Constructions of eigenfunctions for the Sturm-Liouville operator by comparison method

By
Sadao Miyatake

(Received Oct. 2, 1981)

§ 1. Introduction

This paper is concerned with constructions of eigenfunctions for the SturmLiouville operator $L=-\frac{d^{2}}{d x^{2}}+q(x)$ in $(-\infty, \infty)$. Here we assume that the real valued function $q(x)$ satisfies the following conditions:

$$
\left\{\begin{array}{l}
q(x) \text { is piecewise continuous and has the minimum value at } x=x_{0}, \tag{C}\\
m=q\left(x_{0}\right)=\inf _{-\infty<x<\infty} q(x)<M=\underline{l i m}_{x \rightarrow \infty} q(x), \quad(M=\infty \text { is included. })
\end{array}\right.
$$

Especially we consider concrete constructions of eigenfunctions corresponding to eigenvalues in (m, M), relying upon comparison theorems which assure the existence of bounded solutions $u_{+}(x, \lambda)$ and $u_{-}(x, \lambda)$ of $\frac{d^{2}}{d x^{2}} u=(q(x)-\lambda) u$ in neighbourhoods of $+\infty$ and $-\infty$ respectively. Namely we try to consider the Sturm's method of comparison even in the case of infinite demain $(-\infty, \infty)$. As we see later, this consideration motivates originally comparison theorems of type stated in Section 2, which are generalized in [2] and [3]. Incidentally we show that there exists a continuous monotone increasing function $\Phi(\lambda)$ satisfying $-\pi<\Phi(m)<0$ such that λ is eigenvalue if and only if $\Phi(\lambda)=(n-1) \pi,(n=1,2,3, \ldots)$. In order to see that appearance of eigenvalues more precisely we need some estimates for $\Phi(\lambda)$. For this purpose we write

$$
\Phi(\lambda)=\int_{\Omega(\lambda)}(\lambda-q(x))^{1 / 2} d x+R(\lambda)
$$

where $\Omega(\lambda)=\{x ; \lambda-q(x)>0\}$ and obtain a suitable estimate for $R(\lambda)$, to show that $R(\lambda)$ is a remainder term as compared with the first term. In many books of physics (for example [1], [5] etc.) we find the following type of formula: $\int_{\Omega\left(\lambda_{n}\right)}$ $\left(\lambda_{n}-q(x)\right)^{1 / 2} d x=\left(n-\frac{1}{2}\right) \pi$, which was explained by the so-called W. K. B. method. As for mathematics Tichmarsh [6] showed that there exists a constant C such that
$\left|R\left(\lambda_{n}\right)\right|<C$ for all λ_{n} if $q(x)$ is convex. And many authors treated the related problems under various assumptions on $q(x), q^{\prime}(x)$ and $q^{\prime \prime}(x)$, (for example see [4]). Here we use comparison theorems related with only the value of $q(x)$ and exhibit an estimate for $R(\lambda)$ of type $\underline{E}(\lambda) \leq R(\lambda) \leq \bar{E}(\lambda)$, where $\underline{E}(\lambda)$ and $\bar{E}(\lambda)$ concern the logarithmic order of variations of $q(x)$ in $\Omega(\lambda)$. The results are stated in Section 2 more precisely. In Section 3, to make our argument smooth we verify that all the eigenvalues of L in L^{∞} space are real, and then we prove some simple lemmas concerning the comparison theorems which will be used later. Theorems 1 and 2 are proved in Section 4 and 5. In the last section we generalize the estimate for eigenvalues to the case where $\Omega(\lambda)$ is not necessarily one interval, thus clarifying some properties of solutions in the case of tunnel effects.

§ 2. Statements of results

First we mention the definition of eigenvalues and eigenfunctions of $L=-\frac{d^{2}}{d x^{2}}$ $+q(x)$ in the space L^{∞} of bounded measurable functions defined in $(-\infty, \infty)$. We say λ and $u(x)$ eigenvalue and eigenfunction of L in L^{∞} respectively, if there exists ($\lambda, u(x)$) belonging to $C \times L^{\infty}$ such that $L u=\lambda u$ in $(-\infty, \infty), u(x)$ not being identically zero. We have

Lemma 1. Suppose the conditions (C) in Introduction. Then all the eigenvalues of L in L^{∞} are real and contained in (m, ∞).

A simple and direct proof of Lemma 1 will be given in next section. In view of Lemma 1 we suppose that the parameter λ is real and larger than m. Especially we restrict λ in (m, M). As we will see later, eigenfunctions in L^{∞} and those in L^{2} coincide for eigenvalues in (m, M). So we do not mention function spaces hereafter. Now we put for $\lambda \in[m, M)$

$$
\begin{align*}
& x_{+}(\lambda)=\inf \left\{x_{1} ; q(x)-\lambda>0 \quad \text { in } \quad\left(x_{1}, \infty\right)\right\}, \\
& x_{-}(\lambda)=\sup \left\{x_{1} ; q(x)-\lambda>0 \quad \text { in }\left(-\infty, x_{1}\right)\right\} . \tag{2.1}
\end{align*}
$$

Then from (2.1), $x_{0} \leq x_{+}\left(\lambda_{1}\right) \leq x_{+}\left(\lambda_{2}\right)$ and $x_{-}\left(\lambda_{2}\right) \leq x_{-}\left(\lambda_{1}\right) \leq x_{0}$ if $m \leq \lambda_{1} \leq \lambda_{2}<M$. We have

