; etc.,

till we get variables X(j""l), • • •, X^"- l). Let K = kiu, v,---) and X* = X^-15.
By the argument in 10, then, we can construct X(X* )[X2, • • •, X ] • m t~\ 2 K[X]Z.;

here, if X^ = z/jjXj +• • •+ u*nXn we have to observe that u*  4 0 (see the remark
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CONSTRUCTIONS IN ALGEBRA 281

in 10). Let U, V, • • ■   be the matrices such that X' = (JX, X" = VX , • ■ • ; and let
x(«-l) tm x*) = u*x and iet [j* «, („*.). since U* =.--WVU, the u*. ate rational,
in fact linear, functions of the 22.. with coefficients in kiv, w, • • •); and vice-versa,

so that k(v, w, • • • ; u) - k(v, w, • • • ; u*), and k(X, v, w,•••;«) mk(X, v, w,.-.; u*).

Hence

dt k(X, v, w,.- •; u )/k(X, v,w,.--) = n ;

and the 22*. are algebraically independent over k(X, v, w,•••), in particular 2V*j ̂0.

Let 22' abbreviate the (72 — 1)72 quantities u.., i > 1. Since (/*=••• WVU, we see

that 22Î . = a a, . + b. with a ., b . £ k[_u', v, w, • • •]. Upon specializing   V, W, • • •
to the identity matrix, the matrix U* specializes to U; and 22*. to 22. ., whence

a. 4 0. Hence

K = k(u, v,w,... ) = ¿Ujj,•.•, a    , u, v, w,•.«).

By the first paragraph of the proof, we can delete u', v, w, • • • from /C, i.e., we can

construct

k(u*n," • , 22*ln, X*y) [X2,.. - , Xj -  777  r,y_k(u*n,-' . , 22*n) [X]Z..

Since ut., ' • •, u^    ate algebraically independent over  k(X), we can just as well

write 72,, • • ■, 22    instead of 22Î,, « • •, 22* , and the proof is complete.

Remark. In [8], we showed that after the transformation X' = u.,X, +■•••+». X ,
1 il    1 277   n

not only 777 but also 72 and all the subsequent modules already have the desired
regularity property.

12. Let R = k[X1, • • •, X ] and 777 = (/.,..., / ), a submodule of the free
R-module 2 RZ.. Then one can construct k(X)m D 2 &[X]Z..

Proof. Let u,,- • •, u    be indeterminates and place X, = 22,X. +• • •+ 22 X .I71 r ill 7772

Since k(u j,.'., 22n, X,,..., X ) = k(u j, • • •, u , X j, X2, — , X ), we have
dt k(u, Xj )/k = 72 + 1, so k(u, Xj ) is explicitly given. We now work over this field

and make an induction on 72. Hence we can construct

k(u, X)m n£kiu, X|)[X2,..., XjZ. = 777j.

From a basis of 777 j  we can derive a basis in 2 &[X]Z.; we omit the simple consid-

erations, of a type already encountered, for proving this. Hence we have a sub-

module 7722 of 2 k[X]Z. such that 772j = 25(22, Xj')[X2,- • •, X ]m2. By 11, we can
construct 77!j O 2 kiu)[X]Z., so we now have kiu, X)m O 2 kiu)[X]Z.. Now we
delete 22j, — ,22    to complete the proof.

13. Let R and 777 be as in 12. Let X' = 22.,X, + — + 22. X , 2 = 1,. ••, a,i ill in   n '        ' t
where q < n and the 22.. are indeterminates. Then one can construct

kiu, X'j,.o., X')[X    j,..., XJ772 r.J>(ii)[x]Z..
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Proof. The case q = n is 12, and for q < n, the proof follows precisely the

lines of 10 and 11.
14. Let A be a given ideal in k[Xl,- ••, X ] and let X. = «¿1Xj +•••+ zz. X ,

i = 1, • • •, s, where s < « and the zz.. are indeterminates. Then one can construct» »     » — 2;

kiu, Xj,. • -, X's)[Xs+v..., XjA n zed)[X].

This is just the case s = 1  of 13.
15. The ideal kiu, X[ , • • •, *p[Xs+,, • • •, XjA n k(u)[X] of 14 has a basis

in ze[X] which can be constructed.
Proof.  This is rather immediate using the normal decomposition theorem, but

we give an alternate proof which will be useful later (cf. 76).

We have a basis of kiu, Xj, • • •, Xs)[X]A n zed)[X] = B which we may suppose

consists of elements in k[u, X]. Let /(zz, X) be one of the basis elements; it suf-

fices to show that the coefficients of /, regarded as a polynomial in the u.., ate
in B. We have an E = Ed, X|, • • •, X^) e k[u, X[, • • •, X^] - 0 such that Ef £
k[u, X]A. Then d(Ef)/du.. and EdiEf)/du.. ate in k[u, X]A, whence E2df/du.. £
k[u, X]A and df/du.. £ B. In the case of ch 0 it follows that the coefficients of /
are in B. In the case of ch p > 0, one writes / as a polynomial in the u.., k =
0, 1, • • •, p — 1, with coefficients in  k\v?, X]; and concludes, as before, that these

coefficients are in B.  Replacing E by Ep, writing v for up, and repeating the argument

several times, one soon comes to the desired conclusion.
Remark. If R and S ate rings with R C S and A is an ideal in R such that

S- A Cl R = A, then we frequently write A  for S -A also, as this can usually be

done without confusion; in particular, we may do this if R = k[X., • • •, X ] and

S = ze(zz)[Xj, • • •, X ], where u stands for some indeterminates. Then if A = Ql O

• ••Hg       O... C\Q    is a normal decomposition of A (of 14 and 15) into primary

ideals and Q   ¡, • • •, Q   ate the primaries of dimension < s, then, using familar proper-
ties of quotient rings, one sees that the intersection of kiu, X,, • • •, X')[X    ,,•••, X ]A

with kiu)[X] is Qj O ... O Q(; and the intersection with k[X] is also Qj O.. .O Q .
16. Let A be an ideal in k[X., • • •, X ] of dimension r > 0 and assume it has

a 0-dimensional prime (something we can decide by computing kiu, X'.)[X., • • •, X ]A
n zed)[X] and comparing this with kiu)[X]A). Let A = Qin...OQsn...nQi be
a normal decomposition of A  and let Qs  ,,« • •, Q   be the 0-dimensional primaries.

Place B = S ! n •.. n gs, n m q^^ C\...r\Q^ Then one can compute B and 0-
dimensional ideal n' such that A = B O »'.

Proof. Let X, = a,,X, +•••+ u,  X , wherethe u, . ate indeterminates. Then1 11      1 122     22 12

k(ull,>->, uln, X'A[Xl, X2,..., Xn]A n zedjj,«.., ulf)[X]= zedn,..., «ln)[X]ß.

Hence we can find an Ej in ze[zZjj, • • •, «ln, Xj] - 0 such that E^ C A  so B C

A :Ej (in i(au.aln)[X]). Now also A:Ej C B, since if g eÉ(a,.,..., Hj )[X]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTIONS IN ALGEBRA 283

and gEj £ A, then obviously g £ B. So A : Ej = B. Note also that B : Fj = B,
since if gFj £ B, then gE. £ A and g £ B. Now we say:

(1) (A,Fj)nB = A.

In fact, the right-hand side is obviously in the left; conversely, let g £(A, Ey) n

B.  Then g = hE ^ + a, with h, a £ k(u„, • • •, 22jn)[X] and a £ A. Since g £ B, gE.
£ A, whence hE. £ A. From this hE. £ B and h £ B. Hence hE. £ A and g £ A,
so equality is proved.

Now extend the base field with further indeterminates Z2   , • •., 22      and¿i ¿n
repeat the argument. Since B, i.e., the intersection of the primaries of A of posi-
tive dimension, is uniquely determined, one sees from (1) that the intersection Bj
of the primaries of (A, Ey) of positive dimension must contain B. Hence we find

(A,Fj, E2)OB1 = (A,F1)    and    (A, Fj, E2) n B = A;

here we are working in k(un,.. •, u2  )[X] and E2 = EAXA) £ k\u.., • • •, «2  , X],
where X2 = u2.X. +•••+ u2 X . Repeating the argument several times, we get

(A, E,, F,,-.., E )o B = A, where E. =E.(X.'), X' = u.,X, + ...+ «. X . Then1 2 '        72 Z It Z ill 171     71
n. - (A, E., E2, • •., E ) is O-dimensional and the problem is solved over k(u).

Now let A : B = 777 (in /e[X]); then ttz is a O-dimensional ideal having the same

primes as  72 or n..   Since n. < ny.m < n.:m   <•••,by 7 one can compute a p
such that ??2^ C 72j (not tz!). Now ACS 0 (A, 772^) C A, i.e., A - B D (A, mp), as
desired; this is first obtained in k(u)[X], but since A, B, and 772 are &[X]-ideals,

it is also seen to hold in k[X]. Then n' = (A, mp) solves the problem over k.
17. Let A be r-dimensional, r>0. Let A = Qx n ... n Qs n ... n Q( be a

normal decomposition of A, and let Q., • • •, Q be the r-dimensional primaries.
Then one can construct Q. f"1 • • • Cl Q  .

Proof. One applies 14 and 15  for s = r.
18. Let A  be r-dimensional, r> 0. We can test whether A  is unmixed, by 17,

and if it is not we can find the least s for which A still has s-dimensional primes;
assume this situation. Let A = O, H ... O Q    n ...O O   be a normal decomposi-

tion, and let Q      j, • • •, Q   be the s-dimensional primaries. Place B = Q. O • • •
C\ 0    , n = 0      , n • • • fi O,. Then one can construct B and an unmixed s-dimen-*-si7 Äsi+1 Ä2
sional ideal 72' such that A = B O 72'.

Proof. One first computes B, by 14 and 15, then an ideal m in &[Xj, • • •, X ]

having the same primes as 72 (772 = A : B). Now in k(u, X., • • •, X )[X    «»•••» X ],
for a p one can compute, A - B O (A, 777^). In k[X], (A, mp) is s-dimensional,

but may not be unmixed. Let 72 be the intersection of the s-dimensional primaries

of (A, 77z^). We can compute 72. Then

k(u, X'j,..., X;)[Xs+1,..., XJt2 = ¿(«, X'j,..., Xp[Xs+1,..., Xn](A, mp)

and the contraction is n. Hence A = B D n.
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19. Given an ideal A  in k[Xv •••, Xj, one can write it as the intersection
of (constructed) unmixed ideals.

This is a corollary of 18.
20. Let A, B be two ideals in k[X,, • • •, X ]. Then one can calculate an

integer p such that A : Bp - A : Bp+1.
Proof. Since A : B¡ = A : B'+1  implies A : Bi+1 = A : B!+2, the chain A C A : B

C A : B   C- • •  is strictly increasing till we come to equality. By  19 we may assume

that A is unmixed, of dimension r, say. Then the ideal A : B' = C., if not = (1),

is also unmixed r-dimensional. Then the strictly ascending chain A < C. < C2- - •

remains strictly ascending in zed, X., • • •, X )[X    j, • • •, X ], where X. = u .jX, +
• « •+ u. X , z = 1, • • • , r, and the zz..   are indeterminates.  In this ring, however,in  n 2; &' >
the ideals A, C.,- • • ate 0-dimensional, so by 7 we get the desired bound p.

21. Let b., • " , b   be polynomials in ze[X,, • • •, X ] of degree at most N,

fot a given integer N. Then the ib.,- - •, b), over all possibilities, are in one-to-

one correspondence, via the coefficients of the b., with the points in an affine

space over ze; say ib., • • •, b ) corresponds to Pib., • • •, b). Consider a system

of equations: /jgj +• • •+ f sgs = b ., i = 1, • • •, t, as in 4. Then the points

P(f7,, • • •, b ) fot which there is a solution ig., • • • , g ), g . £ ze[X], fill out a k-
linear space, and one can construct a basis for this space.  Otherwise said:  The

conditions that the system have a solution are linear and homogeneous in the coef-

ficients of the b., and one can construct a ze-basis for the conditions.
2'

Proof. That the Pib., • • •, b ) fill out a linear space is obvious, and it is
merely a question of constructing a basis for this space. If ze is finite, we can

write down all possibilities for (£>.,••• , b) and test, by 4, for which ones the

corresponding linear system has solutions. If k is infinite, then, following the

lines of 4, Proof, one sees how to write down the desired basis (or conditions).
22. Let A = (/., •••,/) be an ideal in ze[X., • • •, X ], » > 1. If at least one

of the /. is regular in X,, • • •, X  , one can construct A n k[X-, • • • , X _ .].

