
ED&TC ’96
0-89791-821/96 $5.00  1996 IEEE

Constructive Analysis of Cyclic Circuits

Thomas R. Shiple
Department of EECS

University of California, Berkeley

Gérard Berry
Ecole des Mines
Sophia-Antipolis

Hervé Touati
Digital Equipment Corporation

Paris

Abstract
Traditionally, circuits with combinational loops are

found only in asynchronous designs. However, combi-
national loops can also be useful for synchronous circuit
design. Combinational loops can arise from high-level
language behavioral compiling, and can be used to reduce
circuit size. We provide a symbolic algorithm that detects if
a sequential circuit with combinational loops exhibits stan-
dard synchronous behavior, and if so, produces an equiva-
lent circuit without combinational loops. We present appli-
cations to hardware and software synthesis from the Esterel
synchronous programming language.

1 Introduction
The interpretation of a loop-free combinational circuit1

is clear. On the logical side, the circuit defines a boolean
function f from inputs to outputs; the function f is com-
puted by composing the intermediate functions according
to the gate operators. On the electrical side, if the input volt-
ages remain stable at logical values, then after some delay,
the output voltages stabilize to the unique logical values
defined by f . Classical synchronous circuit design is based
on this perfect match between the electrical input-output
correspondence and the boolean function f .

The situation is much less clear when the combinational
part of a circuit, meant to be synchronous, has loops. It
is easy to build combinational circuits that cannot be de-
scribed by boolean functions, and do not stabilize electri-
cally to unique logical values. Prototypical examples are
the circuits C1 defined by x = x and C2 defined by x = x

where x is an output2; C1 has two boolean solutions, while
C2 has none. Since cycles give rise to circuits with mul-
tiple solutions or no solutions, they are usually avoided in
synchronous circuit design.

However, cyclic combinational circuits may have well-
defined logical and electrical behaviors, with the same per-
fect match as for acyclic ones. Such circuits can be safely
used in synchronous designs; they appear, for example, as
the result of synthesis from synchronous programs written
in the Esterel language [1]. This paper presents a symbolic
procedure to analyze the behavior of cyclic circuits. This
procedure is currently used in the Esterel v4 compiler. Our
work builds upon Malik’s [11] work, extending his analysis
method to sequential circuits, and providing a refined fixed
point iteration method.

1We refer to an arbitrary interconnection of logic gates as a combina-
tional circuit.

2We denote negation, disjunction, and conjunction by x, x + y, and
x � y, respectively.

a

b

(a)

x

y

a

by

(b)

l1

l2
x

Figure 1: Circuits are well-behaved unless a = b = 1.

1.1 Well-behaved cyclic circuits
Consider the circuit C3, shown in Figure 1a, with inputs

a; b and outputs x; y defined by the equations:

x = a � y

y = b � x:

The logical behavior is well-defined unless a = b = 1. If
a = 0, then we have x = 0 and y = b; symmetrically, if
b = 0, then y = 0 and x = a. However, if a = b = 1,
then x and y are undefined since their equations become
x = y and y = x. Similarly, the electrical behavior is well-
defined if both inputs are not 1: the outputs of the circuit
stabilize for all gate and wire delays. Altogether, we can
say that the circuit is partially defined, and that under the
assumption a � b = 0, it behaves like the acyclic circuit C4
defined by x = a and y = b. Our procedure reports under
which inputs C3 is well-defined, and produces the acyclic
version C4.

The above analysis extends to sequential circuits. Sup-
pose two latches are added to C3 (see Figure 1b), where
l1 is initialized to 1 and l2 to 0. In this case, the behavior
is always well-defined, since the unstable state a = b = 1
is never reached. Using state reachability analysis, our
procedure confirms this, and thus declares this circuit well-
behaved.

