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CONSTRUCTIONS, PROOFS AND THE MEANING OF 

LOGICAL CONSTANTS* 

There are cases where we mix two or more 
exact concepts in one intuitive concept and 

then we seem to arrive at paradoxical 
results. 

Hao Wang. 

During the last decade both mathematicians and philosophers have been 
interested in the development of various theories of constructions. The 

study of these theories has been prompted by at least three sorts of con- 
siderations. The first theories were proposed by Kreisel around 1960 as a 
means of formalizing the intended interpreation for the intuitionistic logical 

constants as presented in Heyting’s Introduction from 1956. Here, in 

Kreisel’s version, the relation 

construction c proves proposition A 

was given a step-wise analysis according to the complexity of A, in much the 

same way as the truth-tables provide such an analysis in the classical case. 

The main mathematical effort, secondly, has been concentrated on finding 
suitable formal systems in which to formalize the bulk of constructive 

mathematics as set out in a well-known book by Bishop. Theories of con- 

structions have here been used to analyze the extra information carried in 

the constructive reading of mathematical statements. On the other hand, 
finally, philosophers have mainly been interested in the systematic aspects 
of the relation 

c proves A 

and the extent to which it can serve as a keyconcept in a “theory of 

meaning”, somewhat along the lines of Davidson’s use of Tarski’s truth- 
definitions for a similar purpose. 

The two debates - mathematical and philisophical - have been carried 
on in parallel. On the mathematical side some (as I see them) quite basic 
distinctions of a philosophical nature have been neglected, whereas the 
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philosophers sometimes simply have taken over the technical frameworks 

used by the mathematicians without questioning the underlying 

philosophical motivation. 

In the present paper I wish to review some work on Heyting’s idea of 
treating mathematical propositions as expressing intentions towards (proof) 

constructions. My interest in this area stems from tutorials with Per Martin- 
Liif in 1975 and I have continued to learn from him through many 

conversations since then. I am also indebted to Professors Scott and Kreisel 

for many conversations and stimulating correspondence on the topic of the 

present paper. 

1. THE KREISEL FORMALIZATION OF HEYTING’S 
EXPLANATIONS 

The most well-known of Heyting’s discussions can be found in his (1956, 

pp: 96-7): 

Interpretation of the signs. 
The conjunction gives no difficulty. p A q can be asserted If and only if both of p and 
4 be asserted. 
. . . 
p v  q can be asserted If and only if at least one of the propositions p and q can be 
asserted. 
The negation is the strong mathematical negation. . . we remember that a mathe- 
matical proposition p always demands a mathematical construction with certain given 
properties; it can be asserted as soon as such a construction has been carried out. We 
say in this case that construction proves the proposition p and call it a proof of p. We 
also, for the sake of brevity, denote by p any construction which is Intended by the 
proposition p. Then -up can be asserted if and only if we possess a construction which 
from the supposition that a construction p were carried out, leads to a contradiction. 
. . . 
rite implication p + q can be asserted, if and only if we possess a construction r, 
which, joined to any construction proving p (supposing the latter be effected), would 
automatically effect a construction proving q. 

Kreisel(1962) took the above explanations of Heyting as a starting point 
in his attempt “to set up (I formal system, culled ‘abstract theory of 

constructions’ for the basic notions mentioned above, in terms of which the 

formal rules of Heyting ‘s predicate calculuc can be interpreted. ” The basic 
notions concerned were “construction (constructive function)” and 
“constructive proof (of equality between two constructions).” The explana- 
tions are then to be incorporated in the theory along the following lines: 
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The sense of a mathematical assertion denoted by a linguistic object A is intuitionistic- 
ally determined (or understood) if we have laid down what constructions constitute a 
proof of A, i.e., if we have a construction rA such that, for any construction c. 
rA(c) = 0 if c is a proof of A and rA(c) = 1 ifc is not a proof of A: the logical padideS 

in this explanation are interpreted truth functionally, since we are adopting the basic 
intuitionistic idealization that we recognize a proof when we see one, and so rA is 
decidable. 
..I 
As Heyting indicated, one then obtains proof conditions for A . . . In particular, if A is 
B o C, where o denotes a logical connective and rB and rc determine the sense of S 
and C, then we obtain rA from rB and rc. 

Kreisel(l962, pp. 201-202) 

In his second version (1965) Kreisel offers some further comments as to 

the basic set-up of his theory of constructions: 

Roofs of What? If the logical operations, in terms of which the usual operations are 
built up, are not primitive but explained, then the Z~usic proofs must be proofs of 
special assertions in which the (problematic) logical operations are not involved. One 
such kind is familiar from quantifier-free mathematics, for example, quantifier-free 
arithmetic, which consists of assertions A(n) for decidable numerical properties 
A(n). In intuitionistic mathematics this is generalized. Instead of numbers, we have 
arbitrary muthenuaticul objects, that is (ideas of) concrete objects and constructions; 
instead of numerical properties, we have notions, that is, understood, decidable proper- 
ties of mathematical objects. A notion is denoted by a symbol V, and V(U) = 0 if the 
object u has Y, Y(U) = 1 otherwise; for example, the property of being a finite sequence 
is a notion. Since notions are decidable, the usual truth functional operations may be 
applied to equations Y(U) = 0, z)(u) = 1 
. . . 
A fundamental principle . . . The meaning of p is a proof of v(u) = 0 for alI II, is under- 
stood for notions v; in other words, we recognize a proof af an assertion of this form 
when we see one. 