Proof. We are looking for the g = g.f. + • • • + gjs with g. £ k[X] and with
degv   g - 0. Clearly we may assume /   5¿ 0 and that it is regular in X.,--',X _..

Using the regularity of / , we can depress the degree in X    of g.,- • •, gs_,,

and thus put a bound on the degree in X    of gl, ■ • •, g . Writing g. = 2 g.. X7

and /. = 2 / ..X1, the condition deg^   g = 0 can be rewritten as a homogeneous

linear system in the g ... By 1 we can construct a basis for the (■ • •, g..,••• ),

and the corresponding g give a basis for (/j, • • •, fs) O ze[Xj, • • •, Xn_ j] (cf. [7,

Lemma 2]).
23« Let A =(/.,•••,/) be a primary ideal in ze[X., • • • , X ]. Then one can

construct A O ze[Xj, • • •, Xn_ j].
Proof. Let s = dim A. If s = 0, one can find an / e ze[X ] - 0 in A. / is regular

in X,, • • •, X , so by  22 one can construct A O £[Xj, • • •, Xn_ j].
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For s > 0, we make an induction on s. If every X., z' = 1, • • •, « — 1, is alge-

braic over  k mod A, one can find a g (X.) £ k[X.] - 0 in A, 2 »1,•••,«—1. Let
g £ A O k[X j, • • •, X _ j] be an element sought; reducing g mod (g., • • •, g _y),

we may suppose degx  g < deg„   g. - d., 2 = 1, • • >, tz — 1. Let A., • • •, A„ be the
power products of the X . with deg,.  h . < deg^  g. for every i and /', 2 = 1, • • •,

72 — 1, ; = 1, • • • , M.   It is then a matter of finding the Cj, • • •, c„  such that c.h. +

" * '+ cMhM = I\&1 +'"+ fsgs has a solution (g,, • ■ •, gs) with g. £ k[X]. This
can be done by 21.

If at least one X., i = 1, ■ • •, 72 - 1, is not algebraic over k mod A, let X, =
22jXj +•••+ 22 _jX _j, where the 22. are indeterminates. Since A is primary, one

notes that k(u, Xy)[X]A n k(u)[X] = A. Thus it suffices to construct k(u, Xj')[X]A
nk[X,,"-, X     ,]. Since A has dimension s — I over k(u, X.), we can construct

1 77— 1 1

k(u, Xj)[X2, • • •, X ]A n k(u, Xj)[X2, " • , X _,] = A . It remains to construct A
O 2e[Xj, • • •, X _ j]. We have a basis gj»•• • » g, for A    and may suppose g .  £

k[u, Xj, X2, • • •, X _ j] C k[u, X j, • ■ • , X  _ j]. When these are written as polynomials

in u,,..., u    with coefficients in k[X,,.--, X     ,], one sees that the coefficients1 '       71 1' '        72-1
are in A, hence in A . Thus one has an ideal A    in k[X., • • •, X _ j] such that

k(u, Xj)[X2,..., Xn_y]A" = A*. By 15 one can construct ¿(22, Xj')[X2,• • •, X    ,]A"
n/e[Xj,...,Xn_,].

Remark. The problem of constructing A O k[X., • • •, X _.] for an arbitrary
ideal in k[X.,..., X ] was posed in [9]. If k satisfies condition (F), then one
can find a decomposition of A  into primaries (see 36 below), and the problem can
be solved for such fields k. Whether the construction can be done for any explicitly

given field k we do not know.(4)
24. Definition. A finite integral domain k[x., • • ■, x ] is said to be given ii

one is given (or knows) a finite basis for the ideal of relations satisfied by Xj, • • •

• • •, x    over k. The field k(x., • • •, x ) is then also said to be given (relative to k).

A given field kix., • • •, x ) is explicitly given, but not vice versa.

By 23, if fz'j,. • •, 2   Î is a given subset of jl,. • • , 72Î, with i. 4 z¿ if / 4 k,
then the field fe(x.j,- « «, x. J is given if ¿(xj,. • •, xn) is.

25. If k(x.,..., x ) is given, one can decide whether x    is algebraic over

0) Now we see how to do this, but will let what we have written stand, in order not
to disturb the structure of the text. Let m = (/«•""»/,) be a given ideal; we propose to

construct m n k[X.<---'X ]. Let f\\'"''f\,    be the polynomials constructed in footnote 2

(for r= 1).   Let g em n A:[.V..•■••• X ], i.e., g = 0 (m) and [g]. = 0; and write it as stated:

g= ^ëJn with [s,-/i,]| -U\ for every g, ^°- Then the fn with l/ij-li =0 wiu be
seen to be a basis for 771 n k\X2'---<X ]. This part of the argument was communicated to
us by Professor Stolzenberg.
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zedj, • • •, x     ,); and if it is, one can find the defining equation for x    over
zedj, • • «, x     j).

Proof. Let (/,»•••,/ ) be a basis for the ze[Xj, • • •, X ]-ideal P of relations

satisfied by x,, • • •, x    over k; and, by 23, let PQ be the k[X., • • •, X _,]-ideal
of relations satisfied by x., • • •, x _,  over k. We also designate by P. the exten-
sion of P„ to ze[X,,.",X ]. Then

U 1 22

(/l<*l.*„-!' X>" ./>l.*„-!>*„» =P/P0

in /e[x,,..., x _,, X ].. We can decide whether P/Pq = (0); and x    is algebraic

over k(x., • •., x _,) if and only if P/PQ 4 (0); assume this case. Then P/PQ
generates a prime principal ideal in zed,, • • •, x _,)[X ], and using the Euclidean
algorithm we can get a single generator for it. This generator yields the desired

defining equation.
It will be convenient to say that 0 = 0 is the defining equation for a transcen-

dental element.
Remark. The argument can be considerably simplified if one assumes condi-

tion (F) for k; 23 was brought in in order to avoid (F).

26. Let a sequence of fields kix A, k(x^, x2), ••-, zedj, • • •, xj be deter-
mined by giving, for each z, the defining equation of x; over k(x^, • • •, x._,);
here x. may be transcendental over ze(x,, • • •, x._ j). Then one can construct a

basis for the ideal P of relations satisfied by x,, • • •, x    over k.
Proof. By induction we may suppose we have a basis /»»•••»/- for the ideal

P. of relations satisfied by x., • • •, x     ,  over k; we also designate by PQ the

extension of (/,, •••,/) to ze[X,, • • •, X ]. Let Fix., • • •, x _j, X^) = 0 be the
defining equation of x    over kix., • • •, x _ ,). Here we may suppose  F £

k[Xv ..., Xj, F = D(X1?. - •, Xn_ j)X™ + Dj(X,,.. •, Xn_ j)X™-1 +• ■ •, and,
dismissing the trivial case that x    is transcendental over zed,, ■ • •, x _ ,), that
Dix,, • • •, x     ,) 4 0.  Let G £ ze[X„ • • •, X ] with Gix„ • • •, x ) = 0. For some p
we have DpG = AF + R, where A, R eze[X,,..-, X ] and degY   R < degv   F.

1 22 *n *■„
Moreover, R(x,, • • •, x     ,, X ) vanishes for X  = x , whence Rix,, • • «, x    ,, X )* 1' 22-1 22 »2 22' I7 '      22-1'       22

= 0 and R 6 Pp. Thus G e (PQ, F) : Dp. Conversely, any element in (PQ, F) : D1",
for any p, is in P, so P = U^ dp0> P) ■ DP) and P = (PQ, F) : Dp fot large p.
By 20, then, P can be constructed.

Definition. If a field kix., • • •, x ) is determined by giving, for each i, the

defining equation for x¿ over ze(xj, • • •, x._ A, then the field zedj, • • •, xj is
said to be canonically given (relative to k). (Thus by 25 and 26 the field

kix., • • •, x ) is given if and only if it is canonically given.) In the case that k

is a prime field of given characteristic, the canonically given field ze(xj, • • •, x^)

is said to be absolutely given.
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27. Let the field k(x^, • • •, x ) be given and let y j, • • •, ys be (given) ele-
ments in k(x, ,•--, x ). Then one can construct a basis for the ideal of relations1 »7
satisfied by y j, • • •, y    over k.

Proof. By 25 we can find the defining equation of x. over k(x.,. ••, x._y).
Moreover, if y . = a(x., • • •, x )/b(x., • • •, x ) with a, b £ k[X., • • •, X ], then

tMxj, • • •, x )y . - a(x., • • •, x ) = 0 is the defining equation of y .  over

/e(xj, • • •, x , yt, • • •, y ■_,). Hence by 26 we can construct the ideal of relations

satisfied by Xj, • • •, x , y1?..., y    over k; and then by 25 the ideal of relations

satisfied by y •>•••» y    over k.
28. Definition. Let A be an unmixed r-dimensional ideal in k[X.,..., X ]

1 71

with r < 72, so that if X. = u -, X, + • • • + u. X , i = 1,« • •, r + 1, with the 22..1 21     1 in   n ' 17
indeterminates, then

k(u, X'j, • « •, X'r)[X] A n k(u)[x] = A   and   k(u, X[,• • •, X'r+l)[X]A n k(u)[X] = (l).

The ideal &(a)[X]A n k(u)[X., • • •, X    j] is, as one proves, a principal ideal (F).
The generator F may be taken in k[u, X., • • •, X    j] and primitive as a polynomial
in Xj,-.., X    with coefficients in k[u] (i.e., the coefficients should have 1 as
greatest common divisor). Such a polynomial, though still not unique by a factor
in k, is called the ground-form of A.

In the case A is a prime ideal P, the ground-form F is obviously irreducible.

Let k[X]/P = k(x) and let x'. ■ u..x, +• ••+ u. x , i - 1, • • •, r+ 1.  Then
1 il     1 772    72

F(u; Xj,.- •, *   j) = 0, and since dt k(u; Xj,..., xf y)/k(u) = r, F(a; Xj,-.-, X   .)
is the irreducible polynomial satisfied by *,»•••, x   j over k(u).

29. Let A 4 (0) be an unmixed ideal in k[X., • • •, X ] (so that dim A = r < n).
Then one can construct the ground-form of A.

Proof. We treat separately the case r = 72 - 1 and r < n - I. If r = « - 1, then
A is principal, A = (F); and when F is written in terms of (genérically) transformed

variables and normalized, we get the ground-form. Now let r < n - 1 and let X¿  =
H..X. +•••+a. X , 2 = 1,. • •, «, with the a., indeterminates. Since any element

il    1 272   72' ' ' 17 '
in A — 0 becomes regular in Xj, • ■ •, X _j, by 22 we can construct  A   n
k(u)[X., « • •, X     ,]. If r = 72 - 2, then this intersection is a principal ideal (F),

and F, when normalized, gives the ground-form. If r < n - 2, we repeat the argu-

ment, so that if X'. - v.,X, +• • •+ v.    ,X     ., 2 = 1,. ••, n — 1, X   = X , with' 1 ll      1 171-1      71-1 72 72
the v.. further indeterminates, we can construct A D k(u, i>)[Xj,-.«, X    «J.
Eventually we construct k(u, v,> • •)[X(1"~r~1),.. •, X^jr~1)]. Write X* for
X("~r~1\ Let U, V, W, • • • be the matrices of the transformations X —» X\ X' —»
X", X" -» X'", ••• ; and let X* = t/*X, so that U* = • • • WVU. Observing that
k(v, w, ■ « • ; u) = k(v, tí/,... ; u*) and that v, w, • • •, u* ate algebraically indepen-

dent over k(X), one sees first that one can construct A O k(v, w,---; a*)[X*,. • •, X* .],
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hence A O k(u*)[X*, • • •, X*+J] and A D zed)[Xj', • • •, Xr'+1], This soon gives the
ground-form.

