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Constructions’ of Binary Constant-Weight Cyclic 
Codes and Cyclically Permutable Codes 

Nguyen Q. A, L&z16 Gyiirfi, and James L. Massey, Fellow, IEEE 

Abstract-A general theorem is proved showing how to oh- 
tain a constant-weight binary cyclic code from a p-ary linear 
cyclic code, where p is a prime,. by using a representation of 
Cl;(p) as cyclic shifts of a binary p-tuple. Based on this 
theorem, constructions are given for four classes of binary 
constant-weight codes. The first two classes are shown to achieve 
the Johnson upper bound on minimum distance asymptotically 
for long block lengths. The other two classes are shown simi- 
larly to asymptotically meet the low-rate Plotkin upper bound 
on minimum distance. A cyclically permutable code is a binary 
code whose codewords are cyclically distinct and have full cyclic 
order. A simple method is given for selecting virtually the 
maximum number of cyclically distinct codewords with full 
cyclic order from Reed-Solomon codes and from Berlekamp- 
Justesen maximum-distance-separable codes. Two correspond- 
ingly optimum classes of constant-weight cyclically permutable 
codes are constructed by appropriate selection of codewords 
from the first two classes of binary constant-weight codes. It is 
shown that cyclically permutable codes provide a natural solu- 
tion to the problem of constructing protocol-sequence sets for 
the M-active-out-of-T users collision channel without feedback. 

Index Terms-Collision channel, constant-weight codes, cyclic 
codes, cyclically permutable codes, maximum-distance-separable 
codes, protocol sequences, Reed-Solomon codes. 

I. INTRODUCTION 

T HIS paper has a threefold purpose, the first of which is 
to present some new constructions of binary constant- 

weight cyclic codes. By a cyclic code, we will always mean 
a block code such that the cyclic shift of every codeword is 
again a codeword. This terminology is not new (cf. [l, p. 
176]), but it is more common to reserve the term “cyclic 
code” for a code that is both linear and closed under cy- 

clic shifting, cf. [2, p. 931, [3, p. 1881, and [4, p. 2061. To 
avoid ambiguity, we will always say “linear cyclic code” 
when we mean a “cyclic code” in this more restrictive 
sense. A constant-weight code is a block code whose code- 
words all have the same Hamming weight. Thus, every 
binary constant-weight cyclic code, except the trivial code 
containing only the all-zero codeword, is a nonlinear code. 

The second purpose of this paper is to present some 
constructions of constant-weight cyclically permutable codes 
based on our constructions of binary constant-weight cyclic 
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codes. Gilbert [l] has defined a cyclically permutable code 
to be a binary block code of block length N such that each 
codeword has cyclic order N (i.e., has N distinct cyclic 
shifts) and such that the codewords are cyclically distinct 
(i.e., no codeword can be obtained by the cyclic shifting, one 
or more times, of another codeword). 

The third and final purpose of this paper is to show 
an interesting application for constant-weight cyclically- 
permutable codes, viz., as the set of protocol sequences for 
the T potential users of the collision channel without feed- 
back when it is known that at most M users are actively 
using the channel at any given time. 

In Section II, we present a correspondence between m x n 
arrays and N-tuples with N = mn that play a key role in the 

constructions of binary constant-weight cyclic codes that 
follow. Four classes of binary constant-weight cyclic codes 
are constructed in Section III and shown to be asymptotically 
optimum in the sense of achieving either the Johnson upper 
bound or the low-rate Plotkin upper bound on minimum 
distance for large block lengths. Section IV presents a simple 
method to select a large subset of codewords with full cyclic 
order from a Reed-Solomon code or from a Berlekamp- 
Justesen maximum-distance-separable code. When combined 
with the results of Section III, this yields constructions of 
constant-weight cyclically permutable codes. Section V de- 
scribes the application of these latter codes as protocol-se- 
quence sets for the random accessing of the M-active-out-of- 
T-users collision channel without feedback. We close in 

Section VI with some remarks. 

II. TWO-DIMENSIONAL ARRAYS AND N-TUPLES 

We first develop a correspondence between two-dimen- 
sional arrays and N-tuples and prove some properties of this 
correspondence that will be exploited in the next section. 

Our interest is in m x n arrays 

a(O,O) *** 

A= : 

[- : 

a(0, n - 1) 

a(m - 1,O) *+a ! 1 a(m - 1, n - 1) 

with entries in an arbitrary alphabet. When the positive 

integers m and n are relatively prime, i.e., when gcd(m, n) 
= 1, then the Chinese remainder theorem [2, pp. 285-2861 
specifies a one-to-one correspondence between such arrays 
A and mn-tuples b = [b,, bl;**, b,,-l] over the same 
alphabet in the manner that 

bi = a(imod m, imod n), (1) 
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where here and hereafter “i mod m” denotes the remainder 
when i is divided by m. For instance, the 2 x 3 array 

A=[: i ;] 

corresponds in this way to the 6-tuple 

b= [a,b,c,d,e,f]. 

We will always mean this “Chinese remainder theorem 
correspondence” (CRT correspondence) whenever we speak 
of an m x n array and its corresponding mn-tuple. 

Let R denote the operator that shifts the columns of an 
m x n array cyclically one position rightwards, and let D 
denote the operator that shifts the rows cyclically one posi- 
tion downwards. For the above example, we have 

DR(A) = RD(A) = [{ z ;I. 

Notice that DR( A) = RD( A) corresponds to the 6-tuple 

[f,a,b,c,d,e] =S(b), 

where S is the (rightward) cyclic shift operator on N-tuples 
and N = mn. The following result, which is the key to the 
constructions of constant-weight cyclic codes that will be 
given later, generalizes an argument that has been used for 
linear cyclic product codes [3, p. 5701. 

Lemma 1: A set of m x n arrays over an arbitrary 

alphabet, where gcd (m, n) = 1, is closed under both the 
rightward column shift operator R and the downward row 
shift operator D, if and only if the corresponding set of 
mn-tuples is closed under the (rightward) cyclic shift opera- 
tor S. 

Proof: Let the m x n array A correspond to the mn- 
tuple b. In Sk(b), the entry bi of b is replaced by 

bt-krnd mn* In R( A), the entry a( i mod m, i mod n) of A 
is replaced by a( i mod m, i - 1 mod n). Because gcd (m, n) 
= 1, there is an m’ with 1 5 m’ < n such that mm’mod n 
= 1. It follows from (1) that 

bi- mm'modmn = a( i - mm’mod m, i - mm’mod n) 

= a(imodm,i- lmodn), 

and hence, that Smm’( b) corresponds to R( A). Thus, the set 

of m x n arrays is surely closed under R when the set of 

mn-tuples is closed under S. A completely analogous argu- 
ment shows that S”“‘(b) corresponds to D(A) where n’, 
1 i n’ < m, satisfies nn’ mod m = 1. Hence, the set of 
m x n arrays is surely also closed under D when the set of 
mn-tuples is closed under S. 