Proposition 1. Assume (C). Then there exists a continuous function $\theta_{+}\left(x_{1}, \lambda\right)$, (resp. $\left.\theta_{-}\left(x_{1}, \lambda\right)\right)$ defined on $(-\infty, \infty) \times[m, M)$ which has the following properties: (I) The solution of $u^{\prime \prime}=(q(x)-\lambda) u$ satisfying $u\left(x_{1}\right)=u_{0}$ and $u^{\prime}\left(x_{1}\right)=u_{1}$ is bounded in $\left(x_{1}, \infty\right),\left(\right.$ resp. $\left.\left(-\infty, x_{1}\right)\right)$ if and only if $\frac{u_{1}}{u_{0}}=\tan \theta_{+}\left(x_{1}, \lambda\right)$, (resp. $\frac{u_{1}}{u_{0}}=\tan$. $\left.\theta_{-}\left(x_{1}, \lambda\right)\right),(I I) \quad \theta_{ \pm}(x, \lambda)$ satisfies

$$
\begin{cases}-\frac{\pi}{2}<\theta_{+}(x, \lambda)<0 & \text { for } \tag{2.2}\\ 0<\theta_{-}(x, \lambda)<\frac{\pi}{2} & \text { for } \quad x \in\left(-\infty, x_{-}(\lambda)\right)\end{cases}
$$

and the following differential equation respectively

$$
\begin{equation*}
\frac{d \theta}{d x}=\frac{(q(x)-\lambda)-\tan ^{2} \theta}{1+\tan ^{2} \theta}, \quad \text { for all } \quad \lambda \in[m, M) \tag{2.3}
\end{equation*}
$$

(III) $\theta_{+}(x, \lambda),\left(\right.$ resp. $\left.\theta_{-}(x, \lambda)\right)$ is monotone increasing, (resp. decreasing) in λ at every point $x \in(-\infty, \infty)$.

Remark 2.1. From the above property (II) and the uniqueness of the solution of $(2.3), \theta_{+}(x, \lambda)=\theta_{-}(x, \lambda)+k \pi$ in $(-\infty, \infty),(k$, integer $)$, if $\theta_{+}\left(x_{1}, \lambda\right)=\theta_{-}\left(x_{1}, \lambda\right)+$ $k \pi$ at a point $x_{1} \in(-\infty, \infty)$.

Now we put

$$
\begin{equation*}
\Phi(x, \lambda)=\theta_{+}(x, \lambda)-\theta_{-}(x, \lambda) \tag{2.4}
\end{equation*}
$$

Then we have the following theorem.
Theorem 1. Suppose (C). Then there exists a continuous function $\Phi(x, \lambda)$ defined on $(-\infty, \infty) \times[m, M)$, which satisfies (1) $\Phi(x, \lambda)$ is monotone increasing in λ at every $x \in(-\infty, \infty)$, (2) $\quad-\pi<\Phi(x, m)<0$, and $\Phi\left(x, \lambda_{n}\right)=(n-1) \pi$ in $(-\infty, \infty)$ if $\Phi\left(x_{1}, \lambda_{n}\right)=(n-1) \pi$ at a point $x_{1} \in(-\infty, \infty)$. At that time $\lambda_{n},(n=1,2, \ldots$,$) are$ eigenvalues if and only if $\Phi\left(x, \lambda_{n}\right)=(n-1) \pi$. Corresponding eigenfunctions $u_{n}(x)$ are equal to the solutions of $u^{\prime \prime}=\left(q(x)-\lambda_{n}\right) u$ with $u\left(x_{+}\left(\lambda_{n}\right)\right)=1$ and $u^{\prime}\left(x_{+}\left(\lambda_{n}\right)\right)=$ $\tan \theta_{+}\left(x_{+}\left(\lambda_{n}\right), \lambda_{n}\right)$. Incidentally u_{n} has $(n-1)$ roots. Moreover $u_{n}^{\prime}(x)$ has just n zeros if $q(x)$ is assumed to be monotone in $\left(-\infty, x_{0}\right)$ and $\left(x_{0}, \infty\right)$, where x_{0} is a point satisfying $q\left(x_{0}\right)=\min _{-\infty<x<\infty} q(x)$.

Now we put

$$
\begin{align*}
& R(x, \lambda)=\Phi(x, \lambda)-\int_{-\infty}^{\infty} Q(s, \lambda) d s, \text { where } \tag{2.5}\\
& Q(x, \lambda)=\left\{\begin{array}{lll}
(\lambda-q(x))^{1 / 2}, & \text { if } & 0 \leq \lambda-q(x), \\
0, & \text { if } \lambda-q(x)<0 .
\end{array}\right.
\end{align*}
$$

Remark that $R\left(x, \lambda_{n}\right)$ is constant: $(n-1) \pi-\int_{-\infty}^{\infty} Q\left(s, \lambda_{n}\right) d s$. Put

$$
\begin{equation*}
R(\lambda)=R\left(x_{0}, \lambda\right) . \tag{2.6}
\end{equation*}
$$

We show the estimates for $R(x, \lambda)$ and $R\left(\lambda_{n}\right)$, in order to assure the actual appearance of λ_{n} in each given case.

Theorem 2. Suppose (C) and that $q(x)$ is monotone in $\left(x_{0}, \infty\right)$ and $\left(-\infty, x_{0}\right)$. Then we have the following estimates for $\lambda \in[m, M)$:

$$
\begin{aligned}
& \underline{E}(\lambda)-2 \pi<R(x, \lambda)<\bar{E}(\lambda)+\pi, \\
& \underline{E}\left(\lambda_{n}\right)-\pi<R\left(\lambda_{n}\right)<\bar{E}\left(\lambda_{n}\right), \quad\left(\lambda_{n}, \text { eigenvalues of } L\right)
\end{aligned}
$$

where $\underline{E}(\lambda)=\int_{-\infty}^{\infty} \underline{E}(s, \lambda) d s, \bar{E}(\lambda)=\int_{-\infty}^{\infty} \bar{E}(s, \lambda) d s$ and

$$
\begin{aligned}
& \underline{E}(x, \lambda)= \begin{cases}-\frac{1}{2}\left|(\log Q(x, \lambda))^{\prime}\right| & \text { if } 1 \leq \lambda-q(x), \\
-Q(x, \lambda)(1-Q(x, \lambda)) & \text { if } 0 \leq \lambda-q(x)<1, \\
0 & \text { if } \lambda-q(x)<0,\end{cases} \\
& \bar{E}(x, \lambda)= \begin{cases}\frac{1}{2}\left|(\log Q(x, \lambda))^{\prime}\right| & \text { if } 1 \leq \lambda-q(x), \\
1-Q(x, \lambda) & \text { if } 0 \leq \lambda-q(x)<1, \\
0 & \text { if } \lambda-q(x)<0 .\end{cases}
\end{aligned}
$$

Remark. Theorem 2 will be generalized in Section 6 to the case where $q(x)$ is not necessarily monotone in $\left(-\infty, x_{0}\right)$ and $\left(x_{0}, \infty\right)$.

