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CONSTRUCTIONS OF COMPLEX HADAMARD MATRICES VIA

TILING ABELIAN GROUPS

MÁTÉ MATOLCSI & JÚLIA RÉFFY & FERENC SZÖLLŐSI

Abstract. Applications in quantum information theory and quantum tomography have
raised current interest in complex Hadamard matrices. In this note we investigate the con-
nection between tiling of Abelian groups and constructions of complex Hadamard matrices.
First, we recover a recent very general construction of complex Hadamard matrices due to
Dita [2] via a natural tiling construction. Then we find some necessary conditions for any
given complex Hadamard matrix to be equivalent to a Dita-type matrix. Finally, using an-
other tiling construction, due to Szabó [8], we arrive at new parametric families of complex
Hadamard matrices of order 8, 12 and 16, and we use our necessary conditions to prove
that these families do not arise with Dita’s construction. These new families complement

the recent catalogue [10] of complex Hadamard matrices of small order.
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1. Introduction

Hadamard matrices, real or complex, appear in various branches of mathematics such as
combinatorics, Fourier analysis and quantum information theory. Various applications in
quantum information theory have raised recent interest in complex Hadamard matrices.

One example, taken from quantum tomography, is the problem of existence of mutually un-
biased bases, which is known to be a question on the existence of certain complex Hadamard
matrices. The existence of d + 1 such bases is known for any prime power dimension d, but
the problem remains open for all non prime power dimensions, even for d = 6 (for a more
detailed exposition of this example see the Introduction of [10]).

Other important questions in quantum information theory, such as construction of telepor-
tation and dense coding schemes, are also based on complex Hadamard matrices. Werner in
[11] proved that the construction of bases of maximally entangled states, orthonormal bases
of unitary operators, and unitary depolarizers are all equivalent in the sense that a solution
to any of them leads to a solution to any other, as well as to a corresponding scheme of
teleportation and dense coding. A general construction procedure for orthonormal bases of
unitaries, involving complex Hadamard matrices, is also presented in [11].

On the one hand, it seems to be impossible to give any complete, or satisfactory charac-
terization of complex Hadamard matrices of high order. On the other hand, we can hope to
give fairly general constructions producing large families of Hadamard matrices, and we can
also hope to characterize Hadamard matrices of small order (currently a full characterization
is available only up to order 5; very recently the self-adjoint complex Hadamard matrices
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of order 6 have also been classified in [1]). A recent paper by Dita [2] describes a general
construction which leads to parametric families of complex Hadamard matrices in compos-
ite dimensions. Another recent paper by Tadej and Życzkowski [10] gives an (admittedly
incomplete) catalogue of complex Hadamard matrices of small order (up to order 16).

The aim of this note is to show how tiling constructions of Abelian groups can lead to
constructions of complex Hadamard matrices, and in this way to complement the catalogue
of [10] with new parametric families. In particular, we first show how Dita’s construction
can be arrived at via a natural tiling construction (this part does not lead to new results, but
it is an instructive example of how tiling and Hadamard matrices are related). Second, we
observe some regularities satisfied by all Dita-type matrices, and thus arrive at an effective
method to decide whether a given complex Hadamard matrix is of Dita-type. Then we use
a combinatorial tiling construction due to Szabó [8] to produce Hadamard matrices not of
Dita-type, and complement the catalogue of [10] with new parametric families of order 8, 12
and 16.

2. Recovering Dita’s construction via tiling

This section describes a beautiful example of how seemingly distant parts of mathematics
are related to each other. A short history of the construction is as follows.

Fuglede’s conjecture states that a set in a locally compact Abelian group (originally in
Rd) is spectral (a notion to be defined below) if and only if it tiles the group by translation.
(We remark that this conjecture has been disproved in dimensions 3 and higher [3, 5] but
remains open in dimensions 1 and 2.) While tiling is a ’natural’ notion, spectrality is less so,
and it is closely related to complex Hadamard matrices, as explained below. One approach
to tackle the conjecture was to look for ’canonical’ constructions for tiling Abelian groups,
and see whether similar constructions work also for spectral sets. This, indeed, turned out to
be the case for a very general construction (see Proposition 2.1 below), and then this general
scheme of producing spectral sets leads directly to Dita’s construction of complex Hadamard
matrices.

First, let us recall the most general form of Dita’s construction, formula (12) in [2] (his
subsequent results on parametric families of complex Hadamard matrices with some free
parameters follow easily from this formula, as described very well in Proposition 3 and
Theorem 2 of [2]).

(1) K :=





m11N1 · · m1kNk

· · · ·
· · · ·

mk1N1 · · mkkNk





In this formula Dita assumes mij to be the entries of any k × k complex Hadamard matrix
M , while Nj are any n×n complex Hadamard matrices (possibly different from each other).
Then he shows that K is a complex Hadamard matrix of order kn. While this construction
seems fairly natural, it may be remarkable that it has only been discovered very recently
[2] (we remark that an earlier, less general construction was given in [4]), and that it is so
powerful that it leads to most of the parametric families included in [10].