Conversely, we note that RD( A) = DR( A) is the m x n 
array corresponding to the mn-tuple Ym’+“‘(b). But mm’ 
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+ nn’ mod m = 1 and mm’ + nn’ mod n = 1 so that the 
Chinese remainder theorem assures us that mm’ + 
nn’mod mn = 1. Hence, RD( A) = DR( A) corresponds to 
S(b), which guarantees that the set of mn-tuples is closed 
under S when the set of m x n arrays is closed under both 
D and R. 0 

III. SOME CONSTRUCTIONS OFBINARY 

CONSTANT-WEIGHTCODES 

A. Cyclic Representation of GF(‘p) 

Our code constructions will be based on certain linear , 
cyclic codes over the finite field of p elements, GF ( p) , 
where p is a prime, whose elements are 0, 1,2; * *, p - 1. 
In this subsection, we introduce the special representation of 
GF (p) that will be used to convert such p-ary codes to 
binary codes. 

We recall that the cyclic order of an N-tuple b is the 
smallest positive integer i such that S’(b) = b. It follows 
that the cyclic order of an N-tuple must be a divisor of N. 
Because p is a prime, a binary p-tuple u has cyclic order 
either 1 or p. Hence, u has cyclic order p unless u = 0 or 
u = 1, where here and hereafter we write 0 and 1 to denote 
the all-zero and all-one p-tuple, respectively. For any u not 
0 or 1, we define the u-representation of GF (p) to be the 
representation in which the element i of GF (p) is repre- 
sented by the p-tuple S’(v), the ith rightward cyclic shift of 
U. 

Example 1: The u-representation of GF (7) for the choice 
u = [O,O, 1, 1, l,O, l] is as follows: 

0 [~,‘o,LLLO,l] 

1 [LOA 1, LLO] 

2 [o, l,O,O, 1,1, l] 

3 [LO, l,O,O, 1,1] * 

4 [L l,O,l,O,O, 11 

5 [L 1,1,0, LO,O] 

6 [O,LLLO,LO] 

Lemma 2: In the u-representation of GF (p), where p is 
a prime and u is a p-tuple not 0 or 1, the representation of 
i + 1 is the rightwards cyclic shift of the representation of i 
for all i in GF (p). 

The truth of this lemma follows immediately from the 
definition of the u-representation of GF (p) and the fact that 
(p - 1) + 1 = 0 in GF ( p). That a representation with this 
cyclic property is possible for GF (p) follows from the fact 
that the additive group of GF (p) is a cyclic group-it is not 
possible for GF (p”) when s > 1, since then the additive 

group is not cyclic. 
We note that the p-tuples in the u-representation of GF ( p) 

form a binary constant-weight cyclic code. We will write 
d(u) to denote the minimum (Hamming) distance of this 
code, and we will call the u-representation equidistant if the 
Hamming distance between every pair of distinct codewords 
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in this code is equal to d(v). The following assertion is 
obvious. 

Lemma 3: For every prime p, the p-tuple v = [ 1, 0, 
0; * * , 0] yields an equidistant v-representation of GF (p) 
with d(v) = 2. 

The v-representation of GF (p) with v = [l, 0, 0, * * *, 0] 
has been used before, cf. [5]-[7], but for purposes different 

from that in this paper. 
Example 2: The 7-tuple v = [0, 0, 1, 1, 1, 0, l] used in 

Example 1 yields an equidistant v-representation of GF (7) 
with d(v) = 4. 

The p-tuple v of Examples 1 and 2 is just an “m- 
sequence” and the equidistant property of its v-representa- 
tion reflects the familiar “shift-and-add” property of 
m-sequences [8, p. 2871. There exist binary m-sequences of 
length 2” - 1 for every integer n > 1. Hence, there exists a 
v-representation of GF (p) for which v is an m-sequence, if 
andonlyifp=2”- 1 for some ~1, i.e,. if and only if p is 

a Mersenneprime [9, pp. U-161. Note that if p = 2” - 1 
is a Mersenne prime, then (p - 1)/2 = 2”-’ - 1 is neces- 
sarily odd. The first 10 Mersenne primes correspond to 
n = 2, 3, 5, 7, 13, 17, 19, 31, 61, and 89; it is a longstand- 
ing open question in number theory whether the set of 
Mersenne primes is finite or infinite. 

Lemma 4: If p is a Mersenne prime and v is a binary 

m-sequence of length p, then the v-representation of GF ( p) 
is equidistant with d(v) = (p + 1)/2. 

A nonzero element i of GF ( p), where p is an odd prime, 
is said to be a quadratic residue (QR) mod&o p if i is the 
square of some element of GF (p) and to be a quadratic 
nonresidue (QNR) mod&o p otherwise; the element 0 of 
GF ( p) is neither a QR residue modulo p nor a QNR modulo 
p. For ‘example, 1 = 12, 2 = 32, and 4 = 22 are the QR’s 
modulo 7, while 3, 5, and 6 are the QR’s modulo 7. By a 
Legendre sequence, we mean a binary sequence v = 

Iv,, Vl,’ * *, VP-l ] of prime length p, where (p - 1)/2 is 

odd, such that vi = 0 if i is a QNR modulo p and vi = 1 if i 
is a QNR modulo p; the digit va can be either 0 or 1. For 
example, 

v = [o,o,o, l,O, 1, l] and v = [l,O,O, l,O, 1, l] 

are the two Legendre sequences of length p = 7. 
Lemma 5: For every prime p such that (p - 1)/2 is 

odd, a Legendre sequence v of length p yields an equidistant 
v-representation of GF (p) with d(v) = (p + 1)/2. 

Proof: It is well known that Legendre sequences, when 
converted to + 1 sequences by mapping 0 and 1 to + 1 and 
- 1, respectively, have a periodic autocorrelation function 
that is - 1 at all off-peak shifts, cf. Boehmer [lo] who 
attributes this result to Turyn [I 11. This is equivalent to 
saying that the Hamming distance between v and each of its 
p - 1 distinct cyclic shifts is (d + 1)/2, which proves the 
lemma. Alternatively, the lemma can be seen as a simple ~ 
consequence of a theorem in MacWilliams and Sloane 13, 
Theorem 6, p. 461 together with the fact that, because 
(p - 1)/2 is odd, i is a QR modulo p, if and only if - i is a 
QNR modulo p. 0 

B. The Main Theorem Used in the Constructions 

Our constructions will make use of p-ary linear cyclic 
(n, k, d) codes where n, k, and d are the blocklength, 
dimension and minimum Hamming distance, respectively, of 
these codes with code digits in GF ( p). We will use the same 
notation, 1, for the all-one ti-tuple as we used earlier for the 
all-one p-tuple and will rely on the context to determine 
which is meant. 