Kreisel(l965, pp. 123-124) 

Kreisel’s actual formulation of the theory of constructions using the 

above concepts is very formalistic, and a more accessible presentation of the 

Kreisel theory can be found in Troelstra (1969, Section 2). Some features of 
Kreisel’s formalism have also become part of standard expositions of 

Heyting’s explanations. Cf. the following quote from van Dalen (1979, pp. 
133-134): 

a proof p of A A B is a pair of proofs pl, pa such that pI proves A and p1 proves B, 
a proof p of A v  B consists of a construction which selects one of the formulas A and 

B and yields a proof for that particular formula, 
a proof p of A + B is a construction which assigns to each proof q of A a proof p (q) of 

B, plus a verification that p indeed satisfies these conditions, 
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a proof p of ~4 is a proof of A + 1, where 1 is some contradiction, 
a proof p of Vx A(x) is a construction which assigns to each object a (of the domain of 

discourse) a proof p (cr) of A(u), plus a verification that p indeed satisfies these con- 
ditions, 

a proof p of 3x A(u) is a construction which selects an object a (of the domain of 
discouse) and yields a proof of A(i). 

. . . 
The hard cases are here, and in most interpretations, implication (negation) and 
universal quantification. In the case of implication we are faced with a construction 
which operates on construction [Sic!] (so possibly on itself’), which lends an 
impredicative character to the whole interpretation. 

Kreisel used 

WA) 
for the relation 

construction c proves proposition A .’ 

Using this notation we may state some salient features of Kreisel’s theory: 

(1) 

(2) 

II(c, A) is a decidable mathematical predication 

There are second clauses in the explanation for implication 

and universal quantification to the effect that one construc- 
tion is proved by another to do what it is supposed to do. 

(3) If A is a mathematicai proposition, then so are II@, A) and 
II@, II(c, A)), etc., etc. 

In a certain sense, features (2) and (3) are consequences of (1). Kreisel 
wished to explain the logical operations in a reductive way, without having 

to use these same operations in the explanations. His unproblematic propo- 
sitions were, as we saw above, quantifier-free general identities for which the 

desired decidability is granted. The explanations of more complex propo- 
sitions then have to be given in such a way that simple properties of the con- 
structions permit the derivation of the decidability of the II-predicate also 
for the more complex propositions. It is in this context that the second 

clauses’ are needed to ensure that the decidability can be carried over also 
to implicational and universally quantified propositions. On the other hand, 
if II is a decidable mathematical predicate, then the result of applying II to a 
construction c and proposition A is again a mathematical proposition, which 
can serve as an argument for the II-predicate, and so on. 

This view of construction, proofs and propositions has become standard 
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in expositions of intuitionism, and one finds Heyting’s explanations set out, 

roughly as in the quote from van Dalen (1979), in many places, e.g., Myhill 

(1967,1968), Toelstra (1969, 1977), van Dalen (1973,1979) and Goodman 
(1970). Dummett (1963, p. 153; 1969, p. 361; 1976, p. 110; 1977, pp. 12, 

320,399,400; 1980, p. 13) has been a firm advocate of the decidability of 
the proof relation. Feferman (1979) preserves features (2) and (3), but 

remains uncommitted as to (1). Beeson (1979), however, explicitly rejects 

(1) and retains (2) and (3). Both positions appear somewhat lacking in moti- 
vation: the second clauses were after all put in so as to guarantee 

decidability. 
Peter Aczel observed that maybe one ought to include a fourth (tacit) 

component in the description of the Kreisel theory, viz. 

(4) There is a universe to which everything belongs. 

No such principle is stated by Kreisel, but it seems to follow from some of 

the other features of his theory. In (3) the proof predicate is viewed as an 
ordinary mathematical predicate on par with, say, “ . . . divides - - - ” or 
“ . . . is a prime.” This is particularly obvious from Myhill’s (1968, p. 327) 

and Beeson’s ready affirmation of the 

basic constructive tenet . . . 
(for all meaningful assertions q5) . . . 
(A-P) To assert is to prove: $I * 3 p (p is a proof of @) 

Beesson (1981, p. 5) 

Here, if “ . . . *r - - - ” is taken to be what it usually is, viz. a propositional 

connective, both “ . . . ” and “ - - - ” have to be filled with propositions. So 

3p (p is a proof of 9) must be a propostion. But this presupposes some 
universe over which the existential quantifier ranges and over which “ . . . is 
a proof of - - -” is a predicate. Hence, on this way of looking (4), it also is a 
consequence of (3) (and so, ultimately, of (1)). On the other hand, one can 

also suggest a way to start with (4) and obtain (1) as a consequence: If the 

universe is thought of as a structure (in a model theoretic sense) it would 
appear determinate over this structure, ‘for all meaningful assertions 9’ and 

constructions c, whether c proves 9 or not. Feature (4) appears quite 
natural when one considers Kreisel’s aim in his original presentation of the 
theory: he wished to set up an abstract theory of proofs (constructions) 
such that the logical constants could be defined and their properties derived 
within the logic-free theory of constructions. We may compare his 
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programme with a common interpretation of the logicist programme: 

(a> to define mathematical concepts in terms of logic, and 

@I to derive the mathematical theorems as truth of logic. 

