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In this paper we will discuss various aspects o f computable/constructive analysis, namely 
semantics, proofs and computations. We will present some of the problems and solutions of 
exact real arithmetic varying from concrete implementations, representation and algorithms 
to various models for real computation. We then put these models in a uniform framework 
using realisability, which opens the door to the use of type theoretic and coalgebraic 
constructions both in computing and reasoning about these computations. We will indicate 
that it is often natural to use constructive logic to reason about these computations.

1. Introduction

Com puting with real num bers is usually done via floating point approxim ations; it is well 
known tha t the build-up o f the rounding off tha t is inherent in these com putations can 
lead to catastrophic errors (K ram er 1997). As a first a ttem pt to prevent this problem, 
one may use interval arithm etic (K earfott 1996). A different approach to com puting 
w ith real num bers is exact real arithmetic, which provides a precision-driven approach to 
com putation w ith real num bers (Yap and D ube 1995). Exact real arithm etic is m otivated 
by the need for unbounded precision in num erical calculations. Real num bers are infinite 
objects of which arbitrary good finite approximations can be given. A com putable function 
over the reals is given by an algorithm  th a t given the desired accuracy o f the output, 
asks for a sufficiently good approxim ation o f the input to be able to com pute the result. 
D om ain theory provides a systematic approach to interval com putations and exact real 
arithmetic, using the higher order features o f m odern program m ing languages. A related, 
bu t slightly m ore concrete approach is W eihrauch’s Type Two theory o f Effectivity (TTE). 
In TTE one considers (Turing machine) com putations on streams. Yet another approach 
(M arkov’s) is to use the function type N  ^  N , which is present in functional languages, 
to work directly w ith Cauchy sequences.

We will illustrate the spectrum  between floating point com putation and exact real 
arithm etic with a small example. Exact real arithm etic has found its m ain applications 
when one wants to answer precise m athem atical questions by means of com putation, and 
therefore we will use an example from  mathematics.

Define a sequence o f real num bers by iterating the logistic map:

*0  =  0.5, Xn+1 =  3.999 x x n(1 -  x „ ). (*)

(Note tha t the num ber 3.999 should no t be taken to be an approxim ation o f some num ber 
from  the real world, bu t should have exactly this value.) Now we w ant to determ ine a
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good approxim ation o f the 10000th element in this sequence, x 10ooo. There are four ways 
to proceed with this, which are in increasing sophistication:

1 First we can use floating point arithmetic, using the IE E E  754 num bers implemented 
(IEEE Task P754 1985) in the floating point unit o f our computer. For instance, we 
m ight run the following small C program.

main() { 
int n; double x = 0.5; 
for (n = 0; n < 10000; n++) 
x = 3.999 * x * (1 - x); 
printf("/f\n", x);
}

This will then give the ou tput 0.780738. Now this num ber is totally unrelated to the 
correct answer, which (rounded to 6 decimals) is 0 .354494. The sequence tha t the 
program  calculates, because o f rounding errors and the chaotic nature o f the logistic 
m ap, will, after the first few terms, become essentially unrelated to the actual values 
o f the sequence. This also becomes very clear if  one runs the same program  on Intel 
hardw are, which does no t exactly follow the IE E E  754 standard. In th a t case, the 
program  will prin t 0.999336.
N ote th a t implementing interval arithm etic using floating point num bers for the bounds 
does no t help here. In tha t case the result o f the program  will be the interval [0,0.99975]. 
W hile m athem atically correct, this is no t very informative.

2 The second approach to this problem, which will give the correct answer, is to use the 
m ethods o f num erical analysis. One still calculates using floating point num bers, but 
w ith a greater precision. This is the m ethod tha t the M aple com puter algebra package 
uses. In the case o f this example it turns out th a t calculating using 104 digits will give 
the correct answer for x 104.
N ote tha t w ith this approach it is the num erical analyst who will need to determ ine the 
necessary precision, and it will no t be done autom atically by the computer. For this 
specific problem  determ ining this precision m ight no t be very difficult, bu t for more 
involved problems it m ight easily become the time bottleneck in obtaining the answer 
(instead o f the com putation time taken by the computer). Also, if the num erical analyst 
makes a m istake in his error estimates, there will be no w arning th a t the answer will be 
incorrect. Thus, the correctness o f the answer will no t only depend on the correctness 
o f the calculation software, but also on the correctness o f the way th a t one poses the 
question.

3 The th ird  approach for this problem  is to have the com puter keep track o f the errors 
when running the calculation, and then have it rerun the program  using a larger 
precision as long as the precision o f the ou tput is not good enough. In this way, it is 
the com puter rather than  the hum an tha t determines w hat precision will be needed. 
This approach can be implemented using interval arithm etic (using bounds with 
sufficiently large precision), or using sufficiently precise floating point num bers to 
gether w ith an error estimate. It will be clear th a t bo th  m ethods are essentially the 
same.
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However, w ith this approach we will have various intervals in our program  tha t are 
related in the sense th a t they correspond to the same exact real num ber, bu t w ithout 
this correspondence necessarily being reflected in the organisation o f the program. This 
makes program m ing using this m ethod m ore difficult than  necessary.

4 The fourth  approach is similar to the previous one, bu t this time one uses a functional 
(‘higher order’) data-type. Instead o f using the (‘first order’) data-type o f intervals, one 
uses functions tha t m ap desired precisions to intervals. In this way the intervals tha t 
correspond to the same real num ber, bu t w ith different precisions, all become part of 
one d a ta  object in the program.
N ote th a t when using this approach it is im portant to cache the intervals th a t all these 
functions calculate. Otherwise the same interval m ight be recalculated m any times, 
leading to a very bad  complexity.

W hen looking at these four approaches, it will be clear tha t the last three all calculate the 
correct answer, and th a t they all use a similar am ount o f running time. This means tha t 
the increase o f sophistication between the various m ethods tha t we have described does 
no t correspond to a m ore efficient way o f obtaining the answer to the problem. Instead, 
it is prim arily an improvement in correctness:  the ease o f getting a correct answer, and 
the ease o f establishing tha t this answer is indeed correct.

Several approaches to exact real arithm etic have been implemented, as described in 
Section 2.2 below. It is interesting to ask w hat applications these program s may have. 
Since all d a ta  in the real world is inherently imprecise, it may be argued th a t exact real 
arithm etic offers no essential im provement over floating point com putation for real-world 
applications. However, its usefulness for m athem atics seems quite clear.

R eturning to the question o f the correctness o f algorithm s for real arithmetic, in 
some m odern systematic approaches to program  correctness one uses a realisability 
in terpretation to get a precise and tight connection between proofs and programs. It turns 
out th a t the same can be done here. M ost ‘higher order’ approaches, such as Dom ains, 
TTE and M arkov’s CRM , tha t we will discuss later can be unified in a realisability 
framework. This means th a t there is a clear notion o f an internal logic to reason about 
such com putations. As usual when reasoning about com putations, this internal logic is 
constructive. We will expand on this in Section 3.5.

It should be noted th a t in the transition from  floats to a language for exact real 
arithm etic w ith da ta  types there is the usual friction between craft and technology: 
should these issues be treated  carefully on an individual basis, or do we use the 
apparatus of, say, dom ain theory? A similar tension exists for proofs: do we treat them  
individually, or do we use the technology o f category theory, realisability and constructive 
m athem atics?

The paper is organised as follows. We will focus on three im portant aspects of 
com puting w ith real num ber: com putations, semantics and proofs. Section 2 discusses rep
resentations and implementations. Section 3 discusses dom ain theory, M arkov’s recursive 
analysis, Type Two Effectivity, coalgebras and realisability. Section 4 contains type theory, 
program  extraction and constructive analysis. Finally, we present brief conclusions in 
Section 5.
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2. Computations

2.1. Representations

W hile in theoretical models o f com putation real num bers can be considered as anything 
between a subset of the rationals and an object in a category, when it comes to practical 
com putations, we require a representation o f real num bers (or o f approxim ations to real 
num bers) th a t is easily understood by hum ans and computers. Usually this boils down to 
representing real num bers w ith decimals or bits; even though the interm ediate steps can use 
other representations, the syntax for input and output o f real num bers (or approxim ations 
o f real num bers) should no t be far from  the standard  representations used in practice.

This brings up a serious problem : it is well know n th a t the standard  decimal repres
entation  is not suitable for real com putations. W hen multiplying the stream  x =  0 .333 ... 
(considered as an infinite input) by 3, the m ultiplication algorithm  cannot give the first 
digit o f the ou tput: there is no way o f deciding w hether eventually the digit 2 may come 
(and then the first digit should be 0) or eventually a 4 may come (and then the first digit 
should be 1). Therefore, w ith the standard  decimal representation, deadlock is inevitable 
in calculating the outcom e o f m ultiplication, while m ultiplication is universally considered 
to be a com putable function. This implies tha t the standard  decimal representation is 
no t com putationally suitable. This shortcom ing o f the decimal representation was already 
know n to Brouwer, who in Brouwer (1921) showed, by means o f a so-called weak counter 
example, th a t there are real num bers w ith no standard  decimal representation. In m odern 
term s one m ight state this result as there is no com putable m ap from, say, the Cauchy 
representation to the decimal representation o f the real numbers. Or as we will express 
it in Section 3.3, the decimal representation is no t admissible. As another consequence of 
the above example, we see tha t the real num bers do no t allow an effective way to com pare 
real num bers, since the problem  above arises precisely because we cannot decide whether 
x <  1 or x ^  1. Similarly, one does no t have an effective equality test.

