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Abstract

In this paper, a new family of relative difference sets with parameters (m, n, k, λ) =

((q7 − 1)/(q − 1), 4(q− 1), q6, q5/4) is constructed where q is a 2-power. The construction

is based on the technique used in [2]. By a similar method, we also construct some new

circulant weighing matrices of order qd−1 where q is a 2-power, d is odd and d ≥ 5.
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1 Introduction

Let G be a finite group of order mn and N a normal subgroup of G of order n. A k-

element subset D of G is called an (m, n, k, λ)-relative difference set in G relative to N

if every element in G\N has exactly λ representations r1r
−1
2 (or r1 − r2 if G is additive)

with r1, r2 ∈ D and no non-identity element in N has such a representation. When

n = 1, D is an (m, k, λ)-difference set in the usual sense. A difference set or relative

difference set is called cyclic if the group is cyclic. We refer the reader to [3], [7] and [10]

for the background of both difference sets and relative difference sets. The following is a

well-known result in the studies of relative difference sets.

Proposition 1.1 (Elliott and Butson [5]) Let D be an (m, n, k, λ)-relative difference

set in G relative to N . If U is a normal subgroup of G of order u contained in N and if ρ :

G → G/U is the natural epimorphism, then ρ(D) is an (m, n/u, k, λu)-relative difference

set in G/U relative to N/U . In particular, if U = N , then ρ(D) is an (m, k, λn)-difference

set in G/N .

In view of Proposition 1.1, we may think of relative difference sets as ‘liftings’ or

‘extensions’ of difference sets. Among difference sets which can be lifted, complements of

Singer difference sets have attracted most of the attention because of their relationship

with finite projective geometry. The parameters of the relative difference sets lifted from

them are of the form

(m, n, k, λ) =

(

qd − 1

q − 1
, n, qd−1,

qd−2(q − 1)

n

)

(1)

where q is a prime power. In [10], the parameters (1) is called the classical parameters.

Pott [10, Problem 7 (p.48)] asked if there exists a relative (m, n, k, λ)-difference set

such that its projection is the complement of a Singer difference sets, n 6= 2 and n is not

a divisor of q− 1. In [2], the cyclic case was studied. In fact, a new construction of cyclic

relative difference sets with classical parameters was found where q is a 2-power, d is odd

and n = 2(q − 1). This helps us to answer Pott’s question when the group is cyclic.

Theorem 1.2 (Arasu, Dillon, Leung and Ma [2]) Let q be a prime power. A cyclic

relative difference sets with parameters (1) exists if and only if n is a divisor of q − 1

when q is odd or d is even; and n is a divisor of 2(q − 1) when q is even and d is odd.
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In this paper, we investigate further ‘lifting’ of the relative difference sets constructed

in [2]. We show that under some conditions, n can go up to 4(q−1). More specifically, we

construct a family of relative difference sets with classical parmeters when q is a 2-power,

d = 7 and n = 4(q − 1). Obviously, in view of Theorem 1.2, the groups where the new

relative difference sets lie in are no longer cyclic. In fact, the group concerns is the direct

product of an even cyclic group and a copy of Z2. The main idea of our construction is

to combine several relative difference sets constructed in [2].

In the last section, by using the methods developed in constructing relative different

sets, we also give a construction of new circulant weighing matrices of weight qd−1 where

q is a 2-power, d is odd and d ≥ 5.

Finally, we would like to mention that recently, Chandler and Xiang [4] constructed

a new family of relative difference sets with classical parameters when q is a power of 3.

However, these relative difference sets are, in general, not ‘lifted’ from complements of

Singer difference sets.

2 Some Quadrics in GF(qd)

Throughout this paper, q is a 2-power, F2 = GF(2), F = GF(q) and K = GF(qd) where

d is odd. For any real-value function L on K, let L 7→ L̂ donote the orthogonal Fourier

(Hadamard) transform given by

L̂(β) = q−d/2
∑

x∈K

L(x)(−1)Tr(βx),

for all β ∈ K, where for convenience we denote the trace function TrK
F2

simply by Tr.

Let T denote the classicial affine difference set {x ∈ K× : TrK
F (x) = 1} in K×. For

1 ≤ i ≤ d − 1, we define Qi : K → F2 such that Qi(x) = Tr(xqi+1) for all x ∈ K and we

let Gi denote the real-valued function (−1)Qi. Note that the set {x ∈ K× : Qi(x) = 0} is

a quadric in the affine space K when i is relatively prime to d.