The parallel is obvious: 

(a’) to define the logical constants in terms of constructions, and 

(b’) to derive the truths of logic as theorems of the theory of 

constructions.3 

The universe in (4) is then the universe of the theory of constructions, 

which is viewed as a mathematical formal theory. In the case of classical 
mathematics the universe in question would be the set theoretic universe. 

As to (l), Professor Kreisel informed me4 that a main motivation was the 

primitive recursiveness of the numerical predicate “x is the Giidel number of 
a derivation (in system s) of the wff with number y.“’ The philosophical 
justification of(l), i.e., that ‘we recognize a proof when we see one’ has a 

strong Wittgensteinian flavour. Cf. the following list: 

II: 1 ‘A mathematical proof must be perspicous’ . . . It must be possible to decide 
with certainty whether we really have the same proof twice over, or not. 

II: 22 “A proof must be capable of being taken in” . . . 
II:28 . . . the proof must convince us of the proposition. . . 
II:39 . . . when we say in a proof: This must come out - then this is not for reasons 

that we do not see . . . 
II:42 . . . Proof must be a procedure plain to view . . . 

Wittgenstein (1956) 

It is not difficult to conceive of an entry: 

We recognize a proof when we see one 

in the above list6 

2. H.EYTING IN PERSPECTIVE 

As is now fairly well-known, (1956) was not the first place where Heyting 
treated of the meaning of the logical constants. Already in the early 1930’s 
he began to wrestle with this problem: 
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L ‘affirmation. - Une proposition p, comme, par example, “la constante d’Euler, est 
rationelle”; exprime une probl&me, ou mieux encore une certaine attente (celle de 
trouver deux entiers a en b tels que C = u/b), qui pourra hre r6aliie ou decue. 
. . . 
Remarquons encore que, en logique classique comme en logique lntuitionniste, 
l’affiimation d’une proposition n’est pas elle-m&me une proposition, mais la constation 
d’une fait. 

Heytlng (1930, pp. 958-959) 

In this paper Heyting leaves it open whether all mathematical propositions 

express problems (or expectation) in the same way as “Euler’s constant is 

rational” (cf. the discussion on the difference between p and +p on p. 961). 
It is interesting to note that already in his first treatment of the question 

Heyting notes the connection between propositions and problems. Also the 
second part of the above quote is an important insight: the assertion of a 

proposition is not itself a proposition.’ 

Both points were iterated in the famous Kiiningsberg address: 

Ich unterscheide zwischen Aussagen und Satzen: ein Satz is die Behauptung einer 
Aussage. Eine mathematische Aussage driickt eine bestimmte Erwartung aus; z.B. 
bedeutet die Aussage “Die Eulersche Konstante C ist rational” die Erwartung, man 
konne zwei ganze Zahlen (I und b tinden, derart, dass C = o/b. Vielleicht noch besser 
als das Wart “Erwartung” drilckt das von den Phanonmenologen gepr%gte Wart 
“Intention” aus, was hier gemeint wird. Ich gebrauche das Wordt “Aussage” such fti 
die durch die Aussage sprachlich zum Ausdruck gebrachte Intention. Die Intention 
geht, wie schon frtiher betont, nicht auf einen also unabhigig von uns bestehend 
gedachten Sachverhalt, sondern auf ein als miigllch gedachtes Erlebnis, wie es such aus 
dem obigen Beispiel deutllch hervorgeht. 
Die Behauptung einer Aussage bedeutet die Erftiung der Intention, z.B: wiirde die 
Behauptung “C ist rational” bedeuten, man habe die gesuchten ganzen Zahlen 
tatsachlich gefunden. Ich unterscheide die Behauptung von der entsprechenden 
Aussage durch das Behauptungszeichen + das von Frege herriihrt und such von Russell 
und Whitehead zu diesem Zweck gebraucht wird. Die behauptung einer Aussage ist 
selbst wieder nicht eine Aussage, sondern die Feststellung einer empirischen Tatsache, 
namlich der Erfullung der durch die Aussage ausgedriickten Intention. 
. . . 
Ich schliesse mit einigen Bemerkungen iiber die Frage nach der Losbarkeit 
mathematischer Probleme. Ein Problem ist gegeben durch eine Intention, deren 
Erftilung gesucht wird. Es ist gelost, wenn entweder die Intention durch eine 
Konstruktion erftillt ist oder bewiesen ist, dass sie auf einen Widerspruch fuhrt. Die 
Liisbarkeitsfrage kann also auf die Beweisbarkeitsfrage zurilckgefiihrt werden. 