Theorem I: Let p be a prime and let V be a p-ary linear 
cyclic (n, k, d) code such that gcd (n, p) = 1 and such that 
1 is a codeword. Let v be a binary p-tuple with Hamming 
weight w(v) where 0 < w(v) < p. Let each codeword c = 

[co, Cl,“‘, q-11 in V determine a p x IZ array A in the 
manner that the ith column of A is the transpose of the 
p-tuple that is the v-representation of the ith component of c, 
and let b be the binary N-tuple’(where N = np) that corre- 
sponds to the array A by the Chinese remainder theorem 
correspondence of Section II. Then the set of pk N-tuples B 
corresponding in this way to the pk codewords c of V form 
a binary cyclic code whose codewords have constant weight 
w = nw(v) and whose minimum distance, dmin, satisfies 

dmin 2 dd(v) (2) 

with equality when the v-representation of GF ( p) is equidis- 
tant. 

Proof: We first show that the set of pk N-tuples b is 
closed under cyclic shifting. Let c and A be the codeword in 
V and the corresponding p x n array, respectively. Because 
V is a (linear) cyclic code, the rightward cyclic shift of c is 
also in V and hence, the corresponding array, which is 
R(A), is another array in the set. Because 1 is a codeword in 
V and V is linear, c + 1 is also in, V. But, by Lemma 2, 
c + 1 corresponds to the array D(A) so that D(A) is 
another array in the set. Thus, the set of pk arrays A is 
closed under both the R and D operators. It now follows 
from Lemma 1 that the corresponding set of pk binary 

N-tuples b is closed under cyclic shifting, i.e., it is a binary 
cyclic code. 

Because all vectors in the v-representation of GF (p) have 
Hamming weight w(v), it follows that every N-tuple b in the 
set has Hamming weight IZ w( v) so that the set is a constant 
weight code. For distinct codewords c and c’ in V, the 
corresponding arrays A and A’ will differ in precisely those 
columns corresponding to positions where c and c’ differ, 
i.e., in d( c, c’) columns were d( *, * ) denotes Hamming 
distance. Each of the corresponding columns of A and A’ 
will differ in at least d(v) positions with equality if the 
v-representation of GF (p) is equidistant. Thus, the binary 
codewords b and b’ corresponding to A and A’, respec- 

tively, will differ in at least d(c, c’) d(v) positions with 
equality if the v-representation is equidistant. Because 
d(c, c’) 1 d with equality for some codewords c and c’ in 
V, this proves the theorem. III 

Lemma 6: The condition in Theorem 1 that 1 be a code- 
word in V is equivalent to the condition that 1 not be a root 

of g(x) = 0, where g(x) is the generator polynomial of the 
linear cyclic code V. 
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Proof: The n-tuple 1 corresponds to the polynomial 

1 +x+ me* +x”-l = (x” - 1)/(x- 1). 

Thus, 1 is a codeword in V, if and only if g(x), which must 
divide x” - 1, also divides (x” - 1)/(x - 1). If x” - 1 
has no repeated factors, this is equivalent to the condition that 
x - 1 not divide g(x). But the condition gcd (n, p) = 1 in 
Theorem 1 is precisely the condition that x” - 1 have no 
repeated factors. 

C. Constructions of Binary Constant- Weight Cyclic Codes 

We will give four general constructions of binary 
constant-weight cyclic codes based on Theorem 1. First, 
however, we give some examples based on the Golay codes, 
cf. [3, pp. 634-6501, to illustrate the method. 

Example 3: Choose p = 2, v = [ 1, 0] and V as the cyclic 
(n, k, d) =.(23, 12,7) binary Golay code. Because 1 is a 
codeword in V, i.e., 1 is not a root of g(x) = 0, the 
construction described in Theorem 1 can be applied, with the 
help of Lemma 3, to obtain a binary constant-weight cyclic 
code with 212 = 4096 codewords of length 46 and weight 23 
with dmin = 14. 

The function A(n, d, w), defined as the maximum num- 
ber of codewords in a (not necessarily cyclic) binary code of 
blocklength n, constant weight w, and minimum distance at 
least d, is of considerable interest in coding theory, cf. [3, 

pp. 524-5341 and [12]. Example 3 shows that 

A(46,14,23) L 4096 

and, moreover, that this lower bound can be obtained with a 
cyclic constant-weight code. The best previous lower bound 

for this case [3, Theorem 33, p. 5581 appears to have been 

A(46,14,23) 2 3834, 

however it is possible to strengthen this bound as we show 

next. 
Let A( n, d), as customary, denote the maximum number 

of codewords in a (not necessarily cyclic) binary code of 
block length n and minimum distance at least d. We first 
observe that, when d is even, there exists a length n code 
with A(n, d) codewords and minimum distance at least d, 
all of whose codewords have even weight, and that there 

exists as well such a code all of whose codewords have odd 
weight. To see this, suppose that C is any code with A( n, d) 
codewords and minimum distance at least d where d is even. 
If we change, as necessary, only the last digit of each 
codeword to make all codewords have even Hamming weight, 

we obtain a code c’ with A( n, d) codewords whose mini- 
mum distance d’ is at least d - 1. Because all codewords of 
C’ have even Hamming weight, d’ must be even and hence, 
since d is even, d’ must be at least d. Complementing the 
last digit of every codeword in c’ gives a code c” with the 
same minimum distance and same number of codewords, all 
of whose codewords have odd weight. Now suppose that d is 
even, that w is odd, and that C is a’code with A(n, d) 
codewords, all of odd weight, and minimum distance at least 

d. For any n-tuple b with even Hamming weight, the set 
b + C is also a code with A( n, d) codewords, all of odd 
weight, and minimum distance at least d. Hence, at most 
A( n, d, w) of the codewords in b + C can lie on the surface 
of the Hamming sphere of radius w centered at the origin 
because this subset of codewords is a constant-weight cyclic 
code with minimum distance at least d. Considering all 2”-’ 
choices of b as an n-tuple of even weight, one concludes that 
the total count of codewords lying on the surface of the 
sphere will be at most 2 n- ‘A( n, d, w). On the other hand, 

for each codeword c in C, there are exactly ( E) choices of 

b such that b + c will lie on the surface of the sphere of 

radius w centered at the origin, viz., the ( z) choices of b 
as an n-tuple at distance w from c. Thus, the total count of 
codewords lying on the surface of the sphere will be exactly 

( 1 
i A( n, d). (An entirely similar argument applies when w 

is even.) We have proved the following bound, which im- 

proves by a factor of 2 on the right, the bound on A( n, d, w) 
in [3, Theorem 33, p. 5581 and which is due to van Pul (see 
Acknowledgment at end of paper). 