The proofs of Proposition 1 and Theorems 1 and 2 rely upon the following comparison theorems which we state as lemmas.

Lemma 2. Let $q(x)$ and $\tilde{q}(x)$ be piecewise continuous functions such that $q(x)>\tilde{q}(x)$ on $[0, \infty)$. Suppose that there exists a solution $v(x)$ of $v^{\prime \prime}=\tilde{q}(x) v$ in $(0, \infty)$ satisfying $v(0)=1$ and $0<v(x)$ in $(0, \infty)$. Then $u^{\prime \prime}=q(x) u$ has a solution $u(x)$ satisfying $0<u(x)<v(x)$ in $(0, \infty)$ and $u(0)=1$. It holds $u^{\prime}(0)<v^{\prime}(0)$.

Lemma 3. Assume the same conditions as in Lemma 2. Moreover suppose that $v(x)$ is a unique bounded solution in $(0, \infty)$ of $v^{\prime \prime}=\tilde{q}(x) v$ satisfying $v(0)=1$. Then the bounded solution in $(0, \infty)$ of $u^{\prime \prime}=q(x) u$ with $u(0)=1$ is unique.

Now we introduce a notation.
Notation By $t(q)$ we denote $u^{\prime}(0)$, when $u^{\prime \prime}=q(x) u$ has a unique positive bounded solution $u(x)$ in $(0, \infty)$ satisfying $u(0)=1$.

Lemma 4. Let $\left\{q_{\mu}(x)\right\}_{0<\mu<1}$ be a family of functions satisfying the condition (C). Assume that q_{μ} converges to $q_{\mu_{0}}$ uniformly in each compact set of $[0, \infty)$ as μ tends to $\mu_{0} \in(0,1)$. Suppose that conditions in Lemmas 2 and 3 are fulfilled replacing q by q_{μ} for all $\mu \in(0,1)$. Then $t\left(q_{\mu}\right)$ converges to $t\left(q_{\mu_{0}}\right)$ as μ tends to μ_{0}.

Finally we point out some examples.
Example 1. If $q(x)>0$ in $(0, \infty)$, it follows that $\tilde{q}(x) \equiv 0$ satisfies all the conditions in Lemmas 2 and 3. Then applying Lemmas 2 and 3 in $\left(x_{1}, \infty\right)$ for all $x_{1} \in[0$, ∞), we see that $u^{\prime \prime}=q(x) u$ has a bounded solution $u(x)$ satisfying $\frac{u}{u}<0$ in $(0, \infty)$. Similarly $q(x)>\tilde{q}(x)>0$ in $(0, \infty)$ implies $\frac{u^{\prime}}{u}<\frac{v^{\prime}}{v}$ in $(0, \infty)$, where u and v are bounded solutions $u^{\prime \prime}=q(x) u$ and $v^{\prime \prime}=\tilde{q}(x) v$ respectively.

Remark. Let us confine ourselves to simple cases: $q>\tilde{q}$ or $q<\tilde{q}$, where
$q>\tilde{q}$ means $q(x)>\tilde{q}(x)$, on $[0, \infty]$. Then in Example $1,0<\tilde{q}<q$ equals to $\frac{u^{\prime}}{u}<\frac{v^{\prime}}{v}<$ 0. $\frac{u^{\prime}}{u}$ converges to $\frac{v^{\prime}}{v}$ if and only if q converges to \tilde{q} in the sense of Lemma 4 .

Example 2. As an application of the above Remark, we consider the harmonic oscillator: $q(x)=x^{2}$. Put $v=\exp \left(-a x^{k}\right)$, then $\tilde{q}(x)=\frac{v^{\prime \prime}}{v}=(a k)^{2} x^{2 k-2}-a k(k-1) x^{k-2}$. Taking $k=2$ and $a=\frac{1}{2}$ we see $\lambda_{1}=1$ and $u_{1}=\exp \left(-\frac{1}{2} x^{2}\right)$. Next put $v=$ $x^{k} \exp \left(-\frac{1}{2} x^{2}\right)$, then similarly $\lambda_{2}=3$ and $v_{2}=x \exp \left(-\frac{1}{2} x^{2}\right)$ follow. Step by step we have $\lambda_{n}^{2}=2 n-1$ and $u_{n}=\varphi_{n}(x) \exp \left(-\frac{1}{2} x^{2}\right)$ where $\varphi_{n}(x)$ is a polynominal of degree $n-1$ with $n-1$ real roots. Thus we approach to a motivation of Hermite polynomials.

Finally we comment on Lemmas stated above.
Remark. In Lemmas 2, 3, 4 and Example 1, we have the same results even if we replace $q(x)>\tilde{q}(x)$ by $q(x) \geq \tilde{q}(x)$, where $q(x)$ is not identically equal to $\tilde{q}(x)$. The proof is accomplished in the same way as in next section.

§3. Proofs of Lemmas

Proof of Lemma 1. Let $\chi(x)$ be a real valued C^{1} function satisfying $\chi(x)>0$ in $\left(\frac{1}{2}, \frac{1}{2}\right), \chi(x)=0$ in $\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right), \chi(x)=\chi(-x), \chi\left(x_{1}\right) \geq\left(x_{2}\right)$ for $0 \leq x_{1} \leq x_{2}$ and

$$
\begin{equation*}
\chi^{\prime}(x)^{2} \leq C \chi(x) \quad \text { in } \quad(-\infty, \infty), \quad \text { where } \quad C>0 . \tag{3.1}
\end{equation*}
$$

For example define $\chi(x)$ by $\left(x+\frac{1}{2}\right)^{2} H\left(x+\frac{1}{2}\right)$ in $\left(-\infty,-\frac{1}{3}\right),\left(-x+\frac{1}{2}\right)^{2}$. $H\left(-x+\frac{1}{2}\right)$ in $\left(\frac{1}{3}, \infty\right)$ and a suitable positive function in $\left(\frac{1}{3}, \frac{1}{3}\right)$, where $H(x)=1$ for $x>0$ and $H(x)=0$ for $x \leq 0$. Denote $(u, v)=\int_{-\infty}^{\infty} u(x) \frac{v}{v(x)} d x$ and

$$
\begin{equation*}
(u, v)_{\varepsilon}=(\chi(\varepsilon x) u, v) \quad \text { and } \quad L_{\varepsilon}=\chi(\varepsilon x) L . \tag{3.2}
\end{equation*}
$$