Proposition 2.1 Suppose i is relatively prime to d. Then there exist disjoint subsets Ai

and Bi such that T = Ai ∪ Bi and

Ĝi(β) = q−d/2
∑

x∈K

(−1)Tr(xqi+1+βx) =















0 if β /∈ T
√

q if β ∈ Ai

−√
q if β ∈ Bi.
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Furthermore, Di = Ai∪Biθ is a ((qd−1)/(q−1), 2(q−1), qd−1, qd−2/2)-relative difference

set in K× × 〈θ〉 relative to F× × 〈θ〉, where o(θ) = 2.

Proof Note that for i = 1, our proposition is just [2, Theorem 3.2]. In fact, the proof

for our proposition is basically the same. Since this result is crucial, we highlight the

essential part of the proof. For all β ∈ K×, we have

(Ĝi(β))2 = q−d
∑

x∈K

(−1)Tr(xqi+1+βx)
∑

y∈K

(−1)Tr(yqi+1+βy),

which, on replacement of y by x + y and reversal of the order of summations, becomes

(Ĝi(β))2 = q−d
∑

y∈K

(−1)Tr(yqi+1+βy)
∑

x∈K

(−1)Tr(xqi
y+xyqi

)

= q−d
∑

y∈K

(−1)Tr(yqi+1+βy)
∑

x∈K

(−1)Tr([yq2i
+y]xqi

).

The inner sum is 0 unless yq2i

+ y = 0 in which case it is qd. However, yq2i

+ y = 0 iff

y ∈ K ∩ Fq2i. Since d is odd and gcd(i, d) = 1, y ∈ K ∩ Fq2i iff y ∈ Fq.

¿From now on, we can apply the arguement used in the proof of [2, Theorem 3.2] to

complete the proof. �

Proposition 2.2 Let i and j be relatively prime to d. Then {Ai, Bi} = {Aj, Bj} if and

only if i = j or i = d − j, where Ai, Bi, Aj, Bj are defined as in Propositon 2.1.

Proof Since Tr(x(qi+1)qd−i

) = Tr(xqd−i+1) for all x ∈ K, we have Gi = Gd−i. Thus,

{Ai, Bi} = {Ad−i, Bd−i}. To prove the converse, we may assume 1 ≤ i < j < d/2.

Now assume {Ai, Bi} = {Aj, Bj}, i.e. Ĝi(β) = δĜj(β) for all β ∈ K where δ = ±1.

By the property of Fourior tranform, we then have Gi(x) = δGj(x) for all x ∈ K. Note

that δ = 1 as Qi(0) = Qj(0) = 0. Hence, Qi(x) + Qj(x) = 0 for all x ∈ K. Consequently,

0 = Qi(x + y) + Qj(x + y) − Qi(x) − Qj(x) − Qi(y) − Qj(y)

= Tr(xyqi

+ xqi

y + xyqj

+ xqj

y) = Tr([yqi+j

+ yqj−i

+ yq2j

+ y]xqj

).

Thus, yqi+j

+ yqj−i

+ yq2j

+ y = 0 for all y ∈ K. Hence yqi+j

+ yqj−i

+ yq2j

+ y is a multiple

of the polynomial yqd − y. This is impossible as 2j < d. �
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3 New Relative Difference Sets

Our construction bases on the following simple observation.

Theorem 3.1 Let G be a group of order mn and N a normal subgroup of order n in

G. Furthermore, let G′ = G × 〈θ1〉 × 〈θ2〉 where ◦(θ1) = ◦(θ2) = 2. Suppose R is an

(m, n, k, λ)-relative difference set in G relative to N . Furthermore, for i = 1, 2, 3, let

Xi∪θ1Yi, where Xi∪Yi = R, be (m, 2n, k, λ/2)-relative difference sets in G×〈θ1〉 relative

to N × 〈θ1〉. If

{X3, Y3} = {(X1 ∩ X2) ∪ (Y1 ∩ Y2), (X1 ∩ Y2) ∪ (X2 ∩ Y1)},

then

R′ = (X1 ∩ X2) ∪ (X2 ∩ Y1)θ1 ∪ (X1 ∩ Y2)θ2 ∪ (Y1 ∩ Y2)θ1θ2

is an (m, 4n, k, λ/4)-relative difference set in G × 〈θ1〉 × 〈θ2〉 relative to N × 〈θ1〉 × 〈θ2〉.

Proof It sufficies to show that

|χ(R′)| =

{

k if χ is nonprincipal on N × 〈θ1〉 × 〈θ2〉
k − λn if χ is principal on N × 〈θ1〉 × 〈θ2〉.

