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Abstract—Maximum-distance separable (MDS) convolutional codes are
characterized through the property that the free distance attains the gener-
alized Singleton bound. The existence of MDS convolutional codes was es-

tablished by two of the authors by using methods from algebraic geometry.
This correspondence provides an elementary construction of MDS convo-

lutional codes for each rate and each degree . The construction is
based on a well-known connection between quasi-cyclic codes and convo-

lutional codes.

Index Terms—Convolutional codes, generalized Singleton bound, max-
imum-distance separable (MDS) convolutional codes.

I. INTRODUCTION

The free distance of a rate convolutional code of degree is

always upper-bounded by the generalized Singleton bound

(1.1)

see [1]. We will provide an alternative proof of this result in the next

section. If , i.e., in the case of block codes, (1.1) simply reduces

to the well-known Singleton bound

(1.2)

cf. [2, Ch. 1, Theorem 11]. The authors of [1] showed the existence

of rate convolutional codes of degree whose free distance was

equal to the generalized Singleton bound (1.1) and they called such

codes maximum-distance separable (MDS) convolutional codes. The

existence was established in [1] by techniques from algebraic geometry

without giving an explicit construction. This correspondence is based

on ideas from Justesen [3] and it provides an explicit construction of

MDS convolutional codes for each rate and each degree . The

construction itself uses a well-known connection between quasi-cyclic

codes and convolutional codes which has been worked out by several

authors [3]–[6].

The correspondence is structured as follows. In the remainder of this

section we introduce the basic notions which will be needed throughout

the correspondence. In Section II, we give a new derivation of the gen-

eralized Singleton bound (1.1). The main new results will be given in

Section III.

Let be a finite field, the polynomial ring, and the field

of rational functions. Let be a matrix over the polynomial

Manuscript received September 15, 1999; revised November 30, 2000. This
work was supported in part by NSF under Grants DMS-96-10389 and DMS-00-
72383. The work of R. Smarandache was supported by a fellowship from the
Center of Applied Mathematics at the University of Notre Dame. J. Rosenthal
was carrying out this work while he was a Guest Professor at EPFL in Switzer-
land. Thematerial in this correspondence was presented in part at the 2000 IEEE
International Symposium on Information Theory, Sorrento, Italy, June 25–30,
2000.
R. Smarandache and J. Rosenthal are with the Department of Mathematics,

University of Notre Dame, Notre Dame, IN 46556 USA (e-mail: Smaran-
dache.1@nd.edu; Rosenthal.1@nd.edu).
H. Gluesing-Luerssen is with the Department of Mathematics, Universität

Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany (e-mail: gluesing@
mathematik.uni-oldenburg.de).
Communicated by R. M. Roth, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(01)04751-4.

ring , with . For the purpose of this correspon-

dence, we define the rate convolutional code generated by

as the set

and say that is a generator matrix for the convolutional code

. If the generator matrices and both generate the same

convolutional code then there exists a invertible matrix

with and we say and are equiva-

lent encoders.

Because of this, we can assume without loss of generality that the

code is presented by a minimal basic encoder . For this, let

be the th-row degree of , i.e., . In the

literature [7], the indexes are also called the constraint length for the

th input of the matrix . Then one defines the following.

Definition 1.1: Apolynomial generator matrix is called basic

if it has a polynomial right inverse. It is called minimal if

attains the minimal value among all generator matrices of .

A basic generator matrix is automatically noncatastrophic, this

means finite-weight codewords can only be produced from fi-

nite-weight messages. If is a minimal basic encoder one defines

the degree [8] of as the number . In the literature,

the degree is sometimes also called the total memory [9] or the

overall constraint length [7] or the complexity [10] of the minimal

basic generator matrix , a number dependent only on . Among

all these equivalent expressions we like the term degree best since

it relates naturally to equal objects appearing in systems theory and

algebraic geometry. The following remarks explain this notion.

Remark 1.2: It has been shown by Forney [11] that the set

of row degrees is the same for all minimal basic

encoders of . Because of this reason, McEliece [8] calls these indexes

the Forney indexes of the code . These indexes are also the same as

the Kronecker indexes of the row module

when is a basic encoder. The Pontryagin dual of defines a

linear time-invariant behavior in the sense of Willems [12], [13], i.e., a

linear system. Under this identification, the Kronecker indexes of

correspond to the observability indexes of the linear system [14]. The

sum of the observability indexes is equal to the McMillan degree of

the system. Finally, defines in a natural way a quotient sheaf [15]

over the projective line and, in this context, one refers to the indexes

as the Grothendieck indexes of the quotient sheaf and

as the degree of the quotient sheaf.

We feel that the degree is the single most important code parameter

on the side of the transmission rate . In the sequel, we will adopt

the notation used by McEliece [8, p. 1082] and denote by a

rate convolutional code of degree .