Let u be eigenfunction in L^{∞} corresponding to eigenvalue λ :

$$
\left\{\begin{array}{l}
\left(L_{\varepsilon} u, u\right)=\lambda(u, u)_{\varepsilon} \tag{3.3}\\
\sup |u| \leq C_{1} .
\end{array}\right.
$$

On the other hand the integration by parts yields

$$
\begin{equation*}
\left(L_{\varepsilon} u, u\right)=\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}+(q u, u)_{\varepsilon}+\varepsilon \int_{-\infty}^{\infty} \chi^{\prime}(\varepsilon x) u^{\prime}(x) \overline{u(x)} d x \tag{3.4}
\end{equation*}
$$

From Schwartz inequality and (3.1) it follows

$$
\begin{gather*}
\left|\int \chi^{\prime}(\varepsilon x) u^{\prime}(x) \overline{u(x)} d x\right| \leq C_{1} \varepsilon^{-1 / 2}\left(\int\left|\chi^{\prime}(\varepsilon x) u^{\prime}(x)\right|^{2} d x\right)^{1 / 2} \tag{3.5}\\
\leq C C_{1} \varepsilon^{-1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{1 / 2}
\end{gather*}
$$

From (3.3) and (3.4) we have

$$
\begin{align*}
& |\operatorname{Im} \lambda| \leq C C_{1} \varepsilon^{1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{1 / 2} /(u, u)_{\varepsilon} \equiv J_{\varepsilon}(u), \tag{3.6}\\
& \operatorname{Re} \lambda-\left\{\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}+(q u, u)_{\varepsilon}\right\} /(u, u)_{\varepsilon} \geq-J_{\varepsilon}(u) . \tag{3.7}
\end{align*}
$$

Since u^{\prime} is not identically zero it follows

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{-1 / 2}=0 \tag{3.8}
\end{equation*}
$$

Therefore (3.7) makes

$$
\begin{equation*}
\operatorname{Re} \lambda-m \geq\left\{\left(1-C C_{1} \varepsilon^{1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{-1 / 2}\right)\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}+((q-m) u, u)_{\varepsilon}\right\} /(u, u)_{\varepsilon} . \tag{3.9}
\end{equation*}
$$

Now making ε sufficiently small we have $\operatorname{Re} \lambda-m>0$. Then (3.6) and (3.9) give

$$
\begin{equation*}
\frac{\operatorname{Im} \lambda}{\operatorname{Re} \lambda-m} \leq \frac{C C_{1} \varepsilon^{1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{-1 / 2}}{1-C C_{1} \varepsilon^{1 / 2}\left(u^{\prime}, u^{\prime}\right)_{\varepsilon}^{-1 / 2}} . \tag{3.10}
\end{equation*}
$$

Tending ε to zero we have $\operatorname{Im} \lambda=0$.
Remark. The results of Lemma 1 and the outline of the above proof are also valid even if we replace $-\frac{d^{2}}{d x^{2}}+q(x)$ in R by $-\sum \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right)+q(x)$ in R^{n}. We will discuss it elsewhere.

Proof of Lemma 2. Let $u(x ; t)$ be solution of $u^{\prime \prime}=q(x) u, u(0)=1$ and $u^{\prime}(0)=t$. Denote
$U(q)=\left\{t \in\left(-\infty, v^{\prime}(0)\right),{ }^{\exists} x_{1}>0,0<u(x ; t)<v(x) \quad\right.$ in $\left.\quad\left(0, x_{1}\right), \quad u\left(x_{1} ; t\right)=v\left(x_{1}\right)\right\}$
$D(q)=\left\{t \in\left(-\infty, v^{\prime}(0)\right),{ }^{\exists} x_{1}>0,0<u(x ; t)<v(x) \quad\right.$ in $\left.\quad\left(0, x_{1}\right), \quad u\left(x_{1} ; t\right)=0\right\}$
Then $U(q)$ and $D(q)$ are open as follows. If $t \in U(q)$, then $u^{\prime}\left(x_{1} ; t\right) \geq v^{\prime}\left(x_{1}\right)$ follows. Now suppose $u^{\prime}\left(x_{1} ; t\right)=v^{\prime}\left(x_{1}\right)$, then $u^{\prime \prime}\left(x_{1} ; t\right)=q\left(x_{1}\right) u\left(x_{1} ; t\right)>\tilde{q}\left(x_{1}\right)$. $v\left(x_{1}\right)=v^{\prime \prime}\left(x_{1}\right)$ contradicts $0<u(x ; t)<v(x)$ in $\left(0, x_{1}\right)$. Hence $u^{\prime}\left(x_{1} ; t\right)>v^{\prime}\left(x_{1}\right)$. Therefore $U(q)$ is open. The similar argument is valid for $D(q)$. Now let us show that $U(q)$ contains an open interval $\left(v^{\prime}(0)-\delta, v^{\prime}(0)\right)$. We have $u\left(x ; v^{\prime}(0)\right)>v(x)$ holds in a neighbourhood of $x=0$, because of $u^{\prime \prime}\left(0 ; v^{\prime}(0)\right)=q(0)>\tilde{q}(0)$. Therefore the above assertion follows from the continuity of $u(x ; t)$ in t. On the other hand an interval $\left(-\infty,-t_{0}+\varepsilon\right)$ belongs to $D(q)$ for sufficient large t_{0}. Hence the connected interval $\left(-t_{0}, v^{\prime}(0)\right)$ involves at least a point α such that $\alpha \notin U(q) \cup D(q)$. Namely we have $0<u(x ; \alpha)<v(x)$ in $(0, \infty)$.