Suppose χ is principal on 〈θ1〉 × 〈θ2〉. Then,

|χ(R′)| = |χ(R)| =

{

k if χ is nonprincipal on N

k − λn if χ is principal on N.

If χ is nonprincipal on 〈θ1〉 × 〈θ2〉, we have three possibilities. In each case, we shall

prove that |χ(R′)| = k.

Case (1) χ(θ1) = 1, χ(θ2) = −1. In that case, |χ(R′)| = |χ(X2 − Y2)|.
Case (2) χ(θ1) = −1, χ(θ2) = 1. In that case, |χ(R′)| = |χ(X1 − Y1)|.
Case (3) χ(θ1) = −1, χ(θ2) = −1. In that case, |χ(R′)| = |χ(X3 − Y3)|.
Since each Xi ∪ θ1Yi is a relative difference sets in G × 〈θ1〉 relative to N × 〈θ1〉,

|χ(Xi − Yi)| = k. We have thus shown that R′ is a relative difference set. �

It is possible to generalize Theorem 3.1 to construct relative difference sets in G ×
〈θ1〉× 〈θ2〉× · · ·× 〈θr〉 relative to N ×〈θ1〉× 〈θ2〉 · · ·× 〈θr〉 where ◦(θ1) = · · · = ◦(θr) = 2.

To facilitate the construction, we reconsider the condition required in Theorem 3.1.

We first need an easy observation.
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Proposition 3.2 Let S be a set and S = {{X, Y } : X ∪ Y = S and X ∩ Y = ∅}. Let ∗
be an operation defined on S such that

{X, Y } ∗ {X ′, Y ′} = {(X ∩ X ′) ∪ (Y ∩ Y ′), (X ∩ Y ′) ∪ (Y ∩ X ′)}.

Then (S, ∗) is an elementary abelian 2-group with identity {S, ∅}.

Let R be as defined in Theorem 3.1 and R = {{X, Y } : X ∪ Y = R and X ∩ Y = ∅}.
In R, ∗ a binary operation as defined before. Let us now consider the condition required

in Theorem 3.1. Note that each relative difference set Ri induces a partition of R into

two disjoint sets Xi, Yi. Thus, we may identify Ri as the element {Xi, Yi} in R. For

convenience, we also write R for {R, ∅}. Now the condition required in Theorem 3.1 is

equivalent to the condition that {R, R1, R2, R3} is a subgroup in R.

We can now generalize Theorem 3.1.

Theorem 3.3 Let G be a group of order mn and N a normal subgroup of order n in G.

Furthermore, let G′ = G × 〈θ1〉 × 〈θ2〉 · · · × 〈θr〉 where ◦(θ1) = ◦(θ2) = · · · = ◦(θr) = 2.

Suppose R is an (m, n, k, λ)-relative difference set in G relative to N . Furthermore, for

i = 1, 2, . . . , 2r − 1, let Ri = Xi ∪ Yiθ1, where Xi, Yi ⊂ G, be relative difference sets in

G×〈θ1〉 relative to N ×〈θ1〉. Suppose {R, R1, R2, . . . , R2r−1} is a subgroup in (R, ∗) and

W (x1, x2, . . . , xr) =
r

⋂

i=1

Zi such that Zi =

{

Xi if xi = 0

Yi if xi = 1.

Then

R′ =
⋃

(x1,x2,...,xr)∈F r
2

W (x1, x2, . . . , xr)θ
x1
1 · · · θxr

r

is an (m, 2rn, k, λ/2r)-relative difference set in G×〈θ1〉× · · ·× 〈θr〉 relative to N ×〈θ1〉×
· · · × 〈θr〉.

We skip the proof as it is analogous to the argument used in the proof of Theorem

3.1.

To apply Theorem 3.3 (or Theorem 3.1), we use the relative difference sets constructed

in Propositon 2.1. Assume [K : F ] is an odd number d and i is an integer relative prime

to d. For each i, let Ri be the relative difference set induced by the form Qi(x). If we

can find a subgroup {Rij : j = 1, 2, . . . , 2r − 1} ∪ {R}, then we obtain a new relative

difference set. As we shall shown later, such a group exists when r = 2 and d = 7.
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¿From now on, we shall follow the notation used in Section 2. Let q be a power of 2,

and let d ≥ 7 be an odd integer. Write F = GF(q) and K = GF(qd). Let β ∈ K and let

i be any positive integer coprime to d. Recall that

Ĝi(β) = q−d/2
∑

x∈K

(−1)Tr(xqi+1+βx),

Ai = {β ∈ K : Ĝi(β) =
√

q},
Bi = {β ∈ K : Ĝi(β) = −√

q},
T = {β ∈ K : TrK

F (β) = 1}.

