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Abstract. Let D*(v) denote the maximum number of pairwise

disjoint and isomorphic Steiner triple systems of order v. The main

result of this paper is a lower bound for D*(v), namely D*(6r+3)^

4t—1 or 4/+1 according as 2/+1 is or is not divisible by 3, and

D*(6f+l)^?/2 or t according as t is even or odd. Some other

related problems are studied or proposed for study.

1. Introduction and historical note. Given a finite nonempty set S of v

elements (called points), a Steiner triple system of order v on S is a collection

¿f of subsets of 5 (called lines) such that every line has exactly 3 points and

every pair of points is contained in one and only one line. Any Steiner

triple system is also a balanced incomplete block design with parameters

v, k=3 and X=l (see for instance Hall [10, Chapter 15]).

Kirkman [11] proved in 1847 that a necessary and sufficient condition

for the existence of a Steiner triple system (briefly STS) of order v is v=1

or 3 (mod 6). An STS of order i» is sometimes denoted simply by S(v).

Let y and &" be two STS on the same set S of points, y and Sf" are

called disjoint if ^0^=0, that is if they have no line in common.

According to [8], the construction of disjoint STS might be useful in the

design of certain statistical experiments.

Let us denote by D(v) the maximum number of pairwise disjoint S(v)

that can be constructed on a set S of v points. As S contains v(v—\)(v—2)/6

subsets of cardinality 3 and as any S(v) contains exactly v(v —1)/6 lines,

we have £>(o)<t>—2, except of course if v=l. We shall denote by D*(v)the

maximum number of pairwise disjoint and isomorphic S(v) that can be

constructed on S. Obviously, l^D*(v)^D(v).

It is clear that

D*(l) = D(\) = 1    and    F>*(3) = F>(3) = 1.

Cayley [6]proved in 1850thatD*(7)=D(7)=2.Thefollowingcollections
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of subsets of the set {a, b, c, d, e,f g} form two disjoint S(7):

if = {{a, b, c}, {c, d, e}, {e,f, a}, {a, d, g}, {b, e, g], {c,f, g}, {b, </,/}},
&" = {{a, b, e), {b, c,f}, {c, d, a}, {d, e,f}, {/, g, a}, {b, d, g}, {c, e, g}}.

The same year (1850), Kirkman [12] proved that D*(9)=D(9)=7. This

result was "discovered" again by Sylvester ([18], [19]) in 1861, Walecki in

1883 (see Lucas [14, 161-197]), Bays [4] in 1917 and finally Emch [9] in
1929 (for more historical details, see Ahrens [1, 110-113]). The simplest

description of 7 pairwise disjoint 5(9) on the set {a, b, c, d, e,f, g, h, i} is

given by the following square arrays

abc a b d d e g g h a

d e f e f g hia bed

g   h   i       hic       b   c  f       e   f   i

gab       ade       d g   h

c   d   e      f   g   h       i a   b

f   h   i        i    b   c       c e   f

The 12 lines of each system are simply the 3 rows, the 3 columns and the 6

products involved in the expansion of the "determinant" of each array.

The other values of D*(v) and D(v) are unknown. Besides a few isolated

lower bounds such as X>(13)^3, ¿>(15)^2 (Kirkman [13]), £»(31)^6
(Assmus and Mattson ([2], [3])), the only known general results are

D*(2n —1)^2 for every odd integer n^3 (Assmus and Mattson [2]) and

D*(6t+1)^.2 for every r>0: indeed, as was shown by Rosa [16] and

Di Paola [7], it is not difficult to construct two disjoint and isomorphic

cyclic STS of order 6r+1 (an S(v) is called cyclic if one of its automor-

phisms is a cycle of length v).

In 1917, Bays [4] conjectured that D(v)^.(v—1)/2 for every v=\ or 3

(mod 6), v>7. Our first theorem shows that this conjecture is true for

every v=3 (mod 6), even if D(v) is replaced by D*(v).

2. A lower bound for D*(v).

Theorem 1.   For every nonnegative integer t,

D*(6t + 3) ̂  4i + 1    if2t + 1 =zé 0 (mod 3),
and

D*(6t + 3) i> At - 1    if2t + 1 = 0 (mod 3).

