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§ 1. Introduction

This paper is concerned with constructions of eigenfunctions for the Sturm-
d 2  

Liouville operator L— — + q(x) in ( — co, co). Here we assume that the real
dx 2

valued function q(x) satisfies the following conditions:

q(x) is piecewise continuous and has the minimum value at x= x 0 ,{

m = q ( x , ) =  i n f  q (x )< M  =  lim q (x ), (M  =  oo is included.)
- 0 0  <x <CO X . , 0 0

Especially we consider concrete constructions of eigenfunctions corresponding to
eigenvalues in (m, M ), relying upon comparison theorems which assure the existence

d2  

of bounded solutions u+ (x, A) and  u _(x, .1) of u —(q(x)— .1)u in  neighbour-dx 2

hoods of + co and — co respectively. Namely we try to consider the Sturm's method
of comparison even in the case of infinite demain ( — co, cc). A s  we see later, this
consideration motivates originally comparison theorems of type stated in Section 2,
which are generalized in  [2 ] a n d  [3 ]. Incidentally we show that there exists a con-
tinuous monotone increasing function 0(A) satisfying — z< 0(m)<0 such that A is
eigenvalue if and only if  0(.1)=(n —1)7r, (n=1, 2, 3,...). I n  order to see that ap-
pearance of eigenvalues more precisely we need some estimates for 0(.1). For this
purpose we write

0(.1) = (A— q(x)) 1I2 dx + R (),
0(A)

where 52(A)= {x; q(x)>0} and obtain a  suitable estimate for R(.1), to  show that
R(A) is a remainder term as compared with the first te rm . In  many books of physics
(for exam ple [ 1 ] ,  [5 ]  e tc .)  w e  f in d  t h e  follow ing t y p e  o f  formula:

0 ( 2 0 )

(An  —  q(x)) 1I2 dx=(n — —
1

)7r, which was explained by the so-called W. K. B. method.2
As for mathematics Tichmarsh [6] showed that there exists a constant C such that

(C)
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I R(An)j C  for all An  i f  q(x ) i s  convex . A nd  m any authors treated th e  related
problems under various assumptions on q(x), q'(x) and q"(x), (for example see [4]).
Here we use comparison theorems related with only the value of q(x) and exhibit
an  estimate for R(A) of type A A ) R(A )< E(A ), where Eu.) and E(A) concern the
logarithmic order of variations of q(x) in S2(1). T h e  results are stated in Section 2
more precisely. In Section 3, to  m ake our argument smooth we verify that all
the eigenvalues of L in L' space are real, and then we prove some simple lemmas
concerning the comparison theorems which will be used later. Theorems 1 and 2
are proved in  Section 4 and 5. In  the last section we generalize the estimate for
eigenvalues to the case where QM is not necessarily one interval, thus clarifying some
properties of solutions in the case of tunnel effects.

§ 2. Statements of results

d 2  First we mention the definition of eigenvalues and eigenfunctions of L = dx 2

+ q(x) in the space  L  of bounded measurable functions defined in ( — co, co). We
say A and u(x) eigenvalue and eigenfunction of L in V ° respectively, if  there exists
(A , u(x)) belonging  to  C  x  L " such  that Lu = A u in ( — cc, cc), u(x) not being
identically z e r o .  We have

Lemma 1. Suppose the conditions (C) in  In troduction . T hen all the eigen-
values of  L in L"' are real and contained in (m, cc).

A simple and direct proof of Lemma 1 will be given in next section. In  view of
Lemma 1 we suppose that the parameter A is real and larger than m. Especially
we restrict 2 in  (m , M ). A s we will see later, eigenfunctions in L" and those in L 2

coincide for eigenvalues in (m, M). So we do not mention function spaces hereafter.
Now we put for A e [m, M)

x ,(2 )= inf {x i  ; q(x) —2 > 0 in  ( x 1 , cc)},

x_(2)= sup {x i ; q(x)— A> 0  in ( — oo, x 1)1.

