Constructions of eigenfunctions for the Sturm-Liouville operator by comparison method

By

Sadao MIYATAKE

(Received Oct. 2, 1981)

§1. Introduction

This paper is concerned with constructions of eigenfunctions for the Sturm-Liouville operator $L = -\frac{d^2}{dx^2} + q(x)$ in $(-\infty, \infty)$. Here we assume that the real valued function q(x) satisfies the following conditions:

(C) $\begin{cases} q(x) \text{ is piecewise continuous and has the minimum value at } x = x_0, \\ m = q(x_0) = \inf_{-\infty < x < \infty} q(x) < M = \lim_{x \to \infty} q(x), \quad (M = \infty \text{ is included.}) \end{cases}$

Especially we consider concrete constructions of eigenfunctions corresponding to eigenvalues in (m, M), relying upon comparison theorems which assure the existence of bounded solutions $u_+(x, \lambda)$ and $u_-(x, \lambda)$ of $\frac{d^2}{dx^2}u = (q(x) - \lambda)u$ in neighbourhoods of $+\infty$ and $-\infty$ respectively. Namely we try to consider the Sturm's method of comparison even in the case of infinite demain $(-\infty, \infty)$. As we see later, this consideration motivates originally comparison theorems of type stated in Section 2, which are generalized in [2] and [3]. Incidentally we show that there exists a continuous monotone increasing function $\Phi(\lambda)$ satisfying $-\pi < \Phi(m) < 0$ such that λ is eigenvalue if and only if $\Phi(\lambda) = (n-1)\pi$, (n=1, 2, 3,...). In order to see that appearance of eigenvalues more precisely we need some estimates for $\Phi(\lambda)$. For this purpose we write

$$\Phi(\lambda) = \int_{\Omega(\lambda)} (\lambda - q(x))^{1/2} dx + R(\lambda),$$

where $\Omega(\lambda) = \{x; \lambda - q(x) > 0\}$ and obtain a suitable estimate for $R(\lambda)$, to show that $R(\lambda)$ is a remainder term as compared with the first term. In many books of physics (for example [1], [5] etc.) we find the following type of formula: $\int_{\Omega(\lambda n)} (\lambda_n - q(x))^{1/2} dx = \left(n - \frac{1}{2}\right) \pi$, which was explained by the so-called W. K. B. method. As for mathematics Tichmarsh [6] showed that there exists a constant C such that

 $|R(\lambda_n)| < C$ for all λ_n if q(x) is convex. And many authors treated the related problems under various assumptions on q(x), q'(x) and q''(x), (for example see [4]). Here we use comparison theorems related with only the value of q(x) and exhibit an estimate for $R(\lambda)$ of type $\underline{E}(\lambda) \le R(\lambda) \le \overline{E}(\lambda)$, where $\underline{E}(\lambda)$ and $\overline{E}(\lambda)$ concern the logarithmic order of variations of q(x) in $\Omega(\lambda)$. The results are stated in Section 2 more precisely. In Section 3, to make our argument smooth we verify that all the eigenvalues of L in L^{∞} space are real, and then we prove some simple lemmas concerning the comparison theorems which will be used later. Theorems 1 and 2 are proved in Section 4 and 5. In the last section we generalize the estimate for eigenvalues to the case where $\Omega(\lambda)$ is not necessarily one interval, thus clarifying some properties of solutions in the case of tunnel effects.

§2. Statements of results

First we mention the definition of eigenvalues and eigenfunctions of $L = -\frac{d^2}{dx^2} + q(x)$ in the space L^{∞} of bounded measurable functions defined in $(-\infty, \infty)$. We say λ and u(x) eigenvalue and eigenfunction of L in L^{∞} respectively, if there exists $(\lambda, u(x))$ belonging to $C \times L^{\infty}$ such that $Lu = \lambda u$ in $(-\infty, \infty)$, u(x) not being identically zero. We have

Lemma 1. Suppose the conditions (C) in Introduction. Then all the eigenvalues of L in L^{∞} are real and contained in (m, ∞) .

A simple and direct proof of Lemma 1 will be given in next section. In view of Lemma 1 we suppose that the parameter λ is real and larger than m. Especially we restrict λ in (m, M). As we will see later, eigenfunctions in L^{∞} and those in L^2 coincide for eigenvalues in (m, M). So we do not mention function spaces hereafter. Now we put for $\lambda \in [m, M)$

(2.1)
$$\begin{aligned} x_{+}(\lambda) &= \inf \{ x_{1}; q(x) - \lambda > 0 \quad \text{in} \quad (x_{1}, \infty) \}, \\ x_{-}(\lambda) &= \sup \{ x_{1}; q(x) - \lambda > 0 \quad \text{in} \quad (-\infty, x_{1}) \}. \end{aligned}$$

Then from (2.1), $x_0 \le x_+(\lambda_1) \le x_+(\lambda_2)$ and $x_-(\lambda_2) \le x_-(\lambda_1) \le x_0$ if $m \le \lambda_1 \le \lambda_2 < M$. We have