Proof. Let G={1, a, a2, ■ • ■ , a2'} be a multiplicative cyclic group of

order 2/+1 and let us consider the Cartesian product S=Gx{0, 1,2}.

For every <?e{0, 1,2}, the subset G x {e} of S will be denoted by Ge and any
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element (x, e) of Ge by (x)e or, when there is no danger of confusion,

simply by xe.

The set if consisting of (i) all subsets {x0, xx, x2} of S for any xeG,

(ii) all subsets {x0, y0, zj, {xltylt z2}, {x2,y2, z0} of S for any x, y, zeG,

where x^y and xy=z2, is easily verified to be an STS of order 6r+3; this

construction is essentially due to Bose [5].

(a) Let q>0, q>u ■ • • , <p2t be 2r+l permutations of the set 5 defined as

follows: for every xeG and every /=0, I, ■ ■ ■ ,2t,

<PÂxo) = x0,    <PÁxi) = (aix)i,    <PÁX2) = (a2i-ix)2-

Let ¿Si be the STS whose lines are the images of the lines of SP by the

permutation <pt. The systems yo, SPX, • • • , y2t obtained in this way are

clearly isomorphic; we are going to prove that they are also pairwise

disjoint.

Let Sfj, Sfj be any two of the above systems, with ¡¿¿j (/,y'=0, 1, • • • ,

2t).

Any line of £f \ having a point in G0, Gx and G2 is of the form {x0,

(a!x)!, (a2i_ix)2}; in Sft, such a line is {x0, (a?x\, (a2t-ix')2}. If these lines

coincide, we must have

x = x ,   a'x = a'x',   a2t~{x = a2t~'x'

which implies ai=ai, a contradiction since iftj.

Any line of £ft having two points in G0 is of the form {x0, y0, (a'z)^}

where z2=xy; in 6^}, such a line is {x0, y'0, (a'z'\} where z'2=x'y'. If they

coincide, we have either

x = x', x = y ,

y=/,      or     y = x',

a'z = a'z', aiz = a'z'.

As G is abelian of odd order, we find in both cases a*=a', a contradiction.

By similar straightforward computations, one can easily check that no

line of y, having two points in Gx or G2 can coincide with a line of Sf\ and

therefore y¿ and Sf'¡ are disjoint.

(b) Let a be the permutation of S defined by cr(x0)=x2, <r(x1)=x1 and

a(x2)=x0 for every xeG. Let ó?¡ (i=0, 1, • • • , 2r) be the STS whose lines

are the images of the lines of Sfi by the permutation a. It is clear that

6r°0, ¿?1, • • • , y2(, yo, SP'-l, • • ■ , £/"2t are isomorphic and that £/"ü,

&"\, - • ' , &"m are pairwise disjoint.

If a system «y,' has a line in common with a system y}, this line must

necessarily have a point in G0, Gx and G2. In Sf¡, any such line is of the

form {x0, (a?x\, (a2t~'x)2); in y¿, it is {(a2i~*'x')0, (tfx'^, x'2}. If these
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lines coincide, we have

x = a2t~'x',       a}x = a*x',       a2t~'x = x ,

which gives a2'~2i+i=[ and au~i~' = \, that is a3i=a6'. Let us exclude the

systems Sr°'{ which may have a line in common with one of the systems 6^0,

Sfx, • • ■ , £?2t. As the number of distinct cube roots of au in the group G is

three or one according as the order of G is or is not divisible by 3, the

number of excluded systems will be three or one, and the theorem follows

immediately.

Corollary 1.    D*(i)^.2for every v^l, v=l or 3 (mod 6).

This follows from Theorem 1 and from Rosa's result mentioned in the

introduction.

Corollary 2. For every v^.1, v=l or 3 (mod 6), there exists a balanced

incomplete block design with parameters v,k = 3 andX=2, all of whose blocks

are distinct (compare with Theorem 15.4.4 in Hall [10]).

Theorem 2.   For every nonnegative integer t,

D*(6t + 1) ̂  r/2   ¡ft = 0 (mod 2),
and

D*(6t+l)^t       if t £ 0 (mod 2).