Definition 2.1. A complex Hadamard matrix K is called Dita-type if it is equivalent to a
matrix arising with formula (1) (we use the standard notion of equivalence of Hadamard
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matrices (see e.g. [10]), i.e. K1 and K2 are equivalent if K1 = D1P1K2P2D2 with unitary
diagonal matrices D1, D2 and permutation matrices P1, P2.)

Let us now turn to the definition of spectral sets and tiles, and see how Dita’s construction
arises naturally via tiling of Abelian groups.

Definition 2.2. Let G be a locally compact Abelian group, and Ĝ its dual group (the group
of characters). An open set T ⊂ G is said to be a translational tile if there is a disjoint
union of some translated copies of T covering the whole group G up to gaps of measure zero
(w.r.t Haar measure). T ⊂ G is spectral if it has a spectrum S ⊂ Ĝ such that the characters
{γ|γ ∈ S} restricted to T form an orthogonal basis of L2(T ). Then (T, S) is called a spectral
pair.

Remark 1. Let ZN denote the cyclic group of N elements. If G is the Abelian group Zd
N ,

or Zd, or Td then we identify elements of the group with column vectors g of length d (with
entries gj = k

N
(0 ≤ k ≤ N − 1), or gj ∈ Z, or gj ∈ T, respectively). Also, we identify

characters with row vectors h of length d (with entries hj = m (0 ≤ m ≤ N − 1), or hj ∈ T,
or hj ∈ Z, respectively; it is also convenient to identify T with the interval [0, 1)). The action
of a character is then described conveniently as

(2) γh(g) = e2πi〈h,g〉 h ∈ Ĝ, g ∈ G.

These notations will be particularly useful to describe how spectral pairs lead to complex
Hadamard matrices. Readers unfamiliar with this notation are advised to check the concrete
numerical Example 1 in Section 3.

In the case of G = Zd
N or Zd, if a finite set T = {t1, . . . , tr} ⊂ G has spectrum S =

{s1, . . . , sr} ⊂ Ĝ then by orthogonality

(3)
r∑

k=1

e2πi〈si−sj ,tk〉 =
r∑

k=1

γsj
(tk)γsi

(tk) = rδij,

so the matrix [H ]i,k :=
(
e2πi〈si,tk〉

)
is an r × r complex Hadamard matrix (i.e. a matrix

with complex entries of absolute value 1, such that the rows (and hence the columns) are
orthogonal). We call the matrix of exponents [log H ]i,k = 〈si, tk〉 a log-Hadamard matrix
(note that there is a factor 2π difference between [6] and [10] as to the terminology ’log-
Hadamard matrix’; here we adhere to the one used in [6]). Finally, we have arrived at the
conclusion that S is a spectrum of T if and only if the matrix product ST is log-Hadamard.
Accordingly, in the case of G = Td we find it convenient to extend the definition of spectrality
to finite sets, too (finite sets are not open and have measure zero in this case, so the original
definition is meaningless). �

Definition 2.3. We say that a finite set T ⊂ Td is spectral if there exists a set S ⊂ Zd (as
row vectors) such that ST is log-Hadamard.

We now recall Proposition 2.2 from [6] (the point is that the analogous construction is
natural for tiles (see Proposition 2.1 in [6]), and that is how this construction was discovered
for spectral sets).

Proposition 2.1. Let G be a finite Abelian group, and H ≤ G a subgroup. Let T1, T2, . . . Tk ⊂

H be subsets of H such that they share a common spectrum in Ĥ; i.e. there exists a set L ⊂ Ĥ
such that L is a spectrum of Tm for all 1 ≤ m ≤ k. Consider any spectral pair (Q, S) in the
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factor group G/H, with |Q| = k, and take arbitrary representatives q1,q2, . . .qk from the
cosets of H corresponding to the set Q. Then the set Γ := ∪k

m=1(qm + Tm) is spectral in the
group G.

Proof. The proof is trivial, although the notations are somewhat cumbersome. We will
simply construct a spectrum Σ ⊂ Ĝ for Γ. Let n denote the number of elements in each Tm

(they necessarily have the same number of elements as there exists a common spectrum),
and tm

r (r = 1, . . . n and m = 1, . . . k) the rth element of Tm. By assumption, there exist

characters lj ∈ Ĥ (j = 1, . . . n) such that the matrices [Am]j,r := [lj(t
m
r )] are n × n complex

Hadamard for each m. Let l̃j denote any extension of lj to a character of G (such extensions

always exist, although not unique). Also, the elements s1, . . . , sk of S ⊂ Ĝ/H can be

identified with characters s̃i ∈ Ĝ which are constant on cosets of H . Then we consider
the product characters s̃ĩlj and let Σ := {s̃ĩlj}i,j where i = 1, . . . , k and j = 1, . . . , n. We
claim that Σ is a spectrum of Γ. For each m = 1, . . . k let DLqm

denote the n × n diagonal

matrix with entries [DLqm
]j,j = l̃j(qm). Then, for fixed i and m the product characters s̃ĩlj

(j = 1, . . . , n) restricted to the set qm +Tm = {qm + tm
1 , . . . ,qm + tm

n } simply give the n×n
matrix

(4) Bi,m := s̃i(qm)DLqm
Am,

because the entries are given as [Bi,m]j,r = s̃ĩlj(qm + tm
r ) = s̃i(qm)̃lj(qm)̃lj(t

m
r ). This means

that the characters s̃ĩlj ∈ Σ restricted to Γ will give the nk × nk block matrix

(5) H :=





B1,1 · · B1,k

· · · ·
· · · ·

Bk,1 · · Bk,k



 .