Proposition 1. Assume (C). Then there exists a continuous function $\theta_+(x_1, \lambda)$, (resp. $\theta_-(x_1, \lambda)$) defined on $(-\infty, \infty) \times [m, M)$ which has the following properties: (I) The solution of $u'' = (q(x) - \lambda)u$ satisfying $u(x_1) = u_0$ and $u'(x_1) = u_1$ is bounded in (x_1, ∞) , (resp. $(-\infty, x_1)$) if and only if $\frac{u_1}{u_0} = \tan \theta_+(x_1, \lambda)$, (resp. $\frac{u_1}{u_0} = \tan \theta_-(x_1, \lambda)$), (II) $\theta_+(x, \lambda)$ satisfies

(2.2)
$$\begin{cases} -\frac{\pi}{2} < \theta_+(x, \lambda) < 0 & \text{for } x \in (x_+(\lambda), \infty), \\ 0 < \theta_-(x, \lambda) < \frac{\pi}{2} & \text{for } x \in (-\infty, x_-(\lambda)), \end{cases}$$

and the following differential equation respectively

(2.3)
$$\frac{d\theta}{dx} = \frac{(q(x) - \lambda) - \tan^2 \theta}{1 + \tan^2 \theta}, \quad \text{for all } \lambda \in [m, M],$$

(III) $\theta_+(x, \lambda)$, (resp. $\theta_-(x, \lambda)$) is monotone increasing, (resp. decreasing) in λ at every point $x \in (-\infty, \infty)$.

Remark 2.1. From the above property (II) and the uniqueness of the solution of (2.3), $\theta_+(x, \lambda) = \theta_-(x, \lambda) + k\pi$ in $(-\infty, \infty)$, (k, integer), if $\theta_+(x_1, \lambda) = \theta_-(x_1, \lambda) + k\pi$ at a point $x_1 \in (-\infty, \infty)$.

Now we put

(2.4)
$$\Phi(x, \lambda) = \theta_+(x, \lambda) - \theta_-(x, \lambda)$$

Then we have the following theorem.

Theorem 1. Suppose (C). Then there exists a continuous function $\Phi(x, \lambda)$ defined on $(-\infty, \infty) \times [m, M)$, which satisfies (1) $\Phi(x, \lambda)$ is monotone increasing in λ at every $x \in (-\infty, \infty)$, (2) $-\pi < \Phi(x, m) < 0$, and $\Phi(x, \lambda_n) = (n-1)\pi$ in $(-\infty, \infty)$ if $\Phi(x_1, \lambda_n) = (n-1)\pi$ at a point $x_1 \in (-\infty, \infty)$. At that time λ_n , (n=1, 2,...) are eigenvalues if and only if $\Phi(x, \lambda_n) = (n-1)\pi$. Corresponding eigenfunctions $u_n(x)$ are equal to the solutions of $u'' = (q(x) - \lambda_n)u$ with $u(x_+(\lambda_n)) = 1$ and $u'(x_+(\lambda_n)) =$ $\tan \theta_+(x_+(\lambda_n), \lambda_n)$. Incidentally u_n has (n-1) roots. Moreover $u'_n(x)$ has just n zeros if q(x) is assumed to be monotone in $(-\infty, x_0)$ and (x_0, ∞) , where x_0 is a point satisfying $q(x_0) = \min_{-\infty \le x \le \infty} q(x)$.

Now we put

(2.5)
$$R(x, \lambda) = \Phi(x, \lambda) - \int_{-\infty}^{\infty} Q(s, \lambda) ds, \text{ where}$$
$$Q(x, \lambda) = \begin{cases} (\lambda - q(x))^{1/2}, & \text{if } 0 \le \lambda - q(x), \\ 0, & \text{if } \lambda - q(x) < 0. \end{cases}$$

Remark that $R(x, \lambda_n)$ is constant: $(n-1)\pi - \int_{-\infty}^{\infty} Q(s, \lambda_n) ds$. Put

(2.6)
$$R(\lambda) = R(x_0, \lambda)$$

We show the estimates for $R(x, \lambda)$ and $R(\lambda_n)$, in order to assure the actual appearance of λ_n in each given case.

Theorem 2. Suppose (C) and that q(x) is monotone in (x_0, ∞) and $(-\infty, x_0)$. Then we have the following estimates for $\lambda \in [m, M]$:

$$\underline{E}(\lambda) - 2\pi < R(x, \lambda) < \overline{E}(\lambda) + \pi,$$

$$\underline{E}(\lambda_n) - \pi < R(\lambda_n) < \overline{E}(\lambda_n), \quad (\lambda_n, eigenvalues of L)$$

Sadao Miyatake

where $\underline{E}(\lambda) = \int_{-\infty}^{\infty} \underline{E}(s, \lambda) ds$, $\overline{E}(\lambda) = \int_{-\infty}^{\infty} \overline{E}(s, \lambda) ds$ and $\underline{E}(x, \lambda) = \begin{cases} -\frac{1}{2} \left| (\log Q(x, \lambda))' \right| & \text{if } 1 \le \lambda - q(x), \\ -Q(x, \lambda) (1 - Q(x, \lambda)) & \text{if } 0 \le \lambda - q(x) < 1, \\ 0 & \text{if } \lambda - q(x) < 0, \end{cases}$ $\overline{E}(x, \lambda) = \begin{cases} \frac{1}{2} \left| (\log Q(x, \lambda))' \right| & \text{if } 1 \le \lambda - q(x), \\ 1 - Q(x, \lambda) & \text{if } 0 \le \lambda - q(x) < 1, \\ 0 & \text{if } \lambda - q(x) < 0. \end{cases}$

Remark. Theorem 2 will be generalized in Section 6 to the case where q(x) is not necessarily monotone in $(-\infty, x_0)$ and (x_0, ∞) .