This example is representative of cyclic circuits gener-
ated by high-level synthesis from languages such as Esterel.
For such languages, it is essential to detect whether cyclic
circuits have well-defined behavior, so that well-behaved
circuits are not rejected. In addition, Malik presents an-
other class of examples where benign cycles result from
sharing subcircuits in order to reduce circuit size. Such
cycles can be generated by behavioral compilers from lan-
guages such as VHDL.

1.2 Constructive circuits
We have to be more precise about what we call a well-

behaved circuit. Consider first circuits without latches.

For each input vector in a given input care set, we want the
circuit to have 1) a unique boolean solution for each output,
and 2) electrical stabilization of the outputs for all possible
wire and gate delays. For circuits with latches, we want
these properties to hold for all input sequences in a given
care set.

Surprisingly, these two notions are not identical. Con-
sider the (inputless) circuit C5 with output x defined by
x = x+ x. It so happens that (1) holds since x = 1 is the
unique boolean solution, but that (2) does not hold since
x does not stabilize for certain delay values. This circuit
is not well-behaved, and illustrates that we do not accept a
circuit just because it has a unique boolean solution. Fur-
thermore, it illustrates that two circuits (for exampleC5 and
the constant circuit x = 1) may compute the same boolean
function, but one is well-behaved and the other is not. Thus,
well-behavedness is a structural property.

To capture the intuition of well-behaved circuits de-
scribed above, we introduce the class of constructive cir-
cuits. Constructive circuits can be characterized in three
different ways:

1. The logical definition, which is based on a constructive
version of boolean logic. In this logic, x + y = 1 is
provable from either x = 1 or y = 1, and x + y = 0
is provable from x = y = 0. The law of excluded
middle, x + x = 1, does not hold, unless x has been
proved to be either 0 or 1 (this explains why circuitC5
is rejected).

2. The semantical definition, which is based on Scott
booleans f0; 1;?g, as in classical denotational se-
mantics [7, 12]. A circuit is thought of as a mono-
tonic function on the lattice f0; 1;?g whose least
fixed point defines the output. For a circuit that is
monotonic, changing an input from? to 1 or 0 cannot
cause an output to change from 1 or 0 to ?. In C5,
the least fixed point is x = ? and the circuit is un-
defined. (This is the same as ternary circuit analysis
using values f0; 1; Xg [4].)

3. The electrical definition, which uses the inertial delay
model of [4] and requires electrical stabilization for
all delays.

The exact definitions are given in [2], where it is proved
that they are indeed equivalent.

The contribution of this paper is a practical algorithm
that can determine whether a circuit with latches is con-
structive. The algorithm performs the analysis of a circuit
relative to care inputs and reachable states. If a circuit
is constructive, then an equivalent circuit without combi-
national cycles is generated; otherwise, an error trace is
reported giving a sequence of inputs in the given care set
leading to a state where the output is not constructively de-
termined. This problem was motivated by the occurrence of
cyclic Esterel programs. Our algorithm has found a signif-
icant application in the new Esterel compiler by admitting
circuits that are well-behaved according to the Esterel se-
mantics, but which were rejected by the previous Esterel
compiler.

2 Related work
We are not aware of any other procedure that deter-

mines whether a cyclic circuit with latches is constructive.

However, Malik provided a procedure for circuits without
latches, and our work builds on this (see Section 3.1).

Burch et al. [5] use ternary valued relations to model
combinational loops. Their model allows the description
of “apparent loops” (loops between hierarchical blocks that
in fact disappear when the circuit is flattened) and “actual
loops.” However, they do not address the problem of de-
ciding if a circuit is constructive.

Brzozowski and Seger [4] address the following prob-
lem: given that a circuit (without latches) is in a logically
consistent state, what is the effect of changing the logi-
cal values on a subset of inputs? They solve this problem
using ternary valued simulation. Although their work is
primarily focused on asynchronous circuits, it is the key
for proving the equivalence between our three definitions
of constructive circuits.

Halbwachs et al. [9] give a procedure that detects
whether a circuit has a unique boolean solution. Their
test accepts circuit C5 above because they do not require
electrical stabilization; hence, their classification of circuits
is different than ours. However, like us, they handle circuits
with latches and input care sets, and for circuits with unique
boolean solutions, they can generate equivalent acyclic cir-
cuits.