Heyting (1931,~~. 113-114) 

In the Koningsberg paper he is still undecided as to whether every 

proposition involves a construction and the p/+ p difference is again alluded 
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to. Somewhat later he withdraws the p/+p considerations - they were 
‘nicht stichhaltig” (1934, p. 16). Now he finally commits himself: 

Jede mathematische Aussage steht nach HEYTING fti die Intention auf einen mathe- 
matische Konstruktion, die bestimmten Bedingungen gentigen soil. Ein Beweis fti eme 
Aussage besteht in der Verwirklichung der in ihr geforderten Konstruktion. a > b 
bedeutet dann die Intention auf eine Konstruktion, die aus jedem Beweis fti u zu 
einem Beweis fti b fuhrt. Einen verwandten Gedanken, der insoweit iiber den vorigen 
hinausgeht, dass er dem HEYTINGschen Kalkul such unabhangig von intuitionistischen 
Voraussetzungen einen Sinn verleiht, hat KOLMOGOROFF [I] angegeben. Er deutet 
den Kalkul als Aufgebenrechnung. Jede Verhdeliche steht fti eine Aufgabe; diesen 
Begriff erkhht er nicht; man kann ihn wohl interpretieren als die Forderung, eine 
mathematische Konstruktion die gewissen Bedingungen gent@, anzugeben. 

Heyting (1934, p. 14)” 

He also makes the point about assertion and proposition, now reformulated 

in terms of the problem-view of propositions: 

Dass eine Aufgabe gel&t ist, wird angegeben, indem man das Zeichen I-- davor setzt; 
eine Formel, die diese Zeichen enthah, stellt keine Aufgabe mehr dar, sondern eine 
Mitteilung iiber die Lasung einer Aufgabe. 

Heytmg (1934, p. 14) 

This is perhaps the place to treat of the connections between the respec- 

tive view of Heyting and Kolmogoroff. Kolmogoroff (1932) proposed to 

interpret the letters of Heyting’s propositional calculus as ‘problems’, and 

problems he individuated in terms of their solutions. Already in Heyting 
(1931) it was noted that the problem-explanation could be subsumed under 

the view that propositions express intentions towards constructions, where 
in order to solve the problem one has to prove a corresponding proposition 

by carrying out such a construction as intended in the proposition. This 

remark can be made a bit more precise. With a mathematical proposition A 

in the sense of Heyting (1934) - hence ail propositions essentially involve 

constructions - we associate a problem PA, which is to be solved by 
carrying out a construction as intended by A, and with each problem P we 

associate a proposition AP by letting AP express the intention towards con- 
structions which solve P. Then the following two claims hold: 

(0 

and 

(W 

A and APA are the same proposition, i.e., express the same 
intensions 

P and PA,, are the same problem, i.e., have the same solutions. 
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Let us verify the latter. Consider a solution to the problem P. Such a 

construction would also serve to prove the proposition AP, because AP 

expresses an intention towards a construction which is a solution of P. But 
then the construction must also be a solution to the problem PAP because 

these are the constructions intended by AP. On the other hand, consider a 

solution of PAP. This solution must serve to fulfd the intention expressed 
by Ap, but by the explanation of &, the constructions which serve to fulfil 

this intention are precisely the solutions of the problem P. The argument 
just given is readily modified so as to verify (i) as well.” Hence the two 

explanations offered by Heyting and Kolmogoroff, that propositions 

express intentions towards constructions, or that they pose problems which 
are solved by carrying out constructions, really amount to the same thing. It 

is important to notice that Heyting and Kolmogoroff are not giving interpre- 
tations in the contemporary sense of reinterpretation (or reformulation) of 
mathematical propositions. Examples of the latter are Kleene’s (1945) 

realizability and Godel’s Dialectica-interpretation. In such interpretations, 

with each proposition A one associates another proposition A * , e.g., ‘A is 
realizable’, and it makes perfect sense to inquire as to the truth of the 

mathematical proposition 

A *A*. 

Thre is no attempt in such interpretations to explain the meaning of the 

propositions but instead’one uses the propositions. If we were to ask the 

same question for the Heyting-Kohnogoroff explanation the result is a 
piece of nonsense like: 

A * the explanation of A. 

This is nonsense because the propositional connective * needs to be filled 

with propositions and the right-hand side is not a proposition (in use), but a 

meaning-explanation of a proposition. On the left-hand side, on the other 
hand, we do have a proposition in ordinary use and not an explanation. 

