
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/34987

Please be advised that this information was generated on 2022-08-23 and may be subject to

change.

http://hdl.handle.net/2066/34987

M ath. Struct. in Comp. Science (2007), vol. 17, pp. 3-36. © 2007 C am bridge University Press

doi:10.1017/S0960129506005834 P rin ted in the U nited K ingdom

Constructive analysis, types and exact real numbers

H E R M A N G E U V E R S , M I L A D N I Q U I , B A S S P I T T E R S

and F R E E K W I E D I J K

R adboud University N ijm egen, the N etherlands
Em ail: spitters@cs.ru.nl

R eceived 16 December 2006; revised 1 M a y 2006

In this paper we will discuss various aspects o f computable/constructive analysis, namely
semantics, proofs and computations. We will present some of the problems and solutions of
exact real arithmetic varying from concrete implementations, representation and algorithms
to various models for real computation. We then put these models in a uniform framework
using realisability, which opens the door to the use of type theoretic and coalgebraic
constructions both in computing and reasoning about these computations. We will indicate
that it is often natural to use constructive logic to reason about these computations.

1. Introduction

Com puting with real num bers is usually done via floating point approxim ations; it is well
known tha t the build-up o f the rounding off tha t is inherent in these com putations can
lead to catastrophic errors (K ram er 1997). As a first a ttem pt to prevent this problem,
one may use interval arithm etic (K earfott 1996). A different approach to com puting
w ith real num bers is exact real arithmetic, which provides a precision-driven approach to
com putation w ith real num bers (Yap and D ube 1995). Exact real arithm etic is m otivated
by the need for unbounded precision in num erical calculations. Real num bers are infinite
objects of which arbitrary good finite approximations can be given. A com putable function
over the reals is given by an algorithm th a t given the desired accuracy o f the output,
asks for a sufficiently good approxim ation o f the input to be able to com pute the result.
D om ain theory provides a systematic approach to interval com putations and exact real
arithmetic, using the higher order features o f m odern program m ing languages. A related,
bu t slightly m ore concrete approach is W eihrauch’s Type Two theory o f Effectivity (TTE).
In TTE one considers (Turing machine) com putations on streams. Yet another approach
(M arkov’s) is to use the function type N ^ N , which is present in functional languages,
to work directly w ith Cauchy sequences.

We will illustrate the spectrum between floating point com putation and exact real
arithm etic with a small example. Exact real arithm etic has found its m ain applications
when one wants to answer precise m athem atical questions by means of com putation, and
therefore we will use an example from mathematics.

Define a sequence o f real num bers by iterating the logistic map:

0 = 0.5, Xn+1 = 3.999 x x n(1 - x „). ()

(Note tha t the num ber 3.999 should no t be taken to be an approxim ation o f some num ber
from the real world, bu t should have exactly this value.) Now we w ant to determ ine a

mailto:spitters@cs.ru.nl

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 4

good approxim ation o f the 10000th element in this sequence, x 10ooo. There are four ways
to proceed with this, which are in increasing sophistication:

1 First we can use floating point arithmetic, using the IE E E 754 num bers implemented
(IEEE Task P754 1985) in the floating point unit o f our computer. For instance, we
m ight run the following small C program.

main() {
int n; double x = 0.5;
for (n = 0; n < 10000; n++)
x = 3.999 * x * (1 - x);
printf("/f\n", x);
}

This will then give the ou tput 0.780738. Now this num ber is totally unrelated to the
correct answer, which (rounded to 6 decimals) is 0 .354494. The sequence tha t the
program calculates, because o f rounding errors and the chaotic nature o f the logistic
m ap, will, after the first few terms, become essentially unrelated to the actual values
o f the sequence. This also becomes very clear if one runs the same program on Intel
hardw are, which does no t exactly follow the IE E E 754 standard. In th a t case, the
program will prin t 0.999336.
N ote th a t implementing interval arithm etic using floating point num bers for the bounds
does no t help here. In tha t case the result o f the program will be the interval [0,0.99975].
W hile m athem atically correct, this is no t very informative.

2 The second approach to this problem, which will give the correct answer, is to use the
m ethods o f num erical analysis. One still calculates using floating point num bers, but
w ith a greater precision. This is the m ethod tha t the M aple com puter algebra package
uses. In the case o f this example it turns out th a t calculating using 104 digits will give
the correct answer for x 104.
N ote tha t w ith this approach it is the num erical analyst who will need to determ ine the
necessary precision, and it will no t be done autom atically by the computer. For this
specific problem determ ining this precision m ight no t be very difficult, bu t for more
involved problems it m ight easily become the time bottleneck in obtaining the answer
(instead o f the com putation time taken by the computer). Also, if the num erical analyst
makes a m istake in his error estimates, there will be no w arning th a t the answer will be
incorrect. Thus, the correctness o f the answer will no t only depend on the correctness
o f the calculation software, but also on the correctness o f the way th a t one poses the
question.

3 The th ird approach for this problem is to have the com puter keep track o f the errors
when running the calculation, and then have it rerun the program using a larger
precision as long as the precision o f the ou tput is not good enough. In this way, it is
the com puter rather than the hum an tha t determines w hat precision will be needed.
This approach can be implemented using interval arithm etic (using bounds with
sufficiently large precision), or using sufficiently precise floating point num bers to
gether w ith an error estimate. It will be clear th a t bo th m ethods are essentially the
same.

Constructive analysis, types and exact real numbers 5

However, w ith this approach we will have various intervals in our program tha t are
related in the sense th a t they correspond to the same exact real num ber, bu t w ithout
this correspondence necessarily being reflected in the organisation o f the program. This
makes program m ing using this m ethod m ore difficult than necessary.

4 The fourth approach is similar to the previous one, bu t this time one uses a functional
(‘higher order’) data-type. Instead o f using the (‘first order’) data-type o f intervals, one
uses functions tha t m ap desired precisions to intervals. In this way the intervals tha t
correspond to the same real num ber, bu t w ith different precisions, all become part of
one d a ta object in the program.
N ote th a t when using this approach it is im portant to cache the intervals th a t all these
functions calculate. Otherwise the same interval m ight be recalculated m any times,
leading to a very bad complexity.

W hen looking at these four approaches, it will be clear tha t the last three all calculate the
correct answer, and th a t they all use a similar am ount o f running time. This means tha t
the increase o f sophistication between the various m ethods tha t we have described does
no t correspond to a m ore efficient way o f obtaining the answer to the problem. Instead,
it is prim arily an improvement in correctness: the ease o f getting a correct answer, and
the ease o f establishing tha t this answer is indeed correct.

Several approaches to exact real arithm etic have been implemented, as described in
Section 2.2 below. It is interesting to ask w hat applications these program s may have.
Since all d a ta in the real world is inherently imprecise, it may be argued th a t exact real
arithm etic offers no essential im provement over floating point com putation for real-world
applications. However, its usefulness for m athem atics seems quite clear.

R eturning to the question o f the correctness o f algorithm s for real arithmetic, in
some m odern systematic approaches to program correctness one uses a realisability
in terpretation to get a precise and tight connection between proofs and programs. It turns
out th a t the same can be done here. M ost ‘higher order’ approaches, such as Dom ains,
TTE and M arkov’s CRM , tha t we will discuss later can be unified in a realisability
framework. This means th a t there is a clear notion o f an internal logic to reason about
such com putations. As usual when reasoning about com putations, this internal logic is
constructive. We will expand on this in Section 3.5.

It should be noted th a t in the transition from floats to a language for exact real
arithm etic w ith da ta types there is the usual friction between craft and technology:
should these issues be treated carefully on an individual basis, or do we use the
apparatus of, say, dom ain theory? A similar tension exists for proofs: do we treat them
individually, or do we use the technology o f category theory, realisability and constructive
m athem atics?

The paper is organised as follows. We will focus on three im portant aspects of
com puting w ith real num ber: com putations, semantics and proofs. Section 2 discusses rep
resentations and implementations. Section 3 discusses dom ain theory, M arkov’s recursive
analysis, Type Two Effectivity, coalgebras and realisability. Section 4 contains type theory,
program extraction and constructive analysis. Finally, we present brief conclusions in
Section 5.

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 6

2. Computations

2.1. Representations

W hile in theoretical models o f com putation real num bers can be considered as anything
between a subset of the rationals and an object in a category, when it comes to practical
com putations, we require a representation o f real num bers (or o f approxim ations to real
num bers) th a t is easily understood by hum ans and computers. Usually this boils down to
representing real num bers w ith decimals or bits; even though the interm ediate steps can use
other representations, the syntax for input and output o f real num bers (or approxim ations
o f real num bers) should no t be far from the standard representations used in practice.

This brings up a serious problem : it is well know n th a t the standard decimal repres
entation is not suitable for real com putations. W hen multiplying the stream x = 0 .333 ...
(considered as an infinite input) by 3, the m ultiplication algorithm cannot give the first
digit o f the ou tput: there is no way o f deciding w hether eventually the digit 2 may come
(and then the first digit should be 0) or eventually a 4 may come (and then the first digit
should be 1). Therefore, w ith the standard decimal representation, deadlock is inevitable
in calculating the outcom e o f m ultiplication, while m ultiplication is universally considered
to be a com putable function. This implies tha t the standard decimal representation is
no t com putationally suitable. This shortcom ing o f the decimal representation was already
know n to Brouwer, who in Brouwer (1921) showed, by means o f a so-called weak counter
example, th a t there are real num bers w ith no standard decimal representation. In m odern
term s one m ight state this result as there is no com putable m ap from, say, the Cauchy
representation to the decimal representation o f the real numbers. Or as we will express
it in Section 3.3, the decimal representation is no t admissible. As another consequence of
the above example, we see tha t the real num bers do no t allow an effective way to com pare
real num bers, since the problem above arises precisely because we cannot decide whether
x < 1 or x ^ 1. Similarly, one does no t have an effective equality test.