For any -component vector , we define its weight as

the number of all its nonzero components. The weight of a

vector is then the sum of the weights of all its -co-

efficients. Finally, we define the free distance of the convolutional code

through

(1.3)

It is an easy but crucial observation that in case we are given a basic

encoder the free distance can also be obtained as
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This follows simply from the fact that, if has a polynomial right

inverse, a nonpolynomial message would result in a nonpolyno-

mial codeword , which, of course, has infinite weight.

In the sequel, we wish to link the free distance to two types of dis-

tances known from the literature. Following the approach in [16], [7]

we shall define the column distances and the row distances . In

order to do so let us suppose

is an encoder with row degrees . Denote by (1.4) the

semi-infinite sliding generator matrix, as shown at the bottom of the

page. Then the convolutional code can be defined as

for

Then the th-order column distance is defined as the minimum of

the weights of the truncated codewords re-

sulting from an information sequence with

. Precisely, if denotes the upper-left sub-

matrix of the semi-infinite matrix , then

The quantity is called the minimum distance of the code and

the tuple is called the distance profile. The

limit exists and we have the relation

Then is the minimal distance computed over all finite or infinite

codewords of . It is shown in [7] that .

The th row distance is defined as the minimum of the weights

of all the finite codewords resulting

from an information sequence . Thus,

if we denote by the upper-left submatrix

of the semi-infinite matrix , the th-row distance is

(1.5)

The limit exists and one has (see, e.g., [7]) for every

encoder the relation

(1.6)

In terms of state-space descriptions [17], [14] is equal to the min-

imal weight of a nonzero trajectory which starts from and returns to

the all-zero state. is equal to the minimal weight of a nonzero tra-

jectory which starts from and not necessarily returns to the all-zero

state. Furthermore, if the generator matrix is minimal basic, then

(see [17], [7] for details). It follows that for a basic

encoder the minimal-weight codewords are generated by finite infor-

mation sequences.

II. THE GENERALIZED SINGLETON BOUND

It is certainly a most natural question to ask how large the distance

of a rate code of some bounded degree can be. McEliece [8]

calls codes having the largest free distance among all codes

distance optimal. Codes of degree correspond to linear

block codes and here we know that the distance cannot be larger than

the Singleton bound . In [1], it was shown that the free dis-

tance can never be larger than the generalized Singleton bound (1.1)

for an -code. In the sequel we will give a new derivation of

this bound.

Once the row degrees of the minimal basic encoder

are specified one has a natural upper bound on the free distance

of a convolutional code. The following result was derived in [1].

Theorem 2.1: Let be a rate convolutional code generated by

a minimal-basic encoding matrix . Let be the row

degrees of and denote the value of the

smallest row degree. Finally, let be the number of indexes among

the indexes having the value . Then the free distance must

satisfy

(2.1)

The proof given in [1] was based on the polynomial generator matrix

. In the sequel, we provide a proof by means of the sliding matrix

introduced in (1.4).

Proof: Without loss of generality, we may assume

Let be the infinite sliding generator matrix associated to as

in (1.4). We will show that the bound (2.1) is actually a bound on the

0th row distance defined in (1.5),; in other words, we will show that

From this, the claim follows using (1.6). To

prove the bound on , we only need to look at the first block-row of

the sliding matrix denoted by

For all let denote the matrix formed by

the first rows of the matrix . All matrices are

zero. Hence the minimum distance of the block code

generated by is smaller than

the minimum distance of the block code generated by

, which is upper-bounded by the Singleton

bound . Therefore, we obtain the desired bound on

and hence on the free distance

Remark 2.2: It was pointed out to the authors by a referee that The-

orem 2.1 can also be derived from [8, Theorem 4.4] and [8, Corol-

lary 4.3].

In the case of a block code, i.e., when and , the upper

bound in (2.1) is identical to the Singleton bound (1.2).

It is easy to see that for given and , the upper bound (2.1) is

maximized if and only if is as big as possible while is as small as

possible, which results in

(2.2)

We will call the above set of indexes the generic set of row degrees as

they are sometimes referred to in the systems literature.

Remark 2.3: McEliece [8, p. 1083] calls a code having the generic

set of row degrees compact. In systems theory, the set of row degrees

corresponds to the observability indexes of the associated

(Pontryagin dual) linear system. (Compare with Remark 1.2 and [14]).

It is known that the set of all linear systems having a fixed input number

, a fixed output number , and a fixed McMillan degree has in a

. . .
. . .

. . .
. . .

. . .

(1.4)
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natural way the structure of a smooth projective variety [15]. The subset

of systems having the generic set of row degrees forms a Zariski open

subset of this variety, i.e., a generic set in the sense of algebraic geom-

etry. This explains why systems theorists call the indexes appearing in

(2.2) the generic set of row degrees.