Proof of Lemma 3. It sufficies to prove that the solution $u_{1}(x)$ of $u_{1}^{\prime \prime}=q(x) u_{1}$, $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=1$ is not bounded in $(0, \infty)$. First we show that $v_{1}(x)$ satisfying $v_{1}^{\prime \prime}=\tilde{q}(x) v_{1}, v_{1}(0)=0$ and $v_{1}^{\prime}(0)=1$ is positive and unbounded. In fact, if $v_{1}(a)=0$ and
$0<v_{1}(x)$ in $(0, a)$ for some $a>0$, then we can find positive numbers $b \in(0, a)$ and c such that $0<v_{1}(x)<c v(x)$ in $(0, b), v_{1}(b)=c v(b)$ and $v_{1}^{\prime}(b)=c v^{\prime}(b)$. However this contradicts the uniqueness theorem on the solution of $v^{\prime \prime}=\tilde{q}(x) v$. Since the bounded solution $v(x)$ satisfying $v^{\prime \prime}=\tilde{q}(x) v$ in $(0, \infty)$ and $v(0)=1$ is unique, $v_{1}(x)$ is not bounded in $(0, \infty)$. Let us prove $u_{1}(x) \geq v_{1}(x)$ in $(0, \infty)$, which equals to $u_{1}(x)>$ $s v_{1}(x)$ in $(0, \infty)$ for any $s \in(0,1)$. Suppose $u_{1}(a)=s v_{1}(a)$ for some $a>0$, and $u_{1}(x)>$ $s v_{1}(x)$ in $(0, a)$. Then there exist $b \in(0, a)$ and $c>0$ such that $u_{1}(x)<s v_{1}(x)+c v(x)$ in $(0, b), u_{1}(b)=s v_{1}(b)+c v(b)$ and $u_{1}^{\prime}(b)=s v_{1}^{\prime}(b)+c v^{\prime}(b)$. However this is a contradiction since it holds $u_{1}^{\prime \prime}(b)=q(b) u_{1}(b)>\tilde{q}(b)\left(s v_{1}(b)+c v(b)\right)=s v_{1}^{\prime \prime}(b)+c v_{1}^{\prime \prime}(b)$ from $q(x)>\tilde{q}(x)$. Hence we have $u_{1}(x)>s v_{1}(x)$ in $(0, \infty)$. Therefore $u_{1}(x)$ is positive and unbounded in $(0, \infty)$. This means the uniqueness of the bounded solution of $u^{\prime \prime}=q(x) u$ satisfying $u(0)=1$.

Proof of Lemma 4. From Lemma 2 it holds $t\left(q_{\mu}\right)<t(\tilde{q})$ for all $\mu \in(0,1)$. Let $\varepsilon_{0}=t(\tilde{q})-t\left(q_{\mu_{0}}\right)$. For given positive number ε less than ε_{0}, from Lemma 3 we have $t\left(q_{\mu_{0}}\right)+\varepsilon \in U\left(q_{\mu_{0}}\right)$ and $t\left(q_{\mu 0}\right)-\varepsilon \in D\left(q_{\mu_{0}}\right)$. Let us recall the property of $U\left(q_{\mu_{0}}\right)$ if $t \in U\left(q_{\mu_{0}}\right)$, then there exists a positive number a such that the solution $u(x)$ of $u^{\prime \prime}=$ $q_{\mu_{0}}(x) u$ with $u(0)=1$ and $u^{\prime}(0)=t$ satisfies $0<u(x)<v(x)$ in $(0, a), u(a)=v(a)$ and $u^{\prime}(a)$ $>v^{\prime}(a)$. Then from the continuity of solutions of $u^{\prime \prime}=q(x) u$ for $q(x)$, there exists a positive number δ which is smaller than $\min \left\{\mu_{0}, 1-\mu_{0}\right\}$, such that $t\left(q_{\mu_{0}}\right)+\varepsilon \in U\left(q_{\mu}\right)$ and $t\left(q_{\mu_{0}}\right)-\varepsilon \in D\left(q_{\mu}\right)$ for all μ belonging to ($\mu_{0}-\delta, \mu_{0}+\delta$). Therefore from Lemma 3 we have $t\left(q_{\mu}\right) \in\left(t\left(q_{\mu_{0}}\right)-\varepsilon, t\left(q_{\mu_{0}}\right)+\varepsilon\right)$ for all $\mu \in\left(\mu_{0}-\delta, \mu_{0}+\delta\right)$. This completes the proof of Lemma 4.

§4. Proof of Theorem 1

First we state a preliminary lemma for the proof of Proposition 1.
Lemma 4.1. Let $f(x, y)$ and $g(x, y)$ be continuous in R^{2} and satisfy the Lipschitz condition in y. Assume $f(x, y) \geq g(x, y)$ in R^{2}. Then $u(a)>v(a)$, (reps. $u(a)<v(a)$) implies $u(x)>v(x)$ in (a, ∞), (resp. $u(x)<v(x)$ in $(-\infty, a)$).

Proof. In the case of $f(x, y)>g(x, y)$ in R^{2}, the result is easily verified by method of contradiction. We prove the general case in the following way. Suppose $u\left(x_{1}\right) \leq v\left(x_{1}\right)$ at $x=x_{1} \in(a, \infty)$. Let $u_{\varepsilon}(x)$ be solution of $u_{\varepsilon}^{\prime \prime}=f\left(x, u_{\varepsilon}\right)+\varepsilon$ with $u_{\varepsilon}\left(x_{1}\right)=u\left(x_{1}\right)-\varepsilon$. Then form the result in the above case we have $u_{\varepsilon}(x)<$ $v(x)$ in $\left(-\infty, x_{1}\right)$. Therefore $u(a)=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(a) \leq v(a)$ contradicts the assumption.

Collary of Lemma 4.1. In the statements of Lemma 4.1 we can replace $u(a)>v(a), u(x)>v(x)$ etc. by $u(a) \geq v(a), u(x) \geq v(x)$ etc. respectively, by virtue of the continuity of solutions.