Then from (2.1), x o x .„(A i ) x + (22 )  and x_(2 2 ) < x_(;,)< x o  if m  <A i  <A 2 <M.
We have

Proposition 1. Assume (C). Then there exists a continuous function 0 ± (x 1 , A),
(resp. 0_(x 1 , A)) defined on (— co, oo)x [m, M) which has the following properties:
(I) The solution of u"=(q(x)—  A )u satisfying ti(x 1)=u 0  and u'(x ,)= u 1 is bounded in
(x 1 , co), (resp.(— co, x „)) i f  a n d  o n ly  if  u ' — tan 0 + (x i , A), (resp.

/ / I = t a n  -
U0 U0

0_(x 1 , A)), (II)  O z (x, A) satisfies

- <0,(x , A) < 0 f o r  x  E (x ,(A ), co) ,
(2.2)

0 <0 _(x, A) < 2 for x e ( — oo, x_(.1)),

(2.1)
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and the following differential equation respectively

(2.3) dB  _   (q(x)— 2)— tan2 0 
dx 1 + tan2  0 for all 2 e Ern, M),

( I I I )  0 + (x, A ), (resp.0_(x, A )) is monotone increasing, (resp. decreasing) in  A  at
every point x e (— co, co).

Remark 2 .1 .  From the above property (II) and the uniqueness of the solution
of (2.3), 0.,.(x, 2)=0_.(x, A )+kn in (— ci, co), (k , integer), if + (x 1 , 2)=0_(x 1 , A )+
kir a t a point x, e (— co, co).

Now we put

(2.4) cb(x, A)=0 + (x , 2)-0 _(x , A)

Then we have the following theorem.

Theorem 1. Suppose (C ) .  T hen there ex ists a  continuous function 0(x, A )
defined on (— oo, oo) x [m, M), which satisfies (1) 0(x, A ) is monotone increasing in
A at every x e ( — co, cc), (2) —  n < m ) < O ,  and 0(x, A „)=(n — 1)n in (— oo, co)
if  0(x 1 , A„)=(n —1)n at  a point x, e (— co , co ). A t that tim e 4, (n=1, 2,...,) are
eigenvalues if  and only  if  0(x, A „)— (n — 1)n. Corresponding eigenfunctions u(x)
are  equal to the solutions of  u"=(q(x )-2„)u w ith u(x ,(2„))=1 and u'(x ± (2„))=
tan + (x ,(1„), A „). Incidentally  u„ has (n-1) roots. M oreov er u(x ) has just n
zeros if  q(x ) is assum ed to be monotone in (—  cc, x o) and (x,,„ co), where x , is a
point satisfying q(x 0 ) =  min q(x).

- 0 0  < x< œ

Now we put

(2.5) R(x, 2)=0(x, A )— Q(s, A)ds, where

/ (A_ q (x ))1 /2,

Q(x, A)=
0,

if 0 5.1— q(x),

if 2— q(x )<0.

Remark that R(x, A n ) is constant: (n —1)n — Q(s, A n) d s .  Put

(2.6) R(A)= R(x o , 2)

We show the estimates for R(x, A) and R(1„), in order to assure the actual appearance
of An in each given case.

Theorem 2 .  Suppose (C) and that q(x ) is monotone in (xo , cc) and (—  cc, x 0).
Then we have the following estimates for A  e[m, M):

E(A) — 2n < R(x, A)< E(A)+ n,

E(2,,)— it G R (4 ) ( 2„), (A„, eigenvalues of L)
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where E.()) = E(s, 2)ds, E(2)= E(s, 2)ds and

1 - 2 l (log Q(x, 2))'j if 1 < q(x),

E(x, -Q(x , 2)(1- Q(x , 2)) if 0 -  q(x )<1,

0 if 2- q(x )<O,

1-2- 1(log Q(x, i f  1 - q(x ),

1 -Q (x , i f  0.</I-q(x)<1,

0 i f  2 - q(x)< O.

Remark. Theorem 2 will be generalized in Section 6 to  the case where q(x) is
not necessarily monotone in ( - co, xo) and (x o , co).

The proofs of Proposition 1 and Theorems 1 and 2 rely upon the following com-
parison theorems which we state as lemmas.

Lemma 2. L et q(x ) and -4(x ) be piecew ise continuous functions such that
q (x )>j(x ) on  [0, co). Suppose that there ex ists a solution v(x) of  v "=(x )v  in
(0, cc) satisf y ing v (0)=1 and 0<v (x ) in  (0, cc). T h e n  u "=q (x )u  h as  a solution
u(x) satisfy ing 0<u(x )<v (x ) in (0, co) and u ( 0 ) =1 . It holds u'(0)<v '(0).