Heyting and Kolmogoroff do not give mathematical reformulations but try 
to explain what propositions are; theirs is not a mathematical activity but a 
philosophical one. Cf. van Dalen (1979, p. 135): 

Both Heyting and Kolmogoroff’s interpretation [Sic!] were fundamental in nature, i.e., 
they were intended as the “true” meaning of intuitionistic logic. Of the two, clearly 
Heyting’s interpretation is foundationally the more important one. 
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I would prefer “explanations” in place of “interpretation” in the first 

sentence of this quote, but otherwise I agree with van Dalen. Given the 

essential equivalence of the two explanations, the second part seems less 
correct, however; Heyting himself also came to see that his was not a 
different explanation from that of Kolmogoroff: 

The older interpretations by Kolmogoroff (as a calculus of problems) and Heyting (as a 
calculus of intended construction) were substantially equivalent. 

Heyting (1958, p. 107) 

The difference in aims between the early views of Heyting-Kolmogoroff 
and Kreisel now become clear. Heyting-Kolmogoroff do not give a reduc- 
tion to any other theory, but try to explain what a proposition is, how it 

should be understood. For Kreisel, on the other hand, the aim was to 

formalize the properties of the ‘abstract constructions’ in a theory and 

reduce the theory of logic to that. Kreisel is thus closer to the interpretations 
just mentioned, e.g., Godel’s Dialectica and the realizability interpretations. 

Although we shall have occasion to return to the writings of Heyting, let 

us summarize a few of his views as we have found them up till now. 

Hl. A mathematical proposition is proved by carrying out a cer- 

tain construction (which must satisfy certain properties such 

as giving a certain object). 

e.g. in the example of “Euler’s constant is rational” the appropriate object 

would be a pair of objects. 

H2. The meaning of a proposition is explained in terms of what 

constructions have to be carried out in order to prove the 
proposition. 

H3. The assertion of a proposition is not itself a proposition, 

i.e., the fulfilment of the intention expressed by the proposition through 
the carrying out of a certain construction is not a proposition. Also, then, 
the “assertion-condition” on constructions (construed as a property of 
constructions) is not propositional in nature. 

What then is a theorem, on Heyting’s view? “Every theorem has the form 

(if enunciated without abbreviations): ‘A construction with such and such 

properties has been effected by a mathematician’.“” But we know that for 

Heyting to carry out a construction with such and such properties is to 
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prove a proposition, namely one which expresses an intention towards con- 

structions with such and such properties. So it is not the proposition itself 

which is the theorem, but that is has been proved. One can reformulate 
Heyting’s dictum in the (for him) equivalent form: 

H4. Every theorem has the form: “A proposition has been 

proved”?’ 

or, equivalently, 

H4’ A mathematical theorem has the form: 
Construction C has been carried out, producing object c, 

thereby 
l 

proving proposition A. 

fulfilling the intention expressed by A. 

Let us finally note that there are no second clauses in Heyting’s own 

formulations of his explanations for + and V . In (1934) and (1956) there 
are none, and so as not to try the reader’s patience with a long retrospective 

list of quotes, I will confine myself to one further, late, statement: 

I may assert A + B when I am able to convert any proof of A into a proof of 3. In 
other words, I must possess a general method of construction which, when applied to 
proofs of A yields a proof of B. 

Heyting (1974, p. 87) 

The only place I have found where Heyting even mentions the second 

clauses is (1968, p. 318), but then only in the process of describing the 
contribution of Kreisel(l962,1965) as a part of a general survey of recent 

work within intuitionism.13 

3. THE RELATION BETWEEN CONSTRUCTIONS AND PROOFS 

In this section I will consider some theses on the concepts mentioned in the 

title of this paper, and on some of their inter-relations. 

(1) Mathematical propositions are seen to be true - may be 
asserted - by being proved. 

This seems a fairly uncontroversial principle (even from a classical point of 
view). 

(11) We recognize a proof when we see one. 



162 G(iRANSUNDHOLM 

There is something intuitively right about this; part of the same intuition 

seems to be that a proof determines its conclusion.‘4 One must be able to 
understand the proof as a proof, and what it proves, in order that it be a 
proof. 

Proofs begin with immediate truths (axioms), which them- 

selves are not justified further by proof, and continue with 
steps of immediate inference, each of which cannot be 

further justified by proof. 

This is a formulation of Aristotle’s conception of organized knowledge. 

(IV) The assertion of a proposition is not itself a proposition. 

This is a difficult principle which one can hardly reconcile with current 

metamathematical conceptions of logic.” The early logicians - Frege, 

Russell-Whitehead, Heyting - were quite strict in their observation of this 

point. The main change occurs around 1930 with the triumph of meta- 
mathematics, after which point the turnstile takes on the meaning of a 

derivability-predicate, i.e., a predicate operating on strings of symbols 

indicating that a certain inductively generated tree of strings of symbols 
exists, rather than a force indicator as in Frege and Russell. 