Improved Lower Bound on A(n, d, w): For every even 
integer d, 0 5 d I n, and every w, 0 5 w I n, 

A(n, d, w) 5 (G)&A(n, d). (3) 

This improved bound gives 

A(46,14,23) 1 7668, 

which shows that there are certainly constant-weight codes of 
length 46, Hamming weight 23 and minimum distance 14 that 

are better than the cyclic constant-weight code of Example 
3-whether there are better cyclic constant-weight codes is a 
different and open question. 

Example 4: Choose p = 3, v = [l, 0, 0] and V as the 
cyclic (n, k, d) = (11,6,5) ternary Golay code. Because 1 
is a codeword in V, the construction described in Theorem 1 
can again be applied, with the help of Lemma 3, to obtain a 
binary constant-weight cyclic code with 36 = 729 codewords 
of Length 33 and weight 11 with dmin = 10. 

It follows from Example 4 that 

A(33,10,11) r 729. 

The improved lower bound (3), which appears to be better 
than any previous bound for this case, gives only 

A(33, 10, 11) 1 554. 
Our general constructions will utilize maximum- 

distance-separable (MDS) codes, i.e., linear (n, k, d) codes 
with d = n - k + 1. All Reed-Solomon (RS) codes are 
MDS. Moreover, for every odd prime p and every divisor n 
ofp- lwithn> l,thereexistsforeveryk,l<k<n,a 
p-at-y linear cyclic RS (n, k, d) code that contains the code- 
word 1 (or, equivalently by Lemma 6, such that 1 is not a 
root of g(x) = 0). Note that gcd ( p, p - 1) = 1 and hence, 
also that gcd(n, p) = 1. 

Construction I: Let p be an odd prime, let n (n > 1) be 
a divisor of p - 1, and let k satisfy 1 5 k < n. Choosing V 
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to be a p-ary linear cyclic (n, k, d) Reed-Solmon code and 

choosing v as the p-tuple [ 1 , 0, 0, * * * , 0] yields, by Theorem 
1 and Lemma 3, a binary constant-weight cyclic code with 
pk codewords of length N = np and weight w = n that has 
minimum distance dmin = 2( n - k + 1). 

Berlekamp and Justesen [ 131 have given, for the finite 

fields GF (q) where q is a power of 2, constructions of 
q-ary Bose-Chaudhuri-Hocquenghem (BCH) codes of 
length n = q + 1 that are MDS. Their results, however, are 
easily extended to an arbitrary finite field, cf. [14]. We will 
slightly modify the Berlekamp-Justesen construction to en- 

sure that 1 is never a root of g(x) = 0, where g(x) is the 
generator polynomial of the BCH code. We will refer to the 
resulting codes as generalized Berlekamp- Justesen (BJ) 
codes. We will use these codes in our constructions only 
when q is an odd prime, but we will formulate generalized 
BJ codes for arbitrary q as their properties are no more 
difficult to establish in the general case. 

Lemma 7: For any prime power q and any divisor n 
(n > 1) of q + 1, there exists, for every odd k (1 5 k 5 n), 
a q-ary generalized BJ code of blocklength n and dimension 
k that is an MDS linear cyclic code and contains the code- 

word 1. 

Proof: A primitive element of GF (q2) has multiplica- 
tive order q2 - 1 = (q - l)( q + 1). Thus, for any divisor 
12 (n > 1) of q + 1, we’can choose an element Q! in GF ( q2) 
with multiplicative order n. Moreover, ( CX’)~+ ’ = 1 or, 
equivalently, (01’)~ = (Y-~ for all i. But if cr’#GF(q), then 
cai)q = a-i is its only conjugate with respect to GF (q). It 
follows that if n is even so that CY n/2 = - 1 E GF (q), then, 
foranyeven d(say d = 26 + 2), thesetof d - 1 = 26 + 1 

consecutive powers of Q! 

{a n/2-6 ) Qn12-y.. .) &l/2, &2+1,. . . , @+s} 

is closed under conjugation in GF (q). Hence, the manic 
polynomial g(x) having these d - 1 elements as roots of 
g(x) = 0 is a polynomial of degree n - k = d - 1 with 
coefficients in GF (q), and is thus, the generator polynomial 
of a BCH code with minimum distance d = n - k + 1, i.e., 
an MDS code. Moreover, 1 is not a root of g(x) = 0 so 
that, by Lemma 6, 1 is a codeword in this linear cyclic code. 
Similarly, if n is odd, then for any odd d (say d = 26 + l), 
the set of d - 1 = 26 consecutive powers of 01 

‘{a 
(n+1)/2-6 ) (-Jn+W-6+1 . , . , ,w11/2 3 , 

,(n+1)/2+1 . . .) ,(n+1)/2+S-1 
, > 

is the root set of g(x) = 0 for the appropriate generator 
polynomial g(x). Our argument has shown that n and 
d = n T k + 1 must either both be even or both be odd, 
which is equivalent to the condition that k be odd. 0 

Construction II: Let p be an odd prime, let n (n > 1) 
be a divisor of p + 1, and let k (1 I k I n) be odd. 
Choosing V to be a p-ary linear cyclic (n , k, d) generalized 
BJ code and choosing v as the p-tuple [l, 0, 0, * * *, 0] yields, 
by Theorem 1 and Lemma 3, a binary constant-weight cyclic 
code with pk codewords of length N = np and weight 
w = n that has minimum distance dmin = 2( n - k + 1). 

The essential difference between the codes of Construc- 
tions I and II is that the latter codes are two p-ary digits 
longer when n is chosen as large as possible for the same p. 

The cyclic codes given by Construction I with n = p - 1 
and by Construction II with n = p + 1 are “asymptotically 
optimum” constant-weight codes in the sense that, for fixed 
k, they meet the Johnson upper bound, cf. [3, Corollary 5, 
p. 5281, with equality as p + 03, as will now be explained. 
This upper bound states that, for even d (which is no real 
restriction since the minimum distance of a binary constant- 
weight code is always even), 

w-d/2 N _ i 

A(N,d,w)< n - 
i=O w-i’ (4) 

For Construction I with n = p - 1, we have w - d/2 = k 
- 1, N = p( p - l), and w = p - 1; so that the right side 
of (4) becomes 

k-1 p(p - 1) - i 
l-I 
i=o p - 1 - i 

= Pk(l + O(P)), 

where o(p) + 0 as p --+ 00. The codes of Construction I 

have exactly pk codewords and hence can be said to be 
“asymptotically optimum. ’ ’ The codes of Construction II 
with n = p + 1, by an entirely similar argument, .are also 
“asymptotically optimum” in the same sense. 