Lemma 3. A ssum e the sam e conditions as in Lemma 2. Moreover suppose
that v (x ) is a unique bounded solution in  (0, co) of  v"="4(x)v satisfy ing v(0)=1.
Then the bounded solution in (0, co) of u"=q(x )u w ith u(0)=1 is unique.

Now we introduce a notation.

Notation By t(q) w e denote u'(0), w hen u" = q(x)u h a s  a unique positive
bounded solution u(x ) in (0, co) satisfying u(0) = 1.

Lemma 4. L et {qm(x)} 0 . , , , 1 b e  a fam ily  of  functions satisfy ing the condition
(C ) . A ssume that q m converges to q m0 uniform ly  in each compact set of [0, co) as
y  tends to P o e (0, 1). Suppose that conditions in Lemmas 2  and  3 are fulf illed
replacing q by q,2 for all y e (0, 1). T hen  t(q m) converges to t(q, 0) as y  tends to y o .

Finally we point out some examples.

Example 1. If q(x )>0 in (0, cc), it follows that 4 (x ) 0  satisfies all the conditi-
ons in Lemmas 2 and 3. Then applying Lemmas 2 and 3 in (x l , co) for all x, e [0,
co), we see that u"=q(x )u has a bounded , solution u(x) satisfying-- <0 in (0 , co).
Similarly q(x)> 4(x)> 0 in (0, co) implies -- <—v

v in (0, cc), where u and y are bounded
solutions u" = q(x)u and y" = ax)y respectively.

E(x,

Remark. Let us confine ourselves to simple cases :  q > 4  o r  q < 4 ,  where
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q> 4 means q(x)> 4(x) on [0, oo]. Then in Example 1, 0< 4 <q equals to —uu  <—v
v  <

O. —u  converges to —v  if and  only if q converges to  4 in the sense o f Lemma 4.

Example 2 .  As an application of the above Remark, we consider the harmonic

oscillator: q(x)=  x2 . Put y =exp (— ax9, then 4(x)=—v" 
=  (  a k ) 2  x 2 k - 2  ak(k-1)xk-2.

V

Taking k= 2 a n d  a= 4- w e  s e e  21 =1  and u  = exp( —
2  x

2). Next put y=
1X" exp (— 

1
2  x 2), then similarly 22 = 3 and y2 = x exp — -2-x2) follow. Step by step

we have 2„= 2n —1 and u„= 9 (x ) exp (— 1  x2)  where 9,i(x) is a polynominal of2
degree n -1  with n —1 real roots. Thus we approach to a motivation of Hermite
polynomials.

Finally we comment on Lemmas stated above.

R em ark . In Lemmas 2, 3, 4 and Example 1, we have the same results even if
we replace q (x )>4 (x ) by  q(x )_4 (x ), where q(x) is not identically equal to 4(x).
The proof is accomplished in the same way as in next section.

§ 3 . Proofs of Lemmas

Proof of  Lemma 1.

in '' 2( 1  1 )  z (x )= 0  in2 
0<x i <x 2 and

(3.1)

Let z(x) be a  real valued 0  function satisfying z(x)>0

—cc, — U , co), X(x)= A — x), X(x i ) (xi) for

X'(x) 2 Cz(x) i n  (— co, cc), w h e re  C> O.

For example define z(x) by (x +  1 ) 2 H  (x+  - 1
2—, )  in (— co, —  ), (— x  + ÷ ) 2

H(— x+  4 )  in  (4 ,o3) and a suitable positive function in (4, 3
1 ) ,  where

H(x)= 1 for x >0 and H(x)=0 for x <O . D enote  (u, v)= 5 u (x )  v (x )d x  and

(3.2) (u, v),=(z(ex)u, v) a n d  LE = z(ex)L.

Let u be eigenfunction in L" corresponding to eigenvalue

f (L eu, u)=2(u, u),

1 sup

On the other hand the integration by parts yields

(3.4) (Leu, u)=(u', u'),+(qu, u) e +s x'(8x)u'(x)u(x)dx.
-oe

From Schwartz inequality and (3.1) it follows

(3.3)
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(3.5) x'(sx)u '(x)u(x)dx C 
l e - 1 1 2 X '( 8 X ) 1 4 '( X )  

2

< C C 1 E -1 /2 (u ', u )1 /2

From (3.3) and (3.4) we have

(3.6)1 1 m C C I E112 (4', u ) 1 1 2 1 ( 4 ,  u), . E(u),

(3.7) Re {(u' , u')E +(qu, u),}/(u, — JE(u).