09 The meaning of a proposition is determined by how it may 
be proved. 

If(V) is combined with Fregean compositionality, i.e., that the meaning of 

a complex proposition should be functionally dependent on the meaning of 
its relevant constituents, we obtain that the meaning is given uniformly in 

terms of its assertion condition, and hence, as was already noted, as the 
assertion condition is not propositional, the key-concept in the meaning 

explanations is not propositional. This emphasizes a difference with the 
(propositional) Kreisel theory and Heyting’s explanations. Heyting dues not 

give a reduction to a more simple theory. Here one can draw a parallel with 
Frege: If the meaning is to be explained in terms of II, then the regress in 
(3) would be a vicious one and formally similar to the one Frege runs for 

truth in the opening sections of (191 8).‘6 We should also note that if (v) is 
supplemented with compositionality one would expect the theory of 
constructions (not necessarily Kreisel’s) qua theory of meaning to operate 
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with two inter-related notions, namely 

and 
A is a proposition 

II@, A) (i.e., the assertion condition for A). 

(“inter-related” in the sense that claims of the form’ A is a proposition’ may 

depend on lI(c, B): s for constituents B of A.) 

WI) Proofs are constructions. 

There is no question but that this is a basic feature of Heyting’s view. 

Already at the outset we find: 

Ein Beweis ftir eine Aussage ist eine mathematische Konstruktion, welche selbst wieder 
mathematisch betrachtet werden kann. 

Heyting (1931, p. 114) 

The rider concerning the possibility of regarding the proof construction as a 

mathematical object in its own right shows that Heyting here, in so far as 

this issue is concerned, is speaking as an intuitionist, by which term I under- 

stand, not a general adherent of “constructivism”, but more specifically an 

intuitionist in Brouwer’s sense. I would like to calim that the “theories of 

constructions” when considered as theories of meaning cannot find their 

place within Brouwerian intuitionism. As a consequence I would also hold 

that it is misleading to think in terms of the equation: 

Intuitionism = Basic constructivism + choice sequences + 

continuity.” 

Indeed, when the theories of constructions are given their meaning- 

explanatory role the separation will immediately arise between the 

mathematical activity reported in the constructivist language and the 

meaning-explanations in the secondary reflective activity. Now for Brouwer, 

as witnessed by his philosophical writings (1929) and (1948), mathematical 

reflection (reflection on the mathematical activity) is itself a part of mathe- 

matics: the secondary activity is included in the first. A nice example of this 

is given in the remarkable self-reflexivity of his proof of the Bar-theorem. 

An immediate consequence of such a view on the primary and secondary 

activities would be that meaning-theoretical considerations are ruled out; as 

soon as we have a language there arise questions of meaning over that 

language. Therefore Brouwer’s first act of intuitionism seems inevitable 

within his framework: 
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Completely separating mathematics from mathematical language and hence from the 
phenomena described by theoretical logic, recognizing that intuitionistic mathematics 
is an essentially languageless activity of the mind . . . 

Brouwer (1981, p. 4) 

The use of language forces the separation of activity and reflection over that 

activity, but for Brouwer activity and reflection are one. So the activity 

must be essentially languageless. 
Such, then, are my reasons for finding it mesleading to view intuitionism 

as an “extension” of basic constructivism. This view seems supported by the 

fact that Heyting does not give semantical explanations of typically 
intuitionist concepts, like infinitely proceding sequence and spread, together 

with his explanations for the logical constants. Thus there seems to be a 
discrepancy between Heyting, the semanticist of constructivism, and 

Heyting, the Brouwerian intuitionist. In the quote above on constructions 
and proofs he wishes to have it both ways, it appears. This, however, is not 

possible, as soon as the meaning-explanatory aspects are taken into account. 

(VII) Constructions are mathematical objects. 

Theses (VI) and (VII) taken together imply that proofs are (presumably 

abstract) objects, i.e., the starting point of the Kreisel theory of construc- 

tions. Note how readily some features of the Kreisel theory result from the 
theses above. By (VI), (VII) proofs are objects and by (II) we recognize a 

proof when we see one and so the relation between proof-object and 

proposition is decidable. However, this relation would appear to be mathe- 

matical in nature (as the proofs are nuzrhemafical objects) and then one gets 
into difficulties with theses (IV) and (V): the assertion condition is not 

(mathematical) propositional. Perhaps the solution to this riddle lies in the 

fact that the word 

construction 

is ambiguous. l8 It can mean, among other things: 

g; 
process of construction 
object obtained as the result of a process of construction 

(cl construction-process as object (rather than as something 
“dynamic”). 
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My suggestion is then that “construction” occurs with different senses in 

the theses (VI) and (VII). In (VII) the notion of construction seems to be 
that of(b) and in (VI) that of (a). In particular I would also suggest that the 

c in II@, A) ought, if one wishes to keep the meaning-theoretical aims, to 
be taken in the sense (b). (Kreisel in his theory of abstract proofs seems to 

use (c)). 

With these distinctions H4 from our summary of Heyting’s position can 

be reformulated yet another time: 

H4”. A mathematical theorem has the form: 

Construction (process) C has been carried out, producing 

(construction) object c, thereby proving proposition A. 