Proof. Let G = {1, a, a2, ■ • ■ , a2'-1} be a multiplicative cyclic group of

order 2/ and let us consider the set S—(Gx{0, 1, 2})U{oo} of cardinality

6i+1, where oo is a new symbol. For every ee{0, 1, 2}, the element (x, e)

of the subset G X (e) will be denoted by (x)e or, when there is no danger of

confusion, by xe. Finally, let L={1, a, a2, ■ ■ ■ , a'^1}, R={a*, at+1, • • ■ ,

a2'-1} and let Sf be the set consisting of

(i) all subsets {x0, xx, x2} of S for any xeL,

(ii) all subsets {oo, x0, (alx)2), {co, xx, (alx)0}, {oo, x2, (a'x)^ of S for

any xeL,

(iii) all subsets {x0, y0, z,}, {JCi,jl5 z¡¡}, {x2,y2, z0} of S for any x,

yeG with x^y and

(1) zeL and z2=xy if xy=a2i,

(2) zeR and az2=xy if xy=a2i+1.

It is not difficult to verify that ¡f is an STS of order 6?+l ; this con-

struction is due to Skolem [17].

Let q>0, <px, • ■ ■ , <p,_i be / permutations of the set S defined as follows;

for every xeG and every /=0, 1, ■ ■ • , t— 1,

<Pi(x0) = x0, ^(x,) = (ß'xd,

<Pi(x2) = (a8*"1"'^,   and    ^¡(co) = co.
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Let y ,■ be the STS whose lines are the images of the lines of y by the

permutation cp{. The systems yo, yi; • • • , y,_i are clearly isomorphic.

Moreover a proof similar to that of the preceding theorem shows that

y» y^ ' ' " > y</2-i are pairwise disjoint if t is even and that yo, Sfx,

■ ■ ■ , Sf t are pairwise disjoint if t is odd. The computations involved in

this proof being quite straightforward, they will not be reproduced here.

3. A lower bound for D(v). The two preceding theorems obviously give

a lower bound for D(v), since D*(v)f^D(v). We want to prove now that

this lower bound is not best possible and can be improved in certain cases.

For instance, Theorem 2 gives £>(19)^3; our next result will show that

Z)(19)£9.

Theorem 3.   For every r!>7 with v= 1 or 3 (mod 6),

D(2v + 1) ¡> D(v) + 2.

Proof. Let D(v)=d and let S, S' be two disjoint sets of cardinality v.

We shall denote by Sfx, ¡f2, • • • , £fd d pairwise disjoint STS of order v

on the set S, and by Sf'd+1, &"d+2 two disjoint STS of order v on the set 5'

(the existence of at least two such systems follows from Corollary 1 and

our hypothesis v^.1).

Let a be any permutation of S consisting of a single cycle of length v

and let <p be any bijection from S" onto S. Finally let us consider the set

F=5u5'U{co} of cardinality 2v+\, where co is a new symbol.

We are going to construct ¿/-|-2 Steiner triple systems yi; y2, • • • , ytf+2

on the set T. For every i=l,2, ■ • ■ , d, the lines of y¿ will be

(i) all lines of y„

(ii) all subsets {co, x, aî_1(ç>(x))} of T, where x is any point of 5",

(iii) all subsets {x,y, a'-l(ç>(z))}, {x, <x¿-1(?>(j)), z}, {«.'^(«¡(x)), y, z) of

T, where {x,y, z) is any line of £f"i+x.

For rW+1 or d+2, the lines of y¡ will be

(i) all lines of y',

(ii) all subsets {co, x, ai_1(99(x))} of T, where x is any point of S",

(iii) all subsets {x, v>-l(cp(y)), a'"1^))}, {a1-1(9»(*))..J'.a1"1(?>(z))},

{ot<_1(9j(x)), a^H^Cj))» z) °f ^> where {x,j, z} is any line of Sf'd+l.

It is easy to check that each y, is an 5(2>j-|-1) and thatyi5 y2, • • • ,

yd+2 are pairwise disjoint. This verification is rather tedious and will be

omitted here.

Corollary 3.   For every odd integer t ̂  1,

D(6t+ l)^2r- 1.
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Proof. If ?=1, the result is trivial. If /=2r'+1^3, then 6r+l =

2(6/'-f-3)+1 and so, by Theorems 3 and 2,

D(6t + 1) > D(6t' + 3) + 2 ^ At' + 1 = 2t - 1.