3 Analysis of circuits without latches
In this section we discuss the constructive analysis of

circuits composed of arbitrary interconnections of boolean
gates.
3.1 Malik’s procedure

Malik uses ternary valued symbolic simulation to de-
cide if a circuit is constructive. Central to ternary valued
simulation is the concept of the ternary valued extension of
a boolean function. The following tables show the ternary
valued extension for several boolean operators.3

a NOT a b AND OR XOR
0 1 0 0 0 0 0
1 0 0 1 0 1 1
X X 1 0 0 1 1

1 1 1 1 0
X 0 0 X X
X 1 X 1 X
0 X 0 X X
1 X X 1 X
X X X X X

These are called the “parallel” extensions in denotational
semantics [12]. They follow the basic rule, which is valid
in the electrical model, that a 0 or 1 output value can be
deduced whenever there is sufficient information available
at the inputs. For example, a 0 at any input of an AND gate
forces the output to 0. An important fact is that all of these
extensions are monotonic.

Malik’s procedure works by computing the ternary val-
ued function, in terms of the primary circuit inputs, for each
node in the circuit. Since the primary inputs are assumed to
be known, binary valued signals, only functions of the form
f : f0; 1gn ! f0; 1; Xg need to represented; we refer to
such functions as ternary valued functions (TVFs). A pair
of boolean functions (f1; f0) is used to encode a TVF f ,

3We use the symbol X for the undefined (or uncertain) value instead
of ?, sinceX is more common in circuit analysis.

logic
acyclic

logic
acyclic

n m

k

x z n m z

k k
Y

x

y

Figure 2: Breaking feedback arcs to produce an acyclic
circuit.

such that f1 (resp. f0) is the characteristic function of the
set of inputs for which f evaluates to 1 (resp. 0). f1 and
f0 are represented by binary decision diagrams (BDDs).
We refer to f1 as the positive component of f . The set
fX of inputs for which f is undefined can be computed as
fX = f1 + f0. By definition, it is true that f1 � f0 = 0.
Boolean operations extend to TVFs in a trivial way. For
example, for an AND gate with inputs a and b and output
c, the TVF for c is given by c1 = a1 � b1 and c0 = a0 + b0.

Malik computes the TVF for each node as follows. First,
he finds a feedback arc set. By breaking these arcs and intro-
ducing auxiliary inputsyand outputsY , the circuit becomes
acyclic (see Figure 2). Next, ternary symbolic simulation
is used to find the TVFs of the outputs z and Y . At the
start of the simulation, the original inputs are initialized to
boolean symbolic variables, and all other nodes (including
y) are initialized to X (i.e., no assumption is made about
the initial state of the circuit). The gates are evaluated in
topological order from the inputs to the outputs. Evaluat-
ing a gate means to compute the output TVF of the gate by
applying the function of the gate to its input TVFs. This is
just simulating forward deduction in constructive logic.

After the first symbolic simulation pass of the acyclic
circuit, the TVF at Y is fed back to y, and another pass is
made. This continues until one pass completes without any
TVF changing. It is sufficient just to monitorY for change.
Because of monotonicity over a finite lattice, convergence
is guaranteed within k passes, where k is the size of the
feedback arc set.

After convergence, the TVFs for z are examined: if there
exists an input assignment that makes at least one output zi
evaluate toX, then the circuit is declared non-constructive;
otherwise, it is declared constructive. If a circuit is declared
constructive, then the function z1

i
gives the boolean func-

tion for output zi. Since z1
i

is represented by a BDD, which
can be trivially transformed into an acyclic circuit, the pro-
cedure can produce an acyclic version of the initial circuit.
If a circuit is declared non-constructive, then

P
i
zXi gives

the input assignments for which at least one output does
not constructively evaluate to a unique boolean value.