W ith the advent o f com puters, other representations for real num bers were considered:
partly because o f this theoretical shortcom ing and partly to allow a more efficient and
hardw are-com patible internal representation. Some o f these non-standard representations
had been known for centuries, and others were discovered and further developed by
com puter scientists in the course o f the 20th century. K nuth (K nuth 1997, § 4) gives
a thorough historical account o f various representations for different num ber systems
(integers, rationals and real numbers). We do no t intend to m ention all the different
representation systems, bu t will focus on some o f the m ain ideas tha t are theoretically
and practically im portant. Furtherm ore, although a study o f different representations
for integers and rational num bers is relevant for approxim ative com putations w ith real
num bers, we will focus purely on the various approaches for representing real num bers
since this is our m ain interest in this paper.

Even though there are m any different representations for real num bers, in the broader
context o f com putable analysis they can each be seen as an instance o f one o f a few basic
approaches. For example, m any representations tha t are used as a basis o f exact arithm etic
im plem entations are based on the Cauchy sequences, and it is only the fine-tuning o f the
details (such as m odulus of convergence, or the representations for rational num bers) that
m akes the difference between such implementations.

Constructive analysis, types and exact real numbers 7

In the following subsections we m ention the three m ain classes o f representations^ -
related (but different) classifications can be found in W eihrauch and Kreitz (1987),
W eihrauch (2000) and G owland and Lester (2001).

2.1.1. Cauchy sequences Cauchy sequences are traditionally the way th a t real num bers
are represented in m athematics. In this approach real num bers are represented by Cauchy
sequences o f rational num bers (or some other dense countable A rchim edean subset o f the
real num bers such as the dyadic numbers). The real num ber described by this sequence
is the limit under the usual Euclidean metric. The m ost general case is the naive Cauchy
representation in which there is no m odulus o f convergence required. A lthough this is
quite inefficient, its theoretical im portance and its suitability for form alisation has made
this representation the basis o f the first full im plem entation o f constructive real num bers
in a proof assistant and has also been used in formalising the proof of the fundam ental
theorem o f algebra (Geuvers and N iqui 2002). O ther constructive form alisations in the
literature usually use a m odulus o f convergence (Troelstra and van D alen 1988b; Bishop
and Bridges 1985; W eihrauch and Kreitz 1987).

A n im portan t variation on the theme o f Cauchy sequences are the so called functional
representations. In this approach real num bers are represented by functions on some fixed
countable set, where the codom ain o f the function (the elements o f the sequence) need
no t be rational numbers. The semantics o f such a function is always (in some way) a
Cauchy sequence, bu t the choice o f a different dom ain or codom ain can improve the
representation. A n example o f such a representation was proposed in Boehm et al. (1986)
where Z is used for bo th dom ain and codom ain o f the function representing a real number.
Implicit semantic assum ptions make sure th a t these sequences (which are indexed by Z
rather than N) can be m apped to Cauchy sequences w ith a predeterm ined m odulus of
convergence. This approach forms the basis o f several exact arithm etic packages, especially
inside functional program m ing languages.

To give a specific example o f this representation, if we represent the num ber x 10000 =
0.35449383309125298131... which we defined in (*) in Section 1, then in a decimal variant
on Boehm ’s functional representation, three examples o f possible representations for this
num ber are

1 ^ 0 - 1 ^ 0 - 1 ^ 1
0 ^ 0 0 ^ 0 0 ^ 1
1 ^ 3 1 ^ 4 1 ^ 4
2 ^ 35 2 ^ 35 2 ^ 36
3 ^ 354 3 ^ 354 3 ^ 355
4 i—►3544 4 3545 4 3545

t A lthough there are three m ain classes, there are, in fact, four subsections. This is because a lthough continued
frac tions can be viewed as an exam ple o f the th ird class o f representation, ‘S tream s o f nested intervals’, they
are sufficiently im portan t to be described in a subsection o f their own.

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 8

and o f course there are uncountably m any more. These are, essentially, all m aps th a t for
each n gives n digits after the decimal point (either rounded up or rounded down).

2.1.2. Dedekind cuts D edekind cuts are an alternative approach to representing real
num bers and is based on the least upper bound property o f the reals ra ther than
the Cauchy completeness. A key feature o f D edekind cuts, as com pared to other
representations, is their uniqueness: any real num ber is represented by precisely one cut.
This feature, which is convenient for reasoning about cuts, makes it difficult to com pute
w ith them. In com putational approaches to D edekind cuts a set o f rational num bers with
additional com putational structure is used to represent a real num ber, which is the least
upper bound (or greatest lower bound) o f th a t subset; see W eihrauch (2000, page 95)
for details. Variations on this class o f representations include choosing the characteristic
function o f a chosen dense subset o f the reals, such as dyadic num bers (W eihrauch and
Kreitz 1987).

Such representations have no t been used for practical im plementations, bu t have been
considered for reasoning about real num bers in mechanised reasoning. Again (as was
the case w ith the naive Cauchy representation) this is due to the theoretical im portance
o f these representations and their adaptability for use in form al m athematics. Examples
o f the use o f such representations include the form alisation o f real num bers in the H O L
theorem prover (H arrison 1994) and the form alisation o f the real num bers tha t is used in
the form alisation o f the 4-colour theorem in the Coq proof assistant (G onthier 2005).

2.1.3. Streams o f nested intervals The m ost standard way o f representing real num bers
is the decimal representation. This is a positional representation th a t falls within the
m ore general case o f radix representations, in which a real num ber is represented by a
stream o f digits. In the base b radix representation (b-ary representation) starting from
the first digit and moving to the right, the effect o f each digit can be seen as refining
the interval containing the real num ber represented by the whole stream. Thus the b-ary
representation can be seen as an instance of representing real num bers w ith a stream
o f shrinking nested intervals. Any such stream for which the diam eter o f the intervals
converges to 0 represents a real num ber: the one tha t inhabits the infinite intersection of
the intervals.

I f we return to our example, in a stream representation the num ber x 10000 could be
represented by the infinite stream o f intervals:

[-10 ,10]
[-1 ,1]
[0.3,0.5]

[0.34,0.36]
[0.353,0.355]

[0.3544,0.3546]

Constructive analysis, types and exact real numbers 9

These intervals correspond to the second functional representation given in Section 2.1.1.
The other representations there also correspond to a (different) stream o f intervals.

By considering each interval as the image o f the previous interval under a continuous
real function, one can encode the whole nested collection as an infinite com position
o f real m aps applied to a base interval. This can be m ade form al using the following
definition (Niqui 2004, § 5.3).

Definition 2.1 (Generalised digit set). Let I be a closed subinterval o f the com pactification
o f the real num bers [- to , +<»]. A set $ o f continuous functions on I is a generalised digit
set fo r interval I if there exists a to tal and surjective m ap p : $ " — * I (note th a t $ "
denotes the set o f stream s o f $) such tha t for all streams f 0f 1 • •• e $ " we have

TO
{p(f0f 1 . . .) } = n f 0 ◦ • • • ◦ f i(I) .

i=0

In other words, if each element x o f I is the solitary element of some infinite com position
o f elements o f $ and each infinite com position o f elements o f $ is a singleton. We call
each element o f $ a digit.

The various representations o f this family are characterised by the different restrictions
tha t are pu t on the choice o f the digits. In practice, it is usual to choose as the set o f digits
a finite set o f M obius m aps satisfying some property, while in the literature the larger
class o f ^-contractions is also studied (Konecny 2000). Mobius maps are m aps o f the form

ax + b
cx + d ’

where a ,b ,c ,d e C and ad - bc = 0. In the context o f a stream representation for
real num bers, the M obius m aps w ith integer coefficients (which are also know n as linear
fractional transformations (LFT) or homographic maps) are considered. Taking the M obius
m ap w ith integer coefficients to be I -refining (that is, m apping the closed interval I to
itself) forms the basis o f Edalat and Potts’ approach to lazy exact arithm etic (Edalat
and Potts 1997; Potts 1998; Edalat et al. 1999). Restricting this further by taking c = 0,
one arrives a t representations by a finite set o f affine maps, a subclass th a t includes the
standard b-ary representations.

As m entioned earlier, the standard representation is no t com putationally suitable, but
this shortcom ing is easily fixed by using one o f the variants o f radix representation.
Different ‘fixes’ include changing the base to a non-integer base (for example, the golden
ratio base (Di G ianantonio 1996)) or increasing the set o f digits by introducing negative
digits (for example, redundant b-ary representation (Edalat and Potts 1997)). Both these
w orkarounds had been used long before the advent o f computers. For example, the
introduction o f negative digits can be traced back to the num ber system implicit in the
work o f the 11th century m athem atician Tabari, and it was even used in mechanical
com puting devices in the 19th century. A detailed historical survey can be found in
K nuth (1997, pages 205-208).

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 10

O ur example num ber x 10000, when using a representation with negative digits, has many
different representations. In addition to its norm al decimal representation

0.35449383309125298131...,

it can, for instance, also be written as

0.3545(—1)38331(—1)1253(—1)8131...

It is also possible to use an infinite set o f digits. The m ost im portant example for which
the set o f digits is infinite is a representation based on continued fractions, which we
consider as a separate class of representations.