The proofs of Proposition 1 and Theorems 1 and 2 rely upon the following comparison theorems which we state as lemmas.

Lemma 2. Let q(x) and $\tilde{q}(x)$ be piecewise continuous functions such that $q(x) > \tilde{q}(x)$ on $[0, \infty)$. Suppose that there exists a solution v(x) of $v'' = \tilde{q}(x)v$ in $(0, \infty)$ satisfying v(0)=1 and 0 < v(x) in $(0, \infty)$. Then u'' = q(x)u has a solution u(x) satisfying 0 < u(x) < v(x) in $(0, \infty)$ and u(0)=1. It holds u'(0) < v'(0).

Lemma 3. Assume the same conditions as in Lemma 2. Moreover suppose that v(x) is a unique bounded solution in $(0, \infty)$ of $v'' = \tilde{q}(x)v$ satisfying v(0) = 1. Then the bounded solution in $(0, \infty)$ of u'' = q(x)u with u(0) = 1 is unique.

Now we introduce a notation.

Notation By t(q) we denote u'(0), when u'' = q(x)u has a unique positive bounded solution u(x) in $(0, \infty)$ satisfying u(0) = 1.

Lemma 4. Let $\{q_{\mu}(x)\}_{0 < \mu < 1}$ be a family of functions satisfying the condition (C). Assume that q_{μ} converges to q_{μ_0} uniformly in each compact set of $[0, \infty)$ as μ tends to $\mu_0 \in (0, 1)$. Suppose that conditions in Lemmas 2 and 3 are fulfilled replacing q by q_{μ} for all $\mu \in (0, 1)$. Then $t(q_{\mu})$ converges to $t(q_{\mu_0})$ as μ tends to μ_0 .

Finally we point out some examples.

Example 1. If q(x) > 0 in $(0, \infty)$, it follows that $\tilde{q}(x) \equiv 0$ satisfies all the conditions in Lemmas 2 and 3. Then applying Lemmas 2 and 3 in (x_1, ∞) for all $x_1 \in [0, \infty)$, we see that u'' = q(x)u has a bounded solution u(x) satisfying $\frac{u'}{u} < 0$ in $(0, \infty)$. Similarly $q(x) > \tilde{q}(x) > 0$ in $(0, \infty)$ implies $\frac{u'}{u} < \frac{v'}{v}$ in $(0, \infty)$, where u and v are bounded solutions u'' = q(x)u and $v'' = \tilde{q}(x)v$ respectively.

Remark. Let us confine ourselves to simple cases: $q > \tilde{q}$ or $q < \tilde{q}$, where

 $q > \tilde{q}$ means $q(x) > \tilde{q}(x)$ on $[0, \infty]$. Then in Example 1, $0 < \tilde{q} < q$ equals to $\frac{u'}{u} < \frac{v'}{v} < 0$. $\frac{u'}{u}$ converges to $\frac{v'}{v}$ if and only if q converges to \tilde{q} in the sense of Lemma 4.

Example 2. As an application of the above Remark, we consider the harmonic oscillator: $q(x) = x^2$. Put $v = \exp(-ax^k)$, then $\tilde{q}(x) = \frac{v''}{v} = (ak)^2 x^{2k-2} - ak(k-1)x^{k-2}$. Taking k=2 and $a = \frac{1}{2}$ we see $\lambda_1 = 1$ and $u_1 = \exp\left(-\frac{1}{2}x^2\right)$. Next put $v = x^k \exp\left(-\frac{1}{2}x^2\right)$, then similarly $\lambda_2 = 3$ and $v_2 = x \exp\left(-\frac{1}{2}x^2\right)$ follow. Step by step we have $\lambda_n = 2n - 1$ and $u_n = \varphi_n(x) \exp\left(-\frac{1}{2}x^2\right)$ where $\varphi_n(x)$ is a polynominal of degree n-1 with n-1 real roots. Thus we approach to a motivation of Hermite polynomials.

Finally we comment on Lemmas stated above.

Remark. In Lemmas 2, 3, 4 and Example 1, we have the same results even if we replace $q(x) > \tilde{q}(x)$ by $q(x) \ge \tilde{q}(x)$, where q(x) is not identically equal to $\tilde{q}(x)$. The proof is accomplished in the same way as in next section.

§3. Proofs of Lemmas

Proof of Lemma 1. Let $\chi(x)$ be a real valued C^1 function satisfying $\chi(x) > 0$ in $\left(\frac{1}{2}, \frac{1}{2}\right)$, $\chi(x) = 0$ in $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$, $\chi(x) = \chi(-x)$, $\chi(x_1) \ge (x_2)$ for $0 \le x_1 \le x_2$ and

(3.1)
$$\chi'(x)^2 \leq C\chi(x)$$
 in $(-\infty, \infty)$, where $C > 0$.