Basic properties of the ground-form. This section is not constructive in intent,

but merely recalls some basic facts.
30. Let P 4 (0) be a separable prime ideal in ze[Xj, ■ • •, Xj, i.e., if k[X]/P

- k[x], we are assuming that k(x) is separable (i.e., separably generated) over k.
Let X. =a..X. +•••+«. X , z=l,---,r+l, with the u.. indeterminates, and

i ill in    n ' 2; '
let F(u; X,, • • •, X    j) be the ground-form of P. Then F is separable in X   ,

(over zed, X,,- • •, X )). Moreover, if x. = a .,x. +•••+ u. x , then x   .  is a' 1 ' '        r I til 222    2l' r+l

primitive element of k(u, x) over zed, x,,- • •, x ).
Proof. Introduce further indeterminates and write x. = a.,x, +•••+ zz. x ,2 il     1 222    22

i = 1,. • •, ». Then zed, x) = k(u, x'), k(u, x') is separable over k(u), and some r,

hence by symmetry any r, of the x., • ■ •, x    form a separating transcendency

basis of k(u, x')/k(u); cf. [13, p. 104, Theorem 30]. Hence xf j is separably
algebraic over zed, x,, • • •, x ). Thus the defining polynomial of x   ,  over
k(u, x., • • •, x ) is separable, and as this is F(u; x., • • •, x , X    .), the first

assertion follows. Now from F(u, x., • • •, x   .) = 0, taking the partial with respect

to U    j ., we get dF/du    l . + dF/dx    j • x. =0. Since dF/dx   . 4 0, the second
statement follows.

31. Distinct r-dimensional primes ir < n) have distinct ground-forms.
Proof.  Let P be an r-dimensional prime, x a generic point over ze.   We con-

sider first the case that k(x)/k is separable. Let x. = a.x, +•••+«, x , z'=l,* 2 21     1 222    22

• • •, r + 1, be as in 30, and let F be the ground-form of P. We have seen that

dF/du    1¿ +- dF/dx   . • x. =0 (and dF/dxr . 4 0), so we can recover the x¿ from
x,, • • •, x   ,. Now d,, • • •, x    j) is a generic zero of Fiu, X )/k(u). Any other

generic zero (x*, • • •, x"^ j) of (F)/k(u) is a conjugate of (xj', • • •, xr +1)/ze(«),

and hence

(    dF/dU>+" 3F/dUr+ln\

V */Ki''"'~ dF/dK+iX'=x*

conjugate of (x., • • •, x )/k(u). We can recover P from (x., • • ■, x ) or equally

well from any of its conjugates over k(u). From F we can get a generic point
(xî, • • •, **+i) °f (F)/k(u), and from x* and F we can get a generic point of

P/k(u) and P itself. Hence we can recover P from F. Hence if P j, P2 are two
distinct separable primes, their ground-forms must be distinct.

In the general case, let k* = perfect closure of k. Let P., P- be the given
primes. Over P. (z = 1, 2) in k*[X.,---, Xj there lies exactly one prime P*.
The ground-form of P . is a power of that of P*. The primes Pï, PÎ have distinct

ground-forms by the case considered. Hence so do P., P-.
32. The ground-form of a primary ideal is a power of the ground-form of its
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associated prime; and the ground-form of the intersection of several r-dimensional
primary ideals Q j, • • •, Q    having distinct associated primes is the product of

the separate ground-forms.
This is immediate.

Constructions holding for a base field k satisfying condition (F).
33- Consider the following problem. Given an / £ k[X] - 0, X = Xj, to con-

struct the complete factorization of / over k. Ii this problem has a positive solu-
tion for k, we say that condition (F), or, also, the factorization theorem, holds for
k. For example, any prime field of given characteristic satisfies (F).

34. If (F) holds for k, then one can also completely factor any polynomial in

k[X.,. • •, X ] - 0. Hence if (F) holds for k, then it also holds for a simple tran-
scendental extension of k.

We recall Kronecker's proof:
Kronecker's trick. Let/=2c.       . X,   • • »X ", c.       ,   £ k, be the polyno-

mial to be factored. Let t be an integer greater than any exponent i. in /. Let X
be a new indeterminate, to a power-product X.   « • • X " associate

X1    2 "       ,

and to / = 2 c. X,  •. • X " associate

£+...+,    i""1
/'=Vc. ■ X1 »       .

1 71

From /   we can recover /. Any factorization of / gives rise to a factorization of

/ , from which we can recover the factorization of /. Since /   has only a finite
number of factorizations, all of which we can write down, we can recover all pos-

sible factorizations of /.
35. If (F) holds for k, then it also holds for a simple separably algehraic

extension k(6) oí k.
This is known from [ll], but it will be well to recall the proof. Let, then,

F(6, Z) £ k(6)[Z] be the polynomial to be factored; we may suppose F to be monic.

Let a be an indeterminate. Form the norm of Fid, Z - ud) and factor it completely

in k[u, Z]:
NiFiO, Z - ud)) = Fj(a, Z) • • • F£(h, Z).

We form GCD (F(d, Z - u6), F), i = 1, • • •, t; ii this is not 1 or F(9, Z - ud), we
can factor Fid, Z - ud) properly, and placing a = 0, we get â proper factorization

of Fid, Z). Hence we may assume GCD (F(d, Z - ud), F.) - 1 or F(d, Z - ud)
and Fj(«, Z) = 0 (F(d, Z - ud)). In this case, F(d, Z) is irreducible. In fact, sup-
pose F(6, Z) = g(d, Z)h(d, Z) with degz F = 72 > m = degz g > 0. We have

NF(d, Z - ud) = Ng(d, Z - u6)Nh(d, Z - ud).
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We may assume Ngi6, Z-ud)=0(FA, so that Ngi6, Z-ud)=0 (F(6, Z - u6)).
Regarding solely the terms of greatest degree, we get NÍZ — u6)m = 0 (Z — u$)n,

whence NÍZ - ud) = 0 (Z - ud) , a contradiction.

36. Let A be an unmixed r-dimensional ideal in k[X., • • •, X ], r < ». If k
satisfies (F), then one can construct the associated primary ideals of A. Hence

for any ideal A  one can construct a normal decomposition into primary ideals.

Proof. Given A = Q. n...ng , unmixed, r-dimensional, we can construct its
ground-form F and factor it (over zed)) into a power-product of irreducible polyno-

mials: F = cF.   • • • F ', c £ k. Here F., • • •, F   must be the ground-forms of the

associated primes Pj, • • •, P   and Fj  , •• •, F ' those of ôi>"*> Q(. Then GJj =

A:F2 " • F '; and similarly for the other Q ..
Remark. Let (F ) be the condition on ze that one can write any polynomial in

k[X., • • •, X ], effectively, as the product of primary ideals. Then one sees that

it is (F ), rather than (F), which is necessary and sufficient for the construction
of a primary decomposition. Later (see 54) we shall give an example showing that

(F ) really is weaker than (F).
37. Given a primary ideal, we can put a bound on its exponent.

Proof. Reduce to the case of dimension 0 and apply 7. However, we have
already dealt with a more general situation in 20.

38. Let A be an ideal in   ze[Xj, • • •, X ].   If k satisfies (F), then one can

construct k(xA[X2, • • •, XJA n k[Xv • • •, Xj.
Proof. We can construct a normal decomposition A =2, H... O Q   for A.

Then we can find which Q. ate such that k(XA[X]Q. H k[X] = (1); let these be
Q,+l.---»fit. For the other Q ., k(X A[X]Q . O k[X] = Q .; and QjO.-.n^ « the
desired ideal.

Remark. It would be interesting to know whether this construction can be done

for any explicitly given base field k.

Constructions holding for a base field ze satisfying conditions (F) and (P).
39. Consider the following problem. Given a finite system of linear homoge-

neous equations 2 a.. X. =0 with a.. £ k: to decide whether this system has a
nontrivial solution in kP, and if it does to find one. If this problem has a positive
solution for ze, we say that condition (P) holds for k; fot example, condition (P)

holds for any absolutely given finite field (p = characteristic of ze).

40. If the condition (P) holds for k, then it also holds for any canonically
given extension of k (cf. [5, p. 12]).

Proof. It is sufficient to consider a succession of simple extensions of the
following types: (i) a simple transcendental extension, (ii) a simple separably
algebraic extension, (iii) extension by a pth root.

First consider type (i). Now the a.. are in k(u) and we seek a solution in
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kp(up). There will be one such if and only if there is one such in kp[up]. We may

also assume

a..£k[u],    a.. = a..Aup) + a.   (up)u + ••• + a..__   .(up)up~l.
27 27 2/0 l]l iiP-l

Replace the given system by the equivalent system 2 «¿,-feX. = 0. So now we may
assume the a.. £ k[up_\. Let |A, 5 be a maximal ^-linearly independent subset of
the set of coefficients of the a.., so that we can write a{. =2 a... A,, a...   £
kp[up]. Then 2 a...X. = 0 is an equivalent system with the coefficients in /eí'[aí'].
Extracting the pth roots of the left-hand sides, we get a system over kiu) and seek

a solution in k(u). This can be resolved.
Now consider case (ii). The coefficients are in k(d), the unknowns in kp(6p).

Write X . = X ,0 + X .yd" +...+ X.      d(s~ 1)p, where [k(d) :k] = s and the unknowns
are in kp. Rewrite the equations in terms of 1, d, • • •, ds~    to get an equivalent

system over k with solutions to be in kp.
In case (iii) we have equations over k(a    p) and seek a solution in kp(a).

Here a £ k, we can test by the assumption on k whether it is in kp, and we sup-

pose it is not. Writing the coefficients in the form c. + c.a '*+•••+ c    yrp~ ''p
with c. £ k, we can get an equivalent system with coefficients in k (since kp(a)

C k). Now we write each X¿ as X. = X;n + X.ya +• • •+ X,     ^ap~    to get a sys-
tem with coefficients in k and solutions to be in kp.

41. If conditions (P) and (F) hold for k, then they hold for any canonically
given extension of k.

Proof. As in 40, we need consider only extensions of types (i), (ii) and (iii).
As noted in 34 and 35, condition (F) carries over to extensions of types (i) and
(ii). In case (iii), let F £ k(a1/p)[X]. Let G be a factor of F, F = GH; we may
assume F, G, H monic. Then Fp = G Hp. We can factor Fp over k and so have

a finite number of candidates for Gp. Any such must be a polynomial in Xp. Sup-
posing it such, its coefficients must have their pth roots in k(a /p), and this is
sufficient. By (P), this can be decided.

42. If conditions (P) and (F) hold for k, then given a primary ideal Q in
k[X,, • • •, X ], one can construct its associated prime.

1 72 *

Proof. As the assertion is obvious for 72 = 1, we make an induction on 72; and

for 72 > 1, an induction on dim Q. Ii dim Q > 0, adjoin «,Xj +• • •+ a X    to the
ground-field, reducing the dimension. There remains the case that dim 2=0. In
this case, first get age k[X.] - 0 such that g = 0 (Q) and then an irreducible

/ £ k[X.] — 0 such that fp £Q for some p. Then Q and (Q, f) ate both primary
with the same associated prime. Now take residues mod/ to reduce n.

Alternate method. In the case dim Q > 0, one can find an X¿) say Xj, alge-
braically independent over k mod Q. Then examine kiXy)[X2, • • •, X ]Q. If P is

the associated prime of Q, then by induction on 72 one can find k(Xy)[X2,. •., X^]P.
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Let (/,, • • •, / ) be a basis of this ideal with /. e ze[X]. Then we can find a nor-
mal decomposition (/j, • • •, fj = P n Ql n ... n Q   ¡n k[X]. We can find the
primaries here, one of which is P. Which one? All but P go lost in ze(X,)[X2, • • •, X ].

Remark. Condition (F) is not needed in 42; see 45, below.

43. If ze satisfies (P), then elements z., • • •, z in ze can be checked for p-

independence (i.e., one can check whether [kpiz,, • • •, z ) : ze*"] = ps); and if they

are p-dependent, then one can construct an equation exhibiting this. Conversely
if any z., ■■•,2j in ze can be checked for p-independence, and if they are ¿»-de-

pendent, an equation exhibiting this can be constructed, then condition (P) holds

for k.
Proof. Elements z,, • • •, z    ate p-independent if and only if the power-products

z.   •••z s, 0 < z. < p - 1, are linearly independent over kp. If (P) holds for k,
1 S J  —

this can be decided; and in the case of dependence, one can write down a nontriv-

ial relation 2c. z,I...2s = 0, with 0 < i. < p - 1  and c.       .   £ kp. In the
I1"-2S   1 s -   ; -r n'"'s

latter case, we may also note the following: if z., • • •, z _ , are ^-independent,

but Zj, • • •, z    are not, then we can (constructively) write z    in the form

z   «T>. z\l...zs~l.       0<i.<p-l,    c. £kp.
1 s-1 ' 1 s-l

For we already have a polynomial Fd,, • • •, z _ ., Z) over kp of degree < p in

Z and satisfied by z ; also Zp — zp is satisfied by z . Hence we can soon get

z    in the desired form (by taking a GCD, etc.).