2.1.4. Continued fractions For centuries continued fractions have been used to represent
rational and real num bers and elementary functions (Brezinski 1991). As a result, some
im plem entations o f exact real arithm etic are based on continued fraction representations.
Some o f these representations can be considered as a subclass o f stream representations,
bu t the m ost standard continued fraction representation (the so-called N -fraction) uses
finite lists to represent rational num bers and streams to represent irrational numbers. The
digits o f the N -fraction representation can be considered to be the Moobius m aps o f the
form

1
x i— * n +— n € N .

x
Taking finite lists and streams o f such digits leads to a representation for real num bers
larger than 1 th a t can be considered for exact arithm etic (Vuillemin 1990; Menissier-
M orain 1994). One can allow for negative integers (and disallow 0,1 and - 1) obtaining the
Z-fractions (Vuillemin 1990; M ^nissier-M orain 1994). In the Z-fractions representation,
the rational num bers are also represented by finite lists.

The above (N -fraction and Z-fraction) continued fraction representations serve well in
the context o f exact rational arithmetic, bu t for the representation o f real num bers, they
suffer from the same com putational shortcom ing as the standard decimal representation.
In order to overcome this, some modifications o f these representations have been studied
and used for implementing exact arithm etic (Vuillemin 1990; Lester 2001).

There are several ways to obtain a representation based on continued fractions that
uses infinite stream s for rational and irrational num bers alike, and therefore fall under
the general heading o f stream representations. One way is to use the redundant Euclidean
continued fractions (Vuillemin 1990), which can be seen as an instance of Moobius maps
(Potts 1998, Section 7.3). A nother way would be to use the S tern-B rocot representation,
which is again expressible in term s o f M obius m aps (Niqui 2004, Section 5.7.1).

One can extend the notion o f a generalised digit set to include m aps

p : $<® — > I,

where $ ^ “ is the set o f finite lists and (infinite) streams o f elements o f $, to obtain a
class o f representations th a t includes the continued fraction representations. But since
such representations are only considered in the context o f continued fractions, we prefer
to classify them under a separate class.

Constructive analysis, types and exact real numbers 11

The example num ber x 10000 is a rational num ber, o f which the N -fraction starts:

1

1 + ~ t~ 1

4 + T 1
1 ^ - ~ 1

^ 1
2 + — 1

2 + ^ 1
7 + — 1

i +
i + ...

The Z -fraction o f this num ber starts:
1

1
13 +

—6

+ 2 1
2 + — 1

2 + _ 1

- 2 + — 1
- 7 + — 1

- 3 +
1 6 + ...

In this case the coefficients come from the set {. . . , - 3 , - 2 ,2 ,3 , . . .} instead of from the set
{1 ,2 ,3 ,...} . If one allows bo th negative num bers as well as the num bers 1 and - 1 for the
coefficients (this is needed to make the representation admissible), there are many more
representations o f this number.

2.2. Implementations

Several approaches to exact real arithm etic have been implemented in various p ro
gram m ing languages in recent years. Some o f them have been considered for real-world
applications, especially in the fields o f visualisation and com putational geometry (Yap and
D ube 1995; D u et al. 2002). There have also been studies to enhance existing hardw are
architectures to support exact real arithm etic (K ornerup and M atula 1988; M encer 2000).

There are three groups o f im plem entations o f exact real arithmetic. They are all based
on the ideas presented above.

— The first group is an im plem entation o f exact real arithm etic as part o f a generic
com puter algebra package. Examples o f such systems are commercial systems like
M athem atica (W olfram 1996) and M aple (M onagan et al. 1997). These are generally
very fast at basic com putations, bu t sometimes lack the features th a t are needed for
involved problems.

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 12

— The second group are systems and libraries th a t have specifically been designed for
exact real arithmetic, and try to be as fast as possible at it. Examples o f this are
M P F R from LO R IA (H anro t et al. 2005), G iN aC /C L N by Kreckel (Kreckel 2005),
iR R A M by M üller (M üller 2001; M üller 2005) and RealLib by Lambov (Lambov
2005). Program s from this group are generally implemented in C + + .

— The th ird group are also systems tha t have been designed for exact real arithmetic, but
not for speed. These systems are mostly p art o f an effort to move tow ard a provably
correct im plem entation o f exact real arithmetic. Examples o f systems like this are
Cr by Filliatre (Filliatre 2005) (an M L reim plem entation o f CR, a Java system by
Boehm (Boehm et al. 1986; Schwarz 1989; Boehm 2005)), ER A by Lester (Lester
2005), Few D igits by O ’C onnor (O’C onnor 2005), Bignum by G uy (Guy 2005) and
ICReals by Edalat et al. (Potts and Edalat 1997; Potts 1998; Edalat 2005). These
systems are generally implemented in a functional program m ing language such as M L
or Haskell. Like the systems in the first group, they generally lack the features needed
to do advanced com putations.

In practice the first group o f systems is the fastest a t basic problems, and the second
group o f systems are the only ones tha t are suitable for involved problems.

3. Semantics

3.1. Domain theory

D om ains are used to describe the semantics o f program m ing languages, b o th the da ta
types and the program s tha t are definable over them. They also provide a denotational
model for com putability, in the sense th a t the set of continuous functions from one
dom ain to another is the m athem atical counterpart o f the set o f com putable functions
(in some language or com putational model). The basic structure in dom ain theory is tha t
o f a directed-complete partial order (dcpo), tha t is, a partially ordered set in which every
directed subset has a least upper-bound. A set A is directed if it is non-em pty and every
pair o f its elements has an upper-bound in A; the least upper-bound o f A is usually
denoted by uA. Sometimes the notion o f a ‘dom ain’ is identified w ith th a t o f a dcpo,
bu t m ostly authors reserve the word ‘dom ain’ for a specific type of dcpo (with additional
structure), depending on the application one has in mind, see A bram sky and Jung (1994)
for an overview o f dom ain theory and the various notions o f domains.

The interesting functions on dcpos are the Scott continuous ones: the m onotone f :
D 1 ^ D2 such tha t f(u A) = u(f(A)) for every directed set A (where the first u is in D 1
and the second in D2). The definable functions in a program m ing language (that is, the
com putable functions in tha t language) are Scott continuous when interpreted as functions
over a dcpo. The real ‘pow er’ o f Scott continuity lies in the fact tha t Scott continuous
functions have a least fixed point. Thus, a recursive definition of a (functional) program
can be given a meaning as the least fixed point o f the (Scott continuous) functional it
gives rise to.

The ordering on a dcpo is best viewed as an ‘inform ation ordering’ or a ‘definedness
ordering’. A simple example is the fla t dcpo o f natu ral num bers , tha t is, the set

Constructive analysis, types and exact real numbers 13

N U{_L} m ade into a poset by letting L ^ n for all n € N . Here, the elements are either
‘totally defined’ (we have full inform ation about them) or they are ‘totally undefined’ (we
have no inform ation about them). A more interesting example is the set [N L ^ N L] of
Scott continuous functions from N L to N L ordered point-wise. The everywhere undefined
function Xx.L is the least element o f this set and f ^ g for functions f and g if g is ‘at
least as defined’ as f in every element o f N L. A n im portant fact is th a t the set o f Scott
continuous functions between two dcpos also forms a dcpo.

The idea o f an ‘approxim ation’ is im portan t in dcpos: a approximates b (or a is ‘way
below’ b), written a < < b , if, whenever b ^ u X , we have a ^ x for some x € X (where, of
course, X ranges over the directed subsets). A n element a is compact (or finite) if a << a.
The com pact elements of a dcpo form an im portant set, which is usually w ritten as K(D).
For f , g € [N l ^ N l], f << g implies tha t f is defined only on a finite set o f elements
(f(x) = L for finitely m any x). The collection o f the functions w ith a property like f are
also the com pact elements o f this dcpo. A dcpo is continuous if there is a basis B : a set
o f elements such tha t x = u{y € B | y << x} for all x. Thus, in a continuous dcpo, all
elements can be written as the lub o f the basis elements tha t approxim ate it. A dcpo D is
called algebraic if the set o f its com pact elements forms a basis. The adjective ‘« ’ is added
to say th a t the basis is countable, as in « -continuous dcpo or «-algebraic dcpo. In G unter
and Scott (1990), the notion o f a dom ain is identified w ith an «-algebraic dcpo. T hat
«-algebraic dcpos are o f special interest comes from the fact tha t a continuous function
f : D ^ E between two «-algebraic dcpos can be fully characterised (in a countable way)
by its com pact elements as follows:

f(x) = |_|{y € K(E) | y ^ f (x ') for some x ' € K(D) with x ' ^ x}

In the case o f com putability over the real num bers, some dcpos are o f specific interest.
One is the interval dcpo o f nested intervals I (R), consisting o f R and the non-em pty
closed real intervals, ordered by reverse inclusion: I ^ J if I 3 J . This dom ain was first
proposed, in a slightly different form, in Scott (1972). The intervals should be understood
as approxim ations o f real num bers, so a smaller interval gives m ore inform ation, R is
the L-elem ent o f the inform ation order and singleton intervals {a} are m axim al elements.
For the ‘way below’ relation we have tha t a << b iff b is a subset o f the interior o f a.
The rational intervals together w ith R form a countable basis for I (R). A directed subset
o f I (R) is a collection o f intervals A such tha t nA = 0 ; the lub o f such a directed set
A is its intersection: uA := nA, which is again a closed non-em pty interval. The nice
thing about this dcpo is tha t it generalises functions from R to R in a simple way to
incorporate partial functions, in such a way tha t partiality is no t just undefinedness, but
may involve some partia l inform ation (an interval approximation). A continuous function
f : R ^ R extends in the straightforw ard way to a function f : I (R) ^ I (R); the other
way around, a function g : I (R) ^ I (R) represents a partial function g from R to R
given by g(x) := y if g({x}) = {y} and undefined otherwise. See Edalat and Heckm ann
(2002) and Edalat and Lieutier (2004) for a more detailed study.