Proof of Proposition 1. From the definition of $x_{+}(\lambda)$, it holds

$$
\begin{equation*}
q(x)-\lambda>0 \text { in }\left(x_{1}, \infty\right), \text { where }\left(x_{1}, \lambda\right) \in\left(x_{+}(\lambda), \infty\right) \times[m, M) . \tag{4.1}
\end{equation*}
$$

Take $\tilde{q}(x) \equiv 0$ and apply Lemma 2 replaced $(0, \infty)$ and $q(x)$ by $\left(x_{1}, \infty\right)$ and $q(x)-\lambda$
respectively. Then we know that for each $\lambda \in[m, M)$, there exists a negative valued function $I_{+}\left(x_{1}, \lambda\right)$ defined in $\left(x_{+}(\lambda), \infty\right)$, such that the non-zero solution $u(x)$ of $u^{\prime \prime}=$ $(q(x)-\lambda) u$ is bounded in $\left(x_{1}, \infty\right)$ if and only if $u^{\prime}\left(x_{1}\right) / u\left(x_{1}\right)=I_{+}\left(x_{1}, \lambda\right)$. From Lemma 3, $I_{+}(x, \lambda)$ is continuous in $\left(x_{+}(\lambda), \infty\right)$ for each $\lambda \in[m, M)$. Put

$$
\begin{equation*}
\theta_{+}(x, \lambda)=\operatorname{Tan}^{-1} I_{+}(x, \lambda), \tag{4.2}
\end{equation*}
$$

then $\theta_{+}(x, \lambda)$ satisfies $-\frac{\pi}{2}<\theta_{+}(x, \lambda)<0$ in $\left(x_{+}(\lambda), \infty\right)$ and

$$
\begin{equation*}
\theta^{\prime}=\frac{(q(x)-\lambda)-\tan ^{2} \theta}{1+\tan ^{2} \theta} \tag{4.3}
\end{equation*}
$$

in $\left(x_{+}(\lambda), \infty\right)$. The equation (4.3) and

$$
\begin{equation*}
u^{\prime \prime}=(q(x)-\lambda) u \tag{4.4}
\end{equation*}
$$

are translated each other by putting $u(x)=u\left(x_{0}\right) \exp \int_{x_{0}}^{x} \tan \theta(s, \lambda) d s$ or $\theta=\tan ^{-1} \frac{u^{\prime}}{u}$, so long as $u \neq 0$ or $\theta \neq\left(n+\frac{1}{2}\right) \pi$, (n : integers). ${ }^{x o}$ Since the right hand side ${ }^{u}$ of (4.3) is bounded in any compact set in $R^{2} \ni(x, \theta)$ and that of (4.4) is linear, definition domains of solutions θ and u can be extended to $(-\infty, \infty)$ so that the relation $\theta=$ $\tan ^{-1} \frac{u^{\prime}}{u}$ holds even if u takes zero. In this way we define $\theta_{+}(x, \lambda)$ on $(-\infty, \infty) \times$ [m, M). Then $\theta_{+}(x, \lambda)$ is continuous in $\lambda \in[m, M)$ at every fixed $x \in(-\infty, \infty)$. In fact from Lemma $4 \theta_{+}(x, \lambda)$ is continuous in λ at every x in $\left(x_{+}(M-\delta), \infty\right)$ if λ is restricted in $[m, M-\delta$), where δ is an arbitrary small constant. Hence we have the desired result from the continuity of solutions of (4.3) for initial data. Moreover from Lemma 2 and Lemma $4.1 \theta_{+}(x, \lambda)$ is a monotone increasing function in $\lambda \in$ $[m, M)$ at every $x \in(-\infty, \infty)$. From this monotony follows the continuity of θ_{+} (x, λ) in (x, λ). Similarly we can define $\theta_{-}(x, \lambda)$ and the corresponding properties.

Proof of Theorem 1. From (2.2) it follows $0<\theta_{-}\left(x_{1}, m\right)<\frac{\pi}{2}$ for $x_{1} \in(-\infty$, $\left.x_{-}(m)\right)$. Now we compare $\theta_{-}(x, m)$ with $\tilde{\theta} \equiv 0$ which is a solution of $\tilde{\theta}^{\prime}=$ $\frac{-\tan ^{2} \tilde{\theta}}{1+\tan ^{2} \tilde{\theta}}$, applying Lemma 4.1 with $u=\theta_{+}(x, m), v \equiv 0, f(x, y)=\frac{(q(x)-m)-\tan ^{2} y}{1+\tan ^{2} y}$ $\left.\begin{array}{l}1+\tan ^{2} \vec{\theta} \\ \text { and } g(x, y)\end{array}\right) \frac{-\tan ^{2} y}{1+\tan ^{2} y}$. Then $0<\theta_{-}\left(x_{1}, m\right)$ implies $0<0_{-}(x, m)$ in $\left(x_{1}, \infty\right)$. Thus we have $0<\theta_{-}(x, m)$ in $(-\infty, \infty)$. Now we remark that $\theta_{-}(x, \lambda)$ is decreasing when $\theta_{-}(x, \lambda)=\frac{\pi}{2}(\bmod \pi)$, because $\theta_{-}^{\prime}=-1$ when $\tan ^{2} \theta_{-}=\infty$ in (2.3). Therefore we have $0<\theta_{-}(x, m)<\frac{\pi}{2}$ in $(-\infty, \infty)$. Similarly follows $-\frac{\pi}{2}<\theta_{+}(x, \lambda)<0$ in $(-\infty, \infty)$. Hence by definition $-\pi<\Phi\left(x_{0}, m\right)<0$. And in the same time $-\pi<\Phi(x, m)<0$ in $(-\infty, \infty)$. For simplicity we consider $\Phi(x, \lambda)$ at $x=x_{0}$. From Proposition 1, $\Phi\left(x_{0}, \lambda\right)$ is increasing continuous function. If $\lim _{\lambda \rightarrow M} \Phi\left(x_{0}, \lambda\right)>$ $(n-1) \pi$ we define λ_{n} by $\Phi\left(x_{0}, \lambda_{n}\right)=(n-1) \pi,(n=1,2, \ldots)$. We have ${ }^{\lambda}$.