Theorem 3.4 Let G = K× × 〈θ1〉 × 〈θ2〉 where θ1 and θ2 are of order 2. Let a, b, c ∈
{1, ..., (d − 1)/2} be distinct integers coprime to d and define R ⊂ G by

R = (Aa ∩ Ab) ∪ (Ab ∩ Ba)θ1 ∪ (Aa ∩ Bb)θ2 ∪ (Ba ∩ Bb)θ1θ2.

If Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T , then R is a ((qd − 1)/(q − 1), 4(q −
1), qd−1, qd−2/4) difference set in G relative to F× × 〈θ1〉 × 〈θ2〉.

Proof If Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T , then

{(Aa ∩ Ab) ∪ (Ba ∩ Bb), (Aa ∩ Bb) ∪ (Ab ∩ Ba)} = {Ac, Bc}

and thus Theorem 3.1 implies the assertion. �.

In view of Theorem 3.4, it is very interesting to determine all values of q, d, a, b, c for

which Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T . This is done in our following main

result.

Theorem 3.5 Let q be a power of 2, let d ≥ 7 be odd, and let a, b, c ∈ {1, ..., (d − 1)/2}
be distinct integers coprime to d. Then Ĝa(x)Ĝb(x)Ĝc(x) is constant for x ∈ T if and

only if d = 7 and {a, b, c} = {1, 2, 3}.

Corollary 3.6 Let q be a power of 2. Then there is a ((q7 − 1)/(q− 1), 4(q− 1), q6, q5/4)

difference set in K× × 〈θ1〉 × 〈θ2〉 relative to F× × 〈θ1〉 × 〈θ2〉.

The proof of Theorem 3.5 is quite long and we need several lemmas. First we reduce

the problem to evaluating a sum involving a quadratic form.
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Lemma 3.7 The product Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T if and only if
∑

x,y∈K

(−1)Tr(xqa+1+yqb+1+(x+y)qc+1) = ±q(3d+1)/2. (2)

Proof Recall that for (i, d) = 1, Ĝi(β) = ±√
q for β ∈ T and Ĝi(β) = 0 for β ∈ K \T .

Furthermore, |T | = qd−1. Thus Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T if and only if

∑

β∈K

Ĝa(β)Ĝb(β)Ĝc(β) = ±qd−1 · q3/2 = ±q(2d+1)/2. (3)

By definition, (3) is equivalent to

∑

β∈K

∑

x,y,z∈K

(−1)Tr((xqa+1+βx)+(yqb+1+βx)+(zqc+1+βx)) = ±q(2d+1)/2 · q3d/2 = ±q(5d+1)/2. (4)

Note that
∑

β∈K

(−1)Tr(β(x+y+z)) =

{

0 if x + y + z 6= 0

qd if x + y + z = 0.

Hence
∑

β∈K

∑

x,y,z∈K

(−1)Tr((xqa+1+βx)+(yqb+1+βx)+(zqc+1+βx))

=
∑

x,y,z∈K

(−1)Tr(xqa+1+yqb+1+zqc+1)
∑

β∈K

(−1)β(x+y+z)

= qd
∑

x,y∈K

(−1)Tr(xqa+1+yqb+1+(x+y)qc+1).

Thus (4) is equivalent to (2) and this proves the assertion. �

In order to calculate the sum occuring in (2), we need to consider Q(x, y) := Tr(xqa+1+

yqb+1 + (x + y)qc+1) as a quadratic form over GF(2). For this let B be a fixed basis of

K over GF(2). Then, for each x ∈ K, there are unique elements xb ∈ GF(2) with

x =
∑

b∈B xbb. Hence

Tr(xqa+1) = Tr([
∑

b∈B

xbb]
qa

∑

c∈B

xcc)

= Tr([
∑

b∈B

xbb
qa

]
∑

c∈B

xcc)

=
∑

b,c∈B

xbxcTr(bqa

c).
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This shows that Tr(xqa+1) is a quadratic form of K over GF(2). Similarly, it follows

that Q(x, y) is a quadratic form of K × K over GF(2). The GF(2) vector space

DQ := {(u, v) ∈ K × K : Q(x + u, y + v) = Q(x, y) ∀(x, y) ∈ K × K}

is called the degeneracy space of Q.