W ith the advent o f com puters, other representations for real num bers were considered: 
partly  because o f this theoretical shortcom ing and partly  to allow a more efficient and 
hardw are-com patible internal representation. Some o f these non-standard  representations 
had  been known for centuries, and others were discovered and further developed by 
com puter scientists in the course o f the 20th century. K nuth  (K nuth  1997, § 4) gives 
a thorough historical account o f various representations for different num ber systems 
(integers, rationals and real numbers). We do no t intend to m ention all the different 
representation systems, bu t will focus on some o f the m ain ideas tha t are theoretically 
and practically im portant. Furtherm ore, although a study o f different representations 
for integers and rational num bers is relevant for approxim ative com putations w ith real 
num bers, we will focus purely on the various approaches for representing real num bers 
since this is our m ain interest in this paper.

Even though there are m any different representations for real num bers, in the broader 
context o f com putable analysis they can each be seen as an instance o f one o f a few basic 
approaches. For example, m any representations tha t are used as a basis o f exact arithm etic 
im plem entations are based on the Cauchy sequences, and it is only the fine-tuning o f the 
details (such as m odulus of convergence, or the representations for rational num bers) that 
m akes the difference between such implementations.
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In the following subsections we m ention the three m ain classes o f representations^ -  
related (but different) classifications can be found in W eihrauch and Kreitz (1987), 
W eihrauch (2000) and G owland and Lester (2001).

2.1.1. Cauchy sequences Cauchy sequences are traditionally the way th a t real num bers 
are represented in m athematics. In this approach real num bers are represented by Cauchy 
sequences o f rational num bers (or some other dense countable A rchim edean subset o f the 
real num bers such as the dyadic numbers). The real num ber described by this sequence 
is the limit under the usual Euclidean metric. The m ost general case is the naive Cauchy 
representation in which there is no m odulus o f convergence required. A lthough this is 
quite inefficient, its theoretical im portance and its suitability for form alisation has made 
this representation the basis o f the first full im plem entation o f constructive real num bers 
in a proof assistant and has also been used in formalising the proof of the fundam ental 
theorem  o f algebra (Geuvers and N iqui 2002). O ther constructive form alisations in the 
literature usually use a m odulus o f convergence (Troelstra and van D alen 1988b; Bishop 
and Bridges 1985; W eihrauch and Kreitz 1987).

A n im portan t variation on the theme o f Cauchy sequences are the so called functional 
representations. In this approach real num bers are represented by functions on some fixed 
countable set, where the codom ain o f the function (the elements o f the sequence) need 
no t be rational numbers. The semantics o f such a function is always (in some way) a 
Cauchy sequence, bu t the choice o f a different dom ain or codom ain can improve the 
representation. A n example o f such a representation was proposed in Boehm et al. (1986) 
where Z  is used for bo th  dom ain and codom ain o f the function representing a real number. 
Implicit semantic assum ptions make sure th a t these sequences (which are indexed by Z  
rather than  N ) can be m apped to Cauchy sequences w ith a predeterm ined m odulus of 
convergence. This approach forms the basis o f several exact arithm etic packages, especially 
inside functional program m ing languages.

To give a specific example o f this representation, if we represent the num ber x 10000 =  
0.35449383309125298131... which we defined in (*) in Section 1, then in a decimal variant 
on Boehm ’s functional representation, three examples o f possible representations for this 
num ber are

1 ^ 0 - 1  ^ 0 - 1  ^ 1
0 ^ 0 0 ^ 0 0 ^ 1
1 ^ 3 1 ^ 4 1 ^ 4
2 ^ 35 2 ^ 35 2 ^ 36
3 ^ 354 3 ^ 354 3 ^ 355
4 i—►3544 4 3545 4 3545

t  A lthough  there are three m ain  classes, there are, in fact, four subsections. This is because a lthough  continued 
frac tions can  be viewed as an  exam ple o f the th ird  class o f  representation, ‘S tream s o f  nested intervals’, they 
are sufficiently im portan t to  be described in a  subsection o f their own.
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and o f course there are uncountably m any more. These are, essentially, all m aps th a t for 
each n gives n  digits after the decimal point (either rounded up or rounded down).

2.1.2. Dedekind cuts D edekind cuts are an alternative approach to representing real 
num bers and is based on the least upper bound property o f the reals ra ther than 
the Cauchy completeness. A key feature o f D edekind cuts, as com pared to other 
representations, is their uniqueness: any real num ber is represented by precisely one cut. 
This feature, which is convenient for reasoning about cuts, makes it difficult to com pute 
w ith them. In com putational approaches to D edekind cuts a set o f rational num bers with 
additional com putational structure is used to represent a real num ber, which is the least 
upper bound (or greatest lower bound) o f th a t subset; see W eihrauch (2000, page 95) 
for details. Variations on this class o f representations include choosing the characteristic 
function o f a chosen dense subset o f the reals, such as dyadic num bers (W eihrauch and 
Kreitz 1987).

Such representations have no t been used for practical im plementations, bu t have been 
considered for reasoning about real num bers in mechanised reasoning. Again (as was 
the case w ith the naive Cauchy representation) this is due to the theoretical im portance 
o f these representations and their adaptability for use in form al m athematics. Examples 
o f the use o f such representations include the form alisation o f real num bers in the H O L 
theorem  prover (H arrison 1994) and the form alisation o f the real num bers tha t is used in 
the form alisation o f the 4-colour theorem  in the Coq proof assistant (G onthier 2005).

2.1.3. Streams o f  nested intervals The m ost standard  way o f representing real num bers 
is the decimal representation. This is a positional representation th a t falls within the 
m ore general case o f radix representations, in which a real num ber is represented by a 
stream  o f digits. In the base b radix representation (b-ary representation) starting from  
the first digit and moving to the right, the effect o f each digit can be seen as refining 
the interval containing the real num ber represented by the whole stream. Thus the b-ary 
representation can be seen as an instance of representing real num bers w ith a stream  
o f shrinking nested intervals. Any such stream  for which the diam eter o f the intervals 
converges to 0 represents a real num ber: the one tha t inhabits the infinite intersection of 
the intervals.

I f  we return  to our example, in a stream  representation the num ber x 10000 could be 
represented by the infinite stream  o f intervals:

[-10 ,10]
[-1 ,1 ]
[0.3,0.5]

[0.34,0.36]
[0.353,0.355]

[0.3544,0.3546]
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These intervals correspond to the second functional representation given in Section 2.1.1. 
The other representations there also correspond to a (different) stream  o f intervals.

By considering each interval as the image o f the previous interval under a continuous 
real function, one can encode the whole nested collection as an infinite com position 
o f real m aps applied to a base interval. This can be m ade form al using the following 
definition (Niqui 2004, § 5.3).

Definition 2.1 (Generalised digit set). Let I  be a closed subinterval o f the com pactification 
o f the real num bers [ - to , +<»]. A set $  o f continuous functions on I  is a generalised digit 
set fo r  interval I  if  there exists a to tal and surjective m ap p : $ "  — * I  (note th a t $ "  
denotes the set o f stream s o f $ )  such tha t for all streams f 0f 1 • •• e  $ "  we have

TO
{p( f0f 1 . . . ) } = n  f 0 ◦ • • • ◦  f i( I ) . 

i=0

In other words, if each element x  o f I  is the solitary element of some infinite com position 
o f elements o f $  and each infinite com position o f elements o f $  is a singleton. We call 
each element o f $  a digit.

The various representations o f this family are characterised by the different restrictions 
tha t are pu t on the choice o f the digits. In practice, it is usual to choose as the set o f digits 
a finite set o f M obius m aps satisfying some property, while in the literature the larger 
class o f ^-contractions is also studied (Konecny 2000). Mobius maps are m aps o f the form

ax +  b 
cx +  d ’

where a ,b ,c ,d  e  C  and ad -  bc =  0. In the context o f a stream  representation for 
real num bers, the M obius m aps w ith integer coefficients (which are also know n as linear 
fractional transformations (LFT) or homographic maps) are considered. Taking the M obius 
m ap w ith integer coefficients to be I -refining (that is, m apping the closed interval I  to 
itself) forms the basis o f Edalat and Potts’ approach to lazy exact arithm etic (Edalat 
and Potts 1997; Potts 1998; Edalat et al. 1999). Restricting this further by taking c =  0, 
one arrives a t representations by a finite set o f affine maps, a subclass th a t includes the 
standard  b-ary representations.

As m entioned earlier, the standard  representation is no t com putationally suitable, but 
this shortcom ing is easily fixed by using one o f the variants o f radix representation. 
Different ‘fixes’ include changing the base to a non-integer base (for example, the golden 
ratio  base (Di G ianantonio 1996)) or increasing the set o f digits by introducing negative 
digits (for example, redundant b-ary representation (Edalat and Potts 1997)). Both these 
w orkarounds had been used long before the advent o f computers. For example, the 
introduction o f negative digits can be traced back to the num ber system implicit in the 
work o f the 11th century m athem atician Tabari, and it was even used in mechanical 
com puting devices in the 19th century. A detailed historical survey can be found in 
K nuth  (1997, pages 205-208).
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O ur example num ber x 10000, when using a representation with negative digits, has many 
different representations. In addition to its norm al decimal representation

0.35449383309125298131..., 

it can, for instance, also be written as

0.3545(—1)38331(—1)1253(—1)8131...

It is also possible to use an infinite set o f digits. The m ost im portant example for which 
the set o f digits is infinite is a representation based on continued fractions, which we 
consider as a separate class of representations.