The correctness of Malik’s procedure with respect to
our notion of constructive circuits follows directly from
the fact that it symbolically implements Scott’s fixed point
computation [2].

3.2 Our procedure
In our procedure, we use a method different from Ma-

lik’s to compute the TVFs of the circuit nodes. Our goal
is to minimize the number of gate evaluations performed
during ternary symbolic simulation. As far as correctness

1
1

4
2

31 1

Figure 3: Number of gate evaluations depends on evalua-
tion order.

1 2 3 5 8764

Figure 4: A directed graph.

is concerned, it turns out that the gates of the circuit can
be evaluated in any order. The only requirement is that
the process of evaluating gates continues until a fixed point
is reached. On the other hand, the number of evaluations
is sensitive to the order. Consider the circuit in Figure 3.
Even though our algorithm performs symbolic simulation,
suppose for a moment that we want to simulate the circuit
for the concrete input 1,1,1. All internal nodes are initial-
ized to X. Say we break the feedback at the outputs of
gates 3 and 4, and then evaluate the gates in the order 1,
2, 3, 4. This would require 3 passes to reach convergence.
However, if we break the circuit at the output of 2 and use
the order 3, 1, 4, 2, we reach convergence in a single pass.

We apply an evaluation ordering scheme by Bourdon-
cle [3] to heuristically minimize the number of gate eval-
uations. Bourdoncle’s algorithm takes as input a directed
graph and produces a weak topological ordering (WTO). A
WTO can be thought of as a decomposition of a graph into
recursive, strongly connected components (SCCs). Con-
sider the graph in Figure 4. The set f3; 4; 5; 6;7g forms an
SCC. By removing vertex 3 from the subgraph induced by
this set, we see that f5; 6g forms an SCC. In this way, we
can get nesting of SCCs. The WTO for the example graph
is

1 2 (3 4 (5 6) 7) 8:

The elements within a matching pair of parentheses con-
stitute a component, and the first element of a component
is the head (heads are underlined above). The depth of an
element is the number of nested components containing the
element (e.g. element 3 has depth 1; 6 has depth 2). The
important properties of a WTO are that 1) each component
is strongly connected, 2) the set of heads constitutes a feed-
back node set (that is, all backward edges are incident upon
heads), and 3) it gives a total ordering on all the nodes.

Bourdoncle proposed a gate-evaluation order using a
recursive strategy whereby an inner component is stabilized
each time one pass is made of its containing component.
So in the above example, we first evaluate 1, 2, 3, 4, 5, 6.
But then, instead of going to 7, we return to 5, and continue
looping between 5 and 6 until there is no change. Then 7
is evaluated, and then we return to 3. The process repeats
until the component (3 4 (5 6) 7) is stabilized, and lastly

8 is evaluated. Bourdoncle showed that the total number
of evaluations is bounded by

P
depth(v), where the sum

is taken over all nodes. This contrasts to the method that
Malik uses, which is bounded by N (k + 1), where N is
the number of gates and k is the number of feedback arcs.
It can be shown that

P
depth(v) < N (k + 1). However,

for a given circuit, both methods may converge faster than
these bounds, and it is possible that Malik’s method may
converge sooner.

We compute the TVF for each node by evaluating the
gates in recursive order. In addition to using Bourdon-
cle’s method, we employ event-driven ternary simulation
to further reduce the number of evaluations. With this tech-
nique, a gate is scheduled for evaluation only if the TVF
of one of its fanins has changed. Once we have the TVF
for each node, we examine the TVFs as explained above to
determine whether a circuit is constructive.

4 Analysis of circuits with latches
Now we analyze circuits with latches. Such a circuit

computes a sequence of output vectors from a sequence of
input vectors. In the logical domain, a latch acts as an ele-
mentary logical delay. If a and b are the input and output of
a latch, then bn+1 = an for all n � 0. The initial output b0
of a latch is assumed to be either 0 or 1, or nondeterministi-
cally 0 or 1, and is specified independently. In the electrical
domain, a latch takes a clock as an additional input, and all
latches are driven by the same clock. The input voltage is
transferred to the output at each clock event. For a circuit
with latches to work properly, there must exist a uniform
stabilization delay that makes all outputs stabilize for any
input vector, and the interval between clock events must be
greater than this delay. Such a delay obviously exists for
acyclic circuits, and can be shown to exist for constructive
circuits [2].