Now, observe that each block Bi,m is given as a product s̃i(qm)DLqm
Am where Nm :=

DLqm
Am is a complex Hadamard matrix (because Am is such and DLqm

is a unitary diagonal
matrix), and s̃i(qm) is the entry of a k × k complex Hadamard matrix by the assumption
that S is a spectrum of Q. Therefore H is seen to be a complex Hadamard matrix arising
directly with formula (1), and hence Σ is indeed a spectrum of Γ. �

Remark 2. We see that the constructed spectral pair (Σ, Γ) gives rise to a Dita-type matrix.
We remark, however, that the set Γ might well have many other spectra than the one con-
structed in the proof above (and other spectra might produce complex Hadamard matrices
not of the Dita-type). There is no efficient algorithm known to list out all the spectra of a
given set. �

Remark 3. The above Proposition was quoted verbatim from [6], and remains in the finite
group setting. This has the disadvantage that the arising matrices are necessarily of the
Butson-type (i.e. containing roots of unity only), and one cannot expect to obtain continuous
parametric families of complex Hadamard matrices. However, the same construction works
in the infinite setting G = Zd or G = Td, too, and we now present how every Dita-type
matrix arises in this manner.

Assume that matrices M and Nm (m = 1, . . . , k) are given, and K is constructed as in
formula (1). We aim to recover K with the construction of Proposition 2.1.
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Let G = Td where d = n + k, and consider the subgroup H1 = Tn (subgroup of vectors
with last k coordinates 0), and G/H1 = H2 = Tk (vectors with first n coordinates 0). Then
G = H1 × H2.

Let Tm = log Nm denote the matrix of the exponents of the entries of Nm, i.e. [Nm]i,j =

e2πi[Tm]i,j (each Tm is defined mod 1). Let T̃m ⊂ H1 denote the set of vectors consisting of
the columns of the log-Hadamard matrix Tm extended by 0’s in the last k coordinates. Then
each T̃m is spectral in H1 and a common spectrum of them is given by

(6) E1 :=





1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 0 . . . 0



 .

(This is because E1T̃m = Tm is log-Hadamard for each m.) Also, let Q := log M , and
q̃j ∈ H2 denote the jth column of the log-Hadamard matrix Q extended by 0’s in the first n

coordinates. Then the set Q̃ = {q̃1, . . . q̃k} ⊂ H2 is spectral in H2 = G/H1 with spectrum

(7) E2 :=




0 0 . . . 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 0 . . . 1



 .

(This is because E2Q̃ = Q is log-Hadamard.)
As in Proposition 2.1 above we define

(8) Γ := ∪k
m=1(qm + Tm) =





T1 T2 . . . Tk

| | . . . | | | . . . | . . . | | . . . |
q1 q1 . . . q1 q2 q2 . . . q2 . . . qk qk . . . qk

| | . . . | | | . . . | . . . | | . . . |





Then, the spectrum Σ constructed in the proof of Proposition 2.1 takes the form ’Σ =
E1 + E2’, i.e.

(9) Σ :=





1 0 . . . 0 1 0 . . . 0
0 1 . . . 0 1 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 1 0 . . . 0
1 0 . . . 0 0 1 . . . 0
0 1 . . . 0 0 1 . . . 0
...

. . .
...

...
...

0 0 . . . 1 0 1 . . . 0
...

...
1 0 . . . 0 0 0 . . . 1
0 1 . . . 0 0 0 . . . 1
...

. . .
...

...
...

0 0 . . . 1 0 0 . . . 1




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Finally, the nk×nk log-Hadamard matrix arising from the spectral pair (Γ, Σ) is the product
ΣΓ, and it gives back exactly the log-Hadamard matrix log K, as desired.

(10) ΣΓ = log K =





q11 + T1 q12 + T2 . . . q1k + Tk

q21 + T1 q22 + T2 . . . q2k + Tk

...
...

...
qk1 + T1 qk2 + T2 . . . qkk + Tk





�

3. Other tiling constructions yielding new families of complex Hadamard
matrices

Once the connection between tiling and complex Hadamard matrices has been noticed, it
is natural to look for tiling constructions other than that of Proposition 2.1 above, in the
hope of producing new complex Hadamard matrices not of the Dita-type. Furthermore, when
a new complex Hadamard matrix M is discovered, the ’linear variation of phases’ method
of [10] gives hope to find new parametric affine families of complex Hadamard matrices
stemming from M . This is exactly the route we are going to follow in this section. First,
we show how a tiling method of Szabó [8] leads to complex Hadamard matrices not of the
Dita-type. Then, stemming from these matrices, we produce new parametric families of order
8, 12, and 16 which have not been present in the literature so far and which complement
the recent catalogue [10].