R ealPC F (Escardo 1996) is a program m ing language w ith real as a basic da ta type
and was designed in such a way th a t its denotational semantics would be given by the
nested interval semantics. A n interesting feature o f RealPC F is th a t it contains a parallel

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 14

‘if ’ construct. It is shown in Escardo et al. (2004) tha t this non-sequentiality is an inherent
feature o f the nested interval domain. See Escardo and Streicher (1999) and Edalat and
Escardo (1996) for a further discussion o f the expressivity o f RealPCF.

A second example o f a dcpo o f interest in this context is the dcpo o f finite and infinite
lists over some given pointed dcpo. Typically, the pointed dcpo is AL, the flat dcpo over
some finite set A , where the elements o f A are the ‘digits’. The dcpo o f finite and infinite
lists is then denoted by [A], and the intuitive understanding o f an element [a1, a2, . . . , an] is
th a t o f a finite approxim ation o f a real number. The representations based on streams of
nested intervals are instances o f this. The ordering on [A] is the ordering on AL extended
to a prefix ordering. Putting this another way, [A] is the solution to the dom ain equation
X = AL x X in the category o f dcpos (Niqui 2004, Section 4.5).

The TTE model o f com putable real valued functions (see Section 3.3) uses as its
representation o f the reals exactly the data-type [A] - under the proviso th a t it is
‘admissible’ (see Definition 3.1), which excludes the decimal representation. So in TTE a
real num ber is a digit stream with digits from A , and the TTE-com putable functions are
all continuous.

As with the interval dom ain, which is used as the semantics for program m ing in
R ealPCF, the dom ain [A] can also be used as the semantics o f program m ing w ith real
numbers. This was dem onstrated in Simpson (1998), which uses PC F (Plotkin 1977) as
a program m ing language, and the da ta type o f streams over { -1 ,0 ,1 } as the type of
the reals. This approach is com pared in Bauer et al. (2002) w ith the RealPC F approach,
and it is shown tha t the expressivity is the same up to second-order types. A n interesting
aspect is th a t the PC F based approach is purely sequential. This is because RealPC F uses
real as an abstract primitive d a ta type, so special primitive program m ing constructs are
required to com pare two reals, whereas in the PC F based approach one program s directly
w ith the representations.

3.2. Markov's recursive analysis

In this section we give a brief introduction to M arkov’s constructive recursive m athem atics
(CRM). Historically, this seems to be the first concrete m odel for exact real com putations -
see Troelstra and van D alen (1988a), Bridges and R ichm an (1987), Beeson (1985) and
A berth (1980) for m ore inform ation. In C R M one represents an object by a certain partial
recursive function. We can trea t m ost o f the representations described in Section 2.1 in this
way, but will ju st consider the Cauchy representation o f the real num bers as a concrete
example. A real num ber x is thus represented by a partial recursive function th a t on input
n returns the nth element o f a Cauchy sequence with limit x. One thus com putes not
w ith all the real num bers, but only w ith the recursive ones. Fortunately, the well-known
constants e, n, are recursive, as are, for example, the trigonom etric functions. In this way
one can develop exact real arithm etic in CRM .

Since there are only countably m any codes for recursive functions, there are only
countably m any (recursive) real num bers in CRM . This may be counterintuitive at first,
however, given any recursive sequence o f real num bers, C antor’s diagonal construction
supplies a new recursive real num ber th a t is different from all o f them. Thus the recursive

Constructive analysis, types and exact real numbers 15

real num bers are countable, bu t recursively uncountable! In practice this last fact is more
im portant and can be restated as ‘the real num bers are uncountable’ in the internal logic
o f CRM . We will introduce the internal logic in Section 3.5.

In C R M all (recursive) functions between real num bers are continuous (Kreisel et al.
1957b; Kreisel et al. 1957a; Ceitin 1962; Ceitin 1959).

Theorem 3.1 (Kreisel, Lacombe, Schoenfield, Tsejtin). In C RM , every (total) m apping of
a complete separable metric space into a m etric space is continuous.

This theorem is stated in the internal logic, m eaning tha t all the objects should be
presented effectively. We will discuss the internal logic more thoroughly in Section 3.5.
This theorem may seem counterintuitive at first when applied to the real function defined
to be 0 for x < 0 and 1 for x ^ 0. This is no t a to tal function in C RM , tha t is, we cannot
recursively decide whether x < 0 or x ^ 0 for each real num ber x. H aving such a test
would solve the halting problem.

This model behaves as expected for concrete functions on the real numbers. However,
when quantifying over com pact spaces there are some surprises. For instance, one can
define an unbounded continuous function on the unit interval. Such a function cannot
be uniformly continuous. This function is defined in the internal logic, bu t externally one
can see tha t such a function is defined on all the recursive points, bu t no t on all points.

To avoid such problems, Brouwer introduced his choice sequences (Brouwer 1975;
Heyting, A. 1956; Troelstra 1977). Kleene and Vesley captured m uch o f his theory using
a realisability interpretation. This in terpretation was rediscovered by W eihrauch in his
TTE, which we will discuss next.

3.3. T TE

TTE (Type Two Effectivity) is one o f the m any schools o f com putable analysis, m ost of
which are know n to be equivalent. TTE is a theory o f com putability based on Turing
machines w ith infinite input and infinite ou tpu t (W eihrauch 1997; W eihrauch 2000). The
TTE notion o f com putability is nothing bu t com putability o f algorithm s on infinite
sequences. This is because bo th the input and output tape can be thought o f as a stream
(lazy infinite sequence), and hence the TTE model will be very similar to the actual
com putation on the higher order da ta structure o f stream s or functional representations
for real num bers (see Section 2.1). Thus, we consider com putability for algorithm s in exact
arithm etic w ith respect to TTE. This is in contrast to other approaches to computability,
which usually involve heavy encoding o f streams and finite lists. The intuitive model
tha t TTE uses no t only makes the program m er’s understanding o f the complexity o f the
algorithm s relatively easy, bu t also provides a notion o f com putability tha t works directly
on the representations o f real numbers. In fact the notion o f representation plays a central
role in TTE, providing a good fram ework to com pare the relative theoretical strength of
various representations.

In this sense one can use TTE to give a form al explanation o f the shortcom ings of the
standard decimal representation, which was m entioned in the example in Section 2.1. There
we showed that, informally, the standard decimal representation is no t ‘com putationally

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 16

suitable’. In TTE there is a notion o f admissibility o f representations th a t rigorously defines
w hether a representation o f real num bers is com putationally suitable. In Section 3.5.2 we
show how the definition o f an admissible representation was already hidden in Brouwer’s
example.

Definition 3.1 (Admissible representation). Let I be a closed subinterval o f the com pacti
fication o f real num bers [- to , +<»]. Let $ be a set (finite or infinite) o f digits and 0 « be
the set o f streams o f elements o f 0 . A m ap p : 0 « — * I is an admissible representation of
I if the following conditions hold:

1 p is continuous w ith respect to the product topology o f the discrete topology on 0 .
2 p is surjective.
3 p is maximal, th a t is, for every (partial) continuous r : 0 « — * I , there is a continuous

f : o « — * 0 « such th a t r = p o f .

The notion o f admissibility relates the notion o f com putability on stream s with
continuity on real numbers. Intuitively, an admissible representation gives rise to functions
th a t are com putable with type two Turing machines. Obviously, the standard decimal
representation turns out to be no t admissible. In fact, following the example in Section 2.1,
one can show th a t the m ultiplication by 3 is no t a TTE-com putable function when using
the standard decimal representation (W eihrauch 1997).

A n im portant property o f admissible representations is th a t they provide a redund
ant representation for real numbers. This means th a t every real num ber has several
representations. Examples of admissible representations include the redundant b-ary
representation for [0, + to] used in Edalat and Potts (1997), the ternary Stern-B rocot
representation for [0, + to] (Hughes and N iqui 2006) and the binary G olden ratio notation
for [0,1] (Di G ianantonio 1996).

As stated earlier, the TTE notion o f com putability, which is based on the admissible
representations, is equivalent to m ost other models o f com putability (W eihrauch 2000,
Section 9).

3.4. Coalgebras

Coalgebras (also called ‘systems’ in R utten (2000) and Barwise and Moss (1996)) provide
a semantics for structures tha t can be considered as an infinite process, o f which only
partia l observations are available. Examples o f such structures are real num bers, labelled
transition systems, object-oriented m odularity and dynam ical systems. A m odern survey
o f coalgebras and their applications can be found in Jacobs (2005).

In the category theoretic semantics for com puter science, to any functor there corres
ponds a category o f coalgebras o f th a t functor. For certain functors, this category happens
to have a final object. Those functors, or to be more precise, the final coalgebra o f those
functors, are used to m odel infinite processes.

Let C be a category, and F be an endofunctor on C. A n F -coalgebra is a pair {Y, y)
in which Y is an object o f C and y : Y — * F (Y) is a m orphism in C. We call the first
element of the pair the carrier o f the coalgebra, and the second element o f the pair the
structure map o f the coalgebra.

Constructive analysis, types and exact real numbers 17

Let (U, u) and (V, v) be F-coalgebras. Then a coalgebra map from (U, u) to (V, v) is
a m ap f : U — * V such th a t v o f = F (f) o u; tha t is, the following diagram com m utes:

F(U) ^ i i r F (V)

One can check tha t the identity m orphism is a coalgebra map, and th a t the com posite of
two coalgebra m aps is again a coalgebra maps. Hence the F-coalgebras form a category.
We are particularly interested in whether this category has a final object. If such a final
object exists, we assign some fixed notation to it.

Definition 3.2 (Final coalgebra, coiterator). A final F -coalgebra is a coalgebra
(vF, v-out) such th a t for every coalgebra (U, u) there exists a unique coalgebra m ap
v-it(u) from (U, u) to (vF, v-out). We shall call v-it(u) the coiterator o f u.