If we replace the sequence [ 1, 0, 0, * * *, 0] by an m- 
sequence or by a Legendre sequence as the choice for v in 
Constructions I and II, then, with the aid of Lemmas 4 and 5, 
we obtain the two following constructions. 

Construction, III: Let p be a prime such that (p - 1)/2 
is odd, let n (n > 1) be a divisor of p - 1 and let k satisfy 
1 5 k I n. Then Construction I altered only in that v is 
chosen to be a Legendre sequence of length p (or, alterna- 
tively, as an m-sequence of length p in case’p is a Mersenne 
prime) yields a binary constant-weight cyclic code with pk 
codewords of length N = np and weight w = n( p + 1)/2 
that has minimum distance dmin = (n - k + l)( p + 1)/2. 

Construction IK Let p be a prime such that (p - 1)/2 
is odd, let n (n > 1) be a divisor of p + 1 and let k 
(1 I k I n) be odd. Then Construction II altered only in 
that v is chosen to be a Legendre sequence of length p (or, 

alternatively, .as an m-sequence of length p in case p is a 
Mersenne prime) yields a binary constant-weight cyclic code 
with p k codewords of length N = np and weight w = n( p 
+ 1)/2 that has minimum distance dmin = (n - k + l)( p 
+ 1)/2. 

The Plotkin bound [3, p. 411 asserts that any binary code 
of length N and minimum distance d for which N < 2 d has 
at most 21 d/(2d - N)] codewords where 1.1 denotes the 
integer part of the enclosed number. Letting A = 2d - N > 
0 and noting that 

2ld/(2d - N)] = 2[(N/2 + A/2)/A] 

= 2[N/(2A) + l/2] 

I 2[N/2 + l/2] IN+ 1, 
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it follows that, for any binary code of length N with more M and N. We now show how to construct some cyclically 
than N + 1 codewords, permutable codes that are “good” in this sense and that have 

d 1 
the further property of being constant-weight codes, which is 

- 5 -, (5) 
often a requirement in applications (see, e.g., Section V). 

N 2 Our constructions will be based on the constant-weight cyclic 

which we will call the low-rate Plotkin bound. The length 
N binary codes of Construction III with n = p - 1 and 
those of Construction IV with n = p + 1 have more than 
N + 1 codewords for k 2 2 and for k 1 3, respectively. 
But, for the codes of either construction and for any fixed k, 

dmin 
- = ; + o(p), 

N 

where o(p) + 0 as p --* 00. Thus, the codes of both con- 
structions are “asymptotically optimum” in the sense that 
they achieve the low-rate Plotkin bound as p + 00. In fact, it 
is easy to see that, for any sequence of codes with increasing 
p and nondecreasing k obtained from Construction III (or 
from Construction IV) using the largest possible n, (6) still 

holds provided only that k/p + 0 as p + 03. Thus, these 
codes are “asymptotically optimum” in a rather strong sense. 

IV. CONSTRUCTIONS OF CYCLICALLY PERMUTABLE 

CODES 

Two N-tuples b and b’ are said to be in the same cyclic 
equivalence class if S’(b) = b’ for some i, 0 I i < N. If b 
has cyclic order j (cf. Section II), then the cyclic equivalence 

codes of Constructions I and II, which guarantees large dmin. 
We now develop methods for selecting cyclically distinct 
codewords of full cyclic order from these codes that are 
easily implementable and that select close to AX/N code- 

words. 
With an n-tuple c = [co, cl, * * *, c,- i] having compo- 

nents in GF (q), we associate in the usual manner the polyno- 
mial c(x) = co + cix + a** +cn_ix”-*, and we note that 
the t-times rightward cyclically shifted n-tuple S’(c) corre- 
sponds in this way to the polynomial x’c( x) mod (x” - l), 
where here and hereafter we write c(x) mod (x” - 1) to 
denote the remainder when c(x) is divided by x” - 1. The 
following result is the key to our codeword selection method 
for the codes of Construction I. We state this result more 
generally than we actually require because it may be of some 
independent interest in the theory of RS codes. 

Theorem 2: Let (Y have multiplicative order n (n > 1) in 
GF(q) and let e(x) = 1 + x + *a* +x”-‘. Then the code 
polynomials (i.e., the polynomials corresponding to code- 
words) in the (n, k, d) Reed-Solomon code with generator 
polynomial g(x) such that IX, 02, * * *, onpk are the roots of 
g(x) = 0 can be written as 

class containing b contains a total of j N-tuples and is also 
said to have order j. It follows that a cyclically permutable 
code (cf. Section I) can equivalently be defined as a binary 

PI 

block code such that its codewords lie in distinct cyclic where ua, u,, * . *, uk- i may be considered as the k q-ary 
equivalence classes and each of these classes has order equal information symbols. Moreover, the q k-1 codewords c cor- 

to the blocklength. The cyclic minimum distance, d,, of a responding to u, = 1 all have full cyclic order n and are 

cyclically permutable code is defined as the minimum Ham- cyclically distinct. 

ming distance from a codeword to one of its own distinct 
cyclic shifts or to some cyclic shift of another codeword. In 

Remark: Theorem 2 shows that the vast majority of code- 

other words, d, is the minimum distance dmin of the binary 
words in an RS code have full cyclic order n. Taking 

cyclic code obtained from the cyclically permutable code by 
n = q - 1, the maximum possible value, we see from Theo- 

replacing each of its codewords with all the N-tuples in the 
rem 2 that at least nqk-’ = qk - qk-’ of the qk code- 

cyclic equivalence class (necessarily of order N) containing 
words in the RS code have full cyclic order. We remark 

that codeword. We will write CPC (N, MC, d,) to denote a 
further that Vajda and Einarsson [17] have made use in a 

cyclically permutable code of length N having MC code- 
frequency-hopping scheme of precisely the codes given by 

words and cyclic minimum distance d,. We remark that 
the choice k = 3 in Theorem 2. Their codes, in which u. 

there has been a paucity of constructions for cyclically per- 
was the message and uZ was the user’s address, have desir- 

mutable codes, the only such constructions known to us being 
able synchronization capabilities. 

those of [l], [15], and [16]. Proof: Because CY, 02, * * *, an are all the roots of x” 

If one selects at most one codeword from each cyclic 
equivalence class of order N in a binary cyclic code of length 
N and minimum distance dmin, then one obviously obtains a 
CPC (N, MC, d,) code with d, 2 dmin where MC is the 
number of codewords selected. For such a procedure to 
qualify as a “construction,” the selection rule must be easily 
implementable. For the construction to be “good,” the num- 
ber MC of codewords selected should be close to its maxi- 
mum possible value M/N (where M is the number of 
codewords in the cyclic code) and the cyclic code should 
have dmin close to the maximum possible value for the given 