Brouwer’s notion of construction seems to be none of the above. Perhaps an 

amalgam of (a) and (c) gives something which can serve as a model for an 

outsider? In the mathematical activity one carries out (processes of) 
constructions, but in reflection on these (which is also a part of the mathe- 

matical activity) one can treat the processes as objects.lg 
For Heyting the important notion seems to be (a): 

So wird jede aIlgemeine Konstruktionsmethode zu einer bedingten Konstruktion, das 
heisst, zu einer Konstruktion A, die erst ausgeftihrt werden kann, wenn gewisse andere 
Konstruktionen B, die vorgegebenen Bedingungen geniigen soIlen, ausgeftihrt sind. 

Heyting (1958a, p. 334) 

In Heyting (1960, p. 180) we find a list of construction methods: 

I: construction d’un nombre nature], 

II: construction hypothbtique, 
III: methode g&&ale de construction, 

IV: contradiction. 

Let us consider a very elementary example in order to indicate how this 
can be understood. (We use p and 4 for left and right projections on pairs of 

objects.) 

On the assumption II@, A & S), then clearly II&, A & B). But such an 
x must be a pair with certain properties. Hence, still on the same assump- 
tion, II@(x), A), and, therefore, outright on no assumptions, ll(A~p(x), 
A &B + A). This can be represented in tree form: 
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rI(x,A &B) ow,A &lo) 
l-u?+), 4 o-ux,A &a) 
H(hxp(x),A &B-+A) 

(where we have indicated dependence on possible assumptions to the right 

of each line). The proof of the proposition A &B + A is given by the whole 

tree, with its conclusions IImp( A &B +A), and the whole tree 
represents the construction (process) of the construction (object) tip(x). 

That this object (this function, this construction) has such and such proper- 
ties is guaranteed by the way it is constructed. The constructions which 

occur in the second clauses are of the sort (a), whereas in the first caluse of 
the implicationexplanation the construction is of the sort (b). In order to 

prove any propositior? one always has to exhibit a construction (object) of 
sort (b), which must satisfy certain properties. These are guaranteed to hold 

by means of the construction (process) of sort (a). (Indeed, one should, 

given thesis (IV), not expect that II (c, A) would be proved by a 
construction of the same sort as c.) If we refer back to H4” the tree above 

fits very well with the formulation given there: the construction C, which 
has been carried out, is given by the whole tree and the object c which has 

been obtained as the end-result is Xxp(x), while the proposition proved is 

A & B + A. The example just considered exemplifies II on Heyting’s list: 
hypothetical construction. Similar examples can be given also for the other 

methods of construction there. 
There now remains to check how the theses (I) to (V) tally with the 

process/object distinction for constructions. Thesis (I) I take to refer to 

proofs as construction-processes giving certain construction-objects: 

mathematical propositions are seen to be true by carrying out a 
construction-process giving a construction-object of a certain sort. Thesis 

(II) can be understood in two ways: (a) that when we “see” a construction 
process - when we have “taken in” the construction process - we under- 
stand it as a proof of some proposition, or (b), when we see a construction 

object, as a result of a process, then we understand that it is of the right sort 
simply from the way it is the result of the process. Both readings are, I 
think, quite natural. That the proof determines its conclusion is one way of 
saying that the sort of object produced is determined by the process of con- 
struction. The Aristotelean (III) simply says that construction processes are 
put together form basic construction steps and must begin with something. 
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In thesis (IV), on the present reading, what gets said is that, that the 
construction-object, which is produced by a construction-process, is of the 

right sort for a proposition, is not itself a proposition and does not express 

an intention towards yet another construction-process; that the process 
produces such an object is not a proposition. Similarly in (V), the meaning 

is determined by what processes have to be carried out in order to prove the 

proposition. The theses (VI) and (VII) have already been dealt with. 

4. FORMAL WORK ON THE THEORY OF CONSTRUCTIONS 

To the best of my knowledge only two out of existing formal systems for 

“theories of constructions” respect the difference between constructions as 
processes and as objects, viz. Scott’s system in his (1970) and the various 

versions of the type theory of Martin-Lof (1975,1975a, 1970). These sys- 
tems were developed in the late 1960’s and were, on the technical side, 

inspired by Kleene’s (1945) notion of realizability, and L&r&h’s (1970) 

abstract version thereof. Other very important sources of inspiration were 
Godel’s Dialectica translation and Howead’s notion of “formulae-as-type”, 

cf. Howard (1980). The system AUTOMATH of de Bruijn - an up to date 
survey is in de Bruijn (1980) - also influenced the work. 

Scott, in particular, emphatically stressed the point to which this paper 

has been mainly devoted: 

(iii) We have no abstract proofs, only constructions and species of con- 
structions. When the author finally obtained his formalism the proofs- 
as-object [i.e., processes-as-objects in the terminology of the present 
paper. G.S.] vanished. 

Scott (1970, p. 241) 

Take implication first . . . what must be done in order to establish A 3 B? One must 
first produce a construction (object G.S.) together with a proof (process of construc- 
tion G.S.) that this construction transforms every construction that could establish A 
into a construction for B. The construction is an object of the theory while the proof is 
an elementary argument &our the theory. 