2.1.4. Continued fractions For centuries continued fractions have been used to represent 
rational and real num bers and elementary functions (Brezinski 1991). As a result, some 
im plem entations o f exact real arithm etic are based on continued fraction representations. 
Some o f these representations can be considered as a subclass o f stream  representations, 
bu t the m ost standard  continued fraction representation (the so-called N -fraction) uses 
finite lists to represent rational num bers and streams to represent irrational numbers. The 
digits o f the N -fraction representation can be considered to be the Moobius m aps o f the 
form

1
x  i— * n +—  n € N  . 

x
Taking finite lists and streams o f such digits leads to a representation for real num bers 
larger than  1 th a t can be considered for exact arithm etic (Vuillemin 1990; Menissier- 
M orain 1994). One can allow for negative integers (and disallow 0,1 and - 1 )  obtaining the 
Z-fractions (Vuillemin 1990; M ^nissier-M orain 1994). In the Z-fractions representation, 
the rational num bers are also represented by finite lists.

The above (N -fraction and Z-fraction) continued fraction representations serve well in 
the context o f exact rational arithmetic, bu t for the representation o f real num bers, they 
suffer from  the same com putational shortcom ing as the standard  decimal representation. 
In order to overcome this, some modifications o f these representations have been studied 
and used for implementing exact arithm etic (Vuillemin 1990; Lester 2001).

There are several ways to obtain a representation based on continued fractions that 
uses infinite stream s for rational and irrational num bers alike, and therefore fall under 
the general heading o f stream  representations. One way is to use the redundant Euclidean 
continued fractions (Vuillemin 1990), which can be seen as an instance of Moobius maps 
(Potts 1998, Section 7.3). A nother way would be to use the S tern-B rocot representation, 
which is again expressible in term s o f M obius m aps (Niqui 2004, Section 5.7.1).

One can extend the notion o f a generalised digit set to include m aps

p : $<® — > I,

where $ ^ “ is the set o f finite lists and (infinite) streams o f elements o f $ , to obtain a 
class o f representations th a t includes the continued fraction representations. But since 
such representations are only considered in the context o f continued fractions, we prefer 
to classify them  under a separate class.
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The example num ber x 10000 is a rational num ber, o f which the N -fraction  starts: 

1

1 + ~ t~  1

4 + T  1
1 ^ - ~  1 

^  1 
2 +  —  1

2 + ^  1
7 +  —  1

i +  
i + ...

The Z -fraction o f this num ber starts: 
1

1
13 +

—6

+  2 1 
2 + —  1

2 + _  1

- 2 +  —  1
- 7 + —  1

- 3  +
1 6 +  ...

In this case the coefficients come from  the set {. . . ,  - 3 ,  - 2 ,2 ,3 , . . .}  instead of from  the set 
{1 ,2 ,3 ,...} . If  one allows bo th  negative num bers as well as the num bers 1 and - 1  for the 
coefficients (this is needed to make the representation admissible), there are many more 
representations o f this number.

2.2. Implementations

Several approaches to exact real arithm etic have been implemented in various p ro 
gram m ing languages in recent years. Some o f them  have been considered for real-world 
applications, especially in the fields o f visualisation and com putational geometry (Yap and 
D ube 1995; D u et al. 2002). There have also been studies to enhance existing hardw are 
architectures to support exact real arithm etic (K ornerup and M atula 1988; M encer 2000).

There are three groups o f im plem entations o f exact real arithmetic. They are all based 
on the ideas presented above.

—  The first group is an im plem entation o f exact real arithm etic as part o f a generic 
com puter algebra package. Examples o f such systems are commercial systems like 
M athem atica (W olfram 1996) and M aple (M onagan et al. 1997). These are generally 
very fast at basic com putations, bu t sometimes lack the features th a t are needed for 
involved problems.
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—  The second group are systems and libraries th a t have specifically been designed for 
exact real arithmetic, and try to be as fast as possible at it. Examples o f this are 
M P F R  from  LO R IA  (H anro t et al. 2005), G iN aC /C L N  by Kreckel (Kreckel 2005), 
iR R A M  by M üller (M üller 2001; M üller 2005) and RealLib by Lambov (Lambov 
2005). Program s from  this group are generally implemented in C + + .

—  The th ird  group are also systems tha t have been designed for exact real arithmetic, but 
not for speed. These systems are mostly p art o f an effort to move tow ard a provably 
correct im plem entation o f exact real arithmetic. Examples o f systems like this are 
Cr by Filliatre (Filliatre 2005) (an M L reim plem entation o f CR, a Java system by 
Boehm (Boehm et al. 1986; Schwarz 1989; Boehm 2005)), ER A  by Lester (Lester 
2005), Few D igits by O ’C onnor (O’C onnor 2005), Bignum by G uy (Guy 2005) and 
ICReals by Edalat et al. (Potts and Edalat 1997; Potts 1998; Edalat 2005). These 
systems are generally implemented in a functional program m ing language such as M L 
or Haskell. Like the systems in the first group, they generally lack the features needed 
to do advanced com putations.

In practice the first group o f systems is the fastest a t basic problems, and the second 
group o f systems are the only ones tha t are suitable for involved problems.

3. Semantics

3.1. Domain theory

D om ains are used to describe the semantics o f program m ing languages, b o th  the da ta  
types and the program s tha t are definable over them. They also provide a denotational 
model for com putability, in the sense th a t the set of continuous functions from  one 
dom ain to another is the m athem atical counterpart o f the set o f com putable functions 
(in some language or com putational model). The basic structure in dom ain theory is tha t 
o f a directed-complete partial order (dcpo), tha t is, a partially ordered set in which every 
directed subset has a least upper-bound. A set A  is directed if it is non-em pty and every 
pair o f its elements has an upper-bound in A; the least upper-bound o f A  is usually 
denoted by uA. Sometimes the notion o f a ‘dom ain’ is identified w ith th a t o f a dcpo, 
bu t m ostly authors reserve the word ‘dom ain’ for a specific type of dcpo (with additional 
structure), depending on the application one has in mind, see A bram sky and Jung (1994) 
for an overview o f dom ain theory and the various notions o f domains.

The interesting functions on dcpos are the Scott continuous ones: the m onotone f  : 
D 1 ^  D2 such tha t f(u A ) =  u(f(A )) for every directed set A  (where the first u  is in D 1 
and the second in D2). The definable functions in a program m ing language (that is, the 
com putable functions in tha t language) are Scott continuous when interpreted as functions 
over a dcpo. The real ‘pow er’ o f Scott continuity lies in the fact tha t Scott continuous 
functions have a least fixed point. Thus, a recursive definition of a (functional) program  
can be given a meaning as the least fixed point o f the (Scott continuous) functional it 
gives rise to.

The ordering on a dcpo is best viewed as an ‘inform ation ordering’ or a ‘definedness 
ordering’. A simple example is the fla t  dcpo o f natu ral num bers , tha t is, the set
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N  U{_L} m ade into a poset by letting L  ^  n for all n € N . Here, the elements are either 
‘totally defined’ (we have full inform ation about them) or they are ‘totally undefined’ (we 
have no inform ation about them). A more interesting example is the set [N L ^  N L] of 
Scott continuous functions from  N L to N L ordered point-wise. The everywhere undefined 
function Xx.L  is the least element o f this set and f  ^  g for functions f  and g if g is ‘at 
least as defined’ as f  in every element o f N L. A n im portant fact is th a t the set o f Scott 
continuous functions between two dcpos also forms a dcpo.

The idea o f an ‘approxim ation’ is im portan t in dcpos: a approximates b (or a is ‘way 
below’ b), written a < < b ,  if, whenever b ^  u X , we have a ^  x for some x € X  (where, of 
course, X  ranges over the directed subsets). A n element a is compact (or finite) if  a << a. 
The com pact elements of a dcpo form  an im portant set, which is usually w ritten as K(D). 
For f , g  € [N l  ^  N l ], f  << g implies tha t f  is defined only on a finite set o f elements 
(f(x) =  L  for finitely m any x). The collection o f the functions w ith a property like f  are 
also the com pact elements o f this dcpo. A dcpo is continuous if there is a basis B : a set 
o f elements such tha t x =  u{y € B  | y << x} for all x. Thus, in a continuous dcpo, all 
elements can be written as the lub o f the basis elements tha t approxim ate it. A dcpo D is 
called algebraic if the set o f its com pact elements forms a basis. The adjective ‘« ’ is added 
to say th a t the basis is countable, as in « -continuous dcpo or «-algebraic  dcpo. In G unter 
and Scott (1990), the notion o f a dom ain is identified w ith an «-algebraic dcpo. T hat 
«-algebraic  dcpos are o f special interest comes from  the fact tha t a continuous function 
f  : D ^  E  between two «-algebraic  dcpos can be fully characterised (in a countable way) 
by its com pact elements as follows:

f(x )  =  |_|{y € K(E) | y  ^  f ( x ')  for some x ' € K(D) with x ' ^  x}

In the case o f com putability over the real num bers, some dcpos are o f specific interest. 
One is the interval dcpo o f nested intervals I  (R ), consisting o f R  and the non-em pty 
closed real intervals, ordered by reverse inclusion: I  ^  J  if I  3  J . This dom ain was first 
proposed, in a slightly different form, in Scott (1972). The intervals should be understood 
as approxim ations o f real num bers, so a smaller interval gives m ore inform ation, R  is 
the L-elem ent o f the inform ation order and singleton intervals {a} are m axim al elements. 
For the ‘way below’ relation we have tha t a << b iff b is a subset o f the interior o f a. 
The rational intervals together w ith R  form  a countable basis for I (R). A directed subset 
o f I  (R ) is a collection o f intervals A  such tha t nA =  0 ;  the lub o f such a directed set 
A  is its intersection: uA :=  nA, which is again a closed non-em pty interval. The nice 
thing about this dcpo is tha t it generalises functions from  R  to R  in a simple way to 
incorporate partial functions, in such a way tha t partiality is no t just undefinedness, but 
may involve some partia l inform ation (an interval approximation). A continuous function 
f  : R  ^  R  extends in the straightforw ard way to a function f  : I  (R ) ^  I  (R ); the other 
way around, a function g : I  (R ) ^  I  (R ) represents a partial function g from  R  to R  
given by g(x) :=  y  if  g({x}) =  {y} and undefined otherwise. See Edalat and Heckm ann 
(2002) and Edalat and Lieutier (2004) for a more detailed study.