- 1 = 0, it follows that (Y~ is a zero of e(x) = (x” - 1)/(x 
- 1) for 1 5 i < n but not for i = n. Thus, for 1 I i I n, 
oi is a zero of e(ajx) except for i = n - j. It follows that 
the right side of (7) is the general form of a q-ary polynomial 
having oi as a zero for 1 5 i I n - k, i.e., a general code 
polynomial in the RS code whose generator polynomial has 
CY~ as a zero for 1 4 i I n - k, and that we may take the 

coefficients ua, ui,“‘, uk-l in (7) as the information sym- 

bols of this code. 
We next note that e(l) = 1 + 1 + *** +l = n, where of 

course n must be interpreted as an element of GF (q), i.e., 
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as reduced modulo the characteristic of this field. Now 
replacing x by (Y” pi in (7) gives 

ui = c(a”-i)/n, for 0 I i < k, (8) 

as an explicit formula for the information symbols in the RS 
code. Next suppose that c* = S’(c) or, equivalently, that 

c*(x) = x’c(x) mod (x” - 1). It follows from (8) that 

u’ = &+fUi = (y-i& for 0 5 i < k. (9) 

Suppose further that ui = 1. Then (9) gives UT = omf, 
which cannot be 1 for 1 I t < n because (Y has multiplica- 
tive order n. Thus, c = S’(c) is impossible for 1 I t < n, 
i.e., c has full cyclic order n. Because c* = S’(c) is possi- 
ble only for t = 0, i.e., for c* = c, it follows further that 
different codewords with ui = 1 lie in distinct cyclic equiva- 
lences classes, as was to be shown. 0 

In the following construction, we exploit Theorem 2 for 

that b’ = S’(b) corresponds, to A’ = R’(D’( A)) = 
Rj( D’( A)) where i = t mod p and j = t mod n. But 
D’(A) corresponds to c + il and thus, Rj(D’(A)) corre- 
sponds to c’ = Sj(c + il) = Sj(c) + il. Letting cm = 
Sj(c) and recalling that the RS codeword c” = 1 has ub = 1 
and u; = 0, we see that u; = u;” , Thus, c’ can be in the 
subset C or, equivalently, b can be in the subset B only if 
2.4;’ = 1, which by Theorem 2 implies that j = 0. For j = 0, 
c’ = c + il so that ub = u. + i = i. Thus, c’ can be in C 
or, equivalently, b’ can be in B only if i = 0. But i = j = 0 
implies t = 0, and we have thus shown that S’(b) can be in 
B for 0 % t < N only when t = 0. It follows that the 
N-tuples in B are cyclically distinct, which completes the 
proof of the validity of Construction V. 0 

the case where q is a prime. 
Construction V: Let p, n, k, and v be as in Construc- 

tion I with the further proviso that p 2 5 and 3 I k < n. 
Let Q! have multiplicative order n in GF (p) and let V be 
the (n, k, d = n - k - l)p-ary Reed-Solomon code de- 
scribed in Theorem 2. Let each codeword c in V with 
corresponding information vector u = [uo, u,, * * I, uk- i] 
determine a binary N-tuple b in the same manner as in 
Construction I with N = np. Then the set B of binary 
N-tuples b corresponding to those n-tuples c in V for 
which u. = 0 and u, = 1 is a constant-weight w = n 
CPC (N, M,, d,) code C with M, = pkp2 codewords and 
cyclic minimum distance d, 2 2( n - k + 1). 

Proof: It follows from our remarks at the beginning of 
this section that it suffices to show that each N-tuple in B has 
cyclic order N = np and that the pkp2 N-tuples in B are 
cyclically distinct. 

We now consider the construction of cyclically permutable 
codes based on the generalized BJ codes of Lemma 8. We 
begin with a result analogous to Theorem 2 for RS codes. 

Theorem 3: Let Q! have multiplicative order n in GF ( q2), 
where n is a’ divisor of q + 1, and let e(x) = 1 + x 

+ *** +x”-l. Then the code polynomials in the (n, k, d) 
MDS generalized Berlekamp-Justesen code such that 
a”/2-6 

,Q! 
n/2-6+1 . . . n/2 

,a ,a 
n/2+1 . . . ,a 

n/2+6 where 
d = 2 6 + 2, are the zeros of the gene;ator polynomial when 
n is even [or ~l(~+~)/~-~, (y(n+1)/2-S+1,. e e, (yCn+l)12, 

&‘+1)/2+1 . . . &+‘)f2+8-1 where d = 26 + 1 are the 

zeros of the generator polynomial when n is odd] can be 

written as 

n/2-6-1 

C(X) = u,e(x) + JFl [ Ujf?(CYjX) + uge(a-jx)] 

(10) 

Let c be the codeword in the p-ary RS code V corre- when n is even (or can be written as 

sponding to b, let u be the corresponding information vector 
in the RS code, and let A be the p x n array corresponding 

(n-1)/2-6 

to b. Let C be the subset of the RS code V for which 
C(X) = u,e(x) + [ uje(ajx) + uj4e(a-jx)] 

u. = 0 and ut = 1. The array A’ = D’(A) corresponds by 
Lemma 2 to the RS codeword c’ = c + il where on the 

(11) 

right i must be interpreted as an element of GF ( p). Suppose 
now that c E C so that u. = 0. But C” = 1 is also a code- 

when n is odd) where u,EGF(q) and ujeGF(q2) for 

word in the RS code V and has ub = 1 and u; = 0, as 
j > 0 may be considered as the information symbols. The 

k-2 

Proof: We consider only the case where n is even, as 
the proof for odd n is entirely similar. The same argument 

used in the proof of Theorem 2 now shows that 

follows from (7) and the fact that c”(x) = e(x). Thus, 
4 codewords c corresponding to u, = 1 in (10) (or in 

c’ = c + il has ub = i, from which we conclude that A’ # 
(11)) all have cyclic order n and are cyclically distinct. 