We shall assume that combinational wires do not re-
member their value from one clock cycle to the next. This
assumption is actually conservative for the usual electrical
model, but it fits well with the semantics of synchronous
languages such as Esterel or Lustre [8, 1], and with soft-
ware implementations where intermediate wires are imple-
mented by automatic variables rather than by static vari-
ables. Discarding this assumption is possible but leads to
a more complex analysis since combinational wires can
behave as “hidden state variables.”

We say that a circuit with latches is constructive if the
combinational part of the circuit is constructive when the
primary inputs are restricted to care input values, and the
latch outputs are restricted to reachable states. We have
implemented a procedure to decide whether a circuit with
latches is constructive. The procedure takes three inputs:
1) a circuit, 2) the set of initial values of the circuit latches,
and 3) the care set of primary input values. If the circuit
is constructive, the procedure returns “YES” and produces
an equivalent acyclic circuit. Otherwise, it returns “NO”
and produces an error trace showing how the circuit can
be driven into a non-constructive state. Figure 5 shows the
outline of the procedure.

For a circuit to be constructive, it is sufficient that the
combinational logic block is acyclic. Thus, a depth-first
search is first performed on the combinational logic; if no
cycle is found, the circuit is constructive, and full construc-
tivity analysis can be avoided. Otherwise, the following
three step procedure is performed:

1. Find the TVF for each node in the circuit.

2. Compute the primary input/present state combinations
which make the circuit non-constructive. This set of
combinations is called the unstableDomain.

3. Determine whether any care input/reachable state
combination is present in the unstableDomain. If not,
the circuit is constructive.

In the following, we discuss the details of the three
steps. Also, we discuss the mechanisms to generate acyclic
implementations and error traces.

Step 1: Find TVFs for combinational circuit nodes.
We can use either of the procedures from Section 3 to com-
pute the TVFs. Latch outputs are treated as primary inputs,
and hence are initialized to boolean symbolic variables.
Since we make the assumption that wires do not remember
their values from one clock cycle to the next, it is appropri-
ate to initialize all combinational nodes to X, as is done in
the procedures from Section 3.

This step effectively analyzes the behavior of the com-
binational part of the circuit for an arbitrary clock cycle,
using boolean symbolic variables as inputs. Since the com-
binational wires do not hold state, there is no information
that needs to be passed from one clock cycle to the next,
except for the values of the latches.

Step 2: Compute the unstableDomain. The result of step
1 is the TVF for each node in the circuit. As a reminder,
the TVF for a node gives the ternary value of that node for
each boolean assignment to the primary inputs and present
state signals. We are interested in the TVFs for the set T
of primary outputs and next state signals. We define the
unstableDomain as those boolean assignments to primary
inputs and present state signals such that some signal in T
evaluates to X:

unstableDomain =
X

t2T

tX :

Next, we intersect the unstableDomain with the careSet
of primary input values, and then we project this set onto
the present state signals to yield the set of unstableStates.
This sequence of computations is illustrated in Figure 6.
If unstableStates is empty for a given circuit, then we can
immediately declare the circuit to be constructive. Other-
wise, we must perform reachability to determine whether
a member of unstableStates is reachable; this is checked in
Step 3.

The definition of unstableDomainallows internally con-
tradictory behavior, as long as it does not affect the combi-
national outputs. We can strengthen the definition to require
all nodes in a circuit to evaluate to a known, boolean value.
In this case, we assign T above to be the set of all nodes;
we call this strong constructivity. The Esterel v4 compiler
uses strong constructivity.