For the converse, let (P ) be the condition like (P) except that it refers to a

single equation. Then (P ) and (P) are equivalent.  In fact, (P) obviously implies

(P ). Conversely, let (P ) hold and let 2 a.X. =0 be a finite system with

a.. £ ze, to be solved nontrivially in kp. From the a .. one can pick out a maximal

fc*"-linearly independent subset {A, Î:  this can be done with (P ) alone. Then we

can write a. = 2 a..,Xk, a...   £ kp, and our given system is equivalent to
2 a... X. = 0. Extracting the pth roots of the left-hand sides, we get a simple

linear system to be resolved. So (P ) and (P) are equivalent. Now let (P ) be the

condition that any elements z., • • •, z    in zé can be checked for p-independence,

and in the case of p-dependence, one can write down an equation exhibiting this:

then (P') and (P") are equivalent. In fact, (P ) obviously implies (P ). Con-

versely, let (P") hold for ze and let A., • • •, À   be elements in ze. By (P ) we can

find a p-basis amongst the X. for kpi\., • • •, À ): say these are A., • • •, A^, so

that kpi\v... , At) - kpi\v ■ ■ ■, \j and [ze^Aj, • • •, Xj : kp] = ps. By the remark
in the previous paragraph, we can write A    ,,..., À   (and A., • • •, A , too) as

ze^-linear combinations of A,   • • • A s, 0 < i. < p — 1. Thus A., • • •, A, are ^-linear1 s   '        —    ; — c 1' '     t
combinations of elements linearly independent over kp. The problem is now a

linear one over zé  , and the proof is complete.
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44. Let p - ch k > 0. For any «.,•••, a    £k, the ideal (Xp-a„..., Xp -a)
c J      I J    n linn

is primary; and it is prime if and only if a,,- • • , a    are p-independent.
We omit the simple proof.

Remark. The ground-form of (X? — a.,-. •, Xp ~ a ) is Xj* — upa. —• • • -

uPna . This is irreducible if [kp(a) : kp] > p. Hence a primary ideal not a prime may
very well have an irreducible ground-form. This is not possible, however, for a

primary ideal Q whose associated prime P is separable, since if  P is separable

and A is the ideal generated by the coefficients of its ground-form, then it is

known [3, p. 131, Theorem 5] that A - P C\ Q. O ... OQs, with the primes of Qj,
• • •, Q    embedded.

45. Consider the problem: Given a primary ideal Q in k[X., • • •, X ], to con-

struct its associated prime (cf. 42). A necessary and sufficient condition for this
problem to have a positive resolution is that k satisfy (P).

Proof. The necessity follows from 44 and 43: to test the p-independence of

«j,..., a    we merely have to test whether (X? - a,, • • •, XJJ — « ) is equal to its

associated prime; moreover, if a., • • ■, a     .  are p-independent but a,, • • •, a
are not, then  Xp — a    is a pth power in

¿[X1,...,XnV(Xf-a1,...,X^_1-an_1)=¿(a;^,...,a^f)[Xn],

one can construct its pth root, and from this get a desired expression for a    as an
element of kp(a., • ■ •, a _ j).

As for the sufficiency, the proof is by induction on n. First, for n = 1, let
(F) be a given primary ideal in k[X], X = X.. We may assume F is monic. We

make an induction on deg F. If F is not a polynomial in X^, then dF/dX 4 0; and

F/GCD (F, dF/dX) is the desired polynomial. If F is a polynomial in X^, we
first test whether it is a pth power: we have merely to test whether each coeffi-

cient is a pth power. If F is a pth power, F = F?, then deg Fj < deg F, and we
achieve   a reduction. If F is not a pth power, then F = F\, where r^O (p) and
hence Fj is a polynomial in Xp. Place Xp = Y, F(X) = GiY). Then (G(Y)) is
primary and we need only study G. Hence again we have a reduction, and the proof
for n = 1  is complete.

For »2 > 1, we make an induction on dim Q. If dim Q > 0, then (as in 42) we

adjoin a,X, +• • •+ a X , u. indeterminates, to the base field, to achieve a reduc-'11 n   ti'    i ' '
tion in dim Q. Ii dim Q = 0, then by 23 we can find Q O k[X y] = (g); and, by the
foregoing, an irreducible / £ k[X.] such that g » cfr, c £ k. Now we complete the

proof as in 42 (first proof).

46. Consider the problem: Given an ideal A in k[X., • • •, X ], to find its
associated primes. A necessary and sufficient condition for this problem to have
a positive resolution is that k satisfy (F) and (P).
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Proof. The necessity of (F) follows immediately from the case « = 1; the
necessity of (P) follows from (the first part of) 45. The sufficiency follows from
36 and 42.

Remark. Since any prime field of given characteristic satisfies (F) and (P),

all of our constructions hold for an absolutely given base field.

Independence of the conditions (P) and (F).
47. Example of an explicitly given field not satisfying (F). In [10] van der

Waerden showed that it is out of the question to establish (F) for an arbitrary

explicitly given field. We reproduce his argument as we shall have to use it several

times. Let, then, E (= E(«)) be a property of positive integers having the follow-
ing properties: For any positive integer we can decide whether Ein) holds, but we

do not know how to decide whether there exists an » for which E(n) holds. For
example, let E(n) be the assertion that in the decimal expansion of n the «th,

(« + l)th, ■••,(» + 98)th digits are all nines. Let p^ = 2, p2 = 3, p, = 5, • • • be
the sequence of positive primes and let x,, x2, • • • be a sequence of numbers
defined as follows: if E(n) does not hold, we define x   = (p ) 2; if E(«) does
hold, we define x   = (- l)   . If, now, we could establish (F) foi k = Q(x^, *2, •••),
where Q is the rational number field, then we could decide whether there is an w

for which E(n) holds, for there is such an » if and only if X   + 1 factors properly
in k[X].

From an intuitive point of view, van der Waerden's argument is about as con-

vincing as one could want, short of an actual counterexample. Actually, his argu-

ment can be strengthened, from a classical point of view; and one can even, on the
basis of a widely accepted definition of computable, give an actual counterexample;
see [6]. However, partly for simplicity, we here limit ourselves to van der Waerden's
argument. From [6] it will be clear how to modify our arguments, if this is desired.

Remark. Scrutinizing van der Waerden's argument, one may wonder what the

role of the p. is: if instead of (p ) 2 one adjoins 0, one comes to the same con-
2 n '

elusion. Thus, as one sees, the distinction is not between finite and infinite

extensions of a prime field zeQ, but rather between explicitly given and canonically

given extensions of k..

48. Lemma. Let L/k be separable (i.e., elements in L linearly independent
over k remain such over k !p, so that L and k lp are linearly disjoint over ze).

// a system of equations 2 a .. X* = 0, a .. £ k, has a nontrivial solution in L,
then it has a nontrivial solution in k (p = ch k).

For the simple proof, we refer to [5, p. 21].

49. Example of an explicitly given field satisfying (P) but not (F). In the

case of characteristic 0, (P) is vacuous, so 47 gives an example. However, one
will want an example in positive characteristic. Let, then, E = E(n) be as in 47.
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Let kQ be a prime field of characteristic p = 3 (or any prime p not having —1 as

quadratic residue). Define a sequence of fields recursively as follows:  k. = k.   .

ii Ed) does not hold and k . = k ._ A(- l)/l) if E . does hold. Clearly k = [J k . is
an explicitly given field. Now given a finite system 2 a ..Xp. = 0, let k     contain

the a... By 40, k     satisfies (P), so we can decide whether the system has a solu-

tion in k   , and if it does, can find one. By 48, this allows us to decide whether

the system has a solution in k, and if it does, to find one. Hence k satisfies (P).

On the other hand, as in 48, we cannot decide whether X   + 1  factors properly

over k.

50. Lemma. Let k.  be a prime field of ch p 4 0. Let a, b be indeterminates

over k. and let K = kAa, b). In the polynomial ring K[X, Y], the polynomial Yp —
a — bXp is (obviously)  irreducible. Let (x, y) be a generic zero over K of (Yp —

a — bXp).  Then K is algebraically closed in K(x, y).

Proof. Let q £ K(x, y) be algebraic over k, write:

q = (a0(x) + a j(x)y + • •• + d    Ax)yp~1)/c(x),

with a.(x), c(x) £ K[x\. Then qp is in K(x) and hence in K. Then

apAx) + apAx)(a + bxp) + • • • + «£_jW(« + bxp)p~l = a(a, b)cp(x).

Clearing appropriate denominators in kAa, b], we may suppose the a. and c to

be in kAa, b, x] and, changing a by a factor in kAa, b], that a(a, b) is in

kAa, b\. Comparing the coefficients of arP+^-1' 0n both sides, we see that

a     j = 0 (c) in kAa, b, x]. Then comparing the coefficients of asp+ p~  ', we
see that a     _ = 0 (c); etc., so we may assume c = 1. Now comparing the coeffi-

cients of btp+^p~    , we see that a     , = 0; and then successively that a     2, • • •,

a.  ate zero. So q = a Ax) £ K(x), whence q £ K.
51. Example of an explicitly given field satisfying (F) but not (P). Let E =

E(n) be as in 47. Let kQ be a prime field of given characteristic p 4 0, let a, b

be indeterminates, and let K   ~ kAa, b). Define a sequence of fields KQ, K., K2,
... recursively as follows: K.= K ._ Ax, (a + bxp) ' p) with x transcendental over

X._j if i is the least integer for which E(i) holds; and otherwise K.= K^j. Let
K = (J K¿. Each K{, and also K, is either = kQ(a, b) or = kQ(a, b, x, (a + bxp) /p)
- kAb, x, (a + bxp)   'p), a pure transcendental extension of kQ with degree of
transcendency 3. Hence each K. satisfies (F).  Since, by 50, each K. is algebra-
ically closed in K. ., any complete factorization of a polynomial over K. remains

such over K. ., whence also K satisfies (F). On the other hand, we cannot decide
whether Yp — aZp — bXp = 0 has a nontrivial solution in K, for there is such a

solution if and only if there exists an i such that E(i) holds. Hence K does not

satisfy (P).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



296 A. SEIDENBERG

52. Example of an explicitly given field K satisfying (F) but containing an

a such that K(a1/P) does not satisfy (F) (cf. [6]). The field K of 51  also applies
here, since  b  'p £ Kia  lp) if and only if E(i) holds for some ».

53. Example of a primary ideal Q in a polynomial ring over an explicitly given

field K satisfying (F) such that its associated prime cannot be constructed. Let

K be the field K of 51, and let Q = iXp - a, Yp - b) in K[X, Y]. If the associated
prime could be constructed, then we could decide whether a, b ate p-dependent,

but a, b ate p-dependent if and only if E(i) holds for some i, and this cannot be

decided.
54. Example of an explicitly given field k satisfying (F*), of 36, but not (F).

Let k = K(al/P), where K, a ate as in 51 and 52. Then zé = K(a1/p) does not

satisfy (F), by 52. On the other hand, let F e zé[Xj,. • •, X ] - 0. Since K satis-
fies (F), we can construct a complete factorization of Fp in X[X,,> • •, X ], Fp =

cF.   • • • Fss; we may assume F, F., • • •, F    monic, whence c = 1; F . 4 F■ fot

i 4 ;'. Then r. = 0 ip)  for every i and F = F \l/P ■ • • F*/'" holds in zè[Xj, • • •, Xj.
Here (F.) and (F.'    ) are primary, so one gets the desired primary decomposition

in ze[X,, • • •, X ].

Computation of some bounds.

55. Let /.jgj +•••+ fisgs = 0, i = 1, ■ • •, r, f.. £ ze[Xj, • • •, Xj, be the sys-
tem considered in 1, and let d > max ¡deg /.. !. Then there is a ze[X]-module basis

ig.   , • •• , g ' ), g.     e k[X], for the solutions, in fact the basis constructed in  1,
11

such that nird) is a bound on deg g    . Here the bound is a simple, in fact,

primitive recursive function of », r, d.