Thus a coalgebra (vF, v-out) is final if and only if

VU : C, V u: U * F (U), 3! v-it(u): U * v F , v-out o v-it(u) = F(v-it(u)) o u,

or, equivalently, if the following diagram com m utes:

!v-it(u)
U> vF

F (U) ---------- > F(v F)V ; F(v-it(u)) v ;

In an arbitrary category, it is not always easy to say w hether a final coalgebra for
a given functor exists. However, if a final F-coalgebra does exist, it is unique up to
isomorphism. Moreover, the structure m ap o f a final coalgebra is an isom orphism ; hence,
a final coalgebra is a fixed point for its functor (Jacobs and R utten 1997). This fixed point
property is the reason we are interested in a final coalgebra since it means we can use the
theory o f final coalgebras as a semantics for d a ta types o f infinite objects.

Finality o f coalgebras provides us w ith coinductive proof principles, which can be
used to reason about objects residing in a final coalgebra. A well-known example o f a
coinductive p roo f principle is the notion o f bisimulation. This can be stated roughly as:
two infinite processes are equal if they are bisimilar, tha t is, if the observable parts are
equal and the continuation o f the two processes (or the subprocesses) are again bisimilar.

As an example, consider the set o f streams. In lazy exact arithmetic, real num bers are
represented by means o f lazy infinite sequences of elements o f a set, which are called
streams. The collection o f stream s o f the elements o f the set $ is the final coalgebra of a
simple polynom ial functor, namely F(X) = $ x X in the category Set. Taking as structure
m ap the m ap (hd, tl) : $® — * $ x $®, one can show tha t the set o f streams is indeed a
final coalgebra for F (R utten 2000). The constructor o f the final coalgebras o f streams is
cons : $ “ — * $ “ , which prepends an element to the beginning o f a stream.

u v

v-outu

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 18

The standard decimal representation for real num bers is a stream representation : each
real num ber is denoted by a stream over the 10-element set o f digits. So are the various
admissible representations th a t are used in exact real arithmetic. In this way, one views the
real num bers as a final coalgebra. In this setting the functions on real num bers become
m aps in the category o f coalgebras: these are the so-called coalgebra maps. This does
no t capture all functions on real num bers, just those for which we have suitable partial
observations, tha t is, com putable finite approxim ations. Hence, in order to present a theory
o f com putable coalgebra m aps one has to adhere to dom ain-theoretic (or equivalent TTE)
approaches for a suitable definition o f com putability (Pattinson 2003). A m ore structural
solution would be to in terpret coinductive types in a realisability model, which we will
present in the next section.

3.5. Realisability

In this subsection we will describe realisability - see van Oosten (2002) and Troelstra (1998)
for general overviews. A fter a general introduction to realisability, we will briefly describe
three realisability interpretations: for recursive analysis, for TTE and for dom ain theory.
In this way we will obtain a nice uniform treatm ent o f the three models previously
discussed. O ur presentation of realisability models in this section follows, for the m ost
part, the presentations in Birkedal (2000) and Bauer (2000; 2005), which can be consulted
along with van Oosten (2002) for historical background.

In order to represent d a ta on a com puter, we need to find a code, a realisation, for it.
This suggests a realisability relation, th a t is, a relation IK between a set o f codes R and a
set X such tha t each code represents at m ost one element. Functions are realised via the
following com m utative diagram :

f

f
It is then said th a t f tracks f . These representations are connected to the representations
discussed earlier. There is a one-one correspondence between a realisability relation IK
and a partia l function 8 defined by

8a = x iff a K x.

Yet another equivalent presentation is given by partial equivalence relations. The relation
‘to be a code for the same elem ent’ is a partial equivalence relation.

In order to be able to represent functions by our codes, we should be able to interpret
some applicative structure. It turns out to be convenient to require the realisers to have
the structure o f a partia l com binatory algebra (PCA). A PCA is a structure (X , •, k, s)
th a t has all the relevant properties o f the com binator presentation o f recursion theory. In
Kleene’s original realisability in terpretation the realisers are given by the natural num ber
encoding o f the partial recursive functions. This prime example of a PCA is called the first
Kleene algebra and is simply denoted N . In fact, in this way we obtain the com putational

Constructive analysis, types and exact real numbers 19

model o f M arkov’s recursive m athematics. But, how do we include a data-type for all,
no t just the recursive real num bers? Putting this another way, how does one make a
realisability m odel corresponding to, say, TTE? To do this one needs a slightly different
picture. The structures are realised by all streams, th a t is, elements o f Baire space ,̂ bu t we
only allow recursive functions. To solve this, one uses the notion o f relative realisability,
in which one takes the d a ta from A, bu t restricts the functions to a sub-PCA A#. In fact,
this # may be seen as a m odal operator on types, assigning to each type its subtype of
‘com putable’ elements: see Birkedal (2000) and Bauer (2000) for a simplified version that
suffices for the present context.

The da ta types are captured by the notion o f a modest set over a PCA A, tha t is, a set
w ith a realisability relation IK. The category o f m odest sets over A w ith functions over A#
is denoted by Mod(A,A#). W hen bo th the sets and the functions are represented by the
same PCA A, one simply writes Mod(A). Now, given a definition o f com putability on real
num bers, one may ask how to define the com putability of lists o f real num bers, trees of
reals num bers, streams o f real num bers, the positive real num bers, and so on. A lthough one
can give concrete answers for each particular model, it would be better to have a structural
solution th a t works for all these models a t once. In advanced program m ing languages
these issues are solved by the presence o f a strong type system th a t is closed under certain
type forming constructions - see Section 4.1. Categorical logic and type theory (Lam bek
and Scott 1988; Jacobs 1999) allow us to define a very strict and structural connection
between logic and semantics by the use o f the internal logic o f a (categorical) model. It is
custom ary to speak o f the internal logic when one is really talking about the internal logic
and type theory. We will stick to this custom. It should be noted th a t the principles valid
in the internal logic in general depend on the principles assumed to hold in the meta-logic.
The internal logic for realisability using m odest sets is intuitionistic logic, the logic of
constructive mathematics. The internal type theory supports dependent, inductive and
coinductive types. By providing realisability interpretations for all the models discussed
earlier we show tha t we can use this type theory in all these models. This means th a t we
have a notion o f com putability on, say, streams o f positive real num bers in all these models.

To give a flavour o f how one realises logic, we will present the abstract realisability
interpretation. Here x and y are elements o f the PCA. The symbols ‘xrP ’ may be read
as x realises P .

xrP := P A x I for P atomic (1)

xr(A A B) := (p0xrA) A (pixrB) (2)
xr(A ^ B) := Vy(yrA ^ x • yrB) A x I (3)

xrVyA := Vy(x • yrA) (4)
xr3yA := PixrA[y/pox], (5)

Here pi denotes the ith projection o f a pair. The symbol [may be read as ‘is defined’.
We say tha t A is true in the model when A is realised, th a t is, the set o f realisers is

t We have used to denote Baire space before where we choose the alphabet $ to be the n a tu ra l num bers.

H. Geuvers, M .Niqui, B .Spitters and F. Wiedijk 20

inhabited. A similar definition for the realisation o f types can be given analogous to the
C urry-H ow ard isomorphism, which we will discuss in Section 4.1.

We will now go on to give the realisability in terpretation for the three models presented
earlier.

3.5.1. M arkov’s recursive mathematics M arkov’s recursive m athem atics can be modelled
by M od(N), the m odest sets over the first Kleene algebra N , th a t is, the realisers, in the
PCA N are the ordinary (partial) recursive functions coded by natu ral numbers.

The internal logic o f C R M satisfies not only the usual axioms of intuitionistic logic,
bu t also C hurch’s thesis and M arkov’s principle. C hurch’s thesis states th a t we only work
on recursive sequences. T hat is, our program m ing language allows us to access the codes
o f the real numbers.

Vn3mA(n, m) ^ 3kVn3m[A(n, Um) A T kn m].

Here T denotes Kleene’s T -predicate and U is the function th a t returns the result Um
o f the com putation m. This variant o f C hurch’s thesis may be read as: if for each n we
can find an m such th a t A(n, m), then we can find a recursive function th a t finds such m
for us. M arkov’s principle allows us an unbounded search: if we know tha t an element
w ith a decidable property cannot fail to exist, we can just start searching until we find it.
Formally, let P be a decidable predicate. Then

—Vn.—P (n) ^ 3n.P (n) .

As stated earlier this model behaves som ewhat unexpectedly when quantifying over
com pact spaces. For instance, a point-wise continuous function on a com pact interval
may be unbounded. This is due to the failure o f the fan-theorem , which is the constructive
variant o f K önig’s lemma. In order to remedy this, one introduces choice sequences, a
concept th a t is captured by Kleene and Vesley’s realisability model, which we will discuss
now.

3.5.2. T TE TTE is the model M od(B, B #), the second Kleene algebra, which was
extensively studied by Kleene and Vesley. Thus TTE may be seen as the Kleene-Vesley
realisability in terpretation (Kleene and Vesley 1965). T roelstra (Troelstra 1992) seems to
have been the first to observe the possibility o f using realisability to obtain results in
TTE.

It may seem surprising tha t the notion o f admissible representation, which is so im port
an t in TTE, seems absent in realisability. To understand this, consider a representation
o f the real numbers. First, there is no absolute pre-given notion o f a real num ber, thus
it seems impossible to state w hat an admissible representation o f ‘the’ real num bers is.
However, one can axiomatically define the real num bers up to isomorphism. Now we
fix any representation, c : B ^ R , o f the real numbers. One defines a representation
r : B ^ R o f the real num bers as a surjective m ap from Baire space to the real numbers.
O f course, surjectivity should be interpreted in the internal logic. Thus surjectivity means

VS € B 3a € B [r(a) = c(S)].