Step 3: Determine whether an unstable state is reach-
able. Steps 1 and 2 analyze the circuit for a single, but
arbitrary, clock cycle. Step 3 effectively examines multiple
clock cycles to determine whether a state in unstableStates
is reachable via a sequence of care inputs. To do this, we
use a standard symbolic traversal technique [6], limiting the

function constructivityAnalysis(circuit, initialStates, careSet)
if (isAcyclic(circuit))

return “YES”
else

if (isConstructive(circuit, initialStates, careSet, &unstableDomain, &reachabilityInfo)
produceEquivalentAcyclicCircuit(circuit)
return “YES”

else
getErrorTrace(circuit, unstableDomain, reachabilityInfo);
return “NO”

Figure 5: Outline of constructivity analysis procedure.

assignments

primary
input

stableDomain

un
sta

ble

present states

unstableStates

Dom
ain

inputs
care

Figure 6: Computation of unstableStates.

next state computation to the input care set. However, there
is one wrinkle: what do we use for the next state functions?
The reachability computation requires a boolean function
for each next state signal f , but Step 1 yields a ternary val-
ued function. The solution is simple: we use the positive
component f1 of the TVF. As long as we stay within the
stableDomain, f is guaranteed to evaluate to 0 or 1, and
hence f1 gives the correct value. Thus, upon reaching each
new set of states during the reachability computation, we
check that all these states are stable. If so, we are still within
the stableDomain, and can use the positive component of
each TVF to compute the next set of states. If not, we
have found a reachable unstable state and can immediately
conclude that the circuit is non-constructive. If we reach
a fixed point without reaching an unstable state, then the
circuit is constructive.

Generating an acyclic implementation. If the circuit
is constructive, then we never leave the stableDomain.
Hence, the positive component f1 of each TVF gives the
corresponding boolean function which needs to be imple-
mented. Since we represent these boolean functions by
BDDs, we can easily translate the BDDs to multi-level

acyclic circuits. Roughly, we do this by interpreting a
BDD vertex as a 2-to-1 multiplexer and grouping adjacent
vertices into a single gate in the new circuit.

Generating an error trace. If the circuit is non-
constructive, then the reachability step gives us a reachable
unstable state. We simply work backwards, restricting our-
selves to care inputs, to find a sequence of states starting
from an initial state and leading to the unstable state. The
process of generating an error trace is the same as that used
in formal verification tools [10]. We also report the value
of each circuit node on the “bad” assignment formed from
the unstable state and a care input in the unstableDomain.

5 Application to Esterel
Esterel is an imperative synchronous language dedicated

to reactive and real-time applications [8, 1]. The Esterel v4
compiler translates an Esterel program into a control circuit
and a data path, which can both be implemented either in
hardware or in software. We explain why Esterel programs
can generate well-behaved cycles, and give experimental
results.
5.1 Cycles in Esterel

The unit of communication in Esterel is the signal. At
each cycle, a signal S is either absent (0) or present (1).
By default, S is absent; it is made present by executing the
statement “emit S”. Signals are tested for presence by the
statement “present S then p else q end” that
combinationally transfers control to either p or q when
it is executed. In the circuit implementation, a signal
is implemented by an OR gate. A statement such as
“present S then emit T end” builds a combina-
tional path from S to T. Assume I is a primary input and
consider the following statement:

present I then
present S then emit T end

else
present T then emit S end

end

There is a path from S to T and a path from T to S, hence
a cycle. However, it is obvious from the source code that
only one path can be used at a time, and, therefore, that the
circuit is well-behaved.