$$
m<\lambda_{1}<\lambda_{2}, \ldots,(<M)
$$

Let us put $u_{n}^{+}=\exp \int_{x_{+}\left(\lambda_{n}\right)}^{x} \theta_{+}\left(s, \lambda_{n}\right) d s$ in $\left(x_{+}\left(\lambda_{n}\right), \infty\right)$ and $u_{n}^{-}=\exp \int_{x_{-}\left(\lambda_{n}\right)}^{x} \theta_{-}\left(s, \lambda_{n}\right) d s$
in $\left(-\infty, x_{-}\left(\lambda_{n}\right)\right)$. Then u_{n}^{+}satisfies $\left(u_{n}^{+}\right)^{\prime \prime}=\left(q(x)-\lambda_{n}\right) u_{n}^{+}$. We extend u_{n}^{+}as solutions of this equation. Then $\tan \theta_{ \pm}\left(x, \lambda_{n}\right)=\frac{u_{n}^{ \pm^{\prime}}\left(x, \lambda_{n}\right)}{u_{n}^{ \pm}\left(x, \lambda_{n}\right)} . \Phi\left(x_{0}, \lambda_{n}\right)=(n-1) \pi$ equals $\theta_{+}(x$, $\left.\lambda_{n}\right)=\theta_{-}\left(x, \lambda_{n}\right)+(n-1) \pi$, i.e. $\left(\log u_{n}^{+}\right)^{\prime}=\left(\log u_{n}^{-}\right)^{\prime} . \quad$ Thus we have $u_{n}^{+}(x)=C u_{n}^{-}(x)$. Put $u_{n}(x)=u_{n}^{-}(x)$. Then $u_{n}(x)$ is bounded in $(-\infty, \infty)$ and satisfies $L u_{n}=\lambda_{n} u_{n}$. From (2.2) and $\Phi\left(x, \lambda_{n}\right)=(n-1) \pi$ in $(-\infty, \infty)$ we see that $u_{n}(x)$ has $(n-1)$ zero in $(-\infty, \infty)$ since $\theta_{ \pm}^{\prime}=-1$ if $\tan ^{2} \theta_{ \pm}=\infty$. Moreover, if we assume that $q(x)$ is monotone in $\left(-\infty, x_{0}\right)$ and in $\left(x_{0}, \infty\right)$, then u_{n}^{\prime} has n zero in $(-\infty, \infty)$, because $\theta_{-}^{\prime}(x, \lambda)$ is decreasing in $\left(x_{-}(\lambda), x_{+}(\lambda)\right)$.

§5. Proof of Theorem 2

From the definition of $R(x, \lambda)$ in (2.5) it follows

$$
\begin{align*}
R(x, \lambda)= & -\int_{x_{-}(\lambda)}^{x}\left(\theta_{-}^{\prime}(s, \lambda)+Q(s, \lambda)\right) d s-\int_{x}^{x_{+}(\lambda)}\left(\theta_{+}^{\prime}(s, \lambda)+Q(s, \lambda)\right) d s \tag{5.1}\\
& +\left\{\theta_{+}\left(x_{+}(\lambda), \lambda\right)-\theta_{-}\left(x_{-}(\lambda), \lambda\right)\right\} .
\end{align*}
$$

Remark that the third term is estimated from (2.2), (2.3) and Lemma 4.1 as follows.

$$
\begin{equation*}
-\pi<\left\{\theta_{+}\left(x_{+}(\lambda), \lambda\right)-\theta_{-}\left(x_{-}(\lambda), \lambda\right)\right\}<0 . \tag{5.2}
\end{equation*}
$$

However the integrations of $\left|\theta_{ \pm}^{\prime}+Q\right|$ are not small in general. Therefore we define a modification of $\theta_{ \pm} ; \tilde{\theta}_{ \pm}$in the following way such that the integrations of $\left|\tilde{\theta}_{ \pm}^{\prime}+Q\right|$ become smaller:

$$
\begin{align*}
& \tan \tilde{\theta}_{ \pm}(x, \lambda)=\tan \left(\theta_{ \pm}(x, \lambda) / \hat{Q}(x, \lambda)\right), \tag{5.3}\\
& \sup \left|\tilde{\theta}_{ \pm}(x, \lambda)-\theta_{ \pm}(x, \lambda)\right|<\pi / 2 \quad \text { for } \quad(x, \lambda) \in(-\infty, \infty) \times[m, M), \\
& \widetilde{Q}(x, \lambda)=\left\{\begin{array}{lll}
Q(x, \lambda) & \text { if } & q(x)-\lambda \leq-1, \\
1 & \text { if } & -1<q(x)-\lambda .
\end{array}\right.
\end{align*}
$$

where

First we notice that $\tilde{\theta}_{+}(x, \lambda)$ satisfies
(i) $\left|\tilde{\theta}_{ \pm}(x, \lambda)-\theta_{ \pm}(x, \lambda)\right|<\frac{\pi}{2}$,
(ii) $\quad \tilde{0}_{ \pm}(x, \lambda)=\frac{k \pi}{2} \quad$ if $\quad \theta_{ \pm}(x, \lambda)=\frac{k \pi}{2}, \quad(k$: integers $)$,
(iii) $\quad \tilde{\theta}_{ \pm}(x, \lambda)=\theta_{ \pm}(x, \lambda) \quad$ if $\quad-1 \leq q(x)-\lambda$,
(iv) $\tilde{\theta}_{+}\left(x, \lambda_{n}\right)-\tilde{\theta}_{-}\left(x, \lambda_{n}\right)=\theta_{+}\left(x, \lambda_{n}\right)-\theta\left(x, \lambda_{n}\right)=(n-1) \pi$.