Proof.  In  1  we wrote down some solutions ig.., • • •, g. ; A, 0, • • •, 0), • • •,

(g ,,'",g   ; 0, — ,0, A). One finds here that degx   g¿. < rd and deg A < rd.
We then place a bound on the degrees in X    of the sought g., • • •, gs: one finds

that rd — 1  is such a bound. Then the g. ate written as polynomials 2 g.X'   of

degree rd — 1 in X    with coefficients in k[X.,---, X _,]. Each equation f-,g, +

•••+/■ g   =0 then gives rise to rd equations in the g.. ; and altogether we get
IS    S IJ

r d equations. Let M(», r, d) be a sought bound. Then one sees that Min, r, d) -

rd + zM(» — l,rd, d) yields a recursive relation for a possible M. Noting that for

» = 0, M(0, r, d) = 0 is allowable, we find rd + ird)2 + ird)4 +•••+ ird)2"~ as a
formula for M(«, r, d). This is < nird)

56. Let A = (/,, •'•,!), B = (/r+r • • ■, ¡j be two ideals in ze[Xj, • • •, X„],
and let d > max I deg fA. Then A r\ B has a basis of elements of degree < nd

+ d and A : B has a basis of elements of degree < »(d + n)"d)

Proof. The formula for A O B is a direct application of 55. As for A :B, if B
has a basis of s elements one gets directly that nisd) is a desired bound.

Now the number of power products of degree < d in «  letters is (  +"), which is
"" n

< id + »)". One may replace s with id + »)".
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57. Let /¿jgj +...+ f.sgs = b., 2 = 1,..., r, f.., b. £k[Xv-.., Xj, be the
system considered in 4. Then the system has a solution in K[X] only if it has one

with degY    g. < n(rd)
The proof is like that of 55.
58. Let A = (/x,..., fs) be an ideal in ¿[Xj,... , Xj and let d>

maxideg/.J. Then X,,.«-,X    are algebraically dependent over k mod A  only if

there is an / e*j[Xj,..., X^] - 0 in A  with degf<Ád(d + l)n_r)2''"1.
Proof.  We consider the equation f.g. +• • •+ / g   +gs  j = 0  with the g.

sought in k[X., - • • , X 1.  This equation can be replaced equivalently by d + 1

equations with coefficients in &[Xj,. • •, X _.], and eventually by id + l)"_r

equations with coefficients in k[X., • • •, X ]; the bound d remains a bound. By
55, Adid + l)n-r)2r" ' is a desired bound.

59. Let X = Xj, R = k[X], S = kiX), RZj +...+ RZs, m - (/j,.. •, 7f), I. =
/.j(X)Zj +• • •+ f.siX)Zs, 777j = 5m n 2 RZ. be as in 8 and let d> maxideg /;.l.
Then there is a polynomial F with deg F < td such that Fot, C 777.

Proof. In the proof of 8, one can take the g. such that g. , = 0 ig) toi i -

1, • - •, r — 1. Then F = g   is a desired F.
Remark. To get a bound on F one does not need the additional observation

of the proof, but the bound td simplifies some future calculations.

60. Let R = £[Xj,...,Xn], m - (Zjt.... 1), /.. f.yZ ,+•••+ /.^Z,, X¡ =
ajXj +•••+ 22nXn,  777j = ¿(22, Xj')[X2, •• •, X ]tt7 Cl S RZ. be as in  11, and let
a > max deg i/\ Î. (Here deg stands for the degree in all the variables X., • • «, X .)

Then there is an F e zs(a)[Xj'] - 0 of degree < (qt) such that Ft72j C m.
Proof. Let Z2.., i, j - l,-- - ,n, be indeterminates (with u..= u) and call the

variables Xj, • • •, X    the transformed variables. From 9 we can write Sm C\

2 RZ . = 772 + iS 72n2R Ct)> where it is understood that one is working with the
7 71 71^* ' °

transformed variables over k(u), so that S - kiu, X.)[X,, • • «, X ],  R   =1 / 71 71

&(a)[Xj, •• •, X ,], etc. By 11, Remark, the module Snn n 2 R C,k ls already
prepared for an induction. Moreover, an F for S 77 O 2 R Ç, is also an F for

Sm O 2 RZ.. Now the first step in constructing F is to replace /.,••■, /   by

lv • • •, ¡t, ' ' ' » lixn9~1' • • • » /,XÓ9~ *' thus * forms by '2^ forms- The bound a
remains a bound. Thus a second step replaces / q forms by í a ; and after 72 — 1

steps, we get (tq)        /q forms with coefficients in t«(2z)[Xj]. By 59 we get the

desired results, at least over k(u) = k( • • •, a ..,<•• ). One can unload the super-

fluous variables by the first paragraph of 11.
Remark. Since m.=m:F, applying 55 one sees that m.  has a basis

g(1°ZI+-+i(,°Z. with deggf<n(s(qt)2n-l)2n-\

61. By a rational step, or more simply step for the constructions not involving

conditions (F) or (P), we mean a field operation in the base field k. Later we

give a different definition for step if (F)   or (P) is involved.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



298 A. SEIDENBERG

62. The number of steps required for the constructions of 55—60 can be
bounded by simple, in fact primitive recursive functions of the numerical data

(«, r, s, d, q, t).

Proof.  This could be established by following the proofs in 1 — 11, but the
counting of the number of steps in 55, for example, can be simplified by noting

that once one has a bound on deg g.,  i = 1, ■ ■ •, s, the system can be converted

into a homogeneous linear system. Similar remarks hold for 56—58. In 59 one will

have to place a bound on the number of steps required to put an r x s matrix with

entries from ze[X,] into the desired canonical form. This problem is too straight-

forward to be taken up here, as is the problem of computing a bound on the number

of steps required to write down a basis for a homogeneous linear system of r equa-

tions in » unknowns.
Remark. In 60 one will note that something new is afoot, since having a bound

on deg F does not linearize the problem of finding m.. To find m., one will have

to know F itself.
63. Let /jgj +• • •+ f¿sgs = 6, i = 1,- ••, s, be the system considered in 1

and 55, so that n(rd) is a bound on deg g.    of some&[X]-module basis for the

solutions. Then there is a simple, in fact primitive recursive, function F(n, s, r, d)

that bounds the number of steps needed to produce a basis Kg,  , • • •, g    )\ and
at the same time bounds the number of elements in the basis produced. Let m. =
kiu, Xj)[X2, • • •, Xjm O 2 RZ¿ be as in 11 and 60, so that there is an F = F(X'A
of degree < iqt) such that m. = m: F. Then there is a simple, in fact primi-

tive recursive, function G(n, s, t, q) that bounds the number of steps needed to

produce a basis !/(î'î,  I     = g\ Zj +•••+• gj Zs, fot m^  and at the same time

bounds the number of elements in the basis produced.

The proofs are immediate.
64. Let R = ze[X,,-.., X ], m = (Zj, •• •, / ), I. = filZ1 + • •• + f\Zs be as in

12, and let d> maxldeg f..\. Let G(n, s, t, d) be a function given by 63 for bound-

ing the number of steps needed to produce a ze[X]-module basis for  m.   =
zed, X.)[X-, • • •, X ]22z (Ï 2 RZ. and which also bounds the number of generators

produced. Let B(n, s, t, d) be a function defined recursively by

B(l, s, t, d) m F(l, s, t, d),

B(n, s, t, d) = Fd - 1, s, B(n - 1, s, t, d), 2B(-n-l's't'^d).

Then B(», s, t, d) is a bound on the number of steps in a canonical construction

for producing a ze[X]-module basis of k(X)m O 2 RZ. and is also a bound on the

number of generators produced. Thus B is primitive recursive.
Proof. Let B(», s, t, d) be a sought bound for the construction in 12. The

proof first extends the base field and finds m^ = zed, X)m <~\ 2 k(u, Xj)[X2,.. •, XJZ..
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This takes at most B(n — 1, s, t, d) steps and produces at most B(« — 1, s, r, d)

generators. Next 11 is applied. Let Cj =/j(Xj)/g.(Xj), • • •, c    =/ iXA/g  iX.)
be a set of elements in zed, X.) written as quotients of polynomials. If d>

maxideg /., deg g.\, then any rational operation on the set produces another in

which 2a" is a bound. Hence for  m, one gets a basis in  2 k[x]Z.  with
2   («-   ,s,t, )¿ as a [j0un(j on the degrees in question. Now the recursion formulae

are obvious.
65. Let A = (/,, •••,/,) be an ideal in ze[Xj, • • •, X ]. Then there is a primi-

tive recursive function B(n, d) and a normal decomposition A = 2, n ... O Q
such that s and the exponents of the Q . ate < B(n, d) and such that the Q . and
their associated primes have B(«, d), or fewer, generators of degree < B(n, d).

Proof. A difficulty occurred in 12 because of a change in base field; but after

that, through 29, no new impediment intervenes for computing the desired bounds.

In 36, which constructs a normal decomposition for an unmixed ideal, one needs

to factor the ground-form F; but here we are not making a construction, and only

need a bound on the degrees of the factors of F. A similar remark holds for get-
ting the desired information on the associated primes (the homomorphism of 42'

causes no difficulty). The number t does not enter because we may suppose t =
(nf).

66. For the constructions involving (F) or (P), in the general case we define
a step as a field operation in the base field ze or an application of (F) or (P); in
the case of an absolutely given field k, by a step we mean an addition, subtrac-

tion, or multiplication in Z. In either case one could easily put a bound B on the

number of steps required for any of our constructions, but in the latter case B will
be a function also of a bound b on the coefficients in the data (also of the data

defining k), cf. [6, p. 14].

Specialization arguments. In this section we recall some specialization argu-

ments of Krull [2]. The section does not, for the moment, have a constructive

intent, though later we shall modify it for constructive purposes.

67. Let k be an infinite base field, t, a single indeterminate (as with Krull)

or several indeterminates. Let f(t, X) £ ze(i)[X,, • • •, X ] and a¿ £ ze, where a =

(..., a ., • • • ). If fit, X) can be written in the form g(t, X)/d(t) with  g £ k[t, X],
d £ k[t] and d(d) 4 0, we define /(a, X) by substitution. Let A(t) be an ideal in
k(t)[X], A(t) = i/(r, X)i. We define A(d) to be the set of /(a, X) insofar as these
are defined; then A(d) is obviously a ze[X]-ideal. For an ideal A(t) - \f(t, X)\

in k[t, X] we define A(d) as |/(a, X)}. Similar definitions can be given for a sub-
module m(t) of a free ze(/)[X]-module.

A property P = Pit) is said to hold almost always if P(a) holds for at least

one a (a. £ k) and if there is a polynomial hit) £ k[t] - 0 such that P(a) holds

whenever hia) 4 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



300 A. SEIDENBERG

68. Let A(t) be an ideal in k(t)[Xv • • •, Xj. Then A(t) has a basis /* (t, X),
...,/*(/, X) such that for all a (a.  £ k) we have A(a) = (/*(a, X), •••,/* (a, X)).

And for any basis fA.t, X), • • •, fs(t, X) almost always A(d) = (f.(a, X), • • •,
/>, X)).

Proof. We recall Krull's proof. Let Bit) = Ait) O k[t, X]. One first observes

that for all a (a. £ k), Bia) = /4(a), which is obvious. Let /* (/, X), • • •, /* 0, X) be
1 1 771

a basis of B(t). Then obviously B(a) = (/* (a, X), •••,/* (a, X)), whence the first

part of the theorem (Satz 1  of [2]) follows. Now let /,,-••, /   be any basis of

A(t). Then one has equations: f*?(t, X) » 2£_j c¿fe(í, X)/¿(í, X), and since f*(a, X)
= 2 c Aa, X)fAa, X) holds almost always, the second part follows.

Remark. We have recalled Krull's proof, as later it makes us abandon the

theorem.