It turns out that the (tiling analogue of) the construction of Proposition 2.1 is so general
that it is not trivial to produce tilings which do not arise in such manner. In fact, it was
once asked by Sands [7] whether every tiling of finite Abelian groups is such that one of
the factors is contained in a subgroup (note that such tilings correspond to the special case
Q = G/H in the tiling analogue of Proposition 2.1). This question was then answered in
the negative by a construction of Szabó [8], which we now turn to.

Assume G = Zp1q1
×Zp2q2

×Zp3q3
where pj, qj ≥ 2. The idea of Szabó is to take the obvious

tiling G = A + B where

(11) A = {0,
1

p1q1

, . . .
p1 − 1

p1q1

} × {0,
1

p2q2

, . . .
p2 − 1

p2q2

} × {0,
1

p3q3

, . . .
p3 − 1

p3q3

}

and B = {0, 1
q1

, 2
q1

, . . . q1−1
q1

} × {0, 1
q2

, 2
q2

, . . . q2−1
q2

} × {0, 1
q3

, 2
q3

, . . . q3−1
q3

} and then modify the

grid B by pushing three grid-lines in different directions (see [8] for details; we do not describe
the details here as we do not directly use this construction in this paper, it serves only as a
guide to our spectral analogue below). Here we use the analogous construction for spectral
sets which we now describe in detail (it may be easier to follow the general construction by
looking at the specific Example 1 below).

Consider the set A above. By formula (3) a set S ⊂ Ĝ is a spectrum of A if and only if |S| =

|A| and S − S ⊂ ZA ∪ {0} := {r ∈ Ĝ : χ̂A(r) = 0} ∪ {0} (χA denotes the indicator function

of A, and the Fourier transform χ̂A is evaluated at some r ∈ Ĝ as χ̂A(r) =
∑

a∈A e2πi〈r,a〉).

For a more detailed discussion of this fact see e.g. [6]. Recall that Ĝ is identified with 3-

dimensional row vectors. It is clear that if r = (r1, r2, r3) ∈ Ĝ is such that q1 divides r1 and
r1 6= 0 then χ̂A(r) = 0 (all sub-sums become 0 with fixing the second and third coordinate
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and letting the first one vary in A). Similarly, if q2|r2 6= 0 or q3|r3 6= 0 then χ̂A(r) = 0.
Therefore the grid

(12) S = {0, q1, . . . (p1 − 1)q1} × {0, q2, . . . (p2 − 1)q2} × {0, q3, . . . (p3 − 1)q3}

is a spectrum of A. Using an analogous idea to that of Szabó we now modify this grid.
Consider the grid-line L1 := {{0, q1, . . . (p1 − 1)q1} × {q2} × {0} and change it to L′

1 :=
{1, q1+1, . . . (p1−1)q1+1}×{q2}×{0} (adding +1 to the first coordinates). Similarly, change
L2 := {0}×{0, q2, . . . (p2−1)q2}×{q3} to L′

2 := {0}×{1, q2+1, . . . (p2−1)q2+1}×{q3}, and
change L3 := {q1}×{0}×{0, q3, . . . (p3−1)q3} to L′

3 := {q1}×{0}×{1, q3+1, . . . (p3−1)q3+1}.
It is easy to see that

(13) S ′ := S ∪ (L′
1 ∪ L′

2 ∪ L′
3) \ (L1 ∪ L2 ∪ L3)

is still a spectrum of A. Indeed, for any r ∈ S ′−S ′ it still holds that either the first coordinate
is divisible by q1 or the second by q2 or the third by q3. Then the spectral pair (A, S ′) gives
rise to a complex Hadamard matrix of size p1p2p3. Below we will apply this construction in
the groups G1 = Z2·2×Z2·2 ×Z2·2, G2 = Z2·2 ×Z2·2×Z3·3 and G3 = Z2·2×Z4·2 ×Z2·4 (it may
be instructive to see the step-by-step numerical exposition of the construction in Example 1
in group G1 below).

We will then prove that these matrices are not of the Dita-type. (It would be very interest-
ing to see a proof of a general statement that all matrices arising with the above construction
are non-Dita-type.) As a result we will conclude that these matrices have not been included
in the catalogue [10].
Remark 4. We can see from the construction above that the size of the arising matrix is
p1p2p3, while the numbers q1, q2, q3 are chosen arbitrarily to determine the group we are work-
ing in. It is not clear whether different choices of q1, q2, q3 lead to non-equivalent Hadamard
matrices. In this paper we only list the three examples for which the dimension is not
greater than 16 (as in [10]) and for which we can prove that the arising matrices are new,
i.e. non-equivalent to any matrix listed in [10]. �

Example 1. Let us follow the construction above, step by step, in G1 = Z2·2 ×Z2·2 ×Z2·2 =
Z4 × Z4 × Z4.