Constructive analysis, types and exact real numbers 21

By applying the axiom of choice for variables over Baire space, which is denoted C-C in
Troelstra and van Dalen (1988a), we obtain:

f : B ^ BVS € B [r (f (p)) = c(fi)] .

This is precisely the maximality condition in the notion of an admissible representation
defined above. Thus one may view admissibility as the external way of stating the
surjectivity of a representation. We should mention that the axiom C-C that we used
above holds in the internal logic1'.

It has been crucial in the development of constructive mathematics that complete
separable metric spaces can be represented by a continuous surjective image of Baire
space. This same fact is also heavily used in the context of TTE. This allows us to
transfer constructive theorems about such spaces directly to TTE; see Lietz (2004) for
details. Similarly, compact metric spaces can be represented by Cantor space and a similar
transfer principle exists.

To sum up, one can now view TTE as the assembly language for exact real computation.
Using categorical logic and realisability, one can compile a dependently typed functional
language with (co)inductive types into this Turing machine model. Thus the relation
between constructive mathematics and TTE is much like the relation between an advanced
programming language and an assembly language. The former provides more structure,
the latter gives finer control over the computation and, in particular, over the complexity
of such computations.

3.5.3. Domains The theory of effectively presented continuous domains as used by Edalat
and co-workers (Edalat 1997) fits into the model Mod(P, P#). Here P denotes Scott’s graph
model (Scott 1976), which may be seen as the ‘universal’ countably based T 0 topological
space; see Bauer (2000) for details.

3.5.4. Coinductive types As mentioned earlier, the realisability models support coinduct-
ive types. One way of seeing this is to observe that such models can be extended to a
topos: a generalised, or local, set theory. This construction is due to Hyland (Hyland
1982) and is called the effective topos. Thus, when we define our data-types coinductively,
we can interpret them directly in all the realisability models we have described.

As an example, consider the coinductive streams of natural numbers. It is straightfor
ward to prove constructively that this final coalgebra is the function space N ^ N. Thus
one can interpret these streams directly in all the models above. For instance, in CRM all
these functions would be recursive.

4. Proofs

4.1. Type theory

Type theory provides a syntactic analysis of the notion of computability. In this section
we describe some basic concepts of type theory that are relevant for understanding

1 We have been unable to find this simple observation in the literature.

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 22

the connections between constructive analysis and computation with the reals. For
more details on type theory, see M artin-Löf (1984), Nordstrom et al. (1990), Luo
(1994), Barendregt (1992) and Barendregt and Geuvers (2001) - we will not deal with
programming language aspects of type theory (see Pierce (2002) for details), nor shall
we discuss logical frameworks (see Pfenning (2001) for details). The basic notion of type
theory is obviously that of a type, which describes a collection of terms (the terms of that
type) in a syntactic way: there are rules for constructing terms of a type of a specific form
(so called introduction rules) and there are rules for using terms of a type of a specific form
(so called elimination rules). The crucial point is that whether a term is of a given type is
decidable, since the type of a term can be computed on the basis of its syntactic shape.
(There are some exceptions, but almost all type theories adhere to this principle.) This
distinguishes type theory from set theory: X := {n e N | V x ,y , z , x n + y n = z n} is a typical
example of a set and not a type (whether n e X is not a matter of syntactic analysis of n).

Simple examples of types are bool and nat. The type bool contains just true and
false and nat contains 0 and, if x : nat, then S x : nat as well. Apart from construction
principles for terms, there are construction principles for types as well, for example, given
the types a and t , we have a x t and a ^ t as types, with the associated construction
principles of ‘pairing’ and X-abstraction. This gives rise to the system X ^ x of simple type
theory with products. Exactly how much information one puts in the terms (and in what
form) is a matter of choice. For programming purposes, one usually would want to put
as little information as possible (because the program is what the user writes) and let the
computer (compiler) compute a type (or a set of types) for us. So, for X ^ x , one can have
as construction rule that (M, N) : a x t if M : a and N : t and that X x.M : a ^ t if
M : t under the assumption that x :a.

The construction and elimination principles of type theory give it a strongly constructive
flavour, which was first made explicit by M artin-Löf: we describe a collection by saying
how we can construct objects of that collection. Due to the fact that we know the
construction principles, we can define a function f ro m the collection by distinguishing
cases according to the construction rules (and doing a recursive call if needed).

There are many different type theories, depending on the types one allows and the
functions one allows to define over them. Examples of additional type constructions are:
polymorphic types, higher order polymorphic types, dependent types, inductive types and
recursive types. An important aspect of the definable functions in type theory is that
they are executable, due to the computational model of the X-calculus that is part of the
system.

4.1.1. Curry-H oward isomorphism Apart from a computational model, type theory also
incorporates a ‘logical model’. This is due to the Curry-Howard-de Bruijn isomorphism,
that interprets formulas as types and proofs (logical deductions) as terms. The isomorphism
was first noticed by Curry for minimal propositional logic and simple type theory, and
later extended to the first-order case in Howard (1980) (but the original paper dates back
to 1968). Howard also treated the case of proofs by induction over the natural numbers
and coined the name ‘formulas-as-types’. Independently of Howard, De Bruijn noticed
the formulas as types analogy in the late 60’s in the context of his logical framework

Constructive analysis, types and exact real numbers 23

Automath (De Bruijn 1980). In the analogy of De Bruijn, the logic is encoded in type
theory, so his formulas-as-types analogy is slightly different from what we discuss here. (As
a matter of fact, various encodings of logic in type theory were studied, and some of the
later ones are quite close to what we treat here.) The isomorphism can also be seen as an
operationalisation of the so called BHK (Brouwer-Heyting-Kolmogorov) interpretation
of proofs, where, for example, a proof of A ^ B is interpreted as a method for producing
a proof of B out of a proof of A; see Section 4.3 for details. This was also the reason for
M artin-Löf’s interest in the formulas-as-types isomorphism, which he took as the starting
point for his intuitionistic theory of types (M artin-Löf 1984), and which he extended to
the existential quantifier and inductive types.

Combining the computational and logical interpretation of type theory, we find that
the basic judgement

r h M : A

can have two ‘readings’:

1 M is a piece of data (or algorithm) of data type A.
2 M is a proof (deduction) of formula A.

To make a (syntactic) distinction between data types and formulas, most type theories
have (at least) two ‘universa’ or ‘sorts’: Set and Prop, where A : Set means that A is a
data type and A : Prop means that A is a formula. The context r consists of variable
declarations x : B and definition c := t : B. Variable declarations are read as assumptions
(assuming a hypothetical proof of B) when B : Prop. A definition is read as a reference
to a proved lemma (with proof t) when B : Prop.

The correspondence between logic and type theory is so strong that there is an
isomorphism between logic (for example, the A ^-fragm ent of propositional logic) and type
theory (the system A ^-x). The isomorphism maps formulas to types and proofs in natural
deductions to terms. In this isomorphism, the logical introduction rules correspond to the
construction principles of the type theory and the logical elimination rules correspond
to the elimination principles. The isomorphism also maps computations in logic (via
cut-elimination) to computations in type theory (for example, ^-reduction in A ^x).

To extend the Curry-Howard isomorphism to predicate logic, we need ‘formula types’
(types of type Prop) that depend on objects of a ‘data type’ (a type of type Set). A
predicate over the type nat should be a function from nat to Prop and similarly, a binary
relation (like ^) should be of type nat ^ nat ^ Prop. This phenomenon is called type
dependency: the possibility of forming type expressions that contain term expressions as
subterms. Type dependency also implies the formation of the dependently typed function
space, usually written as nx:A.B(x), denoting the type of functions that takes an a : A
and produces a term of type B(a). These dependent function types are typically used
for formalising the V quantifier: a proof of Vx:A.B(x) is a method that, given an a : A
produces a proof of B (a). Similarly, one can also introduce a type dependent product type
S x : A .B (x). This type consists of pairs (a,b) where a : A and b : B(a). There are various
choices for the elimination rule for S-types, the simplest being: if p : Sx:A.B(x), then
n 1 p : A and n2 p : B(n1 p). So n1 : Sx :A.B(x) ^ A and n2 : n y :(Sx :A.B(x)).B(n1 y), and
there are the usual computation rules for the projections (n1 and n2) and pairing ((_, _)).

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 24

4.1.2. Inductive types Taking the idea of sets defined via construction principles as basis,
a general pattern for defining types by induction emerges. This idea originated with Scott
(Scott 1970) and M artin-Löf (M artin-Löf 1984); the syntax we present below is loosely
based on Coquand and Paulin (1990) and Paulin-Mohring (1993), and the formalisation
of inductive types in the proof assistant Coq (Coq Development Team 2004). Basically,
an inductive type X is completely captured by giving its constructors, constant terms that
have a type of the form

A1 —— A2 ——... A n —— X

where the type expressions A i can only contain X in a strictly positive position (that is,
Ai does not contain X or is of the form B1 — B2 — . . . B m — X with X not in B j). In
some applications, the condition of strict positivity may be relaxed to positivity, but in
type theories with dependent types one cannot do this in general.

The constructors are seen as the (only) ways of constructing terms of the type, so one
is actually describing the free algebra over the terms generated from these constructors,
in other words, X is a solution to the domain equation X = a 1 + ... + if the a i’s
correspond to the types of the constructors as follows: if A1 — A2 — . . . A n — X is the
type of the first constructor, then a 1 = A1 x A2 x . . . A n. Such a free algebra amounts to
two properties:

— Coverage : if t : X, then t = c(s1, . . . , s n) for some constructor c.

— No confusion (fo r terms o f type X) : c(t]_,.. . , tn) = c/(s1, . . . , s m) if and only if c = c',
n = m and t i = si for all i.