A for 1 I i < p. It follows that the array A has vertical 
cyclic order p. Next, we note that c* = Sj(c) corresponds 
to A* = Rj( A). It now follows from Theorem 2 that, 
because c E C so that ui = 1, c has cyclic order n or, 
equivalently, A has horizontal cyclic order n. Moreover, the 

facts that gcd ( p, p - 1) = 1 and that n divides p - 1 
imply that gcd (p, n) = 1. Thus, the array A under the 
operator DR = RD has order np. It now follows from 
Lemma 1 that b has cyclic order N = np. ’ 

It remains only to show that the codewords in B are 
cyclically distinct, i.e., to show that if b E B then S’(b) $ B 
for 1 5 t < N. Suppose then that b E B. Because b has 
cyclic order N = np, it follows from the proof of Lemma 1 

n/2-6-1 

44 = c uje( a-jx) , (14 
j= -n/2+6+1 

where uj E GF ( q2) for all j, is a general code polynomial in 
the Reed-Solomon code over GF (q2) for which 
an/2-6 

,a 
n/2-S-t1 . . . n/2 

,QJ ,Q! 
n/7-+1 . . . ,Q! n/2+6 are zeros 

of the generator polynomial g(x). ‘But the generalized BJ 
code is just the q-ary subcode of this RS code and hence 
c(x) as given by (12) is a code polynomial in the BJ code, if 
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and only if [c(x)]~ = c(xq). But (12) gives 

n/2-6-1 

[c(x)]” = c lqe(u-jxq), (13) 
j= -n/2+6+1 

where we have used the fact that [ e( x)lq = e( x4) and hence 
that [ e(c?x)lq = e(ajqxq) = e(cr-jxq), where the last step 
follows from the fact, shown in the proof of Lemma 7, that 
aqi = a-i for all i. Comparing (12) and (13), we see now 

that [c(x)]~ = c(xq) or, equivalently, that c(x) is a code 
polynomial in the generalized BJ code, if and only if u,, E 
GF (q) and u-i = MY for 1 5 j 5 12 /2 - 6. - 1. Using these 
relations in (12) now gives the desired expression (10) for a 
generalized BJ code polynomial. The proof that u, = 1 in 
(12) gives cyclically distinct codewords c all having cyclic 
order n is entirely analogous to the corresponding part of the 
proof of Theorem 2 and will thus be omitted. 0 

Construction I’Z: Let p, 12, and k be as in Construction 
II with the further proviso that p 2 5 and 5 5 k < n. Let 
(Y have multiplicative order n in GF ( p2) and let V be 
the (n, k, d = n - k + 1) p-ary generalized Berlekamp- 
Justesen code described in Theorem 3. Let each codeword c 
in I/ with information symbols uO, ut, * * *, uck- 1j,2 (where 
u0 E GF (q) and ui E GF ( q2) for i > 0) determine a binary 
N-tuple Zr in the same manner as in Construction II with 
N = np. Then the set B of binary N-tuples b corresponding 
to those n-tuples c in V for which ua = 0 and ur = 1 is a 
constant-weight w = n CPC (N, M,, d,) code with M, = 

P k-3 codewords and cyclic minimum distance d, 2 2(n - k 
+ 1). 

The proof of the validity of this construction is entirely 
analogous to the proof of the validity of Construction V and 
will be omitted. 

We now consider the efficiency of the selection procedures 
by which the constant-weight cyclically permutable codes of 
Constructions V and VI were obtained. The RS-based Con- 
struction I gives a binary constant-weight cyclic code with 
M * pk codewords of length N = p(p - 1) when n is 
chosen as its maximum value p - 1. Thus, Ml N = 
pk- ‘/(p - 1) is an upper bound on the number of code- 
words in a cyclically permutable code selected therefrom. 
But Construction V selects M, = pkp2 codewords, which is 
smaller than the upper bound by only the factor ( p - 1)/p, 
which is nearly 1 for large primes p. The generalized 

BJ-based Construction II gives a binary constant-weight cyclic 
code with m = pk codewords of length N = p( p + 1) when 
IZ is chosen as its maximum value p + 1. Thus, M/N = 
pk- ‘/( p + 1) is an upper bound on the number of code- 

words in a cyclically permutable code selected therefrom. 
Construction VI, however, selects only M, = pk- 3 code- 
words, which is smaller than the upper bound by the factor 

(P + l)lP2 = l/p. Thus, this selection procedure is not 

highly efficient for large p, but the codes nonetheless appear 
to be of interest because of their greater length N = p( p + 1) 
and hence, their greater cyclic minimum distance d, for the 
same number of codewords, compared to the codes of Con- 
struction V. 

V.PROTOCOLSEQUENCESETSFORTHE 

M-ACTIVE-OUT-• F-T USERS COLLISION 

CHANNELWITHOUTFEEDBACK 

In this section, we will show that constant-weight cycli- 
cally permutable codes, such as those constructed in the 
previous section, provide a very natural solution to an inter- 
esting random-accessing problem. The situation to be consid- 
ered is that in which each one of a total population of T 
users occasionally has traffic to send over a common commu- 
nications channel. This traffic is in the form of “packets” of 
some fixed length that we assume take values in the finite 
field GF (Q) for some, in general large, Q. The time axis is 
assumed to be partitioned into slots whose duration corre- 
sponds to the transmission time for one packet; it is further 
assumed that all’ users know the slot boundaries but are 
otherwise unsynchronized. When a user transmits a packet, 
he must transmit it exactly within a slot. 

The common communications channel is assumed to be the 
collision channel without feedback [18], [ 191. If, in a 
particular slot, none of the users are sending a packet (in 
which case we say that each user “sends” the silence 
symbol A), then the channel output in that slot is the silence 
symbol A. If exactly one user is sending a packet in a 
particular slot, then the channel output in that slot is this 
packet value, which is an element of GF (Q). If two or more 
users are sending packets in a particular slot, then the chan- 
nel output in that slot is the collision symbol A. There is no 
feedback available to inform the senders of the channel 
outputs in previous slots. 

Each user, say user i, has a protocol sequence, which is 
a binary sequence si = [si,, si2, + * *, siN] of length N that 
controls his sending of packets in the following manner. 
When user i becomes active (after some period of inactivity), 
he must send a packet in the jth slot (1 5 j I N) of this 
activity if sij = 1 and must be silent in this slot if sij = 0. 

He continues to use his protocol sequence periodically in this 
manner until he has no further messages to send, in which 
case he again becomes inactive and must remain inactive for 
at least N - 1 slots. If si has Hamming weight wi, then user 
i will send wi packets in each frame of N slots correspond- 
ing to his protocol sequence. User i will code his packets 
(i.e., transmit redundant packets) so that packets “last” in 
collisions can, under specified conditions, be recovered at the 
receiver. The task of the receiver in each received frame of 
N consecutive slots is two-fold, viz., 

1) to determine which users, if any, are frame-active in 
the sense that they have sent packets in this received 
frame and that their protocol sequence begins in the 
first slot of this received frame (the iden@cation 
problem), and 

2) to determine for each frame-active user, say user i, the 
transmitted values of his packets in those wi slots of 
this received frame where user i has sent packets (the 
decoding problem). 