R ealPC F (Escardo 1996) is a program m ing language w ith real as a basic da ta  type 
and was designed in such a way th a t its denotational semantics would be given by the 
nested interval semantics. A n interesting feature o f RealPC F is th a t it contains a parallel
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‘if ’ construct. It is shown in Escardo et al. (2004) tha t this non-sequentiality is an inherent 
feature o f the nested interval domain. See Escardo and Streicher (1999) and Edalat and 
Escardo (1996) for a further discussion o f the expressivity o f RealPCF.

A second example o f a dcpo o f interest in this context is the dcpo o f finite and infinite 
lists over some given pointed dcpo. Typically, the pointed dcpo is AL, the flat dcpo over 
some finite set A , where the elements o f A  are the ‘digits’. The dcpo o f finite and infinite 
lists is then denoted by [A], and the intuitive understanding o f an element [a1, a2, . . . ,  an] is 
th a t o f a finite approxim ation o f a real number. The representations based on streams of 
nested intervals are instances o f this. The ordering on [A] is the ordering on AL extended 
to a prefix ordering. Putting this another way, [A] is the solution to the dom ain equation 
X  =  AL x X  in the category o f dcpos (Niqui 2004, Section 4.5).

The TTE model o f com putable real valued functions (see Section 3.3) uses as its 
representation o f the reals exactly the data-type [A] -  under the proviso th a t it is 
‘admissible’ (see Definition 3.1), which excludes the decimal representation. So in TTE a 
real num ber is a digit stream  with digits from  A , and the TTE-com putable functions are 
all continuous.

As with the interval dom ain, which is used as the semantics for program m ing in 
R ealPCF, the dom ain [A] can also be used as the semantics o f program m ing w ith real 
numbers. This was dem onstrated in Simpson (1998), which uses PC F  (Plotkin 1977) as 
a program m ing language, and the da ta  type o f streams over { -1 ,0 ,1 }  as the type of 
the reals. This approach is com pared in Bauer et al. (2002) w ith the RealPC F approach, 
and it is shown tha t the expressivity is the same up to second-order types. A n interesting 
aspect is th a t the PC F  based approach is purely sequential. This is because RealPC F uses 
real as an abstract primitive d a ta  type, so special primitive program m ing constructs are 
required to com pare two reals, whereas in the PC F  based approach one program s directly 
w ith the representations.

3.2. Markov's recursive analysis

In this section we give a brief introduction to M arkov’s constructive recursive m athem atics 
(CRM ). Historically, this seems to be the first concrete m odel for exact real com putations -  
see Troelstra and van D alen (1988a), Bridges and R ichm an (1987), Beeson (1985) and 
A berth  (1980) for m ore inform ation. In C R M  one represents an object by a certain partial 
recursive function. We can trea t m ost o f the representations described in Section 2.1 in this 
way, but will ju st consider the Cauchy representation o f the real num bers as a concrete 
example. A real num ber x  is thus represented by a partial recursive function th a t on input 
n returns the nth element o f a Cauchy sequence with limit x. One thus com putes not 
w ith all the real num bers, but only w ith the recursive ones. Fortunately, the well-known 
constants e, n, are recursive, as are, for example, the trigonom etric functions. In this way 
one can develop exact real arithm etic in CRM .

Since there are only countably m any codes for recursive functions, there are only 
countably m any (recursive) real num bers in CRM . This may be counterintuitive at first, 
however, given any recursive sequence o f real num bers, C antor’s diagonal construction 
supplies a new recursive real num ber th a t is different from  all o f them. Thus the recursive
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real num bers are countable, bu t recursively uncountable! In practice this last fact is more 
im portant and can be restated as ‘the real num bers are uncountable’ in the internal logic 
o f CRM . We will introduce the internal logic in Section 3.5.

In C R M  all (recursive) functions between real num bers are continuous (Kreisel et al. 
1957b; Kreisel et al. 1957a; Ceitin 1962; Ceitin 1959).

Theorem 3.1 (Kreisel, Lacombe, Schoenfield, Tsejtin). In C RM , every (total) m apping of 
a complete separable metric space into a m etric space is continuous.

This theorem  is stated in the internal logic, m eaning tha t all the objects should be 
presented effectively. We will discuss the internal logic more thoroughly in Section 3.5. 
This theorem  may seem counterintuitive at first when applied to the real function defined 
to be 0 for x <  0 and 1 for x ^  0. This is no t a to tal function in C RM , tha t is, we cannot 
recursively decide whether x <  0 or x ^  0 for each real num ber x. H aving such a test 
would solve the halting problem.

This model behaves as expected for concrete functions on the real numbers. However, 
when quantifying over com pact spaces there are some surprises. For instance, one can 
define an unbounded continuous function on the unit interval. Such a function cannot 
be uniformly continuous. This function is defined in the internal logic, bu t externally one 
can see tha t such a function is defined on all the recursive points, bu t no t on all points.

To avoid such problems, Brouwer introduced his choice sequences (Brouwer 1975; 
Heyting, A. 1956; Troelstra 1977). Kleene and Vesley captured m uch o f his theory using 
a realisability interpretation. This in terpretation was rediscovered by W eihrauch in his 
TTE, which we will discuss next.

3.3. T TE

TTE (Type Two Effectivity) is one o f the m any schools o f com putable analysis, m ost of 
which are know n to be equivalent. TTE is a theory o f com putability based on Turing 
machines w ith infinite input and infinite ou tpu t (W eihrauch 1997; W eihrauch 2000). The 
TTE notion o f com putability is nothing bu t com putability o f algorithm s on infinite 
sequences. This is because bo th  the input and output tape can be thought o f as a stream  
(lazy infinite sequence), and hence the TTE model will be very similar to the actual 
com putation on the higher order da ta  structure o f stream s or functional representations 
for real num bers (see Section 2.1). Thus, we consider com putability for algorithm s in exact 
arithm etic w ith respect to TTE. This is in contrast to other approaches to computability, 
which usually involve heavy encoding o f streams and finite lists. The intuitive model 
tha t TTE uses no t only makes the program m er’s understanding o f the complexity o f the 
algorithm s relatively easy, bu t also provides a notion  o f com putability tha t works directly 
on the representations o f real numbers. In fact the notion  o f representation plays a central 
role in TTE, providing a good fram ework to com pare the relative theoretical strength of 
various representations.

In this sense one can use TTE to give a form al explanation o f the shortcom ings of the 
standard  decimal representation, which was m entioned in the example in Section 2.1. There 
we showed that, informally, the standard  decimal representation is no t ‘com putationally
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suitable’. In TTE there is a notion o f admissibility o f representations th a t rigorously defines 
w hether a representation o f real num bers is com putationally suitable. In Section 3.5.2 we 
show how the definition o f an admissible representation was already hidden in Brouwer’s 
example.

Definition 3.1 (Admissible representation). Let I  be a closed subinterval o f the com pacti
fication o f real num bers [ - to , +<»]. Let $  be a set (finite or infinite) o f digits and 0 «  be
the set o f streams o f elements o f 0 . A m ap p : 0 «  — * I  is an admissible representation of 
I  if  the following conditions hold:

1 p is continuous w ith respect to the product topology o f the discrete topology on 0 .
2 p is surjective.
3 p is maximal, th a t is, for every (partial) continuous r : 0 «  — * I , there is a continuous 

f  : o «  — * 0 «  such th a t r =  p o f .

The notion  o f admissibility relates the notion o f com putability on stream s with 
continuity on real numbers. Intuitively, an admissible representation gives rise to functions 
th a t are com putable with type two Turing machines. Obviously, the standard  decimal 
representation turns out to be no t admissible. In fact, following the example in Section 2.1, 
one can show th a t the m ultiplication by 3 is no t a TTE-com putable function when using 
the standard  decimal representation (W eihrauch 1997).

A n im portant property o f admissible representations is th a t they provide a redund
ant representation for real numbers. This means th a t every real num ber has several 
representations. Examples of admissible representations include the redundant b-ary 
representation for [0, + to] used in Edalat and Potts (1997), the ternary Stern-B rocot 
representation for [0, + to] (Hughes and N iqui 2006) and the binary G olden ratio  notation 
for [0,1] (Di G ianantonio 1996).

As stated earlier, the TTE notion o f com putability, which is based on the admissible 
representations, is equivalent to m ost other models o f com putability (W eihrauch 2000, 
Section 9).

3.4. Coalgebras

Coalgebras (also called ‘systems’ in R utten (2000) and Barwise and Moss (1996)) provide 
a semantics for structures tha t can be considered as an infinite process, o f which only 
partia l observations are available. Examples o f such structures are real num bers, labelled 
transition  systems, object-oriented m odularity and dynam ical systems. A m odern survey 
o f coalgebras and their applications can be found in Jacobs (2005).