For example define $\chi(x)$ by $\left(x+\frac{1}{2}\right)^2 H\left(x+\frac{1}{2}\right)$ in $\left(-\infty, -\frac{1}{3}\right)$, $\left(-x+\frac{1}{2}\right)^2 \cdot H\left(-x+\frac{1}{2}\right)$ in $\left(\frac{1}{3}, \infty\right)$ and a suitable positive function in $\left(\frac{1}{3}, \frac{1}{3}\right)$, where H(x)=1 for x>0 and H(x)=0 for $x\leq 0$. Denote $(u, v) = \int_{-\infty}^{\infty} u(x) \overline{v(x)} dx$ and

(3.2)
$$(u, v)_{\varepsilon} = (\chi(\varepsilon x)u, v) \text{ and } L_{\varepsilon} = \chi(\varepsilon x)L.$$

Let u be eigenfunction in L^{∞} corresponding to eigenvalue λ :

(3.3)
$$\begin{cases} (L_{\varepsilon}u, u) = \lambda(u, u)_{\varepsilon} \\ \sup |u| \le C_1. \end{cases}$$

On the other hand the integration by parts yields

(3.4)
$$(L_{\varepsilon}u, u) = (u', u')_{\varepsilon} + (qu, u)_{\varepsilon} + \varepsilon \int_{-\infty}^{\infty} \chi'(\varepsilon x) u'(x) \overline{u(x)} dx.$$

From Schwartz inequality and (3.1) it follows

Sadao Miyatake

(3.5)
$$\left| \int \chi'(\varepsilon x) u'(x) \overline{u(x)} dx \right| \le C_1 \varepsilon^{-1/2} \left(\int \left| \chi'(\varepsilon x) u'(x) \right|^2 dx \right)^{1/2} \le C C_1 \varepsilon^{-1/2} (u', u')_{\varepsilon}^{1/2}$$

From (3.3) and (3.4) we have

(3.6)
$$|\operatorname{Im} \lambda| \leq C C_1 \varepsilon^{1/2} (u', u')_{\varepsilon}^{1/2} / (u, u)_{\varepsilon} \equiv J_{\varepsilon}(u),$$

(3.7)
$$\operatorname{Re} \lambda - \{(u', u')_{\varepsilon} + (qu, u)_{\varepsilon}\}/(u, u)_{\varepsilon} \ge -J_{\varepsilon}(u)\}$$

Since u' is not identically zero it follows

(3.8)
$$\lim_{\varepsilon \to 0} \varepsilon^{1/2} (u', u')_{\varepsilon}^{-1/2} = 0.$$

Therefore (3.7) makes

(3.9) Re
$$\lambda - m \ge \{(1 - CC_1 \varepsilon^{1/2} (u', u')_{\varepsilon}^{-1/2})(u', u')_{\varepsilon} + ((q - m)u, u)_{\varepsilon}\}/(u, u)_{\varepsilon}$$

Now making ε sufficiently small we have Re $\lambda - m > 0$. Then (3.6) and (3.9) give

1

(3.10)
$$\frac{\operatorname{Im} \lambda}{\operatorname{Re} \lambda - m} \leq \frac{CC_1 \varepsilon^{1/2} (u', u')_{\varepsilon}^{-1/2}}{1 - CC_1 \varepsilon^{1/2} (u', u')_{\varepsilon}^{-1/2}} .$$

Tending ε to zero we have Im $\lambda = 0$.

Remark. The results of Lemma 1 and the outline of the above proof are also valid even if we replace $-\frac{d^2}{dx^2} + q(x)$ in R by $-\sum \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right) + q(x)$ in R^n . We will discuss it elsewhere.

Proof of Lemma 2. Let u(x; t) be solution of u'' = q(x)u, u(0) = 1 and u'(0) = t. Denote

$$U(q) = \{t \in (-\infty, v'(0)), \exists x_1 > 0, 0 < u(x; t) < v(x) \quad \text{in} \quad (0, x_1), \quad u(x_1; t) = v(x_1)\}$$

$$D(q) = \{t \in (-\infty, v'(0)), \exists x_1 > 0, 0 < u(x; t) < v(x) \quad \text{in} \quad (0, x_1), \quad u(x_1; t) = 0\}$$

Then U(q) and D(q) are open as follows. If $t \in U(q)$, then $u'(x_1; t) \ge v'(x_1)$ follows. Now suppose $u'(x_1; t) = v'(x_1)$, then $u''(x_1; t) = q(x_1)u(x_1; t) > \tilde{q}(x_1) \cdot v(x_1) = v''(x_1)$ contradicts 0 < u(x; t) < v(x) in $(0, x_1)$. Hence $u'(x_1; t) > v'(x_1)$. Therefore U(q) is open. The similar argument is valid for D(q). Now let us show that U(q) contains an open interval $(v'(0) - \delta, v'(0))$. We have u(x; v'(0)) > v(x) holds in a neighbourhood of x = 0, because of $u''(0; v'(0)) = q(0) > \tilde{q}(0)$. Therefore the above assertion follows from the continuity of u(x; t) in t. On the other hand an interval $(-\infty, -t_0+\varepsilon)$ belongs to D(q) for sufficient large t_0 . Hence the connected interval $(-t_0, v'(0))$ involves at least a point α such that $\alpha \notin U(q) \cup D(q)$. Namely we have $0 < u(x; \alpha) < v(x)$ in $(0, \infty)$.