In type theory with inductive types, these properties for X are automatically generated
from the declaration of the constructors for X , and they are automatically enforced.
These properties have both a logical and a computational aspect. ‘Coverage' is enforced
logically by the induction principle and computationally by the principle of well-founded
recursion. ‘No confusion’ is enforced logically by the fact that we can prove a property of
elements of X by an (exhaustive) case distinction. It is enforced computationally by the
fact that we can define a function over X by cases.

The terms of an inductive type can be seen as trees, with nodes labelled with
constructors. If c : A1 — A2 — . . . A n — X , a node labelled with c has n subtrees that are
either expressions of type A i (if X does not occur in A i) or a B1 x B2 x ... x Bm-indexed
family of trees (if A i is of the form B1 — B2 — ... — B m — X).

We will now give some examples to make these rather abstract ideas more concrete.
The type of trees with labels in A and nodes in B is given by two constructors.

leaf : A — Tree

join : B — Tree — Tree — Tree

The intention is that this defines the free algebra of trees over leaf-type A and node type
B. So, we want leaf x = join y t 1 t2 for all x , y , t 1, t 2, and we want to be able to define
functions over Tree by case distinction and recursion over ‘smaller trees’. Finally, we want
to be able to prove properties of elements of Tree by tree-induction. In type theory with

Constructive analysis, types and exact real numbers 25

inductive types, this is made possible by allowing the definition of terms as follows:

Fixpoint NCnt(x : Tree) : nat :=
match x with
| leaf a ^ 1
| join x t 1 t2 ^ (NCnt t1) + (NCnt t2)
end.

Here we have borrowed the syntax from Coq; the above can be read as the definition of
a recursive function NCnt: Tree ^ nat where Fixpoint denotes the fact that we are using
recursion. This function counts the numbers of leaves in a tree. In fact, the function NCnt is
defined by structural recursion over the tree type, meaning that in the body of the function
definition, NCnt is only called on arguments that are smaller according to the structure
of the inductive type. All functions defined by structural recursion are terminating, but it
should be noted that structural recursion is a syntactic, and thus decidable, criterion for a
function to be terminating. The pattern for function-definition by structural recursion can
be generated directly from the definition of the inductive type, which makes it possible
for computer systems to support this - see Paulin-Mohring (1993) for how this is done
in the proof assistant Coq. Structural recursion is quite powerful, but for some functions
there is quite some work to be done to define them. For example, the gcd function defined
as follows is not structural recursive:

Fixpoint Gcd(n m : nat) : nat :=
if n < m then Gcd(n, m — n)

else if n = m then n
else Gcd(n — m, m)

The type nat is defined as an inductive type with constructors 0 : nat and S : n a t^ n a t,
so a call of Gcd on m — n is not structurally recursive. To establish termination, we would
first have to prove that the recursive calls of Gcd are only done on smaller arguments,
according to some well-founded order, and then the function would be defined by recursion
over this well-founded order. Note also that the function Gcd is not terminating at all,
because on n = 0 or m = 0 the recursively called argument isn’t smaller, so really this
function would be partial, of type n n , m : nat.(n = 0) ^ (m = 0) ^ nat. For a solution
to the problem of the restrictiveness of structural recursion, see, for example, Bove and
Capretta (2005).

The induction principle for an inductive type can also be generated from the definition
of the inductive type. As a matter of fact, the induction principle and the recursion
principle can be seen as instances of the same syntactic schema, but we will not go into
this here - see Paulin-Mohring (1993) for details. The induction principle for Tree is the
term T reeJnd with the following type:

TreeJnd : VP :T ree^Prop.
(Va:A.P (leaf a)) ^ (Vb:B.Vt1:Tree.P t 1 ^ Vt2:Tree.P t2 ^ P (join b t 1 t2))
^ Vt:Tree.P t

The power of inductive types lies to a large extent in the fact that many mathematical
‘objects’ can be defined in an inductive (or recursive) way. Defining them in inductive type

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 26

theory then gives the added value that the recursion scheme and the induction principle
come ‘for free’. Examples of mathematical ‘objects’ that can be defined as inductive types
are:

1 Logical connectives Like: disjunction, which has, given two parameters A , B : Prop,
two constructors left : A — A V B and right : B — A V B; or the existential quantifier,
which has, given two parameters A : Set and P : A—Prop, one constructor pair :
n x :A .(P x) — 3 A P. Here we see the use of a dependently typed constructor in the
definition of an inductive type.

2 Inductively defined relations Like ‘less than or equal to’ on natural numbers ^ , which
has as constructors

le_n : Vn : nat.le n n

le_S : Vm, n : nat.le n m — le n (S m) .

In these last examples we see the use of dependently typed constructors. This changes
the scheme of the type of a constructor that we described in the beginning of this section.
Constructors now have a type n x 1 :A1__ n x n:An.X t1 ■ tm, where X may occur in the A i
only in a strictly positive position (that is, at the end).

Apart from the scheme for inductive types that we describe here, there is also the
possibility of introducing one ‘generic’ well-ordering type, the so-called W -type, and to
define inductive types as instances of this type. The W -type defines a general type of well-
founded trees that can be instantiated to specific sets of trees by choosing the branching
types in a specific way (Nordström et al. 1990). Dybjer (Dybjer 1997) shows that the
inductive types we have described above can indeed be represented in this way, but then
one has to use an extensional type theory, that is, where functions are equal if they have
the same graph, which leads to an undecidable typing relation.

4.1.3. Coinductive types Coinductive types were added to the type theory to enable it
to deal with infinite objects (Mendler 1991; Geuvers 1992; Mendler et al. 1986; Hallnas
1990; Gimenez 1996). This extension was done by Hagino (Hagino 1987) using the
categorical semantics. The idea behind using the categorical semantics is to consider an
ambient category for the type theory, and interpret the weakly final coalgebras (that is,
final coalgebras with the uniqueness property dropped) of this category as coinductive
types. Taking a different approach, Lindstroöm (Lindstroöm 1989) extended Martin-Loöf
type theory by coinductive types using the non-well-founded set theoretic semantics;
while Mendler et al. (Mendler et al. 1986), M artin-Löf (M artin-Löf 1990) and Hallnas
(Hallnös 1990) tried to extend M artin-Löf’s constructive type theory directly by adding
extra typing rules for infinite objects. Mendler (Mendler 1991) and Geuvers (Geuvers
1992) presented a way to encode coinductive types in type theories that are altogether
simpler than M artin-Löf’s type theory. Later, Gimenez (Gimenez 1996) extended the
calculus of inductive construction by a cofixpoint scheme that allows for the introduction
of infinite objects.

Coinductive type theories provide a programming framework for algorithms that deal
with infinite objects, and therefore are suitable for exact real arithmetic. In particular,

Constructive analysis, types and exact real numbers 27

since type theories provide a basis for formal verification tools, formalising an algorithm
in type theory paves the way for verification of that algorithm by means of a theorem
prover. Therefore, a rigorous analysis of correctness of the algorithms becomes possible
by stating these algorithms in the language of coinductive type theory. This is made
easier if one can devise a coinductive type theory that is specifically suited for working
with real numbers. In other words, one does not necessarily need a general theory of
coinductive types and the full power of type theory in order to verify the algorithms of
exact arithmetic. In terms of categorical semantics this means that having the (weakly)
final coalgebras of polynomial functors should suffice. However, one needs the underlying
type theory to be strong enough to formalise all the computable real functions.

This brings up the notion of productivity of infinite objects in type theory and functional
programming, which is similar (in fact dual) to the notion of termination for finite
objects (Dijkstra 1980; Sijtsma 1989; Coquand 1994). A function on streams is productive
if it can produce arbitrarily large finite approximations in finite time. The example of
multiplication by 3 in Section 2.1 is not a productive function. In fact, productivity is
very similar to the notion of computability (and continuity, and laziness). In TTE it
can be related to the finiteness property of type two Turing machines (Weihrauch 2000,
Section 2.2). A domain theoretic treatment of productivity for streams can be found in
Sijtsma (1989), which is expanded and used in the coinductive treatment of lazy exact
arithmetic in Niqui (2004). In order to tackle productivity inside the type theory, the
notion of guardedness is studied by type theorists (Coquand 1994; Telford and Turner
2000) and is implemented as the basis for the treatment of coinductive types in the Coq
proof assistant (Gimenez 1996).

The guardedness condition is a syntactic criterion, which can be used to ensure the
productivity much in the same way (in fact in the dual way) as it can be used to ensure
the termination of structurally recursive functions: a recursive function with, as recursive
argument, a term with an inductive type is terminating if the argument of the recursive
calls is structurally smaller than the original argument of the function. This structural
order is an inherent order that is inherited from the definition of the inductive type of the
recursive argument. According to this order, applying constructors of the inductive type
generates the successors of a term (recall that inductive types are equivalent to the type
of general trees). Dually, an infinite object (that is, a term that has a coinductive type) is
productive if the calls to itself inside the body of its definition are immediate arguments
of constructors of its coinductive type. The above checks are purely syntactical and hence
can be automatised; this is exactly what is done in the guardedness checker of the Coq
proof assistant.

As an example, the following definition is a guarded definition for a stream of natural
numbers starting from n.

nats n := cons n (nats n + 1)

This is because the sole occurrence of nats in the right-hand side is the immediate
argument of (that is, guarded by) cons, the constructor of the coinductive type of streams.

But, in the same way as the structural recursion is not powerful enough to capture
all valid terminating recursive definitions, the guarded-by-constructor approach does not

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 28

capture the whole class of productive infinite objects. This is because the productivity of
streams can in general be reduced to the question of whether a subset of N is infinite,
which is an undecidable question (Niqui 2004, Section 4.7).