Since u' is not identically zero it follows

(3.8) Jilin 8 1/2(u
,
,  u ) -E-112 = 0 .

Therefore (3.7) makes

(3.9) Re 2—m {(1—  CC 1 s1/2 (u', u') 1 /2 )(u', u'),+ ((q — m)u, u),}1(u, u),.

Now making E sufficiently small we have Re 2— m> 0. Then (3.6) and (3.9) give

Im AC C 1 8 1 1 2 ( u "  ,  u " ) , - 1 1 2  

(3.10) Re 2— nt — 1 — CC I O/2 (u", u"), -
1 / 2

Tending e to zero we have Im 2=0.

R em ark . The results of Lemma 1 and the outline of the above proof are also
d 2  

valid even if  we replace —
2  

+ q(x) in R by —
a  

 (

a u ( x )   ,

a  
 ) + q (x ) in R .

dX
We will discuss it elsewhere.

Proof of Lemma 2. Let u(x; t) be solution of u"=q(x)u, u(0)= 1 and u'(0)= t.
Denote

U (q )= {t E(- 00, e(0)), 3 .X1 >0, O<U(X; O<V(X) in (0, x,), u(x, ; t)= v (x ,)}

D(q)= It e ( —  00, 1Y(0)), 3 .)C1 >0, 0< u(x; t)< v(x) i n  (0, x,), u(x, ; t)=

Then U (q ) and D (q ) are open as fo llow s. If  t e U (q), then u'(x, ; v'(x,)
fo llo w s. N o w  suppose  u'(x, ; t) = v '(x ,), t h e n  u"(x, ; t) =q (x i )u(x, ; t)> 4(x,) •
v(x,)= v "(x ,) contradicts 0< u(x; t)< v (x ) i n  (0, x,). H ence  u'(x, ; t)> v'(x,).
Therefore U(q) is open . T he  similar argument is valid for D (q ) .  Now let us show
th a t  U (q ) contains a n  o p e n  interval (v'(0)—(5, v'(0)). W e have u(x; v'(0))> v(x)
holds in  a  neighbourhood of x=0, because of u"(0; v'(0))=q(0)>4(0). Therefore
the above assertion follows from the continuity of u(x; t) in t. On the other hand
an  interval ( — co, — to +8) belongs to D (q ) f o r  sufficient la rg e  to . H e n c e  the
connected interval (— to , v'(0)) involves at least a point a such that cc U(q)u D(q).
Namely we have 0< u(x; a)<v(x) in (0, co).

Proof of Lemma 3. It sufficies to prove that the solution u 1 (x) of u7=q(x)u 1 ,
u1 (0 )=0 and u(0)= 1 is not bounded in (0, co). First we show that vi (x) satisfying
v'; = 4(x)v,, v 1(0)=0 and v',(0)= 1 is positive and unbounded. In fact, if v1 (a)=0 and
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0<  v1 (x) in (0, a) for some a >0, then we can find positive numbers b e (0, a)  and c
such that 0 < v,(x)< cv(x) in  (0, b), v i (b)=cv (b) a n d  v (b )=c v '(b ) . However this
contradicts the uniqueness theorem on the solution of v" = 4(x)v. Since the bounded
solution v(x) satisfying v"= 4(x )v  in  (0, co) and v(0)=1 i s  unique, v 1 (x ) is not
bounded in (0, co). L e t  u s  prove u 1 (x )  v i (x ) in (0, cc), which equals to u,(x )>
sv,(x) in (0, co) for any s e (0, 1). Suppose u1 (a)= sv i (a) for some a> 0, and u 1 (x )>
sv,(x) in (0, a). Then there exist b e (0, a) and c > 0 such that u i (x )<sv i (x)+cv(x)
in  (0, b), u i (b)=sv i (b)+cv (b) and u'i (b)---sv (b)+cv '(b). However this is a  con-
tradiction since it holds u7(b)= q(b)u,(b)> -4(b)(sv,(b)+ cv(b))= sv7(b)+ cv7(b) from
q(x )> -4 (x ). Hence we have u,(x )>sv i (x )  in (0, c o ) .  Therefore u1 (x ) is  positive
and unbounded in (0, cc). T h i s  means the uniqueness of the bounded solution of
u"=q(x )u satisfying u(0)= 1.