By (11) we take A = {0, 1
4
} × {0, 1

4
} × {0, 1

4
}. This is a Cartesian product, each element

of which is a 3-dimensional vector composed of 0’s and 1
4
’s. We list out the elements in

lexicographical order as

(14) A =
1

4




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



 ,

where the columns represent the elements of A ⊂ G1, in accordance with our notation
introduced earlier. (The order of the elements is up to our choice, but a permutation of the
elements only corresponds to a permutation of the columns of the matrix S8 below.)
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Then, by equation (12) we have S = {0, 2} × {0, 2} × {0, 2}, which we list out (also in
lexicographical order) as

(15) S =





0 0 0
0 0 2
0 2 0
0 2 2
2 0 0
2 0 2
2 2 0
2 2 2





Now, S is a spectrum of A, therefore the product SA already gives a log-Hadamard matrix
but we do not take that matrix (which is Dita-type, as can be verified by the reader),
but modify the set S first. The grid-line L1 in S is given as L1 = {0, 2} × {2} × {0} =
{(0, 2, 0); (2, 2, 0)}. This we replace by L′

1 = {(1, 2, 0); (3, 2, 0)}. Similarly, the grid-line L2 =
{(0, 0, 2); (0, 2, 2)} is replaced by L′

2 = {(0, 1, 2); (0, 3, 2)} and finally L3 = {(2, 0, 0); (2, 0, 2)}
by L′

3 = {(2, 0, 1); (2, 0, 3)}. Therefore, by (13) we get

(16) S ′ = S ∪ (L′
1 ∪ L′

2 ∪ L′
3) \ (L1 ∪ L2 ∪ L3) =





0 0 0
0 1 2
0 3 2
1 2 0
2 0 1
2 0 3
2 2 2
3 2 0





(Once again, the order of the elements of S ′ is arbitrary, and we take lexicographical or-
der.) The point is, as explained above in the general description of this construction, that
the set S ′ is still a spectrum of A. Therefore the matrix product S ′A is a log-Hadamard
matrix (we reduce the entries mod 1 because the integer part of an entry plays no role after
exponentiation; e.g. 5

4
≡ 1

4
) given by:

(17) S ′A = log S8 =
1

4





0 0 0 0 0 0 0 0
0 2 1 3 0 2 1 3
0 2 3 1 0 2 3 1
0 0 2 2 1 1 3 3
0 1 0 1 2 3 2 3
0 3 0 3 2 1 2 1
0 2 2 0 2 0 0 2
0 0 2 2 3 3 1 1




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with the corresponding Hadamard matrix given by

(18) S8 =





1 1 1 1 1 1 1 1
1 −1 i −i 1 −1 i −i

1 −1 −i i 1 −1 −i i

1 1 −1 −1 i i −i −i

1 i 1 i −1 −i −1 −i

1 −i 1 −i −1 i −1 i

1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −i −i i i





�

Having described how to produce the matrix S8 the remaining questions are whether S8 is
new (i.e. not already included in the catalogue [10]), and whether any parametric family of
complex Hadamard matrices stems from S8.

We will first proceed to show that S8 is not Dita-type (nor is it its transpose). This is
a delicate matter, as not many criteria are known to decide inequivalence of Hadamard
matrices. The Haagerup condition with the invariant set Λ := {hijhkjhklhil} (see [4] and
Lemma 2.5 in [10]) cannot be used here. Also, the elegant characterization of equivalence
classes of Kronecker products of Fourier matrices [9] does not apply to S8. The ’regular’
structure of a Dita-type matrix must be exploited in some way. The key observation relies
on the following

Definition 3.1. Let L be an N × N real matrix. For an index set I = {i1, i2, . . . , in} ⊂
{1, 2, . . . , N} two rows (or columns) s and q are called I-equivalent, in notation s ∼I q, if
the fractional part of the entry-wise differences si − qi are the same for every i ∈ I (we need
to consider fractional parts as the entries of a log-Hadamard matrix are defined only mod 1).
Two rows (or columns) s and q are called (d)-n-equivalent if there exist n-element disjoint
sets of indices I1, . . . , Id such that s ∼Ij

q for all j = 1, . . . , d.

We have the following trivial observation.

Proposition 3.1. Let L be an N×N complex Hadamard matrix. Assume that there exist an
index set I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N} and m different rows (resp. columns) rs1

, . . . rsm

in the log-Hadamard matrix log L such that each two of them are I-equivalent. Let M be
any complex Hadamard matrix equivalent to L. Then the same property holds for log M ,
i.e. there exist an index set J = {j1, j2, . . . , jn} ⊂ {1, 2, . . . , N} and m different rows (resp.
columns) rk1

, . . . rkm
such that each two of them are J-equivalent. (Of course, the index sets

I and {s1, . . . sm} might not be the same as J and {k1, . . . km}.)

Proof. It follows from the definition of the equivalence of Hadamard matrices that log M is
obtained from log L by permutation of rows and columns, and addition of constants to rows
and columns. It is clear that such operations preserve the existing equivalences between rows
and columns (with the index sets being altered according to the permutations used). �

The essence of the proposition is that ”existing equivalences between rows and columns
are retained”. The next main point is that there are many equivalences among the rows of
a Dita-type matrix and we will see that such equivalences are not present in log S8.