In the category theoretic semantics for com puter science, to any functor there corres
ponds a category o f coalgebras o f th a t functor. For certain functors, this category happens 
to have a final object. Those functors, or to be more precise, the final coalgebra o f those 
functors, are used to m odel infinite processes.

Let C  be a category, and F  be an endofunctor on C. A n F -coalgebra is a pair {Y, y) 
in which Y  is an object o f C and y : Y  — * F ( Y ) is a m orphism  in C. We call the first 
element of the pair the carrier o f the coalgebra, and the second element o f the pair the 
structure map o f the coalgebra.
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Let (U, u) and (V, v) be F-coalgebras. Then a coalgebra map from  (U, u) to (V, v) is 
a m ap f  : U — * V  such th a t v o f  =  F ( f ) o u; tha t is, the following diagram  com m utes:

F(U  ) ^ i i r F (V )

One can check tha t the identity m orphism  is a coalgebra map, and th a t the com posite of 
two coalgebra m aps is again a coalgebra maps. Hence the F-coalgebras form  a category. 
We are particularly interested in whether this category has a final object. If  such a final 
object exists, we assign some fixed notation  to it.

Definition 3.2 (Final coalgebra, coiterator). A final F -coalgebra is a coalgebra 
(vF, v-out) such th a t for every coalgebra (U, u) there exists a unique coalgebra m ap 
v-it(u) from  (U, u) to (vF, v-out). We shall call v-it(u) the coiterator o f u.

Thus a coalgebra (vF, v-out) is final if and only if

VU : C, V u: U * F ( U ), 3! v-it(u): U * v F , v-out o v-it(u) =  F(v-it(u)) o u, 

or, equivalently, if the following diagram  com m utes:

!v-it(u)
U ...................> vF

F (U ) ---------- > F( v F)V ; F(v-it(u)) v ;

In an arbitrary  category, it is not always easy to say w hether a final coalgebra for 
a given functor exists. However, if a final F-coalgebra does exist, it is unique up to 
isomorphism. Moreover, the structure m ap o f a final coalgebra is an isom orphism ; hence, 
a final coalgebra is a fixed point for its functor (Jacobs and R utten 1997). This fixed point 
property is the reason we are interested in a final coalgebra since it means we can use the 
theory o f final coalgebras as a semantics for d a ta  types o f infinite objects.

Finality o f coalgebras provides us w ith coinductive proof principles, which can be 
used to reason about objects residing in a final coalgebra. A well-known example o f a 
coinductive p roo f principle is the notion o f bisimulation. This can be stated roughly as: 
two infinite processes are equal if they are bisimilar, tha t is, if the observable parts are 
equal and the continuation o f the two processes (or the subprocesses) are again bisimilar.

As an example, consider the set o f streams. In lazy exact arithmetic, real num bers are 
represented by means o f lazy infinite sequences of elements o f a set, which are called 
streams. The collection o f stream s o f the elements o f the set $  is the final coalgebra of a 
simple polynom ial functor, namely F(X ) =  $  x X  in the category Set. Taking as structure 
m ap the m ap (hd, tl) : $® — * $  x $®, one can show tha t the set o f streams is indeed a 
final coalgebra for F  (R utten 2000). The constructor o f the final coalgebras o f streams is 
cons : $ “ — * $ “ , which prepends an element to the beginning o f a stream.

u v

v-outu
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The standard  decimal representation for real num bers is a stream  representation : each 
real num ber is denoted by a stream  over the 10-element set o f digits. So are the various 
admissible representations th a t are used in exact real arithmetic. In this way, one views the 
real num bers as a final coalgebra. In this setting the functions on real num bers become 
m aps in the category o f coalgebras: these are the so-called coalgebra maps. This does 
no t capture all functions on real num bers, just those for which we have suitable partial 
observations, tha t is, com putable finite approxim ations. Hence, in order to present a theory 
o f com putable coalgebra m aps one has to adhere to dom ain-theoretic (or equivalent TTE) 
approaches for a suitable definition o f com putability (Pattinson 2003). A m ore structural 
solution would be to in terpret coinductive types in a realisability model, which we will 
present in the next section.

3.5. Realisability

In this subsection we will describe realisability -  see van Oosten (2002) and Troelstra (1998) 
for general overviews. A fter a general introduction to realisability, we will briefly describe 
three realisability interpretations: for recursive analysis, for TTE and for dom ain theory. 
In this way we will obtain a nice uniform  treatm ent o f the three models previously 
discussed. O ur presentation of realisability models in this section follows, for the m ost 
part, the presentations in Birkedal (2000) and Bauer (2000; 2005), which can be consulted 
along with van Oosten (2002) for historical background.

In order to represent d a ta  on a com puter, we need to find a code, a realisation, for it. 
This suggests a realisability relation, th a t is, a relation IK between a set o f codes R  and a 
set X  such tha t each code represents at m ost one element. Functions are realised via the 
following com m utative diagram :

f

f
It is then said th a t f  tracks f . These representations are connected to the representations 
discussed earlier. There is a one-one correspondence between a realisability relation IK 
and a partia l function 8 defined by

8a =  x  iff a K x.

Yet another equivalent presentation is given by partial equivalence relations. The relation 
‘to be a code for the same elem ent’ is a partial equivalence relation.

In order to be able to represent functions by our codes, we should be able to interpret 
some applicative structure. It turns out to be convenient to require the realisers to have 
the structure o f a partia l com binatory algebra (PCA). A PCA is a structure (X , •, k, s) 
th a t has all the relevant properties o f the com binator presentation o f recursion theory. In 
Kleene’s original realisability in terpretation the realisers are given by the natural num ber 
encoding o f the partial recursive functions. This prime example of a PCA is called the first 
Kleene algebra and is simply denoted N . In fact, in this way we obtain the com putational
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model o f M arkov’s recursive m athematics. But, how do we include a data-type for all, 
no t just the recursive real num bers? Putting this another way, how does one make a 
realisability m odel corresponding to, say, TTE? To do this one needs a slightly different 
picture. The structures are realised by all streams, th a t is, elements o f Baire space ,̂ bu t we 
only allow recursive functions. To solve this, one uses the notion o f relative realisability, 
in which one takes the d a ta  from  A, bu t restricts the functions to a sub-PCA A#. In fact, 
this # may be seen as a m odal operator on types, assigning to each type its subtype of 
‘com putable’ elements: see Birkedal (2000) and Bauer (2000) for a simplified version that 
suffices for the present context.

The da ta  types are captured by the notion  o f a modest set over a PCA A, tha t is, a set 
w ith a realisability relation IK. The category o f m odest sets over A  w ith functions over A# 
is denoted by Mod(A,A#). W hen bo th  the sets and the functions are represented by the 
same PCA A, one simply writes Mod(A). Now, given a definition o f com putability on real 
num bers, one may ask how to define the com putability of lists o f real num bers, trees of 
reals num bers, streams o f real num bers, the positive real num bers, and so on. A lthough one 
can give concrete answers for each particular model, it would be better to have a structural 
solution th a t works for all these models a t once. In advanced program m ing languages 
these issues are solved by the presence o f a strong type system th a t is closed under certain 
type forming constructions -  see Section 4.1. Categorical logic and type theory (Lam bek 
and Scott 1988; Jacobs 1999) allow us to define a very strict and structural connection 
between logic and semantics by the use o f the internal logic o f a (categorical) model. It is 
custom ary to speak o f the internal logic when one is really talking about the internal logic 
and type theory. We will stick to this custom. It should be noted th a t the principles valid 
in the internal logic in general depend on the principles assumed to hold in the meta-logic. 
The internal logic for realisability using m odest sets is intuitionistic logic, the logic of 
constructive mathematics. The internal type theory supports dependent, inductive and 
coinductive types. By providing realisability interpretations for all the models discussed 
earlier we show tha t we can use this type theory in all these models. This means th a t we 
have a notion o f com putability on, say, streams o f positive real num bers in all these models.

To give a flavour o f how one realises logic, we will present the abstract realisability 
interpretation. Here x  and y  are elements o f the PCA. The symbols ‘xrP  ’ may be read 
as x realises P .

xrP :=  P  A x I  for P  atomic (1)

xr(A A B) :=  (p0xrA) A (pixrB) (2)
xr(A ^  B) :=  Vy(yrA ^  x •  yrB) A x I (3)

xrVyA :=  Vy(x •  yrA) (4)
xr3yA :=  PixrA[y/pox], (5)

Here pi denotes the ith projection o f a pair. The symbol [ may be read as ‘is defined’.
We say tha t A  is true in the model when A  is realised, th a t is, the set o f realisers is

t  We have used to denote Baire space before where we choose the alphabet $  to  be the n a tu ra l num bers.
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inhabited. A similar definition for the realisation o f types can be given analogous to the 
C urry-H ow ard isomorphism, which we will discuss in Section 4.1.

We will now go on to give the realisability in terpretation for the three models presented 
earlier.

3.5.1. M arkov’s recursive mathematics M arkov’s recursive m athem atics can be modelled 
by M od(N ), the m odest sets over the first Kleene algebra N , th a t is, the realisers, in the 
PCA N  are the ordinary (partial) recursive functions coded by natu ral numbers.

The internal logic o f C R M  satisfies not only the usual axioms of intuitionistic logic, 
bu t also C hurch’s thesis and M arkov’s principle. C hurch’s thesis states th a t we only work 
on recursive sequences. T hat is, our program m ing language allows us to access the codes 
o f the real numbers.