Specializing the above result to the generic set of row degrees we get

the following upper bound in terms of the degree .

Theorem 2.4: For every base field and every rate convolu-

tional code of degree , the free distance is bounded by

(2.3)

The main result of [1] states.

Theorem 2.5: For any positive integers and for any prime

there exists a rate convolutional code of degree over a suffi-

ciently big field of characteristic , whose free distance is equal to the

upper bound (2.3).

Based on Theorems 2.4 and 2.5 we introduce the following notions.

Definition 2.6: The upper bound (2.3) is called the generalized Sin-

gleton bound. A rate code of degree whose free distance achieves

the generalized Singleton bound is called anMDS convolutional code.

The proof of Theorem 2.5 given in [1] is nonconstructive and it

makes use of algebraic geometry. For some special set of rates

and degree , e.g., [18] or [19], constructions which

lead toMDS convolutional codes can be found in the literature. We are,

however, not aware of a construction in the general case.

The algebraic conditions used in [1] to describe the set of MDS con-

volutional codes were very involved and we do not know of a simple

algebraic criterion in general. For small parameters and it is,

however, often easy to decide if a particular code is MDS. The fol-

lowing example illustrates this.

Example 2.7: Consider the rate convolutional code over the

base field defined through the encoding matrix

Here the row degrees are and , and the total

degree is . form a generic set of row degrees and the upper

bounds in (2.1) and (2.3) are in this case both equal to .

It follows that is an MDS convolutional code if the free dis-

tance of this code is equal to . One verifies that the 0th column distance

and the first column distance is , the maximal possible.

It follows from Theorem 2.1 that MDS convolutional codes neces-

sarily have the generic set of row degrees as in (2.2). It is worth men-

tioning that within the class of all rate codes with fixed degree ,

the distribution (2.2) of the row degrees leads to the smallest possible

memory.

The set of convolutional codes of rate and degree is subdi-

vided into codes whose encoding matrices have a fixed set of

row degrees with . In Theorem 2.1, we gave

an upper bound for the free distance for a code whose row degrees

are not necessarily the generic set of indexes. It is an open question

if there always exist convolutional codes having given row degrees

and free distance equal to the right-hand side

of (2.1).

We conclude the section with a simple theorem that tells us how to

obtain MDS convolutional codes of rate from MDS codes of rate

where .

Theorem 2.8: Let be a convolutional code of rate generated

by the minimal-basic encoding matrix with row

indexes

where

Let be the matrix obtained from by omit-

ting any of the last last rows of . If the free distance of

achieves the upper bound (2.1), then the same is true for the code

generated by the encoder . In particular, if is an MDS code, then

so is .

Proof: First note that noncatastrophicity as well as the full-rank

conditions carry over to the matrix . Moreover, the codes and

both have the same minimal row degree and the same number of

rows having this degree . Therefore, the upper bound (2.1) has the

same value for both codes and the theorem follows from the inclusion

.

III. A CONSTRUCTION OF RATE MDS CONVOLUTIONAL CODES

In this section, we will provide a concrete construction of an

MDS convolutional code for each degree and each rate

. The underlying idea here follows the lines of [3], [5] which is

an instance of the relationship between quasi-cyclic block codes and

convolutional codes. We will not go into the details of this connection,

rather refer the reader to [3], [4], [6].

As defined in [3], [5], a convolutional code is said to be generated

by a polynomial

(3.1)

if it has a polynomial encoder of the form (3.2) shown in at the bottom

of the page. It is immediate that if .

The code

is isomorphic to

(3.3)

the isomorphism is simply multiplexing and, therefore, weight-pre-

serving. We will not use the description (3.3) but rather the encoder

matrix in (3.2).

The following theorem will lead us to the construction of MDS con-

volutional codes. Recall that two elements are called -equiv-

alent if .

Theorem 3.1 [3, Theorem 3]: Let be a prime and . Let

generate a cyclic code over of length relatively

prime to and of distance . Let be any positive divisor of and

...
...

. . .
. . .

...

(3.2)
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. If has at most roots in each -equivalence class,

then the generator matrix defined in (3.2) is basic minimal and

describes a convolutional code of free distance .

Now we are ready to construct MDS codes of any rate and

any degree . The idea is as follows. We will construct a polynomial

of degree which generates a rate

Reed–Solomon block code whose distance is equal to the Singleton

bound . The parameters and will be chosen such that

and which is the MDS bound

for the given parameters and (see (2.3)). The polynomial

will satisfy the conditions of Theorem 3.1, thus we obtain the desired

MDS convolutional code.

To accomplish this the following technical lemma will be needed.