Proof of Lemma 4. From Lemma 2 it holds t(q,,) <44) for all ,u e (0, 1). Let
50 = 44)— t(q 1,0 ). For given positive number e less than c o , from Lemma 3 we have
t(q,i 0 )+8eU (g i t 0 )  a n d  t(q, 0 )—EE D(q n ). L et us recall the  property o f  U(qm .): if
t E U(q 0 0 ), then there exists a positive number a  such that the solution u(x) of u"=
q,,o (x)u with u(0) = 1 and u'(0)= t satisfies 0< u(x)< v(x) in (0, a), u(a)= v(a) and u'(a)
> v '(a). Then from the continuity of solutions of u"=q(x )u for q(x), there exists a
positive number (5 which is smaller than min {p o , 1— y o b  such that t(qm o )+s e
and t(q 4 0 )— e e D(qm ) for all p. belonging to (go —(5, j +  (5 ). Therefore from Lemma 3
we have t(q 4 )e(t(q m 0 )-5 , t(q 0 )+s )  for a ll ti e (p0  —S, ,u0 + (5). This completes the
proof of Lemma 4.

§ 4. Proof of Theorem 1

First we state a preliminary lemma for the proof of Proposition 1.

Lemma 4 . 1 .  L e t f (x , y )  an d  g (x , y )  be continuous in R 2  a n d  satisf y  the
L ipsch itz  cond ition  in  y . A ssum e f (x , y )> g(x , y ) in  R 2 . T hen u(a)>v (a),
(reps. u(a)<v (a)) im plies u(x )>v (x ) in  (a, cc ), (resp .u (x )<v (x ) in (—  co, a)).

Pro o f . In the case of f (x , y )>g(x , y ) in  R2 , the result is easily verified by
method o f con trad ic tion . W e prove th e  general c a s e  in  th e  following way.
Suppose u(x 1 ) v(x 1 )  a t  x = x, e (a, cc). L e t  u ( x )  be solution of u", =f(x , u c )+e
with u,(x,)= u(x i )— e. Then form the result in  the  above case we have ut (x )<
v(x) in  ( — co, x 1 ). Therefore u(a)=1im u,(a)<v (a) contradicts th e  assumption.

.-0()

Collary of Lemma 4 . 1 .  I n  th e  statem ents o f  Lemma 4.1 w e  c an  replace
u(a)>v (a), u(x )>v (x ) etc. by  u(a) v (a), u(x )_v (x ) etc. respectively , by  v irtue of
the continuity  of solutions.

Proof of  Proposition 1. From the definition of x.„(2), it holds

(4.1) q(x)— A> 0 in (x 1 , cc), where (x 1 , A) E (x ± (A), oo) x [m, M).

Take 4(x):_=.0 and apply Lemma 2 replaced (0, co) and q(x) by (x 1 , cc) and q(x)— A
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respectively. Then we know that for each A e [m, M), there exists a negative valued
function /, (x i , 2) defined in (x,(A), co), such that the non-zero solution u(x) of u"
(g(x) —1)u is bounded in  (x 1 , co) if and  only i f  u'(x 1 )1u(x 1 )=1.,(x 1 , 2). From
Lemma 3, /,(x, A) is continuous in  (x ± (2), cc) f o r  each A e [m , M ). Put