Vn3mA(n, m) ^  3kVn3m[A(n, Um) A T kn m ].

Here T  denotes Kleene’s T -predicate and U is the function th a t returns the result Um 
o f the com putation m. This variant o f C hurch’s thesis may be read as: if for each n we 
can find an m such th a t A(n, m), then we can find a recursive function th a t finds such m 
for us. M arkov’s principle allows us an unbounded search: if we know tha t an element 
w ith a decidable property cannot fail to exist, we can just start searching until we find it. 
Formally, let P  be a decidable predicate. Then

—Vn.—P (n) ^  3n.P (n) .

As stated earlier this model behaves som ewhat unexpectedly when quantifying over 
com pact spaces. For instance, a point-wise continuous function on a com pact interval 
may be unbounded. This is due to the failure o f the fan-theorem , which is the constructive 
variant o f K önig’s lemma. In order to remedy this, one introduces choice sequences, a 
concept th a t is captured by Kleene and Vesley’s realisability model, which we will discuss 
now.

3.5.2. T TE  TTE is the model M od(B, B #), the second Kleene algebra, which was 
extensively studied by Kleene and Vesley. Thus TTE may be seen as the Kleene-Vesley 
realisability in terpretation  (Kleene and Vesley 1965). T roelstra (Troelstra 1992) seems to 
have been the first to observe the possibility o f using realisability to obtain results in 
TTE.

It may seem surprising tha t the notion o f admissible representation, which is so im port
an t in TTE, seems absent in realisability. To understand this, consider a representation 
o f the real numbers. First, there is no absolute pre-given notion o f a real num ber, thus 
it seems impossible to state w hat an admissible representation o f ‘the’ real num bers is. 
However, one can axiomatically define the real num bers up to isomorphism. Now we 
fix any representation, c : B  ^  R , o f the real numbers. One defines a representation 
r : B  ^  R  o f the real num bers as a surjective m ap from  Baire space to the real numbers. 
O f course, surjectivity should be interpreted in the internal logic. Thus surjectivity means

VS € B 3a € B [r(a) =  c(S )].
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By applying the axiom of choice for variables over Baire space, which is denoted C-C in 
Troelstra and van Dalen (1988a), we obtain:

f  : B  ^  BVS € B [r ( f (p ) )  =  c(fi)] .

This is precisely the maximality condition in the notion of an admissible representation 
defined above. Thus one may view admissibility as the external way of stating the 
surjectivity of a representation. We should mention that the axiom C-C that we used 
above holds in the internal logic1'.

It has been crucial in the development of constructive mathematics that complete 
separable metric spaces can be represented by a continuous surjective image of Baire 
space. This same fact is also heavily used in the context of TTE. This allows us to 
transfer constructive theorems about such spaces directly to TTE; see Lietz (2004) for 
details. Similarly, compact metric spaces can be represented by Cantor space and a similar 
transfer principle exists.

To sum up, one can now view TTE as the assembly language for exact real computation. 
Using categorical logic and realisability, one can compile a dependently typed functional 
language with (co)inductive types into this Turing machine model. Thus the relation 
between constructive mathematics and TTE is much like the relation between an advanced 
programming language and an assembly language. The former provides more structure, 
the latter gives finer control over the computation and, in particular, over the complexity 
of such computations.

3.5.3. Domains The theory of effectively presented continuous domains as used by Edalat 
and co-workers (Edalat 1997) fits into the model Mod(P, P#). Here P  denotes Scott’s graph 
model (Scott 1976), which may be seen as the ‘universal’ countably based T 0 topological 
space; see Bauer (2000) for details.

3.5.4. Coinductive types As mentioned earlier, the realisability models support coinduct- 
ive types. One way of seeing this is to observe that such models can be extended to a 
topos: a generalised, or local, set theory. This construction is due to Hyland (Hyland 
1982) and is called the effective topos. Thus, when we define our data-types coinductively, 
we can interpret them directly in all the realisability models we have described.

As an example, consider the coinductive streams of natural numbers. It is straightfor
ward to prove constructively that this final coalgebra is the function space N  ^  N. Thus 
one can interpret these streams directly in all the models above. For instance, in CRM all 
these functions would be recursive.

4. Proofs

4.1. Type theory

Type theory provides a syntactic analysis of the notion of computability. In this section 
we describe some basic concepts of type theory that are relevant for understanding

1 We have been unable to find this simple observation in the literature.
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the connections between constructive analysis and computation with the reals. For 
more details on type theory, see M artin-Löf (1984), Nordstrom  et al. (1990), Luo 
(1994), Barendregt (1992) and Barendregt and Geuvers (2001) -  we will not deal with 
programming language aspects of type theory (see Pierce (2002) for details), nor shall 
we discuss logical frameworks (see Pfenning (2001) for details). The basic notion of type 
theory is obviously that of a type, which describes a collection of terms (the terms of that 
type) in a syntactic  way: there are rules for constructing terms of a type of a specific form 
(so called introduction rules) and there are rules for using terms of a type of a specific form 
(so called elimination rules). The crucial point is that whether a term is of a given type is 
decidable, since the type of a term can be computed on the basis of its syntactic shape. 
(There are some exceptions, but almost all type theories adhere to this principle.) This 
distinguishes type theory from set theory: X  := {n e  N  | V x ,y , z ,  x n +  y n =  z n} is a typical 
example of a set and not a type (whether n e  X  is not a matter of syntactic analysis of n).

Simple examples of types are bool and nat. The type bool contains just true and 
false and nat contains 0 and, if x : nat, then S  x  : nat as well. Apart from construction 
principles for terms, there are construction principles for types as well, for example, given 
the types a  and t , we have a  x t  and a  ^  t  as types, with the associated construction 
principles of ‘pairing’ and X-abstraction. This gives rise to the system X ^ x  of simple type 
theory with products. Exactly how much information one puts in the terms (and in what 
form) is a matter of choice. For programming purposes, one usually would want to put 
as little information as possible (because the program is what the user writes) and let the 
computer (compiler) compute a type (or a set of types) for us. So, for X ^ x , one can have 
as construction rule that (M, N )  : a  x t  if M  : a  and N  : t  and that X x.M  : a  ^  t  if 
M  : t  under the assumption that x :a.

The construction and elimination principles of type theory give it a strongly constructive 
flavour, which was first made explicit by M artin-Löf: we describe a collection by saying 
how we can construct objects of that collection. Due to the fact that we know the 
construction principles, we can define a function f ro m  the collection by distinguishing 
cases according to the construction rules (and doing a recursive call if needed).

There are many different type theories, depending on the types one allows and the 
functions one allows to define over them. Examples of additional type constructions are: 
polymorphic types, higher order polymorphic types, dependent types, inductive types and 
recursive types. An important aspect of the definable functions in type theory is that 
they are executable, due to the computational model of the X-calculus that is part of the 
system.

4.1.1. Curry-H oward isomorphism Apart from a computational model, type theory also 
incorporates a ‘logical model’. This is due to the Curry-Howard-de Bruijn isomorphism, 
that interprets formulas as types and proofs (logical deductions) as terms. The isomorphism 
was first noticed by Curry for minimal propositional logic and simple type theory, and 
later extended to the first-order case in Howard (1980) (but the original paper dates back 
to 1968). Howard also treated the case of proofs by induction over the natural numbers 
and coined the name ‘formulas-as-types’. Independently of Howard, De Bruijn noticed 
the formulas as types analogy in the late 60’s in the context of his logical framework
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Automath (De Bruijn 1980). In the analogy of De Bruijn, the logic is encoded in type 
theory, so his formulas-as-types analogy is slightly different from what we discuss here. (As 
a matter of fact, various encodings of logic in type theory were studied, and some of the 
later ones are quite close to what we treat here.) The isomorphism can also be seen as an 
operationalisation of the so called BHK (Brouwer-Heyting-Kolmogorov) interpretation 
of proofs, where, for example, a proof of A  ^  B  is interpreted as a method  for producing 
a proof of B  out of a proof of A; see Section 4.3 for details. This was also the reason for 
M artin-Löf’s interest in the formulas-as-types isomorphism, which he took as the starting 
point for his intuitionistic theory of types (M artin-Löf 1984), and which he extended to 
the existential quantifier and inductive types.

Combining the computational and logical interpretation of type theory, we find that 
the basic judgement

r  h M  : A

can have two ‘readings’:

1 M  is a piece of data (or algorithm) of data type A.
2 M  is a proof (deduction) of formula A.

To make a (syntactic) distinction between data types and formulas, most type theories 
have (at least) two ‘universa’ or ‘sorts’: Set and Prop, where A  : Set means that A  is a 
data type and A  : Prop means that A  is a formula. The context r  consists of variable 
declarations x  : B  and definition c := t : B. Variable declarations are read as assumptions 
(assuming a hypothetical proof of B) when B  : Prop. A definition is read as a reference 
to a proved lemma (with proof t) when B  : Prop.

The correspondence between logic and type theory is so strong that there is an 
isomorphism between logic (for example, the A ^-fragm ent of propositional logic) and type 
theory (the system A ^-x). The isomorphism maps formulas to types and proofs in natural 
deductions to terms. In this isomorphism, the logical introduction rules correspond to the 
construction principles of the type theory and the logical elimination rules correspond 
to the elimination principles. The isomorphism also maps computations in logic (via 
cut-elimination) to computations in type theory (for example, ^-reduction in A ^x ).