By formula (1), the structure of an N ×N Dita-type matrix D (where N = nk) implies for
the log-Hadamard matrix log D that there exists a partition of indices to n-element sets I1 =
{1, 2, . . . n}, . . . , Ik = {(k − 1)n + 1, . . . kn} and k-tuples of rows Rj = {rj, rj+n . . . rj+(k−1)n}
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(j = 1, . . . n) such that any two rows in a fixed k-tuple are equivalent with respect to any of
the Im’s, i.e. rj+(i−1)n ∼Im

rj+(s−1)n for all j = 1, . . . n, and i, s, m = 1, . . . k. In other words,
in any k-tuple Rj any two rows are (k)-n-equivalent with respect to the Im’s. We will use
the terminology (k)-n-Dita-type for such matrices D. Naturally, the same property holds for
the transposed of a (k)-n-Dita-type matrix, with the role of rows and columns interchanged.

This observation makes it possible to prove the following

Proposition 3.2. S8 and its transposed are not Dita-type.

Proof. The matrix size being 8 × 8 the only possible values for n are 2 and 4 (with k being
4 and 2, respectively). Therefore we only need to check existing (2)-4-equivalences and
(4)-2-equivalences in log S8 and its transposed.

First, let us assume that n = 4, k = 2 and look for (2)-4-equivalences among the rows of
log S8. If S8 were (2)-4-Dita type, there should be a partition of indices to two 4-element sets
I1, I2 such that in log S8 four pairs of rows are equivalent with respect to I1, I2. The first
row r1 of log S8 consists of zeros only, therefore it must be paired with a row containing only
two different values. There is only one such row r7 and then the index sets must correspond
to the position of 0’s and 2’s in r7, i.e. I1 = {1, 4, 6, 7} and I2 = {2, 3, 5, 8}. However, there
should exist three further pairs of rows which are equivalent with respect to the same set of
indices I1, I2. It is easy to check that such pairs do not exist (e.g. the second row r2 is not
(2)-4-equivalent with respect to I1, I2 to any other row), and hence S8 cannot be (2)-4-Dita
type.

To check the transposed matrix we interchange the role of rows and columns and see
that the first column c1 of log S8 (all zeros) should be paired with a column containing two
values only. But such column does not exist, therefore c1 is not (2)-4-equivalent to any other
column, and hence the transposed of S8 cannot be (2)-4-Dita type.

Let us turn to the case n = 2, k = 4. If S8 were (4)-2-Dita type, there should be a
partition of indices to four 2-element sets I1, I2, I3, I4 such that in log S8 two 4-tuples of
rows R1 = {rs1

, . . . , rs4
} and R2 = {rs5

, . . . , rs8
} are equivalent with respect to I1, I2, I3, I4.

Assume, without loss of generality that 1 ∈ I1 (i.e. I1 = {1, m} for some m) and that
rs1

= r1. Then rs2
, rs3

, rs4
are I1-equivalent to r1 which implies that there should be a 4× 2

block of 0’s in log S8 corresponding to R1 and I1, i.e. [log S8]i,j = 0 for all i ∈ R1 and j ∈ I1.
Such block of 0’s does not exist, therefore S8 is not (4)-2-Dita-type.

In the transposed case there exists such a 2 × 4 block of zeros, corresponding to the row
indices I1 = {1, 7} and column indices C1 = {1, 4, 6, 7}. This means that there should be
further two-element index sets I2, I3, I4 such that the columns {c1, c4, c6, c7} are equivalent
with respect to I2, I3, I4. It is trivial to check that such indices do not exist. This concludes
the proof that S8 and its transposed are not Dita-type. �

The significance of this fact is that the only known 8 × 8 parametric family of complex
Hadamard matrices so far is the one constructed by Dita’s method (see [10]). It is an affine

family F
(5)
8 (a, b, c, d, e) containing 5 free parameters. We have established that this family

does not go through S8, therefore S8 is indeed new. In particular, the matrix S8 cannot be
equivalent to any of the well-known tensor products of Fourier-matrices F2⊗F2⊗F2, F4⊗F2,

F8 which are all contained in the family F
(5)
8 (a, b, c, d, e).

Now, applying to S8 the linear variation of phases method of [10] one can hope to obtain
new parametric families of complex Hadamard matrices. Indeed, we have been able to
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obtain1 the following maximal affine 4-parameter family (the notation is used as in [10], i.e.
the symbol ◦ denotes the Hadamard product of two matrices [H1 ◦ H2]i,j = [H1]i,j · [H2]i,j,
and the symbol EXP denotes the entrywise exponential operation [EXP H ]i,j = exp([H ]i,j)):

S
(4)
8 (a, b, c, d) = S8 ◦ EXP (iR

(4)
8 (a, b, c, d), where

(19) R
(4)
8 (a, b, c, d) =





• • • • • • • •
• d a a − d d • a − d a
• d a a − d d • a − d a
• d d • b b − d b − d b
• c d c − d d c − d • c
• c d c − d d c − d • c
• • • • • • • •
• d d • b b − d b − d b





We do not claim that each matrix in S
(4)
8 (a, b, c, d) is non-Dita-type (in fact, it is not hard

to see that the orbit S
(4)
8 (a, b, c, d) contains the only real 8 × 8 Hadamard matrix H8, which

is Dita-type, so the families F
(5)
8 (a, b, c, d, e) and S

(4)
8 (a, b, c, d) intersect each other at H8).