69. Let the system /.jgj +...+ f,sgs = 0, i = 1, •.., r, f.. £ k(t)[Xv • • •, Xj
= k(t)[X], have !(g(j°,- • •, g(sf))l, g^  £ k(t)[X], as a ¿(i)[X]-basis for its solu-
tions. Then, almost always, Kgj (a, X), — , gs (a, X))} is a ¿[X]-basis for the

specialized system \f nia, X)gj +• • •+ f.ia, X)gs = 0Î. Let A(t), B(t), C(t), D(t)
be ideals in k(t)[X] with A(t) n Bit) = C(/), A(/):B(í) * D(t). Then almost always
A(a) n B(a) = C(a) and A(a) : B(a) = D(a). It A(t) is unmixed r-dimensional with

F(t, X) as ground-form, then almost always A(a) is unmixed r-dimensional with

F(a, X) as ground-form.

Proof. Let !(g|     ,•", g*     )\ be the basis for the solutions found by the

canonical process of 1. If t is specialized to a in such a way that certain coef-

ficients (in k(t)) do not become zero, then the canonical process for the special-

ized system j Aa, X)g. +•••+/. (a, X)g   =0, i - 1, • • •, r, is parallel to that for

the general system and so leads to \(g*^l'(a, X), • • •, g*     (a, X))} as a basis for

the solutions of the specialized system. Now let \(gv ,•••, g     )\ be another basis

for the solutions of the general system. The elements of this basis can be written

in terms of those of the other and vice versa; and these relations continue to hold

almost always. Hence l(gy'(a, X), • • •, gs (a, X))l is almost always a basis for
the solutions of the specialized system. This proves the first point and the others

are proved similarly.

Remark. The constructions through 29 yield properties that hold almost

always; on the other hand, those involving (F) or (P) do not. Thus a primary

ideal may fail to remain primary, a normal decomposition to remain a normal de-

composition, a prime to remain prime upon specialization.   Still, the ground-
form can be made  a basis  for their study,  as well as for a study of the be-

havior of a prime ideal under extension of the base field, cf. [3].   An unmixed

r-dimensional ideal   A   remains unmixed r-dimensional upon extension of the
base field, since starting from a given basis of  A,   the canonical process

showing that A   is unmixed r-dimensional remains such over the extended
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field. This proof was missed in context by Krull (cf. [3, Note 7, p. 134]); a different

proof was given in [4, p. 37]. Also, the ground-form remains the same upon exten-

sion of the base field.

The leading coefficient ideal and subcoefficient ideal of a given ideal. The

constructions of this section hold for any explicitly given field ze.
70. Let A be an ideal in k[X.,---, X ]. By the z'th leading coefficient ideal

L (A) we mean the set of coefficients of X1   in the polynomials / in A with
2 n *■     J '

degx   f = i, together with 0. The z'th leading coefficient ideal is contained in the
(z + l)th, and their union is the leading coefficient ideal L(A) of A. By the z'th

subcoefficient ideal S (A) we mean the set of coefficients of X'  in the polynomials

/ in A with subdegreev   /= z, together with 0.

71. Let /,,•••»/   £ k[X., • • •, X ], » > 1, with one of the /. regular in X,,
• • •, X , and let d > max ideg f.]. Then for every i one can construct ^¿((/jj • • •, fj)

within a number of steps depending only on », s, d and i (or, also, only on a

bound for these). One may also construct polynomials h j  , • • •, h      in A of

degree i in X    whose leading coefficients will generate L .((/,, • • •, /_))» and one
can bound the deg h.    in terms of », s, d and i (or, also, on a bound for these).
Similar assertions hold for S .((/,, • • •, fj), even without the regularity assumption.
All bounds may be taken to be primitive recursive.

The proof is like that of 22. In the case of S., one has merely to consider

elements of the form g.f. + • • • + g /   with max ideg g Î < z, so one needs no

regularity assumption to depress the degrees of the g..

72. Let /.,« « «, /   be as in 71 and let A = (/,, • • •, / ). Then one can con-
struct  L(A) within a number of steps depending only on », s and d. Correspond-

ingly one has a bound on the least p fot which L AA) = L     AA) = • • •, on the

number of elements in some basis of L(A), and on their degrees. All bounds may

be taken to be primitive recursive.
Proof. By 20 we can calculate a p such that A:XP-A:XP* . Consider' r n n

the S A A), k < p, and polynomials h j   , • • •, b*-  ' in A of subdegree k (in Xj
whose coefficients of X    yield a basis of S,(A); and let a" be a bound on their

degrees, for k < p. Then LjiA) = LiA). In fact, let g £ A with deg^   g = d' > d.
Subtracting from g appropriate ze[X,,-..,X _ j]-linear combinations of the h. \

we get a g' in   A of the same degree in X    and with the same leading coeffi-

cient; so we may suppose g = 0 (X       ). Then g/X    is also in A, whence L,,iA)
- L.^^A), and the assertion LÍA) = LÍA) follows.

Remark. Thus for A we have an integer e, depending only on « and d,

which is a bound on the least p fot which L   (A) = L     AA) =• • • and is also a
bound on the degrees of some polynomials of degree p, p — 1,« • • in X    whose

leading coefficients yield bases for L AA), L      .(A), •••• (We will then have
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L(A) - LÍA), e will be a bound on the degrees of the elements in some bases of
LJ.A), Lg_AA), • • « ; and there will be polynomials in A of degree < 2e and of
degree e, e — I, • • •   in X    whose leading coefficients yield bases for L (A),
Lg_ j(A), • • •.) We may assume e(n, d) is monotone increasing in each of the vari-

ables 72, d and is primitive recursive.

The theory of polynomial ideals in strictly finite terms. In this section we
show how to remove every nonfinite form of reasoning from our constructions. The
constructions themselves are, of course, already in finite terms, but the underlying
theory is not. The main way a nonfinite form of reasoning enters is through Hu-
bert's considerations on ascending chains of ideals—this is the only serious dif-

ficulty. Now Hubert used these considerations to show that every ideal in
k[X.,..., X ] has a finite basis, but this is no difficulty since for us an ideal is

always given via a finite basis. However, his considerations also come in tacitly

in the structure theorems, for example, in the normal decomposition theorem.

Therefore we have to go over our proofs and, for example, remove each use of the

normal decomposition theorem. We go over the proofs seriatim.
73. There is no occasion for comment until we come, in 6, to the construction

of dim A for an ideal A 4 (1) in k[X., • • •, X ]. Classically, one defines dim A
by considering the associated primes P., • • •, P    of A  and placing dim A =
max ¡dim P.\, where dim P. = dt (k[X]/P )/k. This definition is not available to us.
However, classically, dim A =maxjr| k(X . , • « •, X.)[X]A 4 (l)\; and we could

take this equation as defining dim A. Call this Definition I. Now let a.., i, j =

1... •, 72, be indeterminates and let X. = a.,X, +• • •+a. X    be the "transformed"» »      « ¡ill 772     77
variables. Then also dim A = max!r| kiu, X.,. • •, X )[X]A 4 (l)\- and we could
also take this equation to define dim A. Call this Definition II. Classically it is

obvious that the definitions are equivalent, but for us it is not obvious. This may

be an interesting problem, but not an essential one. We merely have to pick some

definition: we take Definition II, as this one is best adapted to our proofs.

One has: KDef I) < KDef II). The proof is a simple specialization argument.

If KDef I) = 0, then equality holds. The proof is a simple linear algebra argument.

74. Let «,,«••,a    be indeterminates, a¿ = a.yu^ +•••+ aJfUn, i = I," •, n,

a.. £ k, det(a¿.) 4 0; write A for ia{). Let / £ k[uv • • •, uj. Then: if /(Aa) = 0,
then / = 0. Similarly, if b = (bv • • •, b ), b{ £ k, and /(Aa + b) = 0, then / = 0.

Proof. If /(Aa) = 0, then f(A A~ 1u) - 0, whence the first statement follows;

the second is proved similarly.
Remark. This will cover anything we need from the theory of transcendency

through 95, though in 82 we get a full theory.
75. To use the method of reduction of dimension by extending the base field

we should prove:
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If A has dimension r over k and t < r, then zed, X.,•••, X )[X]A has dimen-
sion r — t over kiu, X., • • •, X ).

Proof. Let V be the matrix of the transformation Xj = Xj, • • •, X" = X ,

X. = v.,  ,X. .+•>.+ iz. X , z = r + 1, • « «, », where the f.. are indeterminates,2 iZ+l    Z + l 2n    ny 27 '
so that W = VU is the matrix of the transformation: X . = w..X, +• • •+ iz>. X , z =

2 21    1 2n   n
1, • • •, ». Note that the w.. are algebraically independent over zed, X); see 74.
We have to prove:

Ma,tz,x;,-..,x'i,x;+1,...,x;)[x"]A^(i)
and

kiu, v, x;,.°., x'.x/^,..., x;;x)[x"]a = (a
This follows upon observing that zed, u) = zed, z^), that «.. —» tf.. determine an
automorphism of zed, X, u) over zed, X), and that A has a basis in ze[X].

76. There is now no difficulty through 15, after which we can construct
kiu, Xj,..., X'j[X]A n zed)[X] and zed, X¡,.... X'j[X]A n k[X].

Classically, one defines the depth of A 4 (1) to be the minimum of the dimen-
sions of the associated primes and one proves:

depth A = max{s | zed, Xj,. • •, X'j[X]A n ze[X] = Ai.

We now take this equation as the definition of depth of A. Clearly: depth A <

dim A. We say A is unmixed if depth A = dim A. If t <s = depth A, then the
depth of A diminishes by t upon extension of the base field to zed, X,, • • •, X );
the proof is like that of 75.

77. We come now to the crucial points 16 and 18. In 16, dim A > 0,
depth A = 0 and we wish to write A = B O » with dim B = dim A, depth B > 0,
dim » = 0. In  16, the equation kiu.., • • •, u^n, Xj)[X]A O ze[X] = B was derived,
but now we take it as defining B, so dim B = dim A and depth B > 0. As in 16
we get an E, = Ej(Xj) such that (A,E,)nB=A. Then we repeat the argument
to get an E2 = E2iX'j such that (A, Ej, Ej C\ Bj = (A, Ej. In  16 we proved
B.DB using a structure theorem; now we prove it as follows. We have

kiu,,,-",u.   ,*,„•••, a, ,X')[X]An zed)[X] = B.
11 In      ¿1 ¿n       1

Applying the automorphism over k that interchanges u. . and u2 . for ; « 1,« • •, »,
we obtain:

kiun,- - •, uln, u21,..., u2n, X'2)[X]A n kiu)[X]=B

since zedjj,. ••, uln, a2,,..., «2n, X2')[X](A, Ej) O zed)[X] = Bj by definition;
and since (A, Ej) 3 A, we get Bj 3 B. Hence we get (A, Ej, E2) Pi B = A, and
eventually (A, E,, E2, • • •, E ) fl B = A, which gives the desired result over
k(u). To get it over k, before we used a structure theorem, but now we use a
specialization argument.
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The specialization theory of Krull as previously outlined in 67—69 is not
quite in suitable form since, at least in the absence of condition (F), we do not

know how to construct the ideal B(t) = Ait) O í[t, X] oí 68. However, a slight

modification will suffice. First, for an f £ kit)[X], f = git, X)/dit) with g £ k[t, X]
and d £ k[t], we define fia, X) as gia, X)/dia) provided a\a) 4 0 (we need not
concern ourselves with rewriting /). For an ideal A(t), we do not attempt to define

A(a), but if A(t) = (/j(i, X), • • •, fsit, X)), we can speak of the ideal (/j(a, X), • • •,
f ia, X)) almost always. The definition of almost always is the same as before

except that one should be able to construct the polynomial h; and to construct an

a = (aj, a2, • • •), a. £ k, such that hia) 4 0 (a condition assured by assuming k

infinite). Now using our canonical constructions, it is obvious that if

(/j(/, X),..., fy[t, x)) = ifs + At, x),..., fuit, X)),
then almost always

ifx(a, X),... , fy[a, X)) = (fs+l(a, X),. • •, f ia, X))
and if

(/j0, x),..., fit, x)) n (g ,0, x),..., git, x)) = (hx(t, x),...., hvit, x)),

then almost always

(/j(a, X),. • - , fsia, X)) n (gj(a, X), • ••, g(.a, X)) = (h^a, X),..., hia, X)).