Lemma 3.8 Write q = 2r. Let k denote the dimension of DQ over GF(2). Then

∑

x,y∈K

(−1)Tr(xqa+1+yqb+1+(x+y)qc+1) =

{

0 if k is odd,

±2rd+k/2 if k is even.

Proof Let V be a complement of DQ in K × K. Then V is a GF(2) vector space of

dimension 2rd − k and Q is a nondegenerate quadratic form on V . Let

N := |{(x, y) ∈ V : Q(x, y) = 0}|.

By [9, Thms. 6.30, 6.32], we have

N =

{

22rd−k−1 if k is odd,

22rd−k−1 ± 2(2rd−k−2)/2 if k is even.
(5)

Hence

∑

x,y∈K

(−1)Tr(xqa+1+yqb+1+(x+y)qc+1) =
∑

x,y∈K

(−1)Q(x,y)

=
∑

(x,y)∈V

∑

(u,v)∈DQ

(−1)Q(x+u,y+v)

=
∑

(x,y)∈V

∑

(u,v)∈DQ

(−1)Q(x,y)

= 2k
∑

(x,y)∈V

(−1)Q(x,y)

= 2k(N − (22rd−k − N))

= 2k(2N − 22rd−k).

Now the assertion follows from (5). �

Corollary 3.9 The degenaracy space DQ of the quadratic form Q is a vector space over

F = GF(q). Furthermore, the product Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T if and

only if the dimension of DQ over F is d + 1.
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Proof The assertion that DQ is an F vector space follows by a straightforward cal-

culation using the definitions of Q and DQ. Write q = 2r and let k respectively kF be

the dimension of DQ over GF(2) respectively F . Then kFr = k and by Lemmas 3.7 and

3.8 the product Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T if and only if kF r is even and

2(3d+1)r/2 = 2rd+kF r/2. But since d is odd this is the case if and only if kF = d + 1. �

Convention: In the following, all exponents of q are considered as integers modulo

d in [0, d− 1]. For example, for a > 0 the term xq−a

is a short notation for xqa1 where a1

is the unique integer in [0, d − 1] with a1 ≡ a mod d.

Lemma 3.10 Let

V ′ = {(x, y) ∈ K × K : xqa

+ xq−a

= yqb

+ yq−b}.

Then V ′ is an F vector space of dimension d + 1 which contains DQ. In particular,

dimF (DQ) = d + 1 if and only if DQ = V ′.

Proof The assertion that V ′ is an F vector space follows directly from its definition.

We now show dimF (V ′) = d + 1. Let φ : K → K, x 7→ xqa

+ xq−a

and ρ : K → K, y 7→
yqb

+ yq−b

.

Claim 1: ker φ = kerρ = F .

Proof of Claim 1: It follows from the definitions that F ⊂ ker φ and F ⊂ kerρ. Let

x ∈ ker φ be arbitrary. Then xqa

= xq−a

and thus xq2a

= x. But since (2a, d) = 1 the

automorphism x 7→ xq2a

generates G := Gal(K/F ). Thus x ∈ Fix(G) = F . This shows

kerφ ⊂ F . Similarly, it follows that kerρ ⊂ F and this proves Claim 1.

Claim 2: Im φ = Im ρ = {x ∈ K : TrK
F (x) = 0}.

Proof of Claim 2: Write W := {x ∈ K : TrK
F (x) = 0}. From the definitions of φ and

ρ it follows that Im φ ⊂ W and Im ρ ⊂ W . Note dimFW = d − 1. But Claim 1 implies

dimF Im φ = dimF Im ρ = d − 1. This proves Claim 2.

Now let B be any basis of K over F . By Claim 2, for every b ∈ B there is a yb ∈ K

such that (b, yb) ∈ V ′. Define

C := {(b, yb) : b ∈ B} ∪ {(0, 1)}.

11



Then C ⊂ V ′ and C is linearly independent over F . Let (x, y) ∈ V ′ be arbitrary and write

x =
∑

b∈B xbb with xb ∈ F . Since (b, yb) ∈ V ′ for all b ∈ B, we have (x,
∑

b∈B xbyb) =
∑

b∈B xb(b, yb) ∈ V ′. Thus (0, y−∑

b∈B xbyb) ∈ V ′ which implies y−∑

b∈B xbyb ∈ ker ρ =

F . Thus (x, y) = (
∑

b∈B xb(b, yb)) + (y − ∑

b∈B xbyb)(0, 1) is an F -linear combination

of elements of C. In summary, we have shown that C is a basis of V ′ over F . Thus

dimFV ′ = |C| = d + 1.