However, this is certainly true in a small neighbourhood of S8 as the set of Dita-matrices is
closed.
Example 2. We now turn to N = 16 and the group G3 = Z2·2 × Z4·2 × Z2·4 (we leave
N = 12 last, as the discussion is slightly different there).

The construction described above yields the following matrices:

(20) AG3
=

1

8




0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



 ,

and we give S ′
G3

in transposed layout to save space

(21)
(
S ′

G3

)T
=




0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 3
0 1 3 4 5 6 7 2 0 0 2 4 4 6 6 2
0 4 4 0 4 0 4 0 1 5 4 0 4 0 4 0



 ,

1The authors are grateful to W. Tadej who extended the 3-parameter family S8(a, b, c) communicated to
him.
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and the arising log-Hadamard matrix (containing 8th roots of unity):

(22) S ′
G3

AG3
= log S16 =

1

8





0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 1 5 2 6 3 7 0 4 1 5 2 6 3 7
0 4 3 7 6 2 1 5 0 4 3 7 6 2 1 5
0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4
0 4 5 1 2 6 7 3 0 4 5 1 2 6 7 3
0 0 6 6 4 4 2 2 0 0 6 6 4 4 2 2
0 4 7 3 6 2 5 1 0 4 7 3 6 2 5 1
0 0 2 2 4 4 6 6 2 2 4 4 6 6 0 0
0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5
0 5 0 5 0 5 0 5 4 1 4 1 4 1 4 1
0 4 2 6 4 0 6 2 4 0 6 2 0 4 2 6
0 0 4 4 0 0 4 4 4 4 0 0 4 4 0 0
0 4 4 0 0 4 4 0 4 0 0 4 4 0 0 4
0 0 6 6 4 4 2 2 4 4 2 2 0 0 6 6
0 4 6 2 4 0 2 6 4 0 2 6 0 4 6 2
0 0 2 2 4 4 6 6 6 6 0 0 2 2 4 4





�

Proposition 3.3. S16 and its transposed are not Dita-type.

Proof. By checking existing I-equivalences between rows (and columns) it is elementary (but
tedious) to show that S16 (and its transposed) is not Dita-type. To find possible index sets I
and I-equivalences between rows (resp. columns, in the transposed case) it is perhaps most
convenient to note the position of 0’s in log S16 and look for 2 × 8, 4 × 4 and 8 × 2 blocks
of 0’s as in the last part of the proof concerning S8. Then each of these I-patterns can be
excluded by looking at further rows (resp. columns). �

The significance of this fact, once again, is that the only known 16 × 16 parametric
family so far is the one constructed with Dita’s method (see [10]). It is an affine family

F
(17)
16 (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r) containing 17 free parameters. We have estab-

lished that this family does not go through S16. In particular, the matrix S16 cannot be
equivalent to any of the well-known tensor products of Fourier-matrices F2 ⊗ F2 ⊗ F2 ⊗

F2, F4 ⊗ F2 ⊗ F2, F4 ⊗ F4, F8 ⊗ F2, F16 which are all contained in the family F
(17)
16 .

By applying the linear variation of phases method of [10] we have been able to find
the following 11-parameter affine family stemming from S16. Again, we can claim that the
members of this family are not Dita-type in a neighbourhood of S16. However, in this case we
do not know whether this affine family is maximal or further parameters can be introduced.

(23) S
(11)
16 (a, b, c, d, e, f, g, h, i, j, k) = S16 ◦ EXP (iR

(11)
16 (a, b, c, d, e, f, g, h, i, j, k)), where
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(24) R
(11)
16 (a, b, c, d, e, f, g, h, i, j, k) =





• • • • • • • • • • • • • • • •
• • b b d d b + j b + j • • b b d d b + j b + j
• • c c d d c + j c + j • • c c d d c + j c + j
• • • • • • • • • • • • • • • •
• • b b d d b + j b + j • • b b d d b + j b + j
• h h + i i • h h + i i h • i h + i h • i h + i
• • c c d d c + j c + j • • c c d d c + j c + j
• • i i • • i i g g g + i g + i g g g + i g + i
• a k a • a k a • a k a • a k a
• a k a • a k a • a k a • a k a
• h h + i i • h h + i i h • i h + i h • i h + i
• f k f • f k f • f k f • f k f
• f k f • f k f • f k f • f k f
• e i e + i • e i e + i • e i e + i • e i e + i
• e i e + i • e i e + i • e i e + i • e i e + i
• • i i • • i i g g g + i g + i g g g + i g + i





Example 3. Finally, we turn to the case N = 12 and the group G2 = Z2·2 × Z2·2 × Z3·3.
Here our construction yields the following matrices:

(25) AG2
=

1

36




0 0 0 0 0 0 9 9 9 9 9 9
0 0 0 9 9 9 0 0 0 9 9 9
0 4 8 0 4 8 0 4 8 0 4 8





and S ′
G2

in transposed layout

(26)
(
S ′

G2

)T
=




0 0 0 0 0 1 2 2 2 2 2 3
0 0 1 2 3 2 0 0 0 2 2 2
0 6 3 6 3 0 1 4 7 3 6 0





and the arising log-Hadamard matrix (containing 36th roots of unity):