Proof of Lemma 3. It sufficies to prove that the solution $u_1(x)$ of $u''_1 = q(x)u_1$, $u_1(0) = 0$ and $u'_1(0) = 1$ is not bounded in $(0, \infty)$. First we show that $v_1(x)$ satisfying $v''_1 = \tilde{q}(x)v_1$, $v_1(0) = 0$ and $v'_1(0) = 1$ is positive and unbounded. In fact, if $v_1(a) = 0$ and

6

 $0 < v_1(x)$ in (0, a) for some a > 0, then we can find positive numbers $b \in (0, a)$ and csuch that $0 < v_1(x) < cv(x)$ in (0, b), $v_1(b) = cv(b)$ and $v'_1(b) = cv'(b)$. However this contradicts the uniqueness theorem on the solution of $v'' = \tilde{q}(x)v$. Since the bounded solution v(x) satisfying $v'' = \tilde{q}(x)v$ in $(0, \infty)$ and v(0) = 1 is unique, $v_1(x)$ is not bounded in $(0, \infty)$. Let us prove $u_1(x) \ge v_1(x)$ in $(0, \infty)$, which equals to $u_1(x) >$ $sv_1(x)$ in $(0, \infty)$ for any $s \in (0, 1)$. Suppose $u_1(a) = sv_1(a)$ for some a > 0, and $u_1(x) >$ $sv_1(x)$ in (0, a). Then there exist $b \in (0, a)$ and c > 0 such that $u_1(x) < sv_1(x) + cv(x)$ in (0, b), $u_1(b) = sv_1(b) + cv(b)$ and $u'_1(b) = sv'_1(b) + cv'(b)$. However this is a contradiction since it holds $u''_1(b) = q(b)u_1(b) > \tilde{q}(b)(sv_1(b) + cv(b)) = sv''_1(b) + cv''_1(b)$ from $q(x) > \tilde{q}(x)$. Hence we have $u_1(x) > sv_1(x)$ in $(0, \infty)$. Therefore $u_1(x)$ is positive and unbounded in $(0, \infty)$. This means the uniqueness of the bounded solution of u'' = q(x)u satisfying u(0) = 1.

Proof of Lemma 4. From Lemma 2 it holds $t(q_{\mu}) < t(\tilde{q})$ for all $\mu \in (0, 1)$. Let $\varepsilon_0 = t(\tilde{q}) - t(q_{\mu_0})$. For given positive number ε less than ε_0 , from Lemma 3 we have $t(q_{\mu_0}) + \varepsilon \in U(q_{\mu_0})$ and $t(q_{\mu_0}) - \varepsilon \in D(q_{\mu_0})$. Let us recall the property of $U(q_{\mu_0})$: if $t \in U(q_{\mu_0})$, then there exists a positive number a such that the solution u(x) of $u'' = q_{\mu_0}(x)u$ with u(0) = 1 and u'(0) = t satisfies 0 < u(x) < v(x) in (0, a), u(a) = v(a) and u'(a) > v'(a). Then from the continuity of solutions of u'' = q(x)u for q(x), there exists a positive number δ which is smaller than min $\{\mu_0, 1 - \mu_0\}$, such that $t(q_{\mu_0}) + \varepsilon \in U(q_{\mu})$ and $t(q_{\mu_0}) - \varepsilon \in D(q_{\mu})$ for all μ belonging to $(\mu_0 - \delta, \mu_0 + \delta)$. Therefore from Lemma 3 we have $t(q_{\mu}) \in (t(q_{\mu_0}) - \varepsilon, t(q_{\mu_0}) + \varepsilon)$ for all $\mu \in (\mu_0 - \delta, \mu_0 + \delta)$. This completes the proof of Lemma 4.

§4. Proof of Theorem 1

First we state a preliminary lemma for the proof of Proposition 1.

Lemma 4.1. Let f(x, y) and g(x, y) be continuous in \mathbb{R}^2 and satisfy the Lipschitz condition in y. Assume $f(x, y) \ge g(x, y)$ in \mathbb{R}^2 . Then u(a) > v(a), (reps. u(a) < v(a)) implies u(x) > v(x) in (a, ∞) , (resp. u(x) < v(x) in $(-\infty, a)$).

Proof. In the case of f(x, y) > g(x, y) in \mathbb{R}^2 , the result is easily verified by method of contradiction. We prove the general case in the following way. Suppose $u(x_1) \le v(x_1)$ at $x = x_1 \in (a, \infty)$. Let $u_{\varepsilon}(x)$ be solution of $u_{\varepsilon}'' = f(x, u_{\varepsilon}) + \varepsilon$ with $u_{\varepsilon}(x_1) = u(x_1) - \varepsilon$. Then form the result in the above case we have $u_{\varepsilon}(x) < v(x)$ in $(-\infty, x_1)$. Therefore $u(a) = \lim_{\varepsilon \to 0} u_{\varepsilon}(a) \le v(a)$ contradicts the assumption.