To extend the Curry-Howard isomorphism to predicate logic, we need ‘formula types’ 
(types of type Prop) that depend on objects of a ‘data type’ (a type of type Set). A 
predicate over the type nat should be a function from nat to Prop and similarly, a binary 
relation (like ^ )  should be of type nat ^  nat ^  Prop. This phenomenon is called type  
dependency:  the possibility of forming type expressions that contain term expressions as 
subterms. Type dependency also implies the formation of the dependently typed function  
space, usually written as nx:A.B(x), denoting the type of functions that takes an a : A  
and produces a term of type B(a). These dependent function types are typically used 
for formalising the V quantifier: a proof of Vx:A.B(x) is a method that, given an a : A  
produces a proof of B (a). Similarly, one can also introduce a type dependent product type 
S x : A .B (x). This type consists of pairs (a,b) where a : A  and b : B(a). There are various 
choices for the elimination rule for S-types, the simplest being: if p : Sx:A.B(x), then 
n 1 p : A  and n2 p : B(n1 p). So n1 : Sx :A.B(x) ^  A  and n2 : n y  :(Sx :A.B(x)).B(n1 y), and 
there are the usual computation rules for the projections (n1 and n2) and pairing ((_, _)).
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4.1.2. Inductive types Taking the idea of sets defined via construction principles as basis, 
a general pattern for defining types by induction emerges. This idea originated with Scott 
(Scott 1970) and M artin-Löf (M artin-Löf 1984); the syntax we present below is loosely 
based on Coquand and Paulin (1990) and Paulin-Mohring (1993), and the formalisation 
of inductive types in the proof assistant Coq (Coq Development Team 2004). Basically, 
an inductive type X  is completely captured by giving its constructors, constant terms that 
have a type of the form

A1 —— A2 ——... A n —— X

where the type expressions A i can only contain X  in a strictly positive position (that is, 
Ai does not contain X  or is of the form B1 — B2 — . . . B m — X  with X  not in B j ). In 
some applications, the condition of strict positivity may be relaxed to positivity, but in 
type theories with dependent types one cannot do this in general.

The constructors are seen as the (only) ways of constructing terms of the type, so one 
is actually describing the free algebra over the terms generated from these constructors, 
in other words, X  is a solution to the domain equation X  =  a 1 +  ... +  if the a i’s 
correspond to the types of the constructors as follows: if A1 — A2 — . . . A n — X  is the 
type of the first constructor, then a 1 =  A1 x A2 x . . . A n. Such a free algebra amounts to 
two properties:

— Coverage : if t : X, then t =  c(s1, . . . , s n) for some constructor c.

— No confusion ( fo r  terms o f  type X ) :  c(t]_,.. . , tn) =  c/(s1, . . . , s m) if and only if c =  c', 
n =  m  and t i =  si for all i.

In type theory with inductive types, these properties for X  are automatically generated 
from the declaration of the constructors for X , and they are automatically enforced. 
These properties have both a logical and a computational aspect. ‘Coverage' is enforced 
logically by the induction principle and computationally by the principle of well-founded 
recursion. ‘No confusion’ is enforced logically by the fact that we can prove a property of 
elements of X  by an (exhaustive) case distinction. It is enforced computationally by the 
fact that we can define a function over X  by cases.

The terms of an inductive type can be seen as trees, with nodes labelled with 
constructors. If c : A1 — A2 — . . . A n — X , a node labelled with c has n subtrees that are 
either expressions of type A i (if X  does not occur in A i) or a B1 x B2 x ... x Bm-indexed 
family of trees (if A i is of the form B1 — B2 — ... — B m — X).

We will now give some examples to make these rather abstract ideas more concrete. 
The type of trees with labels in A  and nodes in B  is given by two constructors.

leaf : A  — Tree

join : B  — Tree — Tree — Tree

The intention is that this defines the free algebra of trees over leaf-type A  and node type 
B. So, we want leaf x =  join y  t 1 t2 for all x , y , t 1, t 2, and we want to be able to define 
functions over Tree by case distinction and recursion over ‘smaller trees’. Finally, we want 
to be able to prove properties of elements of Tree by tree-induction. In type theory with
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inductive types, this is made possible by allowing the definition of terms as follows:

Fixpoint NCnt(x : Tree) : nat := 
match x with 
| leaf a ^  1
| join x  t 1 t2 ^  (NCnt t1) +  (NCnt t2) 
end.

Here we have borrowed the syntax from Coq; the above can be read as the definition of 
a recursive function NCnt: Tree ^  nat where Fixpoint denotes the fact that we are using 
recursion. This function counts the numbers of leaves in a tree. In fact, the function NCnt is 
defined by structural recursion over the tree type, meaning that in the body of the function 
definition, NCnt is only called on arguments that are smaller according to the structure 
of the inductive type. All functions defined by structural recursion are terminating, but it 
should be noted that structural recursion is a syntactic, and thus decidable, criterion for a 
function to be terminating. The pattern for function-definition by structural recursion can 
be generated directly from the definition of the inductive type, which makes it possible 
for computer systems to support this -  see Paulin-Mohring (1993) for how this is done 
in the proof assistant Coq. Structural recursion is quite powerful, but for some functions 
there is quite some work to be done to define them. For example, the gcd function defined 
as follows is not structural recursive:

Fixpoint Gcd(n m  : nat) : nat := 
if n <  m  then Gcd(n, m  — n) 

else if n =  m  then n 
else Gcd(n — m, m)

The type nat is defined as an inductive type with constructors 0 : nat and S  : n a t^ n a t, 
so a call of Gcd on m  — n is not structurally recursive. To establish termination, we would 
first have to prove that the recursive calls of Gcd are only done on smaller arguments, 
according to some well-founded order, and then the function would be defined by recursion 
over this well-founded order. Note also that the function Gcd is not terminating at all, 
because on n =  0 or m  =  0 the recursively called argument isn’t smaller, so really this 
function would be partial, of type n n , m  : nat.(n =  0) ^  (m =  0) ^  nat. For a solution 
to the problem of the restrictiveness of structural recursion, see, for example, Bove and 
Capretta (2005).

The induction principle for an inductive type can also be generated from the definition 
of the inductive type. As a matter of fact, the induction principle and the recursion 
principle can be seen as instances of the same syntactic schema, but we will not go into 
this here -  see Paulin-Mohring (1993) for details. The induction principle for Tree is the 
term T reeJnd with the following type:

TreeJnd : VP :T ree^Prop.
(Va:A.P (leaf a)) ^  (Vb:B.Vt1:Tree.P t 1 ^  Vt2:Tree.P t2 ^  P (join b t 1 t2))
^  Vt:Tree.P t

The power of inductive types lies to a large extent in the fact that many mathematical 
‘objects’ can be defined in an inductive (or recursive) way. Defining them in inductive type
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theory then gives the added value that the recursion scheme and the induction principle 
come ‘for free’. Examples of mathematical ‘objects’ that can be defined as inductive types 
are:

1 Logical connectives Like: disjunction, which has, given two parameters A , B  : Prop, 
two constructors left : A  — A  V B  and right : B  — A  V B; or the existential quantifier, 
which has, given two parameters A  : Set and P  : A—Prop, one constructor pair : 
n x :A .(P x ) — 3 A P. Here we see the use of a dependently typed constructor in the 
definition of an inductive type.

2 Inductively defined relations Like ‘less than or equal to’ on natural numbers ^ ,  which 
has as constructors

le_n : Vn : nat.le n n

le_S  : Vm, n : nat.le n m  — le n ( S m ) .

In these last examples we see the use of dependently typed constructors. This changes 
the scheme of the type of a constructor that we described in the beginning of this section.
Constructors now have a type n x 1 :A1__ n x n:An.X t1 ■ tm, where X  may occur in the A i
only in a strictly positive position (that is, at the end).

Apart from the scheme for inductive types that we describe here, there is also the 
possibility of introducing one ‘generic’ well-ordering type, the so-called W -type, and to 
define inductive types as instances of this type. The W -type defines a general type of well- 
founded trees that can be instantiated to specific sets of trees by choosing the branching 
types in a specific way (Nordström et al. 1990). Dybjer (Dybjer 1997) shows that the 
inductive types we have described above can indeed be represented in this way, but then 
one has to use an extensional type theory, that is, where functions are equal if they have 
the same graph, which leads to an undecidable typing relation.

4.1.3. Coinductive types Coinductive types were added to the type theory to enable it 
to deal with infinite objects (Mendler 1991; Geuvers 1992; Mendler et al. 1986; Hallnas 
1990; Gimenez 1996). This extension was done by Hagino (Hagino 1987) using the 
categorical semantics. The idea behind using the categorical semantics is to consider an 
ambient category for the type theory, and interpret the weakly  final coalgebras (that is, 
final coalgebras with the uniqueness property dropped) of this category as coinductive 
types. Taking a different approach, Lindstroöm (Lindstroöm 1989) extended Martin-Loöf 
type theory by coinductive types using the non-well-founded set theoretic semantics; 
while Mendler et al. (Mendler et al. 1986), M artin-Löf (M artin-Löf 1990) and Hallnas 
(Hallnös 1990) tried to extend M artin-Löf’s constructive type theory directly by adding 
extra typing rules for infinite objects. Mendler (Mendler 1991) and Geuvers (Geuvers 
1992) presented a way to encode coinductive types in type theories that are altogether 
simpler than M artin-Löf’s type theory. Later, Gimenez (Gimenez 1996) extended the 
calculus of inductive construction by a cofixpoint scheme that allows for the introduction 
of infinite objects.