It remains to show that V ′ contains DQ. Let (u, v) ∈ DQ be arbitrary. Then Q(u, v) =

0 and for all x, y ∈ K we have

0 = Q(x + u, y + v) + Q(x, y) + Q(u, v)

= Tr(xqa

u + xuqa

+ yqb

v + yvqb

+ (x + y)qc

(u + v) + (x + y)(u + v)qc

)

= Tr(xqa

u + xuqa

+ xqc

(u + v) + x(u + v)qc

) +

Tr(yqb

v + yvqb

+ yqc

(u + v) + y(u + v)qc

).

Using the fact that Tr(zqi

) = Tr(z) for all z ∈ K and all i ≥ 0 we get

0 = Tr(x(uq−a

+ uqa

+ (u + v)q−c

+ (u + v)qc

)) +

Tr(y(vq−b

+ vqb

+ (u + v)q−c

+ (u + v)qc

))

for all x, y ∈ K. Setting x = 0 respectively y = 0 we get

Tr(y(vq−b

+ vqb

+ (u + v)q−c

+ (u + v)qc

)) = 0 ∀y ∈ K,

Tr(x(uq−a

+ uqa

+ (u + v)q−c

+ (u + v)qc

)) = 0 ∀x ∈ K.

Since (r, s) 7→ Tr(rs) is a nondegenerate bilinear form on K × K this implies

vq−b

+ vqb

+ (u + v)q−c

+ (u + v)qc

= 0 (6)

and

uq−a

+ uqa

+ (u + v)q−c

+ (u + v)qc

= 0. (7)

Adding (6) and (7) we see that (u, v) ∈ V ′. This shows DQ ⊂ V ′ and concludes the

proof. �
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Lemma 3.11 Define f ∈ {1, ..., d − 1} by af ≡ c mod d and let I be the multiset given

by

I = {−b, b,−c, c} ∪ {−c − b + (2i + 1)a : i = 0, ..., f − 1}
∪{−c + b + (2i + 1)a : i = 0, ..., f − 1}.

(here all elements of I are chosen in [0, d − 1] by reducing modulo d).

If DQ = V ′ then all elements of I have even multiplicity in I.

Proof Assume DQ = V ′ and let (x, y) ∈ V ′ be arbitrary. By definition we have

xqa

+ xq−a

= yqb

+ yq−b

. (8)

Applying suitable automorphisms z 7→ zqi

of K to (8) we get the following sequence

of equations.

xq−c

+ xq−c+2a

= yqa+b−c

+ yqa−b−c

xq−c+2a

+ xq−c+4a

= yq3a+b−c

+ yq3a−b−c

· · · = · · ·
xq−c+2a(f−1)

+ xq−c+2af

= yq(2(f−1)+1)a+b−c

+ yq2(f−1)+1)a−b−c

.

Summing up all these equation and using −c + 2af ≡ c mod d we obtain

xq−c

+ xqc

=
∑

j∈J

yqj

(9)

where

J = {−c − b + (2i + 1)a : i = 0, ..., f − 1} ∪ {−c + b + (2i + 1)a : i = 0, ..., f − 1}.

Since we are assuming DQ = V ′, we have (x, y) ∈ DQ and thus

yq−b

+ yqb

+ (x + y)q−c

+ (x + y)qc

= 0 (10)

by (6). Combining (9) and (10) we get

∑

i∈I

yqi

= 0. (11)
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In summary, we have shown that (11) holds for every y ∈ K for which there is an

x ∈ K with (x, y) ∈ V ′. But by Claim 2 in the proof of Lemma 3.10, for every y ∈ K

there is an x ∈ K with (x, y) ∈ V ′. Thus we have shown that (11) holds for every y ∈ K.

Now recall that all elements of I are integers in [0, d − 1]. Thus f(y) :=
∑

i∈I yqi

is a

polynomial of degree < qd such that f(y) = 0 ∀y ∈ K. But this implies that yqd − y

divides f . Since deg f < qd, f must be the zero polynomial over GF(2). This implies the

assertion. �

Proof of Theorem 3.5

We first prove the necessary part. To avoid some case distinctions, we drop the

assumption that a, b, c ≤ (d − 1)/2. Thus let a, b, c ∈ [1, d − 1] be any integers coprime

to d such that a 6≡ ±b mod d, a 6≡ ±c mod d and b 6≡ ±c mod d.

Claim: If Ĝa(x)Ĝb(x)Ĝc(x) is constant for x ∈ T then d = 7.