(4.2) +(x, 2)=Tan - 1  /, (x, 2) ,

then 0+ (x, 2) satisfies — <0 ,(x , ).) <0 in ( x (2 ) ,  co) and2

(4.3) _  (q(x)— 2)—  tan2 0 
1+ tan2 0

in (x + (2), cc). T h e  equation (4.3) and

(4.4) u" =(q(x)— 2)u

are translated each other by putting u(x)---u(x0 )exp tan 0(s, 2)ds or 0 = tan - 1  —u  ,
xo

s o  lo n g  a s  u 0 0  o r  0 *  ( n + i ) i , (n: integers). Since the  right hand side of2
(4.3) is bounded in any compact set in R2 D (x, 0) and that of (4.4) is linear, definition
domains of solutions 0 and u can be extended to (— co, co) so that the relation O.--
tan - 1  —u  holds even if u takes z e ro . In  this way we define 0 ,(x , A) on (— co, cc) x
Ern, M ).  Then 0+ (x , 2) is continuous in  A E [M ,  M ) at every fixed x e (— co, co).
In fact from Lemma 4 0 (x , 2 )  is continuous in A at every x in (x + (M —6), cc) if 2 is
restricted in  [m , M-6), where 6  is  an  arbitrary small co n stan t. Hence we have
the desired result from the continuity of solutions of (4.3) for initial data. Moreover
from Lemma 2 and Lemma 4.1 0 ( x ,  2 )  is a monotone increasing function in 2 e
[m, M) at every x e( — oo, cc). From  this m onotony follow s the continuity o f 0 ,
(x, A)in (x, 2). Similarly we can define 0,(x, A) and the corresponding properties.

Proof  o f  Theorem 1. From  (2.2) it follows 0 < 0 ,(x ,, m)< 1 - for x i  e (— oo,
2

x _ (m )). N ow  w e  compare 0_(x , m) with 0  w hich  is  a  solution of  O '=
) — m— t a n

,  applying Lemma 4.1 with u —  + (x, m), 0, f (x , y)—  (q(x ) —tan2 v
1+ tan21  +  tan 2 y— tan2

a n d  g(x, y) +tan2= T hen  0<0_(x 1 ,  m )  implies 0<0_(x , m ) in  (x,, co).y
y '

Thus we have 0 < 0 _(x, m) in ( — co, co). Now we remark that 0 (x , 2 )  is decreasing
when 0_(x , 2)= (mod n), because EL= — I when tan2 0 . = co in (2.3). Therefore

7rw e have 0<0_(x, m)< in ( — co
'
 cc). Similarly follows  — -  <0,(x ,  1 )< 0  in2 

(— co, co). H ence by  defin ition  — n < 0(xo , m )<0 . A n d  in  t h e  same time
— n<0(x , m )<0 in  (— co, co). F o r  simplicity we consider 0(x, 2 )  a t  x
From Proposition 1, 0(x 0 , 2) is increasing continuous function. If 2)>

A-.1V1
(n —1)n we define 2„ by (I)(xo , 2„)=(n — 1)n, (n= I, 2,...). We have .

m <2 1 <2 2 ,...,(<M ).

Let us put u,+, =exp 0+(s, ;t„)ds in (x,(A„), cc) and u; =exp0 _ ( s ,  2 ) d s
x +( A .)
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in (— oo, x_(2„)). Then u;,' satisfies (u)"=(q(x )—  A „)u. We extend u,- ; as solutions

of this equation. Then tan 0± (x, An)= ( X ' .  0 (x 0 , 1„)=(n—  1)n equals 0+ (x,

2„)= _(x, )L„)+(n—  1)n, i.e. (log = (log u ; ) '.  T h u s  w e  h av e  u(x)=CuT,(x).
P u t un( x )=u ;(x ) .  Then un(x ) is bounded in  (— cc, c o )  a n d  satisfies Lu n =2„u„.
From (2.2) and 0(x, 2„)=(n—  1)n in (— oo, co) we see that u„(x) has (n -1 )  zero in
( — cc, cc) since 0'± = — 1 if tan2 ± —  cc. M oreover, if we assume that q(x) is mono-
tone in (— co, x0 ) and in (x 0 , co), then u  has n zero in ( — oo, cc), because OL(x, 1)
is decreasing in (x_(1), x + (A)).

§ 5. Proof of Theorem 2

From the definition of R(x, 2) in (2.5) it follows

x +(A )
(5.1) R (x , 2)=

(A) 
(0'_(s, 2)+ Q(s, 2))ds— (01+(s, 2)+Q(s, 2))ds

x -

+ {0 + (x ± (2), 2)-0 _(x_ (2), 2)} .

Remark that the third terni is estimated from (2.2), (2.3) and Lemma 4.1 as follows.

(5.2) — IC <  { 0 + (x + (2), 2)— _(x (A), A)} <O.