Hence from (A, Ej(a, Xj), • • •, E (a, X )) n B = A, we get, specializing a to a

ia.. £ k),

(1) (A, E.ia, X,),.-., E (a,X )) n B = A
11 71 71

almost always; here instead of A  and B we should have written (f., • • •, / ) and

(gi» • • " j g ) with /, g. £ k[X], but the slight abuse in notation should cause no
great confusion. In specializing a to a, we also take care that det(a..) 4 0.

Then (1) gives the desired result over k, at least if k is infinite.
For k finite, observe that the above proof does not require k to be infinite,

but merely that k have "enough" elements; and the proof also tells how much

"enough" is. Hence we construct a finite, normal extension field k(6) having
enough elements; the primitive element d and its distinct conjugates d. = 0, 0-,
• • •, 6    ate available to us. If an ideal A(d) in &(0)[X] has a basis in k[X] and

if a(d, X)=a0(X) + a1(X)(9+...+ as_j(X)f5s-1, a. £ k[X], is in A(d), then so are
aid., X), whence so are the a (X). Thus if Aid) = (•••, a id, X), • • • ) and a. = a.Q

+ a.yd +•••+ a-s_.ds~  , then Aid) has a basis in k[X] ii and only if it is the

extension of A   =(•••, a ..,••• ); and if so, then A    is the contraction of Aid) to

k[X]. One has a O-dimensional ideal nid) such that A - B C\ nid). Hence also
A = B C\ nid ) and A = B O inid.) <~\ ... n 72(0 )). One proves in the familiar way
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that n = nid.) f"1- • • O n(ö ) is invariant under every automorphism of kid) over k,

and hence that n is the extension of an ideal »' in zé[X]; dim »' = 0. Then A = B

O »'  as desired.
78. In 18 we had an ideal A with dim A = r, depth A = s; here s <r and (to

avoid a trivial case) let us suppose s < r. We then wrote A = B n », with dim B =

dim A, depth B > depth A, and n unmixed of dimension = depth A. The proof was

a simple reduction to dimension zero by extending the base field, but we do not

see, from our present point of view, how to duplicate this technique, and will have

to find a different way. (We do not see how to get the relation A = B (^ (A, mp) of 16.)

By definition zed, Xj,. ••, X's  j[X]A n ze[X] = B (so dim B = dim A,
depth B > depth A), from which we find an E, = E,(X,, • • •, X    ,) such that
A:E. - B and (as in 16) A = B O (A, E,). Now with a new set of indeterminates

v and new transformed variables, we repeat the argument and find (as in 16): A =

B n (A, Ej, Ej. Let us repeat this construction over and over. We say that we
can find an zVI such that (A, E., E2, • • •, EM) = (A, E,, • • •, E„   .); here M <
gin, d), where « = number of x., d is a bound on the degrees of elements in a given

basis of A, and g is multi-recursively defined. We may note that Hilbert's theorem

on ascending chains says that an M exists, though it does not tell us how to find

one; and anyway, we may not use Hilbert's theorem. We postpone to 79 an explana-
tion of how to find a suitable M.

We have, then, (A, Ej, • • •, EM) = (A, Ej, • • •, EM+j. Let u, i>, • • •, y, z be
the successively new indeterminates for E., E2,---, £„, E„   ,  respectively; and

X. , X. , • • •, the transformed variables. We now specialize  u, v, • • •, y, but not

z, to ze, assumed infinite, and in such a way as to get

(A,E1(X*,..,X* + 1),...,EM(X----. <*+!»

= (A, ÊjiX* • • • ,X* + 1),..., ËM(X**>- • •. O BH«<*i*L»" * ' XS+U»'

EM  . ?¿ 0, and A = B C\ iA, E.,- • •, E „). Since (A, E,, • • •, E,,) has a basis in
ze[X] and contains the element E„   ,(z; X,   , • ••, X    ,   ), the ideal has dimension

< s. Using an induction on r (and that depth A = s), one now easily proves that

(A, £,,•••, E„)   iss-dimensional; and one can construct its s-dimensional part.
Subject to 79> the proof is complete for infinite k, and finite ze are taken care of as before

(cf. 78).
Remark. Since classically it is obvious that dim (A, E A < dim A, one might

seek improvements in 78.

79. We come now to a finitist version of Hilbert's theorem on ascending chains.

We have proved this theorem in [7] and [8], but it will be well to recall the proof,
especially as we already have all the ingredients for the proof, except for one com-

binatorial argument.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



306 A. SEIDENBERG

Theorem. Let ¡(i) be a nonnegative integer for 2 = 0, 1,... and consider
ascending chains of ideals  AQ <Aj <...<As in k[X.,-.., X ], where A. has

a basis of elements of degree < f(i). Then there is a multi-recursively defined

function-functional g depending only on n and f such that the length of any such

chain is < gin, f) = g if). (Formulae for defining such a g are given in the proof.)

Proof. In 72, for an ideal A  in k[X], we found a p such that A : Xp =
A : Xp + , but for the proof referred to 20. However, we can just as well work with
the transformed variables  X.  -u.,X, +...+ u. X    (u.., indeterminates) and bv2 it    1 m   n      ij '
79 get a p such that A:X'nP = A: X'j0*1.   We can, then, as in 72 find L(A) and
have the function e(n, d) of 72, Remark. Then e. = e(n, f(i)) is a corresponding

bound for A .. We shall occasionally write e.(7z) for e(72, /). Understood that we
are working over k(u) with the transformed variables, it will be convenient to

write k for k(u) and X. for X..
2 I

If / is not already monotone increasing, we may replace it by a function /

defined as follows: f'(0) = /(0), f'(i + 1) = f'(i) + f(i + 1) + 1. Thus we may
assume / monotone increasing. We do this. Then / it) = /(/ + 2) is a function

like / for A.<A. ,<•••.' ;;+l
For inductive purposes, we generalize our theorem. Instead of just one chain

AQ < A. <• • •, we will consider a finite set of (not necessarily strictly) ascend-

ing chains of ideals: A\y' C A j   C • «C A^\ / = 1,. • •, m. We say that the set is
strictly ascending if for each i, i = 0, 1, • • •, s — 1, there is at least one t tor

which A .    < A .  j. The length of such a set of chains is by definition s + 1. Our

theorem is now to be understood as asserted for any strictly ascending set of 772

chains. The function / gives a bound f(i) for all the A .  , t = 1, • • •, 772; we may
assume / monotone increasing. The bound g (/) is to be replaced by a bound
g (772, /). The function <?,  continues to apply to the A.    for t = 1,• • • » tn.

The function / may be allowed to involve n, m.
We remark that if A, B are ideals with A C B, and L,(A) = Lf(B) tot every

i, then A = B.
For any integer 7, we get an ascending chain of ideals L.(A^') C L¡(Ay') C

• • • C L (A^'') and thus, for t = 1, • • •, m, m chains; altogether, for / < e, we get

(e + 1)772 ascending chains (e, any integer). We have Lg  .^AA]}') = L(Ay') for
t = 1, • ■ •, 777; and consider the chains for / < e.(0). Assume for a moment that

Le tQ)(Af) = L(Af) tot the (s + 1)t?z ideals Af. Then clearly the (^(0) + 1)ttz
chains L (A^) C • • • C L,(A^), j < e,(0), t = 1, • • •, m, gives a strictly ascend-

ing set. By induction we have a bound g _A(e.(0) + l)m, e.) on s + 1; we may

assume that g _ Ai, e.) is monotone increasing in 2 and, inductively, that
g     Ai, e') < g     ,(z, e") tot any monotone increasing functions e', e" such that

e'(j) < e"(j) toi all nonnegative integers j, otherwise put, we can say that if
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s + 1 > g„_i(d/(0) + 1)tzz, ej, then for at least one pair (z, t) with i < 1 +

«n-l«*/Ó> + ̂  »/>•   Le/(0)^1°) < L.,(OtA(A and als°  L./(0)^0°) <
Lg ,AA\ '). In this way we would get a strictly ascending set

KxotWcL   . V(A|")C.CL   ,,(a£);

we suppose í,, d»*" to be taken successively as small as possible. Then i. <

1 + g _,((e.(0) + 1)222, e ,); and by the monotonicity of e,, we have a bound

e,(l + £„_j.(d,(0) +• l)n, ej) on the degrees of the elements in some bases of the

Lef(i1){Afl)- Similarly,

z'/+l - ty + !)<! + g„-l((e/z'p + l)m' e/. )•
';'

Define a function ¿(7) as follows:

MO) = 0,       ¿(/ + 1) = ¿(7) + g„  Aiekhij)) + D222, e.      ).

Using the monotonicity properties of g _,, one sees by induction that i. < hij).

Hence we have a bound e Ahij)) on the degrees of the elements in some bases of

the L    ,.  (Ay'). Hence, too, we have the bound gn_1im, eAh)) = 1 + b on 1 + p.
Bringing the two parts of the argument together, we get

.(*))),h(b) + g    Aiekhib)) + l)m, e.      ) = b(b + l) = big    Am, e.I
«-i     / th(h) n-i 1

which is monotone as required, as a desired bound on s + 1.

Having now established 78 (or 18), there is no further difficulty through 22.

80. Classically we have the following theorem: An ideal is primary if and
only if it is unmixed and its ground-form is a power of an irreducible polynomial.

We now take this theorem as defining primary. We retain the classical definition
of prime. A prime ideal is primary.

Remark. Our definition of primary is adapted to our work with condition (F).
81. Coming to 23, we encounter a difficulty, and, in fact, we abandon 23 for

a primary ideal A, though we want it, and retain it, for A prime.(5) The proof

now is very much as in 23, except that in 23, in the case dim A = s > 0 (A, prime)

and at least one of X,, • • •, X _,  is not algebraic over ze mod A, we adjoined
X, = a.X, +• • •+a     ,X     ,  to the base field and said that dim A = s — 1 over1       11 n-1   n-i
zed, X,), in order (by induction on  s)  to say that we can construct

zed, X.')[X2, • • •, X \A C\ zed, X.')[X2, • • •, X _,]. With our present definition of
dimension, the assertion on the dimension of A is not clear. However, we first

make an induction on »!  Then again it is clear that we can construct

(5) As already noted in footnote 4, we can construct A n k\X.,—,X     A for any ideal

A  over any explicitly given field k.
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k(u, Xj)[X2, • • •, X ]A Pi k(u, Xj)[X2, • • • , X  _ j], since here 72 has been reduced.
Remark. Once we have the equivalence of our definition of primary with the

classical definition, which, however, we will not get till we come to condition

(P), we can come back to 23  for A  primary.

82. There is now no difficulty through 27. Moreover, if k(x.,.-., x ) is a

canonically given extension of k and y,,..., y    are in k(x), then one can decide

whether yj, • • •, y    ate algebraically independent over   k.    On the basis of this
one can build up a full theory of transcendency along the lines of the familiar

axiomatic method (cf. [il]).
83. There is no difficulty in 28 and 29, whereby we construct the ground-form

of an unmixed ideal. For the moment, we need not discuss 30—32, since our work

with primary ideals, with condition (F) but with (P) absent, never mentions prime

ideals (though  30—32 do enter unofficially in that they motivate our definition of

primary). Points 34 and 35 hold as before.
84. Using condition (F) alone, one can decide whether a given ideal is pri-

mary. This is obvious from our definition, though not from the classical one.

85. Let A 4 (1) be an ideal in k[X., • • •, X ]. If A is not primary, then one
can find a, b £ k[X] with ab £ A, a Ç A, bp £ A, p = 0, 1, 2,- • •.

Proof. There are two cases: (i) A  is unmixed, (ii) A  is mixed. In the first

case, from the ground-form we can obviously get F, G £ k[u, X] - 0 such that
FG £A but Fp ÇA, Gp £ A, p = 0, 1,.... By 20 (cf. 79 end), we can test
whether some power of a coefficient of F, or of G, is in A.  Let Fj  be the sum

of the terms in  F a power of each of which is in A, and define Gj  for G similarly;

F 4 Fj, G 4 G j. Then for a p one can compute (F - Fj)^(G - Gj)    e A. We
order the power products  a, ß, • • •  of the u .. in such a way that  a. < ß and y < 8
imply o.y < ß8 (say, lexiocographically).  Let /, g be the first coefficients of

(F-FjV, (G-Gj)^. Then fg £ A but fa, gCT £ A, o = 0, 1,. • •. Case (ii) is
similar, and even simpler.