4. Disjoint and isomorphic cyclic Steiner triple systems. Let us denote

by D*(v) the maximum number of pairwise disjoint and isomorphic cyclic

STS of ordert». So for instance D*(\)=D*(3)=\, D*(7)=2and £»c*(9)=0.

The following result is essentially due to Rosa [16].

Theorem 4.   For every positive integer t,

D*(6t + 1) ̂  2.

Proof. Peltesohn [15] has established the existence of a cyclic S(v) for

every v=1 or 3 (mod 6), except v=9. Let ^ be a cyclic S(6t+1) constructed

on the set 5={0, 1, • • • , 6t} in such a way that the permutation <x=

(0, 1, • • • , 6/) be an automorphism of ¡f. The distance dtj of the points

i and y (i,j=0, I, • ■ ■ ,6t) will be defined as

dij = min{\i-j\,6t+ 1 - \i-j\}.

For every line {i,j, k} of ¡f', the 3 distances dtí, djk, dki are distinct.

Indeed, suppose for instance that dti=dik and let a¿í be the power of a

mapping i ontoy. As d{j=djk, xu mapsy onto k and therefore also k onto /,

otherwise the pointsy and k would belong to two distinct lines of ¿7. We

conclude that dij=djk=dki=(6t+l)/3, which is clearly impossible.

Let Sf" be the STS whose lines are the images of the lines of if by the

involution o-=(0)(l, 6r)(2, 6r-l) •••(/, 6r+l-/)••• (3í, 3i+l). Sf" is

isomorphic to Sf. Moreover Sf and Sf" are disjoint. Indeed, let [i,j, k)

(resp.{/,y, k'}) be the line of Sf (resp. £f") containing the points i and y;

it is easily seen that dik=dik,. Therefore these two lines are distinct, other-

wise k=k' and dik=djk, a contradiction.

Remark. If Sf is any cyclic S(6r+3) constructed on the set 5={0, 1,

• • • , 6i+2} and admitting the permutation a=(0, 1, • • • , 6r+2) as an

automorphism, then if necessarily contains the lines {/, 2t+1 +;', 4?+2-|-;}

for every /=0, • ■ ■ ,2t, and so Sf and its image Sf" by the permutation

o-=(0)(l, 6r+2)(2, 6r+l) - • ■ (3/+1, 3i+2) are never disjoint.

Theorem 5.    For every positive integer t^\ (mod 3),

D*(6t + 3) ^ At + 1.

Proof. Let £f be the S(6/+3) constructed in the proof of Theorem 1.

The permutations ttx and tt2 of 5 such that for every xeG

"■i(*o) = xx>       ^Axx) = x2,       Ti(x2) = x0,

7r2(x;) = (ax)¡       (i = 0, 1, 2),
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are clearly two automorphisms of y. Moreover if 2/+1 =é0 (mod 3), the

permutation nxn2 consists of a single cycle of length 6t+3 and y is a

cyclic STS. The above inequality is then an immediate consequence of

Theorem 1.

5. Open problems. (1) Given a Steiner triple system if of order v~^l

on a set 5 of cardinality v, is there always another Steiner triple system

y isomorphic to if and disjoint from y ? In other words, is there always

a permutation a of S such that the image of any line of y by a is never a

line of y ?

(2) Is it true that Z)*(6/+3)^2 for every r^2?

(3) The lower bounds for D(v) given in this paper can certainly be im-

proved. It is tempting to conjecture that D(v)=v—2 for every t'^9, r=l

or 3 (mod 6).

(4) Given an integer n such that 0^n^v(v—1)/6, let us denote by

D(v, ri) the maximum number of STS of order v that can be constructed

on a set of cardinality v in such a way that any two of them have exactly «

lines in common, these « lines being moreover in each of the D(v) systems.

It is an easy exercise to check that D(l, 0)=Z)(7)=2, D(l, 1)=3, D(l, 2)=

0, D(l, 3)=2, F>(7, 4)=D(7, 5)=0, DC!, 7)=oo. Kirkman [12] proved in
1850 that jD(15, 5)^15, but almost nothing is known in general about the

function D(v, «). For example, is it true that D(v, 1)^2 for every v^3,

v=\ or 3 (mod 6)?
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