The random-accessing problem where in each received 
frame at most M out of the total T of users can be active in 
the sense of sending at least one packet in this frame was 
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introduced in [20] and [21]. The set (s,, s2, * . . , sr} of 
binary sequences of length N is said to be a (T, M, N, a) 
protocol sequence set if, when these sequences are used as 
protocol sequences for the T users and provided that at most 
M of the users are active in each received frame, each 
frame-active user can be identified by the receiver and at 

least (T of the packets transmitted by each frame-active user 
are sent without collision. The following theorem shows how 
constant-weight cyclically permutable codes can be used as 
(T, M, N, a) protocol sequence sets. 

Theorem 4: For any integer (T with 1 I (T I w, a binary 
constant-weight w cyclically permutable code CPC (N, MC 
= T, d,) is a (T, M, N, a) protocol sequence set for 

M s min {T, I( w - l)/( w - d,/2)], 

[(w - d/b - h/2)] + l>. (14) 

Example 5: Taking p = 13, II = 12 and k = 4 in Con- 
struction V yields a binary, constant-weight w = 12, cycli- 
cally permutable code CPC (N = 156, MC = 169, d, = 18). 
By Theorem 4, this code can be used as a (T = 169, 
M, N = 156, u = 6) protocol sequence set for M = 
min{ 169,3,3} = 3. In other words, provided that at most 
M = 3 out of the T = 169 users are active in each received 
frame of N = 156 slots, each frame-active user will be 
guaranteed at least u = 6 collision-free packet transmissions 
among the w = 12 packets that he sends in a frame. 

The correlation between two binary N-tuples is defined as 
the number of positions in which both contain a 1. Our proof 
of Theorem 4 will be based on the following simple fact 
about such correlations. 

Lemma 8: In a constant-weight w CPC (N, MC, d,) code, 
the correlation p between any codeword and its distinct 
cyclic shifts or between any cyclic shifts of any two distinct 
codewords satisfies 

p I w - d,/2. 

Proof: It follows from the definition of a cyclically 
permutable code that any two N-tuples as hypothesized in the 
lemma are separated by Hamming distance at least d,, and of 
course each has Hamming weight w. But two binary N- 
tuples of Hamming weight w at Hamming distance d both 
contains 1 ‘s in exactly w - d /2 positions. cl 

Proof of Theorem 4: We first consider a strategy by 
which the receiver can solve the identification problem. For 
an arbitrary received frame of N slots, let the binary N-tuple 
7 = [71,r2,‘“, rN] be the transmission-activity vector in 
the manner that rj is 0 or 1 according as the silence symbol 
or some other symbol (i.e., a packet or the collision symbol 
A), respectively, is received in the jth slot of this frame. The 
receiver decides that user i is frame-active in this frame if 
and only if the l’s in r cover all l’s in the protocol sequence 
si. If user i is indeed frame-active, this decision rule will 
always correctly so indicate. However, if user i is not 
frame-active, then this decision rule can err. If user i is not 
frame-active, if at most M users are active in the frame, and 
if p is the maximum number of l’s that the transmission- 
activity vector of any one of these users alone would cover in 

si, then Mp < w is a sufficient condition for the identifica- 
tion decision on user i to be correct. But p 5 w - d,/2 as 
follows from Lemma 8 and the fact the transmission activity 
vector of any other user alone must be some cyclic shift of 
his protocol sequence [possibly with some digits on the left or 
on the right replaced by O’s in case the activity of that user 
begins or ends, respectively, somewhere within the frame]. 

Thus, M( w - d, /2) < w or, equivalently, M( w - d, 12) 
I w - 1 is a sufficient condition for correct identification. It 
follows that the largest M consistent with this sufficient 
condition for correct identification is 

M = I( w - l)/( w - d,/2)]. 05) 

We next derive a sufficient condition for each frame-active 
user to have at least u successful packet transmissions among 
his w packet transmission attempts when at most M users 
are active in the frame. Suppose user i is frame-active. 

Because each of the at most M - 1 other users can cause at 
most w - d, /2 collisions with the packets of user i, it 
follows that user i achieves at least w - (M - l)( w - d, /2) 
successes. Thus, u L w - (M - l)(w - d, /2) or, equiva- 
lently , 

M= [(w - s)/(w - d,/2)] + 1 06) 

is the largest M that guarantees at least u successes for each 

frame-active user. 
Trivially, however, M I T must be satisfied. Thus, if M 

is the minimum of T and the two integers on the right in (15) 
and (16), we are assured that identification of the frame- 
active users will be correct and that each of these users will 
achieve at least u successful packet transmission in the 
frame. 0 

We now briefly consider how the users can code their 
packets so that each user can send u information packets in 
each frame of his activity and the receiver can correctly 
decode these packets. Each user employs an (n’ = w, k’ = 
u, d’ = w - u + 1) shortened RS code over GF (Q) to code 

his u information packets into his w transmitted packets. 
Such a code exists provided only that w % Q + 1 when we 
allow the use of the so-called doubly-extended RS codes, cf. 

[2, p. 2211. If a user is ‘frame-active and has u successful 
packet transmissions, the decoding problem at the receiver is 
equivalent to having erasures in the at most w - u positions 
where this user’s packets suffer collisions. Because d’ = w 
- u + 1, the receiver can always correct these erasures by a 
standard erasure-correcting algorithm for the RS code and 
hence, can correctly recover the u information packets from 
this user. 

Because a (T, M, N, a) protocol-sequence set allows each 
of the M active users to send u information packets success- 
fully in a frame of N slots when the users code their packets 
as described above, it follows that R,,, , the total informa- 
tion transmission rate that can be achieved, is 

R S”lll = (MU) /N (packets/slot) . 07) 
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For instance, in Example 5, a sum rate of 

R S”lll = (3 x 6)/156 = 3/26 (packets/slot) 

can be achieved. 

VI. CONCLUSION 

We have given in this paper rather many constructions of 
good binary constant-weight cyclic codes and constant-weight 
cyclically permutable codes. It will be obvious to the reader 
that a variety of further such codes can be constructed from 

Theorem 1 by different choices of the sequence v used in the 
u-representation of GF (p) and by different choices of the 
p-ary linear cyclic code T/. We have limited ourselves pri- 
marily to the case where V is an MDS code as this guaran- 
tees good codes but Examples 3 and 4, which used the Golay 
codes, show that other choices of I/ can yield very good 

binary constant-weight cyclic codes. 
As an application of constant-weight cyclically permutable 

codes, we have considered their use as protocol-sequence sets 
for the M-active-out-of-T-users collision channel without 

feedback. We expect these codes to find other applications in 
various problems of an essentially asynchronous nature. For 
instance, we suspect that these codes could form the basis for 
the construction of some interesting comma-free codes, cf. 

WI. 
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