Collary of Lemma 4.1. In the statements of Lemma 4.1 we can replace u(a) > v(a), u(x) > v(x) etc. by $u(a) \ge v(a), u(x) \ge v(x)$ etc. respectively, by virtue of the continuity of solutions.

Proof of Proposition 1. From the definition of $x_{+}(\lambda)$, it holds

(4.1) $q(x) - \lambda > 0$ in (x_1, ∞) , where $(x_1, \lambda) \in (x_+(\lambda), \infty) \times [m, M)$.

Take $\tilde{q}(x) \equiv 0$ and apply Lemma 2 replaced $(0, \infty)$ and q(x) by (x_1, ∞) and $q(x) - \lambda$

respectively. Then we know that for each $\lambda \in [m, M)$, there exists a negative valued function $I_+(x_1, \lambda)$ defined in $(x_+(\lambda), \infty)$, such that the non-zero solution u(x) of $u'' = (q(x) - \lambda)u$ is bounded in (x_1, ∞) if and only if $u'(x_1)/u(x_1) = I_+(x_1, \lambda)$. From Lemma 3, $I_+(x, \lambda)$ is continuous in $(x_+(\lambda), \infty)$ for each $\lambda \in [m, M)$. Put

(4.2)
$$\theta_+(x, \lambda) = \operatorname{Tan}^{-1} I_+(x, \lambda),$$

then $\theta_+(x, \lambda)$ satisfies $-\frac{\pi}{2} < \theta_+(x, \lambda) < 0$ in $(x_+(\lambda), \infty)$ and

(4.3)
$$\theta' = \frac{(q(x) - \lambda) - \tan^2 \theta}{1 + \tan^2 \theta}$$

in $(x_+(\lambda), \infty)$. The equation (4.3) and

$$(4.4) u'' = (q(x) - \lambda)u$$

are translated each other by putting $u(x) = u(x_0) \exp \int_{x_0}^x \tan \theta(s, \lambda) ds$ or $\theta = \tan^{-1} \frac{u'}{u}$, so long as $u \neq 0$ or $\theta \neq \left(n + \frac{1}{2}\right) \pi$, (n: integers). Since the right hand side of (4.3) is bounded in any compact set in $R^2 \ni (x, \theta)$ and that of (4.4) is linear, definition domains of solutions θ and u can be extended to $(-\infty, \infty)$ so that the relation $\theta =$ $\tan^{-1} \frac{u'}{u}$ holds even if u takes zero. In this way we define $\theta_+(x, \lambda)$ on $(-\infty, \infty) \times$ [m, M]. Then $\theta_+(x, \lambda)$ is continuous in $\lambda \in [m, M]$ at every fixed $x \in (-\infty, \infty)$. In fact from Lemma 4 $\theta_+(x, \lambda)$ is continuous in λ at every x in $(x_+(M-\delta), \infty)$ if λ is restricted in [$m, M - \delta$], where δ is an arbitrary small constant. Hence we have the desired result from the continuity of solutions of (4.3) for initial data. Moreover from Lemma 2 and Lemma 4.1 $\theta_+(x, \lambda)$ is a monotone increasing function in $\lambda \in$ [m, M] at every $x \in (-\infty, \infty)$. From this monotony follows the continuity of θ_+ (x, λ) in (x, λ). Similarly we can define $\theta_-(x, \lambda)$ and the corresponding properties.

Proof of Theorem 1. From (2.2) it follows $0 < \theta_{-}(x_1, m) < \frac{\pi}{2}$ for $x_1 \in (-\infty, x_-(m))$. Now we compare $\theta_{-}(x, m)$ with $\tilde{\theta} \equiv 0$ which is a solution of $\tilde{\theta}' = \frac{-\tan^2 \tilde{\theta}}{1 + \tan^2 \tilde{\theta}}$, applying Lemma 4.1 with $u = \theta_+(x, m), v \equiv 0$, $f(x, y) = \frac{(q(x) - m) - \tan^2 y}{1 + \tan^2 y}$ and $g(x, y) = \frac{-\tan^2 y}{1 + \tan^2 y}$. Then $0 < \theta_{-}(x_1, m)$ implies $0 < \theta_{-}(x, m)$ in (x_1, ∞) . Thus we have $0 < \theta_{-}(x, m)$ in $(-\infty, \infty)$. Now we remark that $\theta_{-}(x, \lambda)$ is decreasing when $\theta_{-}(x, \lambda) = \frac{\pi}{2} \pmod{\pi}$ in $(-\infty, \infty)$. Similarly follows $-\frac{\pi}{2} < \theta_{+}(x, \lambda) < 0$ in $(-\infty, \infty)$. Hence by definition $-\pi < \Phi(x_0, m) < 0$. And in the same time $-\pi < \Phi(x, m) < 0$ in $(-\infty, \infty)$. For simplicity we consider $\Phi(x, \lambda)$ at $x = x_0$. From Proposition 1, $\Phi(x_0, \lambda) = (n-1)\pi$, (n=1, 2, ...). We have

$$m < \lambda_1 < \lambda_2, \ldots, (< M)$$
.