However the integrations of I O'±  + Q  a r e  not small in general. Therefore we define
a modification of 0  ± ; ±  in the following way such that the integrations of IG'±  +QI
become smaller:

(5.3) tan 0± (x, 1)= tan (0 ± (x, 2)/0(x, 1)),

sup 10 ± (x , 2)-0 ± (x, A)1<n12 f o r  (x , A) e (— co, oo)x [m, M),

{ Q(x, 2) if q ( x ) -2< — 1,
where 0.(x, 2)= 

1 if — 1 < q(x)— 2.

First we notice that 6+ (x, /) satisfies

IG±(x, /1)— 0 ± (x, <  7r,7  ,

(ii) ± (x , 2) = ifi f  0 ± (x, 2)—
'
 ( k :  integers),2  

(iii) 0± (x , 1)=  ± (x, 2) if — 1 q(x )—  2,

(iv) El ± (x, _(x , ;.„)= + (x , 2,)-8(x , 2„)=(n—  1)7r.

Let us put

(5.5) A )= + (x , 2)-0 _(x , A).

Then from (5.4) we have

(5.6) —n <61)(x, 2)— - (x , 2 )‹n ,

(5.4)
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(5.7) 0(x, 2„)= r(x, 2„)=(n—

We rewrite (5.1) as follows

(5.1)' R(x, 2)= — (A) ( (s, 2)+Q(s, 2.))ds—
x +

2 ) + Q ( s ,  2 ) ) d s

+ {0 4.(x + (A), 2)— 0_(x A)} + {0(x, (x, 2)} .

From (5.3) we have

{ —Q(x, 2)—(VIQ)(Q1 ± 1(Q2 +11)), if q ( x )  A< —1,
(5.8) 0'± (x, 2)=

(q(x)— —.1i)1(1 +1i) , if — 1 < q (x )-2 ,

w here Q=Q(x, 2)=(2—q(x))'/ 2  a n d  / ±  =tan 0± .
Then the integrands in (5.1)' are estimated as follows.

(5.9) 10'± +QI 11(log if q(x)— —I,

(5.10) Q -1.0 '±+Q <Q (1— Q ), if — [ < q(x) -2 .

From (5.1)', (5.2), (5.6), (5.9) and (5.10) we have Theorem 2.

§ 6. Generalization of Theorem 2

Here we consider Theorem 2 without the monotony of q(x) in ( — co, x o ) and in
(x0 , co). First we describe

Lemma 6 . 1 .  Let q(x) be continuous and positive in (x 1 , x 2 ). Suppose that the
solution 0(x) of 0' — q ( x )  tan2 satisfies nrc <0(x 3 ) < (n+ - 1— )n  at  X3 E (X I ,  X2).

1 + tan 22
Then it follows

1n n <0 (x )< (n +  T )rr i n  (x 3 , x 2 ).

Proof . F(x, 0)— 
q ( x ) — t a n 2  0

 is  nega tive  if  0= (n+  I )  rr and F ( x , 0 ) is1 + tan2 0 2
positive if 0 = nn and q(x)> O. Therefore w e have

nn<0(x)< (n+ + ) r( in  ( x 3 , x 2 ).

Corollary. Suppose q(x)>0 in (x 1 , x 2 ). Then the variation of  0(x) in (x 1 , x 2 )
is less than Tr.

Now we decompose 0,(À)={x; q(x)— 2> 0} as follows

(6.1) f24. (2) = ( — oo , x _(2)) ( ( x  + (2), co) co,(2) ,

where co1(1) are connected open finite intervals. From  (5.8) w e have
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(6.2) —1<0'±(x, .1)_q(x)— A i f  0< q(x)— A.

From the above Corollary and  (6.2) we have

Theorem 2 ' .  A ssume (C). Then we have the estimates:

E(A)— F(A)— 2n < R(x, A)<E(A)+ F(A)+7r,

E(A„)— F(.1„)-7E<R(A„)<EQ„)+R),,,),

where F(A) and F(A ) are given below and other notations are the same ones as in
the precedent sections. Incidentally  u'„(x) has at m ost n +2k  zeros.

F M = m in {1 (g(x)— ).)dx , 7r}
i=1 coi(À)

F(A )= m in 1 dx ,n} .
i=1 0,,())
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