(27) log S12 =
1

36





0 0 0 0 0 0 0 0 0 0 0 0
0 24 12 0 24 12 0 24 12 0 24 12
0 12 24 9 21 33 0 12 24 9 21 33
0 24 12 18 6 30 0 24 12 18 6 30
0 12 24 27 3 15 0 12 24 27 3 15
0 0 0 18 18 18 9 9 9 27 27 27
0 4 8 0 4 8 18 22 26 18 22 26
0 16 32 0 16 32 18 34 14 18 34 14
0 28 20 0 28 20 18 10 2 18 10 2
0 12 24 18 30 6 18 30 6 0 12 24
0 24 12 18 6 30 18 6 30 0 24 12
0 0 0 18 18 18 27 27 27 9 9 9





�

The difference in the discussion of this case lies in the fact that there are several parametric
families known already for N = 12. The catalogue [10] lists seven 9-parameter families
stemming from F12, and only one of them is certain to be constructed with Dita’s method.
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(We remark that possible permutational equivalences between these families are still unclear.)
Also, there are other 12 × 12 families listed in [10], all of which are constructed with Dita’s
method. We will now prove the following

Proposition 3.4. The matrix S12 is not included (even up to equivalence) in any of the
known 12 × 12 families listed in [10].

Proof. By checking existing I-equivalences between rows (and columns) it is elementary
to show that S12 (and its transposed) is not Dita-type. To find possible index sets I and
I-equivalences between rows (resp. columns, in the transposed case) it is perhaps most
convenient to note the position of 0’s in log S16 and look for 2 × 6, 3 × 4, 4 × 3 and 6 × 2
blocks of 0’s as in the last part of the proof concerning S8. In this case such blocks do
not exist at all which immediately implies that S12 is not Dita-type. Therefore S12 is not
contained in any of the Dita-type families in [10].

We must also show that it does not belong to the families stemming from F12, as listed

in [10]: F
(9)
12A, F

(9)
12B, F

(9)
12C , F

(9)
12D, (F

(9)
12B)T , (F

(9)
12C)T , (F

(9)
12D)T . The key observation is that in

each of these families some rows (and columns) are left without parameters. In particular,
in each of the above families either the 1st and 7th or the 1st, 5th and 9th rows remain
unchanged. Therefore, in any matrix contained in these families there are either two rows
which are (2)-6-equivalent, or three rows which are pairwise (3)-4-equivalent. It is easy to
check (by a short computer program, rather than by hand) that there are no such rows in
S12. This means that S12 is indeed not contained in any of the known 12 × 12 orbits. �

By applying the linear variation of phases method of [10] we have been able to find the
following 5-parameter affine family stemming from S12. (Again, we can claim that the
members of this family are not Dita-type in a neighbourhood of S12. We do not know
whether this affine family is maximal or further parameters can be introduced).

(28) S
(5)
12 (a, b, c, d, e) = S12 ◦ EXP (iR

(5)
12 (a, b, c, d, e)), where

(29) R
(5)
12 (a, b, c, d, e) =





• • • • • • • • • • • •
• • • e e e • • • e e e
• • • d d d • • • d d d
• • • e e e • • • e e e
• • • d d d • • • d d d
• • • • • • c c c c c c
• a b • a b • a b • a b
• a b • a b • a b • a b
• a b • a b • a b • a b
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • c c c c c c





4. Conclusion

In this paper we have used the connection between tiling of Abelian groups and complex
Hadamard matrices to recover the general construction of Dita [2], and also to obtain new
parametric families of order 8, 12 and 16 which complement the recent catalogue [10]. The
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construction of the new families was based on a spectral-set analogue of a tiling method of
Szabó [8]. In principle, the method of [8] works in any finite Abelian group G = Zp1q1

×
Zp2q2

× Zp3q3
and the corresponding spectral sets yield complex Hadamard matrices of size

p1p2p3 for any p1, p2, p3 ≥ 2. It is not clear whether different choices of q1, q2, q3 lead to non-
equivalent matrices. In this paper we have only included the cases where p1p2p3 ≤ 16, and for
which we could prove that the arising matrices are new and thus complement the catalogue
[10]. The next smallest dimension in which the method works is p1p2p3 = 2 · 3 · 3 = 18. Also,
it would be interesting to see a conceptual proof that the Hadamard matrices constructed
with this method are never Dita-type (for the matrices S8, S12, S16 above we have proved this
by a case-by-case analysis of the rows and columns).

The correspondence between tiling and complex Hadamard matrices is interesting in its
own right and may well lead to new families of Hadamard matrices in the future. To achieve
this, one would need any new tiling construction (different from that of [6] and [8] which have
been used in this paper), and use the spectral set analogue of the construction to produce
new Hadamard matrices.

Finally, let us emphasize that our results may find direct application in various problems
of quantum information theory, since previously unknown complex Hadamard matrices allow
to construct new teleportation and dense coding schemes and to find previously unknown
bases of maximally entangled states.
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