Coinductive type theories provide a programming framework for algorithms that deal 
with infinite objects, and therefore are suitable for exact real arithmetic. In particular,
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since type theories provide a basis for formal verification tools, formalising an algorithm 
in type theory paves the way for verification of that algorithm by means of a theorem 
prover. Therefore, a rigorous analysis of correctness of the algorithms becomes possible 
by stating these algorithms in the language of coinductive type theory. This is made 
easier if one can devise a coinductive type theory that is specifically suited for working 
with real numbers. In other words, one does not necessarily need a general theory of 
coinductive types and the full power of type theory in order to verify the algorithms of 
exact arithmetic. In terms of categorical semantics this means that having the (weakly) 
final coalgebras of polynomial functors should suffice. However, one needs the underlying 
type theory to be strong enough to formalise all the computable real functions.

This brings up the notion of productivity of infinite objects in type theory and functional 
programming, which is similar (in fact dual) to the notion of termination for finite 
objects (Dijkstra 1980; Sijtsma 1989; Coquand 1994). A function on streams is productive 
if it can produce arbitrarily large finite approximations in finite time. The example of 
multiplication by 3 in Section 2.1 is not a productive function. In fact, productivity is 
very similar to the notion of computability (and continuity, and laziness). In TTE it 
can be related to the finiteness property  of type two Turing machines (Weihrauch 2000, 
Section 2.2). A domain theoretic treatment of productivity for streams can be found in 
Sijtsma (1989), which is expanded and used in the coinductive treatment of lazy exact 
arithmetic in Niqui (2004). In order to tackle productivity inside the type theory, the 
notion of guardedness is studied by type theorists (Coquand 1994; Telford and Turner 
2000) and is implemented as the basis for the treatment of coinductive types in the Coq 
proof assistant (Gimenez 1996).

The guardedness condition is a syntactic criterion, which can be used to ensure the 
productivity much in the same way (in fact in the dual way) as it can be used to ensure 
the termination of structurally recursive functions: a recursive function with, as recursive 
argument, a term with an inductive type is terminating if the argument of the recursive 
calls is structurally smaller than the original argument of the function. This structural 
order is an inherent order that is inherited from the definition of the inductive type of the 
recursive argument. According to this order, applying constructors of the inductive type 
generates the successors of a term (recall that inductive types are equivalent to the type 
of general trees). Dually, an infinite object (that is, a term that has a coinductive type) is 
productive if the calls to itself inside the body of its definition are immediate arguments 
of constructors of its coinductive type. The above checks are purely syntactical and hence 
can be automatised; this is exactly what is done in the guardedness checker of the Coq 
proof assistant.

As an example, the following definition is a guarded definition for a stream of natural 
numbers starting from n.

nats n := cons n (nats n +  1)

This is because the sole occurrence of nats in the right-hand side is the immediate 
argument of (that is, guarded by) cons, the constructor of the coinductive type of streams.

But, in the same way as the structural recursion is not powerful enough to capture 
all valid terminating recursive definitions, the guarded-by-constructor approach does not
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capture the whole class of productive infinite objects. This is because the productivity of 
streams can in general be reduced to the question of whether a subset of N  is infinite, 
which is an undecidable question (Niqui 2004, Section 4.7).

An example of infinite objects that are not guarded and whose productivity is not 
syntactically detectable are the filter-like functions that are used in functional programm
ing. One option for formalising such infinite objects would be to adhere to semantic 
approaches, for example, domain-theoretic methods (Niqui 2005) or topological methods 
(Di Gianantonio and Miculan 2003). The other option would be to use a very exten
ded setting of coinductive types that includes polymorphic and dependent coinductive 
types, and adapt advanced type-theoretic methods that are used for tackling general 
(non-structural) recursion. This is the approach taken by Bertot (Bertot 2005) and is 
implementable in Coq as all the machinery that is necessary (polymorphic and dependent 
coinductive types) already exists in Coq.

4.2. Program extraction

Correctness is an important issue in the implementation of computable analysis (which 
in practice currently mostly amounts to the implementation of exact real arithmetic.)

There are two approaches for developing correct programs. In one approach one starts 
by writing the concrete program and then tries to establish its correctness, either using 
informal reasoning, or by annotating the program with invariants and then proving 
correctness conditions generated from that, or by refining the types used in the program 
to be more informative, using a programming language that supports dependent typing. 
In the other approach, one starts very abstractly and then works towards a concrete 
program. The methods of program refinement and program extraction both fall in this 
second category.

With program extraction one starts from a formalisation  of some mathematical theory, 
or, rather, a representation of this theory in the computer that has sufficient detail to allow 
the computer to establish the correctness by proof checking. This formalisation is then 
automatically transformed into a computer program that implements the constructive 
content of this formalised theory. This is a direct application of the realisability imple
mentation of constructive logic. Therefore, in order to extract a program from a formalised 
theory, in general one needs to formalise the theory using constructive logic. However, 
there has also been some work on extracting programs from classical proofs (Berger et al. 
2002). Program extraction has been implemented in many systems, such as PX (Hayashi 
and Nakano 1987), Nuprl (Constable et al. 1986), Coq (Coq Development Team 2004; 
Letouzey 2004), Minlog (Benl et al. 1998) and Isabelle (Nipkow et al. 2002).

Note that the logic of a proof assistant does not need to be constructive for it to be 
able to do program extraction: Isabelle/HOL is based on a classical logic, but supports 
program extraction (Berghofer 2003).

Because the Curry-Howard-de Bruijn isomorphism corresponds in a natural way to 
a realisability interpretation, program extraction is popular with proof assistants that 
implement type theory. In type theory the proofs of a theorem are already lambda terms, 
which can be seen as functional programs in a simple programming language. Therefore,
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Table 1. B H K  interpretation

To prove One needs to

A A B prove A  and prove B
A V B choose one and prove it
A ^  B provide a method transforming a proof of A  into a proof of B
VxA provide a construction f  such that f(x) is a proof of A(x)
3xA construct t and prove A(t)

in type theory, program extraction is hardly more than transforming one functional 
language into another functional language. However, because not all computations in 
these lambda terms are relevant for the final result of the program, a distinction is made 
between informative and non-informative data-types. Then, when extracting the program, 
all parts corresponding to non-informative data-types are removed.

Program extraction is a popular method for establishing the correctness of implement
ations of computable analysis. Most proof assistants have a formalisation of the theory 
of real numbers, and an implementation of exact real arithmetic and computable analysis 
is seen as an easy side product of this.

Program extraction is an attractive method, but it is unclear whether extracted programs 
will have a competitive performance. For instance, the root finding program extracted 
from a Coq formalisation of the intermediate value theorem turned out to be unusable in 
practice (Cruz-Filipe et al. 2004; Cruz-Filipe and Spitters 2003; Cruz-Filipe and Letouzey 
2005). Apparently, if one wants to extract a reasonable program, one needs to be aware 
of the extraction process when writing the formalisation.

4.3. Constructive analysis

Constructive Analysis has had a major impact on various topics described in this paper. 
It has its roots in the intuitionistic mathematics of Brouwer (Brouwer 1975; Heyting, 
A. 1956), which had already shown the strong connections between computability and 
topology even before these fields were properly developed. Heyting then defined formal 
rules for Brouwer's logic. The interpretation of intuitionistic logic now goes by the name 
BHK, after Brouwer, Heyting and Kolmogorov.

When a precise theory of computations became available, Kleene developed his 
realisability interpretation to give a formal model for intuitionistic logic: see Section 3.5. 
Kleene’s first interpretation did capture Brouwer’s logic nicely, as explained in Section 3.5.1, 
but did not capture Brouwer's theory of choice sequences. This was solved by Kleene and 
Vesley (Kleene and Vesley 1965) using functions on Baire space. As we have seen, this is 
the interpretation that also captures TTE.

As is well known, Brouwer contended that all total real functions are continuous 
(Brouwer 1927). A statement that we can now see is provable in many concrete 
computational interpretations. In 1967, Bishop (Bishop 1967) showed that although 
Brouwer's continuity principle is an important guideline, one can do without this 
assumption by just studying the continuous functions and ignoring any others, whether
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they exist or not. In this way, Bishop developed major parts of modern analysis. It 
turns out that Bishop’s mathematics is a convenient generalisation of both recursive and 
intuitionistic mathematics (and of classical mathematics, but that is not the issue here). 
It can be interpreted in both of the computational models described above: see Troelstra 
and van Dalen (1988a) and Bridges and Richman (1987).

Bishop's model of computation is deliberately vague about the precise notion of 
computation. It builds on a primitive notion of ‘operation'. Martin-Loöf's theory of types 
(M artin-Löf 1984) can be used as a satisfactory theory of such operations. In fact, the 
usual way to treat sets in type theory, that is, using types modulo an equivalence relation 
called setoids (Hofmann 1995), was motivated by Bishop’s work.

Finally, we would like to mention the two recent monographs, Crosilla and Schuster 
(2005) and Bridges and Vita (to appear), which provide more information about con
structive mathematics. Furthermore, this story could not be considered complete without 
mentioning formal topology (Sambin 1987; Fourman and Grayson 1982): a proper 
description would take us too far from exact arithmetic, but we should just say that 
formal topology may be seen as a way to develop topology or domain theory inside type 
theory (Sambin 2000; Sambin et al. 1996).

5. Conclusion

We have described some of the problems of exact real arithmetic and some solutions 
varying from concrete implementations, representation and algorithms to various models 
for real computation. We then put these models in a uniform framework using realisability, 
opening the door for the use of type theoretic and coalgebraic constructions for both 
computing and reasoning about these computations. We have also indicated that it is 
often natural to use constructive logic to reason about these computations.
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