Explicit delays also make cycles well-behaved. Con-
sider for example:

present S then emit T end;
await I;
present T then emit S end

The three statements are in temporal sequence (operator
“;”), and the “await” delay operator explicitly introduces
a non-zero delay that makes the static S–T cycle dynami-
cally harmless.
5.2 Experimental results

Our procedure for analysis of circuits with latches
has been implemented in the Esterel v4 compiler, along
with some improvements such as early garbage collection
of TVFs. It has been applied to industrial-sized cyclic
programs occurring in avionics applications at Dassault-
Aviation. One program to which we applied our procedure
has 1043 lines of actual Esterel code (comments excluded),
3989 wires, 157 latches, and 7 non-nested cycles. It is
processed in 11.5 minutes of CPU time on a DEC Al-
phaServer 2000. A more pathological example, where the
weak topological ordering has a depth of 12, exhausted
the available memory using the procedure as described.
However, by interleaving the constructivity and reachabil-
ity analysis, this example also was successfully handled.

We hope to achieve better performance for big Esterel
programs by adding additional optimizations. In particular,
during the translation from programs into circuits, we can
build a superset of the reachable states. This set can be
used to simplify the intermediate TVFs by using the BDD
restrict operator [6]. Preliminary results show that this may
significantly reduce memory size.

6 Conclusion
We have described a procedure for determining if a cir-

cuit with latches is constructive. We say that a circuit is
constructive if each output of the combinational part evalu-
ates to a unique boolean value for every care input/reachable
state combination. If the circuit is constructive, an equiv-
alent loop-free implementation is produced, and if not, an
error trace is produced. The procedure has been imple-
mented in the Esterel v4 compiler, and has been success-
fully applied to industrial-sized examples.

Acknowledgments
Thanks to Horia Toma for improvements to the algo-

rithm, and for providing the experimental results. Also,
thanks to Jean Christophe Madre and Olivier Coudert for
their help with the implementation. This work was con-
ducted at Digital Equipment Corporation, Paris, France,
with support from INRIA and Dassault-Aviation. In addi-
tion, the first author was supported by the Semiconductor
Research Corporation under a fellowship and contract 95-
DC-324A.

References
[1] G. Berry and G. Gonthier. The synchronous pro-

gramming language Esterel: Design, semantics, im-
plementation. Science of Computer Programming,
19(2):87–152, 1992.

[2] G. Berry and T. R. Shiple. Constructive boolean cir-
cuits. To Appear.

[3] F. Bourdoncle. Efficient chaotic iteration strategies
with widenings. In Proceedings of the International
Conference on Formal Methods in Programming and
their Applications, volume 735 of Lecture Notes in
Computer Science, pages 128–141. Springer-Verlag,
1993.

[4] J. A. Brzozowski and C.-J. H. Seger. Asynchronous
Circuits. Springer-Verlag, 1995.

[5] J. R. Burch, D. Dill, E. Wolf, and G. D. Micheli. Mod-
eling hierarchical combinational circuits. In Proc.
Int’l Conf. on Computer-Aided Design, pages 612–
617, Nov. 1993.

[6] O. Coudert, C. Berthet, and J. C. Madre. Verification
of synchronous sequential machines based on sym-
bolic execution. In J. Sifakis, editor, Proceedings of
the Workshop on Automatic Verification Methods for
Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 365–373. Springer-Verlag,
June 1989.

[7] M. J. C. Gordon. The Denotational Description
of Programming Languages. Springer-Verlag, New
York, 1979.

[8] N. Halbwachs. Synchronous Programming of Reac-
tive Systems. Kluwer Academic Publishing, 1993.

[9] N. Halbwachs and F. Maraninchi. On the symbolic
analysis of combinational loops in circuits and syn-
chronous programs. In Euromicro’95, September
1995. Como, Italy.

[10] R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-
based debugging of designs using language contain-
ment and fair CTL. In C. Courcoubetis, editor, Pro-
ceedings of the Conference on Computer-Aided Ver-
ification, volume 697 of Lecture Notes in Computer
Science, pages 41–58. Springer-Verlag, June 1993.

[11] S. Malik. Analysis of cyclic combinational circuits.
IEEE Trans. Computer-Aided Design, 13(7):950–
956, July 1994.

[12] G. D. Plotkin. LCF as a programming language. The-
oretical Computer Science, 5(3):223–256, 1977.