Let us put $u_n^+ = \exp \int_{x_+(\lambda_n)}^x \theta_+(s, \lambda_n) ds$ in $(x_+(\lambda_n), \infty)$ and $u_n^- = \exp \int_{x_-(\lambda_n)}^x \theta_-(s, \lambda_n) ds$

in $(-\infty, x_{-}(\lambda_{n}))$. Then u_{n}^{+} satisfies $(u_{n}^{+})'' = (q(x) - \lambda_{n})u_{n}^{+}$. We extend u_{n}^{+} as solutions of this equation. Then $\tan \theta_{\pm}(x, \lambda_{n}) = \frac{u_{n}^{\pm'}(x, \lambda_{n})}{u_{n}^{\pm}(x, \lambda_{n})}$. $\Phi(x_{0}, \lambda_{n}) = (n-1)\pi$ equals $\theta_{+}(x, \lambda_{n}) = \theta_{-}(x, \lambda_{n}) + (n-1)\pi$, i.e. $(\log u_{n}^{+})' = (\log u_{n}^{-})'$. Thus we have $u_{n}^{+}(x) = Cu_{n}^{-}(x)$. Put $u_{n}(x) = u_{n}^{-}(x)$. Then $u_{n}(x)$ is bounded in $(-\infty, \infty)$ and satisfies $Lu_{n} = \lambda_{n}u_{n}$. From (2.2) and $\Phi(x, \lambda_{n}) = (n-1)\pi$ in $(-\infty, \infty)$ we see that $u_{n}(x)$ has (n-1) zero in $(-\infty, \infty)$ since $\theta'_{\pm} = -1$ if $\tan^{2} \theta_{\pm} = \infty$. Moreover, if we assume that q(x) is monotone in $(-\infty, x_{0})$ and in (x_{0}, ∞) , then u'_{n} has n zero in $(-\infty, \infty)$, because $\theta'_{-}(x, \lambda)$ is decreasing in $(x_{-}(\lambda), x_{+}(\lambda))$.

§5. Proof of Theorem 2

From the definition of $R(x, \lambda)$ in (2.5) it follows

(5.1)
$$R(x, \lambda) = -\int_{x_{-}(\lambda)}^{x} (\theta'_{-}(s, \lambda) + Q(s, \lambda)) ds - \int_{x}^{x_{+}(\lambda)} (\theta'_{+}(s, \lambda) + Q(s, \lambda)) ds + \{\theta_{+}(x_{+}(\lambda), \lambda) - \theta_{-}(x_{-}(\lambda), \lambda)\}.$$

Remark that the third term is estimated from (2.2), (2.3) and Lemma 4.1 as follows.

(5.2)
$$-\pi < \{\theta_+(x_+(\lambda), \lambda) - \theta_-(x_-(\lambda), \lambda)\} < 0$$

However the integrations of $|\theta'_{\pm} + Q|$ are not small in general. Therefore we define a modification of θ_{\pm} ; $\tilde{\theta}_{\pm}$ in the following way such that the integrations of $|\tilde{\theta}'_{\pm} + Q|$ become smaller:

(5.3)
$$\tan \tilde{\theta}_{\pm}(x, \lambda) = \tan \left(\theta_{\pm}(x, \lambda) / \hat{Q}(x, \lambda) \right),$$

$$\sup |\tilde{\theta}_{\pm}(x, \lambda) - \theta_{\pm}(x, \lambda)| < \pi/2 \quad \text{for} \quad (x, \lambda) \in (-\infty, \infty) \times [m, M),$$

where
$$\tilde{Q}(x, \lambda) = \begin{cases} Q(x, \lambda) & \text{if} \quad q(x) - \lambda \le -1, \\ 1 & \text{if} \quad -1 \le q(x) - \lambda. \end{cases}$$

First we notice that $\tilde{\theta}_+(x, \lambda)$ satisfies

(i)
$$|\tilde{\theta}_{\pm}(x, \lambda) - \theta_{\pm}(x, \lambda)| < \frac{\pi}{2}$$
,

(ii)
$$\tilde{\theta}_{\pm}(x, \lambda) = \frac{k\pi}{2}$$
 if $\theta_{\pm}(x, \lambda) = \frac{k\pi}{2}$, (k: integers)

(5.4)

(iii)
$$\tilde{\theta}_{\pm}(x, \lambda) = \theta_{\pm}(x, \lambda)$$
 if $-1 \le q(x) - \lambda$,

(iv)
$$\theta_+(x, \lambda_n) - \theta_-(x, \lambda_n) = \theta_+(x, \lambda_n) - \theta(x, \lambda_n) = (n-1)\pi$$
.