Proof of the Claim: Assume that Ĝa(x)Ĝb(x)Ĝc(x) is constant for all x ∈ T . Then

by Corollary 3.9, Lemma 3.10 and Lemma 3.11, the multiset

I = {−b, b,−c, c} ∪ {−c − b + (2i + 1)a : i = 0, ..., f − 1}
∪{−c + b + (2i + 1)a : i = 0, ..., f − 1}

has only even multiplicities. Recall that all elements of I are considered mod d and

that f ∈ [1, d − 1] is defined by af ≡ c mod d. Since Ĝc(x) = Ĝ−c(x) we may replace c

by −c if necessary so that we can assume f ∈ [1, (d − 1)/2].

Let a−1 ∈ [1, d − 1] denote the multiplicative inverse of a mod d. Since I has only

even multiplicities if and only if

I ′ = {−ba−1, ba−1,−ca−1, ca−1} ∪ {−ca−1 − ba−1 + (2i + 1) : i = 0, ..., f − 1}
∪{−ca−1 + ba−1 + (2i + 1) : i = 0, ..., f − 1}

has only even multiplicities, we may assume a = 1. Then f = c and b, c 6≡ ±1 mod d.

Set

A = {−b, b,−c, c},
B = {−c − b + 2i + 1 : i = 0, ..., c − 1},
C = {−c + b + 2i + 1 : i = 0, ..., c − 1}.
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Note that within B and within C no two elements overlap since d is odd. Thus,

since I = A ∪ B ∪ C has only even multiplicities and since |B| + |C| = 2c, exactly c − 2

elements of B must overlap with elements of C and the remaining four elements of B and

C must overlap with the elements of A. Recall that we assume c = f ∈ [1, (d− 1)/2]. An

overlap of c− 2 elements between B and C happens if and only if −c− b = −c + b− 4 or

−c − b = −c + b + 4. In all following multisets, we take all the multiplicities mod 2 and

all elements mod d.

Case 1: −c− b = −c+ b−4. Then b = 2 and B∪C = {−c−1,−c+1, c−1, c+1} =

A = {2,−2, c,−c}. Since c 6= ±1, we have −c + 1 6= 2 and c + 1 6= 2. Thus −c− 1 = 2 or

c− 1 = 2, i.e., c = ±3. If c = 3 then {−4,−2, 2, 4} = {2,−2, 3,−3} which implies d = 7.

Similarly, c = −3 also implies d = 7.

Case 2: −c−b = −c+b+4. Then b = −2 and B∪C = {c−1, c+1,−c−1,−c+1} =

A = {−2, 2,−c, c}. This implies d = 7 exactly as in Case 1.

In summary, we have shown that d = 7 in all possible cases. This proves our claim.

When d = 7, then {a, b, c} = {1, 2, 3} is forced in Theorem 3.5 since there we assume

a, b, c ∈ [1, (d− 1)/2]. This concludes the proof of the necessary part of Theorem 3.5. In

view of Corollary 3.9 and Lemma 3.10, the proof of the sufficient part of Theorem 3.5 is

provided by the following lemma.

Lemma 3.12 Let d = 7 and {a, b, c} = {1, 2, 3}. Then DQ = V ′.

Proof W.l.o.g. let a = 1, b = 2 and c = 3. By Lemma 3.10 we have DQ ⊂ V ′. Thus

it suffices to show V ′ ⊂ DQ. Let (x, y) ∈ V ′ be arbitrary. Then by definition

xq + xq6

= yq2

+ yq5

. (12)

Claim 1: Tr(xq+1 + yq2+1 + (x + y)q3+1) = 0.

Proof of Claim 1: Applying suitable automorphisms z 7→ zqi

of K to (12) we get

xq3

+ xq = yq4

+ y (13)

as well as x+xq2
= yq3

+yq6
and xq2

+xq4
= yq5

+yq. Adding up the last two equations

we get
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x + xq4

= yq + yq3

+ yq5

+ yq6

. (14)

Using (13), (14) and the fact that Tr(zqi

) = Tr(z) for all z ∈ K and all i ≥ 0 we

calculate

Tr(xq+1 + yq2+1 + (x + y)q3+1)

= Tr(x(xq + xq3

) + yq2+1 + yq3+1 + xyq3

+ xq3

y)

= Tr(x(y + yq4

) + yq2+1 + yq3+1 + xyq3

+ xq3

y)

= Tr(y(x + xq3

+ xq3

+ xq4

) + yq2+1 + yq3+1)

= Tr(y(yq + yq3

+ yq5

+ yq6

) + yq2+1 + yq3+1)

= Tr(yq6

y + yyq3

+ yq2

y + yyq6

+ yq2+1 + yq3+1)

= Tr(0) = 0.