86. Coming to 36 and the normal decomposition theorem, we cannot expect, in

the absence of (P), a normal decomposition in the usual sense, since this involves

prime ideals. With (F) alone, however, we can write any ideal A  as the intersec-

tion of primaries.  First, we test whether A  is primary, and if not, then starting

from a given basis of A, we can by a canonical algorithm find a, b £ k[X] with

ab £ A, a î A, bp i A, p = 0, 1, • • •. We can then find a p > 0 such that A : bp =
A : bp + , so that by a change of notation we have ab £ A, a (i A, b (Ï A, A : b =

A:b2. Then we get A = (A, b) n (A : b); cf. 16. Moreover, A < (A, b) and A <A:b.
It (A, b) or A : b is not primary, we repeat the construction. By the finitist ver-

sion of Hubert's theorem on ascending chains, this process must stop.
87. Let k satisfy (F) and let A  be an r-dimensional primary ideal in

A[X,,«. •, X ]. Let X1. " u.,X, +.«.+ a. X , 2 = 1, • • •, 72, be transformed
1' '        7! I il      1 171     717
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variables and let t < r. Then kiu, X,, • • •, X )[X]A  is also primary.

Proof.  From 75 and 76 we already know that kiu, X,, —, X )[X]A is
unmixed, (r — r)-dimensional. Let E = Fp be the ground-form of A, with F irre-

ducible. Here

F= Fdj,"-. ar+1; Xj,.->, X'r+1) e^dj,..., ar+1, Xj,..., Xr'+j],,

where u. = (u.,, • • •, u. ).  Using the notation of 75, one can see that

E(u1,-",ut,wt+l,---,wr+l;X'1,---,X'¡,X"^1,-",X'¿¡)   is in k(u, v, Xj, • • •, X'f)[X]A.

Because of the automorphism a.. —tw. .r 27 „'

Fdj,- - •, ut, wt+l,.. •, azr+1, Xj, • • •, X^, X"+1,.. •, X"+1)

is irreducible, and remains irreducible as a polynomial in X    j, ■ ••, X    j  over

k(u, v, Xj, • • •, X ). This is enough to show that zed, Xj, • • •, X )[X]A  is primary.

Actually, Edj,---, u(, «"t+I»'"i wT+i> X^,---, X'(, X"+1,---, X^) is the ground-
form; to prove this, it is still necessary to check a primitivity condition. As this
is a secondary issue, we may omit the details.

88. As long as we work with condition (F) alone, we do not attempt the con-

structions involving the associated prime of a primary, hence we do not try to

duplicate  37, which places a bound on the exponent of a primary ideal A. Let,

however, A be an r-dimensional primary ideal: then one can place a bound on

the length of chains A <Aj <A2 <•••, where A . is unmixed r-dimensional

(hence primary). In fact, for r = 0 this follows from 7, and for r > 0 one makes

a reduction to the case r = 0 by 87.

89. We abandon 38 for the moment, as before 23 (cf. 81).
90. Points  39—41  require no comment, so we come to 42, which asks (with

(F) and (P)) to construct the associated prime of a given primary (a term which,

from our present view, still has to be defined). First let Q be 0-dimensional.
We relax the condition that Q be primary and consider any 0-dimensional ideal A

in k[X.,---, X ].  One can then construct a maximal (hence prime) ideal con-

taining A.  In fact, we first find an / £ k[XA - 0  such that f £ A. Let / = /j/2
• ••/   be the complete factorization of /. One checks easily that (A, /.) 4 (1) for

at least one i; and for such an i, we may replace A by (A, /.). Changing nota-

tion, we may assume / £ A  is irreducible. Taking residues mod /, we complete

the proof by an induction on ».

In particular, for a 0-dimensional primary Q, one can construct a maximal

ideal P containing Q.
91. Let Q be a 0-dimensional primary ideal in k[X.,---, X ] and let Pj,

P, be maximal (hence prime) ideals containing Q. Then P. = P = P and one
can find a p such that Pp CQ. If ab £ Q, a i Q, then for this p, bp £ Q. The
ideal P is called the associated prime of Q.
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Proof.  Let Fr be the ground-form of Q, where F = F(u, Xy) is irreducible.
We have F £ P.  and F £ P-. Consider first the case that F is separable (in X,).

Then by the argument of 31 (though one does not first have to prove that Pj, P.

are separable), one sees that P.= P2 = P.
Now let F(u, Xj) = G(a, X) and let A be the /e[X]-ideal generated by the

coefficients of G considered as a polynomial in the a... We say that A = P: we

postpone the proof to 92 and 93. It remains, then, to prove that some power of

each coefficient of G is in Q. We order the power products a, ß, • •. of the a ..
in such a way that a < ß and y < 8 imply ay < ß8 (say, lexicographically).

Since Gr £ Q, one sees that the first coefficient, f., has a power of it in Q. Then

(G — first term of G)s £ Q toi an s we can find. Repeating this argument for

H = G - first term of G, we see that the second coefficient of G has a power of

it in Q; etc. So we have a p with Pp C Q. Now let ab £ Q, a f Q. Then Q C Q : a,
and since Q : a 4 (1), we have Q : a C P. Hence b £ P and bp £ Q. This takes

care of the case that F = F(a, Xj) is separable.

If F is inseparable and is a polynomial in X'^    but not a polynomial in

X p      , hence a separable polynomial in X p , then one sees that F is also a
polynomial in up . Thus after adjoining a finite number of peth roots to k to get

k', F becomes the peth power of an irreducible separable polynomial. Write
k'[X]Q = P', k'[X]P1 = Pj', k'[X]P2 = P2. These all have a power of F1/pe as
ground-form. Let P" be the prime in k'[X] having Fl'p    as ground-form. Then by
the part already proved, a power of Pj  is in P2 and vice versa. Hence also (as
one easily sees) in k[X] a power of Pj is in P- and vice versa. Hence Pj = P2.

The rest of the proof of 91 is as in the separable case.

92. To complete the proof of 91  we first need a lemma.

Lemma. Let f (X ) £ k[X.] — 0 be a polynomial prime to its derivative (i = 1,

• • •, 72). Then (f.(X.), • • •, / (X )) is a finite intersection of maximal ideals; and

so is any larger ideal (/,»■••»/ ,'•') 4 (1).

Proof.  If /,(Xj) is irreducible, then we take residues mod /,(Xj) and com-

plete the proof by induction on 72. Otherwise, let f. = gjg2 • •• gs be the complete

factorization of /,; g., g. are not associates if i 4 j. Then ig., f-,•••»/»••• ) «

fi . P¿. for each i. Then (/j, /2, ••-,/„,•••) = 0¿ y pif In fact, the left-hand
side is obviously contained in the right. Now let a £ f). . P... Then a s

ègj mod(/2,. •., fn,- ••), so ag2 • • -gs 6 (/j, f2,...,fn,.-.). Similarly, a(fx/g) £
(/l» /2» •*'»/„»•• ') for each ¿> whence a £ (/x. /2, •••»/„»•• •).

93. Let P be a O-dimensional prime ideal in &[Xj, ■ • •, X ] and let F(aj, Xj)
= G(aj, X) be the ground-form of P; here «j'= (iv-., • • •, u.  ). Let A (which we
call the Chow ideal of P) be the ideal generated (in k[X]) by the coefficients of

G regarded as a polynomial in the aj.. Then: if F(a,, Xj) is separable (in Xj),

then A = P.
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Proof. Clearly, the coefficients of Fiu., X.) also generate A. Hence

(Fd,, X,),•••, F(a ,X'))CA. Hence (by 92) A is the intersection of 0-dimen-
11 n       22 '

sional prime ideals: A = P, H... O P • here we are in A(«)[X]. Moreover, A, P,,is l
• • •, P    and P all clearly have the same ground-form. Hence (by 91 first part)
P, =...= P   =P and A = P.1 s

94. Let Q be an r-dimensional primary ideal in Ze[Xj, •••, Xj, so that (by 75

and 87) kiu, X,, •• •, X )[X    j, • • •, X ]Q = Q   is 0-dimensional and primary, and
let P   be the associated prime of Q . Then P   has a basis in ze[X], so that (by
76) one can construct P  rï ze[X] = P. Then P is the unique maximal unmixed r-

dimensional (hence primary) ideal in ze[X] containing Q; and g = P if and only if

Q' = P'. If P'p C Q', then Pp C Q; and if ab £ Q, a 4Q, a, b £ k[X], then for
this p, bp £ Q.

Proof.  Let G £ P . Multiplying G by an element in zed, Xj, • • •, X ) - 0,
we may suppose G £ k[u, X., • • •, X ] C k[u, X., • • •, X ]. Let us write G =
Giu, X): we wish to show that the coefficients of G regarded as a polynomial in
the a., are in P . We order the power-products of the a., as in 85, Proof. Since
Gp £ Q   and Q1 has a basis in ze[X] one sees that a power of the first coefficient

of G is in Q , hence the first coefficient is in P . Repeating the argument for

H = G — first term of G, we get that the second coefficient is in P ; etc. Now we

have P' n ze[X] = P. If P'p C Q', then obviously Pp C Q. Hence P is at most
r-dimensional, and since it is the contraction of its extension P , it is an r-dimen-

sional prime ideal. If ab £ Q, a 4 Q, a, b £ k[X], then bp £ Q   and hence bp £ Q.
The rest of 94 is immediate.

P is called the associated prime of Q. Thus we are through 42.

Remark. To decide whether a given ideal A is prime, first check to see
whether it is primary; and if it is, then check to see whether it is its associated

prime.
95. Point 43 requires no comment. As for 44, we first observe that if condi-

tion (F) holds for ze, then an ideal (F) 4 (1) in k[X], X = Xj, is primary if and
only if ab £ (F), a i (F) =» b   8     £ (F). We now take this as defining primary in
k[X]: this changes nothing as far as our results above, where (F) was assumed,

are concerned, but allows us to proceed a bit with primary ideals also over an

arbitrary explicitly given field. Thus for an arbitrary explicitly given field ze, X^

- a is always primary: for if fg £ iXp - a) and gp 4 iXp - a), then gp = ciXp - a),
c £ k - 0, and / e iXp - a).

Now let A = (Xj -a.,"- ,XP -a ) be an ideal in k[X , • • •, X ], p = ch k.
Then A nze[Xj,..., Xn_j = iXp-a^---, x£_, -an_j. In fact, if

M*l.X„.x)-^Xl,---,XJiXPl-aj + ... + gn_liXl,...,XJiXPn_l-an_j

+ gjXv...,XJiXPn-aj,
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we may first suppose degv   g- <p for i = 1, • ■ •, 72 — 1; in which case g   =0.
A71     ! 72

Then placing X   = 0, we get the desired result.

Now we say that X.p - upa. — • •«— a? a , which is obviously in A, is the
ground-form of A. For A  obviously equals ix'.p - up..a. -•• •—up.  a ,...,X'P —

up,a,-•- up a ), whence the assertion follows from the last paragraph. Hence71 1      1 7777    71 x c?      r

A  is primary.

As before, we omit the proof that A  is prime if and only if a., • • •, a    are

p-independent.
Remark. We will not attempt a discussion of 45, as our considerations for the

associated primes of primaries are too tied up with (F) and (P). We also do not

attempt the necessity in 46, though we still want to prove that the associated

primes in an irredundant decomposition of an ideal A into primaries are uniquely

determined.
96. Let A be a given ideal in k[X., •. •, X ] and let k satisfy (F) and (P).

Then one can write A  as an intersection of primaries with distinct primes: A =

Qj n...n Qy let Pj,---, Ps be the associated primes. If A = Q[C\ ...O q'(   ¡s
another such decomposition, with  Pj, • • •, P    as associated primes, then ¡Pj,

..., P   I = jP ,..., P   1. Moreover, dim A = max idim P î and depth A =
min Idim P i; and dim P . = degree of transcendency of k[X]/P. over k.

The proof of this now proceeds along familiar lines.

Once we have the equivalence of our definitions of primary, dimension, and

depth with the classical definitions and have the normal decomposition theorem
of 96, we may safely claim to have the whole theory of polynomial ideals over a

field k in strictly finite terms.
Added in proof.   In a recent work,  Constructive aspects of Noetherian rings,

Proc. Amer. Math. Soc. 44 (1974), 436—441, F. Richman has solved some basic
construction problems for a wide class of rings, including the rings Z[X ,»•••> X ],

where Z = ring of integers.
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