Lemma 3.2: Let be a prime and fixed positive integers

such that and are relatively prime and . Then there exist

positive integers and

(3.4)

solving the Diophantine equation

(3.5)

Proof: Consider the multiplicative group which has

order . Since we know that for all

. In particular, is divisible by . Choose such that

(3.4) is satisfied for

In the sequel, assume that is a solution of (3.5) satisfying the

inequality (3.4). Let and let .

It is easily seen that . Let be a primitive element

of and define

(3.6)

The polynomial defines a rate Reed–Solomon block code

with distance

as desired.

Theorem 3.3: Let and be integers with and not

divisible by . Then there exists anMDS convolutional code of rate

and degree over some suitably big field of characteristic . Indeed, the

generator matrix in (3.2) induced by the polynomial given

in (3.6) defines an MDS convolutional code of rate and degree

over .

Proof: First we show that the generator matrix is of degree

. In order to do so, we calculate the degrees of the polynomials

in the expansion (3.1) of . First note that

where and . Since defines a

Reed–Solomon block code it follows that all its coefficient are nonzero

and one obtains

for

for

This implies that the row degrees of are indeed as in (2.2) and

that is minimal. Thus, the degree of the code generated by

is simply given by the sum of the row degrees, which is in fact

Observe also that .

Next we prove that satisfies the root condition given in Theorem

3.1. To do so, observe that the -equivalence class of , where

, consists of

The form of in (3.6) shows that each such -equivalence class

contains at most roots of if . This is

indeed guaranteed by construction of in (3.4)

(3.7)

Now Theorem 3.1 implies that the encoder given in (3.2) is min-

imal-basic and generates anMDS code with the given parameters

and .

Remark 3.4: The above proof is quite similar to the proof of [3,

Theorem 4]. Actually, Justesen’s Theorem 4 can be considered a spe-

cial case of the above, namely, the case when . In the above

construction, we have more generally , see (3.7). The case

can occur only if , which we did not require.

It is interesting to study the constructed convolutional code via the

semi-infinite sliding generator matrix as introduced in (1.4). To do so

we expand the generator polynomial in terms of its coefficients

The Reed–Solomon block code generated by has a gen-

erator matrix of the form

. . .
. . .

. . .
(3.8)

A direct calculation now shows that the first rows of the matrix

appear as the upper-left corner of the matrix in (1.4), where, again,

the matrix is as in (3.2). Thereafter, rows

of correspond to rows of expressing the

polynomial description (3.3). If was an infinite sliding-block matrix

it would trivially follow that the convolutional code has free

distance . Theorem 3.1 of Justesen and in particular

the “weight retaining property” as studied by Massey, Costello, and

Justesen [5] guarantee that the distance estimate holds for the semi-

infinite sliding generator matrix .

Remark 3.5: We formulated Theorem 3.3 with a prescribed char-

acteristic of the field over which we construct the MDS convolu-

tional code. If one is interested in the smallest possible field where this

construction works, regardless of characteristic, one should, of course,

choose to be the smallest integer such that

and is a prime power. In any case, it follows immediately from

(3.4) and (3.5) that the field size is the smallest possible prime power

for which

and (3.9)

We close this section with a few examples.

Example 3.6: Suppose we want to construct a MDS con-

volutional code. The MDS bound is in this case and from (3.9) we

need the smallest prime power bigger than , such that is

divisible by . The smallest possible field is and we will need a

rate Reed–Solomon code for the construction.
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If we want however an MDS code in characteristic , the smallest

field is , and we need a rate Reed–Solomon code. Using,

e.g., MAPLE, one calculates

where is a primitive of . Hence, an encoder for a MDS

convolutional code is given by the equation at the top of the page.

Example 3.7: Another example that we give is a MDS

convolutional code. The MDS bound is and, as

before, we will need the smallest prime power bigger than , such

that is divisible by . The smallest possible field is and we

need a Reed–Solomon code for the construction.

If we want to have the construction over a field of characteristic we

will have to take in (3.5) which makes

. The Reed–Solomon code that we use has parameters

and .

IV. CONCLUSION

In this correspondence, we constructed MDS convolutional codes

for each rate and for each code of degree . The construction was

based on the construction of a large Reed–Solomon block code and

because of this the obtained convolutional code is closely related to

this Reed–Solomon code. The correspondence raises several follow-up

questions. Is it possible to come up with an independent construction

which does not require the relative primeness of the characteristic and

the length of the code, and/or which does not need such large field

sizes? Is it possible to carry through some subfield constructions and is

it possible to come up with an algebraic decoding algorithm? Finally,

it would be interesting to understand MDS convolutional codes from

the point of view of state dynamics. Some answers in these directions

were given in [17], [20] but more research is needed.
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