Let us put

$$
\begin{equation*}
\tilde{\Phi}(x, \lambda)=\tilde{\theta}_{+}(x, \lambda)-\tilde{\theta}_{-}(x, \lambda) . \tag{5.5}
\end{equation*}
$$

Then from (5.4) we have

$$
\begin{equation*}
-\pi<\Phi(x, \lambda)-\tilde{\Phi}(x, \lambda)<\pi, \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(x, \lambda_{n}\right)=\tilde{\Phi}\left(x, \lambda_{n}\right)=(n-1) \pi . \tag{5.7}
\end{equation*}
$$

We rewrite (5.1) as follows

$$
\begin{align*}
R(x, \lambda)= & -\int_{x_{-}(\lambda)}^{x}\left(\tilde{\theta}_{-}^{\prime}(s, \lambda)+Q(s, \lambda)\right) d s-\int_{x}^{x+(\lambda)}\left(\tilde{\theta}_{+}^{\prime}(s, \lambda)+Q(s, \lambda)\right) d s \tag{5.1}\\
& +\left\{\theta_{+}\left(x_{+}(\lambda), \lambda\right)-\theta_{-}\left(x_{-}(\lambda), \lambda\right)\right\}+\{\Phi(x, \lambda)-\tilde{\Phi}(x, \lambda)\} .
\end{align*}
$$

From (5.3) we have

$$
\tilde{\theta}_{ \pm}^{\prime}(x, \lambda)= \begin{cases}-Q(x, \lambda)-\left(Q^{\prime} \mid Q\right)\left(Q I_{ \pm} /\left(Q^{2}+I_{ \pm}^{2}\right)\right), & \text { if } \quad q(x)-\lambda \leq-1, \tag{5.8}\\ \left(q(x)-\lambda-I_{ \pm}^{2}\right) /\left(1+I_{ \pm}^{2}\right), & \text { if } \quad-1<q(x)-\lambda,\end{cases}
$$

where $Q=Q(x, \lambda)=(\lambda-q(x))^{1 / 2}$ and $I_{ \pm}=\tan \theta_{ \pm}$.
Then the integrands in (5.1)' are estimated as follows.

$$
\begin{array}{ll}
\left|\tilde{\theta}_{ \pm}^{\prime}+Q\right| \leq \frac{1}{2}\left|(\log Q)^{\prime}\right|, & \text { if } \quad q(x)-\lambda \leq-1 \\
Q-1 \leq \theta_{ \pm}^{\prime}+Q \leq Q(1-Q), & \text { if } \quad-1<q(x)-\lambda \tag{5.10}
\end{array}
$$

From (5.1)', (5.2), (5.6), (5.9) and (5.10) we have Theorem 2.

§6. Generalization of Theorem 2

Here we consider Theorem 2 without the monotony of $q(x)$ in $\left(-\infty, x_{0}\right)$ and in $\left(x_{0}, \infty\right)$. First we describe

Lemma 6.1. Let $q(x)$ be continuous and positive in $\left(x_{1}, x_{2}\right)$. Suppose that the solution $\theta(x)$ of $\theta^{\prime}=\frac{q(x)-\tan ^{2}}{1+\tan ^{2}}$ satisfies $n \pi \leq \theta\left(x_{3}\right) \leq\left(n+\frac{1}{2}\right) \pi$ at $x_{3} \in\left(x_{1}, x_{2}\right)$. Then it follows

$$
n \pi<\theta(x)<\left(n+\frac{1}{2}\right) \pi \quad \text { in } \quad\left(x_{3}, x_{2}\right) .
$$

Proof. $\quad F(x, \theta)=\frac{q(x)-\tan ^{2} \theta}{1+\tan ^{2} \theta}$ is negative if $\theta=\left(n+\frac{1}{2}\right) \pi$ and $F(x, \theta)$ is positive if $\theta=n \pi$ and $q(x)>0$. Therefore we have

$$
n \pi<\theta(x)<\left(n+\frac{1}{2}\right) \pi \quad \text { in } \quad\left(x_{3}, x_{2}\right) .
$$

Corollary. Suppose $q(x)>0$ in $\left(x_{1}, x_{2}\right)$. Then the variation of $\theta(x)$ in $\left(x_{1}, x_{2}\right)$ is less than π.

Now we decompose $\Omega_{+}(\lambda)=\{x ; q(x)-\lambda>0\}$ as follows

$$
\begin{equation*}
\Omega_{+}(\lambda)=\left(-\infty, x_{-}(\lambda)\right) \cup\left(\left(x_{+}(\lambda), \infty\right) \bigcup_{i=1}^{k} \omega_{i}(\lambda)\right. \tag{6.1}
\end{equation*}
$$

where $\omega_{i}(\lambda)$ are connected open finite intervals. From (5.8) we have

$$
\begin{equation*}
-1 \leq \theta_{ \pm}^{\prime}(x, \lambda) \leq q(x)-\lambda \quad \text { if } \quad 0<q(x)-\lambda . \tag{6.2}
\end{equation*}
$$

From the above Corollary and (6.2) we have
Theorem 2'. Assume (C). Then we have the estimates:

$$
\begin{aligned}
& \underline{E}(\lambda)-\underline{F}(\lambda)-2 \pi<R(x, \lambda)<\bar{E}(\lambda)+\bar{F}(\lambda)+\pi, \\
& \underline{E}\left(\lambda_{n}\right)-F\left(\lambda_{n}\right)-\pi<R\left(\lambda_{n}\right)<\bar{E}\left(\lambda_{n}\right)+F\left(\lambda_{n}\right),
\end{aligned}
$$

where $\underline{F}(\lambda)$ and $\bar{F}(\lambda)$ are given below and other notations are the same ones as in the precedent sections. Incidentally $u_{n}^{\prime}(x)$ has at most $n+2 k$ zeros.

$$
\begin{aligned}
& \underline{F}(\lambda)=\sum_{i=1}^{k} \min \left\{\int_{\omega_{i}(\lambda)}(q(x)-\lambda) d x, \pi\right\} \\
& \bar{F}(\lambda)=\sum_{i=1}^{k} \min \left\{\int_{\omega_{i}(\lambda)} 1 d x, \pi\right\} .
\end{aligned}
$$

Department of Mathematics Kyoto University

References

[1] L. D. Landau-E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1967.
[2] S. Miyatake, Théorèmes de comparaison pour les équations defférentielles du second ordre, C. R. Acad. Sci., (5) 289 (1979), 345-347.
[3] S. Miyakate, Comparison theorem for differential equations of second order and its application to the Thomas - Fermi problem, to appear.
[4] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1973.
[5] W. Pauli, Pauli's lecture on physics, Quantum mechanics, Kodansha, Tokyo, 1976.
[6] E.C. Titchmarsh, Eigenfunction expansions associated with second order differential equations, Clarendon Press, Oxford, 1946.