This proves Claim 1.

The following completes the proof of Lemma 3.12

Claim 2: Let (x, y) ∈ V ′ and (u, v) ∈ K be arbitrary. Then Q(x+u, y+v) = Q(u, v).

Proof of Claim 2: ¿From (14) we get xq4
+ xq = yq5

+ y + yq2
+ yq3

. Adding this

equation to (14) we get x + xq = y + yq + yq2
+ yq6

and hence

xq3

+ xq4

= yq3

+ yq4

+ yq5

+ yq2

. (15)

Using Claim 1, equations (12), (15) and the fact that Tr(zqi

) = Tr(z) for all z ∈ K

and all i ≥ 0 we calculate

Q(x + u, y + v) − Q(u, v)

= Tr(xuq + xqu + yvq2

+ yq2

v + (x + y)(u + v)q3

+ (x + y)q3

(u + v))

= Tr(u(xq6

+ xq + xq4

+ yq4

+ xq3

+ yq3

) + v(yq5

+ yq2

+ xq4

+ yq4

+ xq3

+ yq3

))

= Tr(u · 0 + v · 0) = 0.

This proves Claim 2. �
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4 Circulant Weighing Matrices

A weighing matrix W , denoted by W (n, k), of order n and weight k is a square matrix

of order n with entries from {−1, 0, +1} such that WW t = kIn where In is the n × n

identity matrix and W t is the transpose of W. We refer the reader to [6] for more details

on weighing matrices.

Let G = {g1, g2, . . . , gn} be a group of order n. Suppose E =
∑n

i=1 aigi ∈ Z[G]

satisfies

(i) ai = 0, ±1 and

(ii) EE(−1) = k where E(−1) =
∑n

i=1 aig
−1
i .

Then the group matrix W = (wij), where wij = ak if gig
−1
j = gk, is a W (n, k). A

weighing matrix constructed in this way is called a group weighing matrix and denoted

by GW (G, k). In particular, if G is cyclic, then W is a circulant weighing matrix and is

denoted by CW (n, k). We refer the reader to [1] for the case when G is abelian.

For the convenience of our study of group weighing matrices using the notation of

group rings, we say that E ∈ Z[G] is a GW (G, k) (CW (n, k) when G is cyclic) if it

satisfies conditions (i) and (ii) above.

Let E ∈ Z[G] be a GW (G, k). If the support of E is contained in a coset of a subgoup

H of G, we say that E is a trivial extension of a GW (H, k). If A is not a trivial extension

of a GW (H, k) for any subgroup H (6= G) of G, A is called a proper GW (G, k).

Using a similar idea to that of Theorem 3.1, we obtain the following:

Theorem 4.1 Let G be a finite group. Suppose E1, E2 ∈ Z[G] are GW (G, k) such that

Support(E1) = Support(E2). Let

Xi = {g ∈ G : the coefficient of g in Ei = 1}

and

Yi = {g ∈ G : the coefficient of g in Ei = −1}

for i = 1, 2. Then

E = [(X1 ∩ X2) − (Y1 ∩ Y2)] + [(X1 ∩ Y2) − (X2 ∩ Y1)] θ

is a GW (G× 〈θ〉, k) where o(θ) = 2. Furthermore, if {X1, Y1} 6= {X2, Y2}, then E is not

a trivial extension of a GW (G, k).
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The following is a consequence of Propositions 2.1, 2.2 and Theorem 4.1.

Corollary 4.2 Use the notation in Section 2. If d ≥ 5 is an odd integer and i, j are two

integers relatively prime to d such that 1 ≤ i, j ≤ d − 1 and i 6= j, d − j, then

E = [(Ai ∩ Aj) − (Bi ∩ Bj)] + [(Ai ∩ Bj) − (Aj ∩ Bi)] θ

is a proper GW (K××〈θ〉, qd−1), where o(θ) = 2, and hence a proper CW (2(qd−1), qd−1).

Remark 4.3 Note that the support of E in Corollary 4.2 contains at most one element

in each coset of F×. Thus by projecting E onto the subgroup of order 2(qd−1)/m, where

m is any divisor of q− 1, we obtain a proper CW (2(qd − 1)/m, qd−1). We refer the reader

to [8] for a detailed discussion of CW (n, 22t).
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