Scott (1970,~~. 261-262) 

Unfortunately Scott gave up the project and in a post scripturn he says that 

he has been convinced by Kreisel and Code1 of the need for abstract proofs 
(as objects). Be that as it may; the system of Scott, by the side of the more 
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elaborated theories and meaningexplanations of Martin-Lof, is the closest 

system we have got for a theory of construction qua theory of meaning for 
the constructive logical constants. Recently a fair number of formal systems 

have been proposed for diverse theories of constructions. This being so, and 
given that the present paper has dealt with his theory at some length, it 

seems fair to let Kreisel get the last word with the following appropriate 

observation that 

work directly concerned with the intended meaning of intuitionistic formal systems is 
not at all essentially mathematical. 

Kreisel(l973, p. 262) 

NOTES 

The research reported herein was supported by a Fellowship by Examination at 
Magdalen College, Oxford. It was begun when I was a Visiting Lecturer at Utrecht, 
Spring 1980, as a reaction to Beeson’s 1979, and I am grateful to him, van Dalen and 
Visser for almost daily opposition. The paper has been presented at Stockholm, 
Manchester, Oxford, Miinster and Oberwohlfach and I have benefitted from comments 
by participants in those seminars and Peter Aczel in particular. Professors Kreisel and 
Martin-Lof, as well as the Editor offered detailed and constructive comments on a 
preliminary version. 

’ The relation II is not basic for Kreisel, who instead uses ‘n(c, II, b) = 0’ (1962, p. 
202 and p. 206, REMARK). His followers, who sometimes have put the formal 
theories of Kreisel to a use they were not made for (see below), have usually used the 
informal counterpart to ll in their expositions of Heyting’s scheme (rather than n). 
a As far as I have been able to make out, the second clauses make their entry in foot- 
note 4 of Kreisel(l961, p. 107). 
s Kreisel draws an analogous parallel, cf. the reference in footnote 2, as well as (1962, 
Section 2). In a letter of 6.1.82, Prof. Kreisel draws my attention to his review Zentrul- 
blatt 199, p. 300 where he questions the interest of the whole project of developing an 
abstract theory of proofs. 
’ At the Brouwerconference, Noordwijkerhout, June 1981. 
’ Kreisel had applied this idea to his earlier work on the progressions, see (1962, p. 
207, footnote 10). 
6 Prof. Kreisel was not aware of a direct influence from Wittgenstein (cf. footnote 4), 
but see Kreisel(1958). 
‘I This is a point which goes back at least to Frege. For him the turnstile, composed of 
two parts - the content and judgement strokes, respectively - was an indicator of 
assertoric force and not, as is the case today, a metamathematical symbol meaning “is 
derivable”. Bell (1979, pp. 97-98) is a good reference here cf. also Dummett (1973, 
Chapter 10). 
s KOLMOGOROFF [l] = Kolmogoroff (1932). 
9 Troelstra (1981) contains interesting information about Heyting’s early views, and, 
in particular, about his contact with Kobnogoroff. 
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lo I am indebted to Martin-Liif for the above view on the relation between propo- 
sitions and problems. 
‘I Heyting (1958b, p. 278). 
” Standard formal systems, e.g., HA - Heyting Arithmetic - do not seem suitable to 
represent this notion of theorem. If the wffs are intended to represent propositions and 
derivable objects the theorems, then the theorems are propositions, whereas for 
Heyting the theorem is that a proposition has been proved. Kreisel asked the pertinent 
question: ‘Was the (logical) language of the current intuitionistic systems obtained by 
uncriticul transfer from languages which were, tacitly, understood classically?’ (1973, 
p. 268). 
I3 Professor Troelstra stresses (in conversation) that one cannot conclude that Heyting 
rejected the second clauses from the fact that they never appear in his work. That is so, 
but as they never appear and from the fact that he never endorsed them, it seems that 
at least one ought not to put the name of Heyting on formulations which include 
them. 
I4 Remember the analogy with the derivation predicate of GBdel-numbers; also there 
the conclusion Code1 number can be read off primitive recursively from the derivation 
Gijdel number. 
” See Note 12 above. 
I6 There are some prima ficie difficulties with the view that meaning is determined by 
proof, or assertion, conditions: 

(a) one can do too much it seems, cf. Prior’s “TONK”. 
(b) the paradox of inference - how can logic be both valid and useful - seems to 

threaten, cf. Dummett (1973a). 
(c) if the meaning of a proposition is explained in terms of proof, can one then 

only understand proved propositions? 
These difficulties will be discussed in detail in detail in my ‘Meaning 77reory and 
Roof”, forthcoming in “A Handbook of Philosophical Logic” (Eds. Gabbay and 
Guenthner). 
” Beeson (1981a, p. 148) uses a more formalistic version of this equation to character- 
ize intuitionism. 
“Mututis mutandis, in most European languages. 
I9 See Brouwer (1929) and (1948). 
so And not just those of implication form: there is nothing special about implication. 
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