Let us put

(5.5)
$$\tilde{\Phi}(x, \lambda) = \tilde{\theta}_{+}(x, \lambda) - \tilde{\theta}_{-}(x, \lambda)$$

Then from (5.4) we have

(5.6)
$$-\pi < \Phi(x, \lambda) - \tilde{\Phi}(x, \lambda) < \pi,$$

Sadao Miyatake

(5.7) $\Phi(x, \lambda_n) = \tilde{\Phi}(x, \lambda_n) = (n-1)\pi.$

We rewrite (5.1) as follows

(5.1)'
$$R(x, \lambda) = -\int_{x-(\lambda)}^{x} (\tilde{\theta}'_{-}(s, \lambda) + Q(s, \lambda)) ds - \int_{x}^{x+(\lambda)} (\tilde{\theta}'_{+}(s, \lambda) + Q(s, \lambda)) ds + \{\theta_{+}(x_{+}(\lambda), \lambda) - \theta_{-}(x_{-}(\lambda), \lambda)\} + \{\Phi(x, \lambda) - \tilde{\Phi}(x, \lambda)\}.$$

From (5.3) we have

(5.8)
$$\tilde{\theta}'_{\pm}(x, \lambda) = \begin{cases} -Q(x, \lambda) - (Q'/Q)(QI_{\pm}/(Q^2 + I_{\pm}^2)), & \text{if } q(x) - \lambda \le -1, \\ (q(x) - \lambda - I_{\pm}^2)/(1 + I_{\pm}^2), & \text{if } -1 < q(x) - \lambda, \end{cases}$$

where $Q = Q(x, \lambda) = (\lambda - q(x))^{1/2}$ and $I_{\pm} = \tan \theta_{\pm}$. Then the integrands in (5.1)' are estimated as follows.

(5.9)
$$|\tilde{\theta}'_{\pm} + Q| \le \frac{1}{2} |(\log Q)'|, \quad \text{if } q(x) - \lambda \le -1,$$

(5.10)
$$Q - 1 \le \theta'_{\pm} + Q \le Q(1 - Q), \quad \text{if} \quad -1 < q(x) - \lambda.$$

From (5.1)', (5.2), (5.6), (5.9) and (5.10) we have Theorem 2.

§6. Generalization of Theorem 2

Here we consider Theorem 2 without the monotony of q(x) in $(-\infty, x_0)$ and in (x_0, ∞) . First we describe

Lemma 6.1. Let q(x) be continuous and positive in (x_1, x_2) . Suppose that the solution $\theta(x)$ of $\theta' = \frac{q(x) - \tan^2}{1 + \tan^2}$ satisfies $n\pi \le \theta(x_3) \le \left(n + \frac{1}{2}\right)\pi$ at $x_3 \in (x_1, x_2)$. Then it follows

$$n\pi < \theta(x) < \left(n + \frac{1}{2}\right)\pi$$
 in (x_3, x_2) .

Proof. $F(x, \theta) = \frac{q(x) - \tan^2 \theta}{1 + \tan^2 \theta}$ is negative if $\theta = \left(n + \frac{1}{2}\right) \pi$ and $F(x, \theta)$ is positive if $\theta = n\pi$ and q(x) > 0. Therefore we have

$$n\pi < \theta(x) < \left(n + \frac{1}{2}\right)\pi$$
 in (x_3, x_2) .

Corollary. Suppose q(x) > 0 in (x_1, x_2) . Then the variation of $\theta(x)$ in (x_1, x_2) is less than π .

Now we decompose $\Omega_+(\lambda) = \{x; q(x) - \lambda > 0\}$ as follows

(6.1)
$$\Omega_{+}(\lambda) = (-\infty, x_{-}(\lambda)) \cup ((x_{+}(\lambda), \infty) \bigcup_{i=1}^{k} \omega_{i}(\lambda),$$

where $\omega_i(\lambda)$ are connected open finite intervals. From (5.8) we have

(6.2)
$$-1 \le \theta'_{\pm}(x, \lambda) \le q(x) - \lambda \quad \text{if} \quad 0 < q(x) - \lambda.$$

From the above Corollary and (6.2) we have

Theorem 2'. Assume (C). Then we have the estimates:

$$\underline{\underline{F}}(\lambda) - \underline{F}(\lambda) - 2\pi < R(x, \lambda) < \overline{\underline{E}}(\lambda) + \overline{F}(\lambda) + \pi,$$

$$\underline{\underline{F}}(\lambda_n) - F(\lambda_n) - \pi < R(\lambda_n) < \overline{\underline{E}}(\lambda_n) + F(\lambda_n),$$

where $\underline{F}(\lambda)$ and $\overline{F}(\lambda)$ are given below and other notations are the same ones as in the precedent sections. Incidentally $u'_n(x)$ has at most n + 2k zeros.

$$\underline{F}(\lambda) = \sum_{i=1}^{k} \min\left\{ \int_{\omega_i(\lambda)} (q(x) - \lambda) dx, \pi \right\}$$
$$\overline{F}(\lambda) = \sum_{i=1}^{k} \min\left\{ \int_{\omega_i(\lambda)} 1 dx, \pi \right\}.$$

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] L. D. Landau-E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1967.
- [2] S. Miyatake, Théorèmes de comparaison pour les équations defférentielles du second ordre, C. R. Acad. Sci., (5) 289 (1979), 345-347.
- [3] S. Miyakate, Comparison theorem for differential equations of second order and its application to the Thomas — Fermi problem, to appear.
- [4] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1973.
- [5] W. Pauli, Pauli's lecture on physics, Quantum mechanics, Kodansha, Tokyo, 1976.
- [6] E. C. Titchmarsh, Eigenfunction expansions associated with second order differential equations, Clarendon Press, Oxford, 1946.