An example of infinite objects that are not guarded and whose productivity is not
syntactically detectable are the filter-like functions that are used in functional programm
ing. One option for formalising such infinite objects would be to adhere to semantic
approaches, for example, domain-theoretic methods (Niqui 2005) or topological methods
(Di Gianantonio and Miculan 2003). The other option would be to use a very exten
ded setting of coinductive types that includes polymorphic and dependent coinductive
types, and adapt advanced type-theoretic methods that are used for tackling general
(non-structural) recursion. This is the approach taken by Bertot (Bertot 2005) and is
implementable in Coq as all the machinery that is necessary (polymorphic and dependent
coinductive types) already exists in Coq.

4.2. Program extraction

Correctness is an important issue in the implementation of computable analysis (which
in practice currently mostly amounts to the implementation of exact real arithmetic.)

There are two approaches for developing correct programs. In one approach one starts
by writing the concrete program and then tries to establish its correctness, either using
informal reasoning, or by annotating the program with invariants and then proving
correctness conditions generated from that, or by refining the types used in the program
to be more informative, using a programming language that supports dependent typing.
In the other approach, one starts very abstractly and then works towards a concrete
program. The methods of program refinement and program extraction both fall in this
second category.

With program extraction one starts from a formalisation of some mathematical theory,
or, rather, a representation of this theory in the computer that has sufficient detail to allow
the computer to establish the correctness by proof checking. This formalisation is then
automatically transformed into a computer program that implements the constructive
content of this formalised theory. This is a direct application of the realisability imple
mentation of constructive logic. Therefore, in order to extract a program from a formalised
theory, in general one needs to formalise the theory using constructive logic. However,
there has also been some work on extracting programs from classical proofs (Berger et al.
2002). Program extraction has been implemented in many systems, such as PX (Hayashi
and Nakano 1987), Nuprl (Constable et al. 1986), Coq (Coq Development Team 2004;
Letouzey 2004), Minlog (Benl et al. 1998) and Isabelle (Nipkow et al. 2002).

Note that the logic of a proof assistant does not need to be constructive for it to be
able to do program extraction: Isabelle/HOL is based on a classical logic, but supports
program extraction (Berghofer 2003).

Because the Curry-Howard-de Bruijn isomorphism corresponds in a natural way to
a realisability interpretation, program extraction is popular with proof assistants that
implement type theory. In type theory the proofs of a theorem are already lambda terms,
which can be seen as functional programs in a simple programming language. Therefore,

Constructive analysis, types and exact real numbers 29

Table 1. B H K interpretation

To prove One needs to

A A B prove A and prove B
A V B choose one and prove it
A ^ B provide a method transforming a proof of A into a proof of B
VxA provide a construction f such that f(x) is a proof of A(x)
3xA construct t and prove A(t)

in type theory, program extraction is hardly more than transforming one functional
language into another functional language. However, because not all computations in
these lambda terms are relevant for the final result of the program, a distinction is made
between informative and non-informative data-types. Then, when extracting the program,
all parts corresponding to non-informative data-types are removed.

Program extraction is a popular method for establishing the correctness of implement
ations of computable analysis. Most proof assistants have a formalisation of the theory
of real numbers, and an implementation of exact real arithmetic and computable analysis
is seen as an easy side product of this.

Program extraction is an attractive method, but it is unclear whether extracted programs
will have a competitive performance. For instance, the root finding program extracted
from a Coq formalisation of the intermediate value theorem turned out to be unusable in
practice (Cruz-Filipe et al. 2004; Cruz-Filipe and Spitters 2003; Cruz-Filipe and Letouzey
2005). Apparently, if one wants to extract a reasonable program, one needs to be aware
of the extraction process when writing the formalisation.

4.3. Constructive analysis

Constructive Analysis has had a major impact on various topics described in this paper.
It has its roots in the intuitionistic mathematics of Brouwer (Brouwer 1975; Heyting,
A. 1956), which had already shown the strong connections between computability and
topology even before these fields were properly developed. Heyting then defined formal
rules for Brouwer's logic. The interpretation of intuitionistic logic now goes by the name
BHK, after Brouwer, Heyting and Kolmogorov.

When a precise theory of computations became available, Kleene developed his
realisability interpretation to give a formal model for intuitionistic logic: see Section 3.5.
Kleene’s first interpretation did capture Brouwer’s logic nicely, as explained in Section 3.5.1,
but did not capture Brouwer's theory of choice sequences. This was solved by Kleene and
Vesley (Kleene and Vesley 1965) using functions on Baire space. As we have seen, this is
the interpretation that also captures TTE.

As is well known, Brouwer contended that all total real functions are continuous
(Brouwer 1927). A statement that we can now see is provable in many concrete
computational interpretations. In 1967, Bishop (Bishop 1967) showed that although
Brouwer's continuity principle is an important guideline, one can do without this
assumption by just studying the continuous functions and ignoring any others, whether

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 30

they exist or not. In this way, Bishop developed major parts of modern analysis. It
turns out that Bishop’s mathematics is a convenient generalisation of both recursive and
intuitionistic mathematics (and of classical mathematics, but that is not the issue here).
It can be interpreted in both of the computational models described above: see Troelstra
and van Dalen (1988a) and Bridges and Richman (1987).

Bishop's model of computation is deliberately vague about the precise notion of
computation. It builds on a primitive notion of ‘operation'. Martin-Loöf's theory of types
(M artin-Löf 1984) can be used as a satisfactory theory of such operations. In fact, the
usual way to treat sets in type theory, that is, using types modulo an equivalence relation
called setoids (Hofmann 1995), was motivated by Bishop’s work.

Finally, we would like to mention the two recent monographs, Crosilla and Schuster
(2005) and Bridges and Vita (to appear), which provide more information about con
structive mathematics. Furthermore, this story could not be considered complete without
mentioning formal topology (Sambin 1987; Fourman and Grayson 1982): a proper
description would take us too far from exact arithmetic, but we should just say that
formal topology may be seen as a way to develop topology or domain theory inside type
theory (Sambin 2000; Sambin et al. 1996).

5. Conclusion

We have described some of the problems of exact real arithmetic and some solutions
varying from concrete implementations, representation and algorithms to various models
for real computation. We then put these models in a uniform framework using realisability,
opening the door for the use of type theoretic and coalgebraic constructions for both
computing and reasoning about these computations. We have also indicated that it is
often natural to use constructive logic to reason about these computations.

References

Aberth, O. (1980) Computable Analysis, McGraw-Hill.
Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S., Gabbay, D .M . and Maibaum,

T. S. E. (eds.) Handbook o f logic in computer science (vol. 3): semantic structures, Oxford University
Press 1-168.

Barendregt, H. and Geuvers, H. (2001) Proof-assistants using dependent type systems. In: Handbook
o f automated reasoning, Elsevier Science Publishers 1149-1238.

Barendregt, H.P. (1992) Lambda calculi with types. In: Handbook o f logic in computer science
(vol. 2): background, computational structures, Oxford University Press 117-309.

Barwise, J. and Moss, L. (1996) Vicious Circles: On the M athematics o f Non-Wellfounded Phenomena,
CSLI Publications, Stanford, California.

Bauer, A. (2000) The Realizability Approach to Computable Analysis and Topology, Ph.D. thesis,
Carnegie Mellon University.

Bauer, A. (2005) Realizability as the connection between computable and constructive mathematics.
(Available at h ttp : / /m a th .a n d re j .c o m /c a te g o ry /p a p e r s / .)

Bauer, A., Escardo, M. and Simpson, A. (2002) Comparing functional paradigms for exact real
number computation. In: Automata, languages and programming. Springer-Verlag Lecture Notes
in Computer Science 2380 489-500.

http://math.andrej.com/category/papers/

Constructive analysis, types and exact real numbers 31

Beeson, M. J. (1985) Foundations o f constructive mathematics, Springer-Verlag.
Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M. and Zuber, W. (1998) Proof theory

at work: Program development in the Minlog system. In: Bibel, W. and Schmidt, P. H. (eds.)
Automated Deduction: A Basis fo r Applications. Volume II, Systems and Implementation Techniques,
Kluwer Academic Publishers.

Berger, U., Buchholz, W. and Schwichtenberg, H. (2002) Refined Program Extraction from Classical
Proofs. Annals o f Pure and Applied Logic 114 3-25.

Berghofer, S. (2003) Proofs, Programs and Executable Specifications in Higher Order Logic, Ph.D.
thesis, Institut fuör Informatik, Technische Universitaöt Muönchen.

Bertot, Y. (2005) Filters on coinductive streams, an application to eratosthenes’ sieve. In: Urzyczyn,
P. (ed.) Typed Lam bda Calculi and Applications, 7th International Conference, TLCA 2005.
Springer-Verlag Lecture Notes in Computer Science 3461 102-115.

Birkedal, L. (2000) Developing theories of types and computability via realizability. Electronic Notes
in Theoretical Computer Science 34.

Bishop, E. (1967) Foundations o f constructive analysis, McGraw-Hill.
Bishop, E. and Bridges, D. (1985) Constructive Analysis, Grundlehren der mathematischen

Wissenschaften 279, Springer-Verlag.
Boehm, H.-J. (2005) Constructive Reals Calculator. (Available at h ttp ://w w w .h p l.h p .co m /

personal/H ans_B oehm /crcalc/.)
Boehm, H.-J., Cartwright, R., Riggle, M. and O’Donnell, M. J. (1986) Exact real arithmetic: A case

study in higher order programming. In: Proceedings o f the 1986 A C M conference on L IS P and
functional programming, ACM Press 162-173.

Bove, A. and Capretta, V. (2005) Modelling general recursion in type theory. Mathematical Structures
in Computer Science 15 (4) 671-708.

Brezinski, C. (1991) History o f Continued Fractions and Pade Approximants, Springer-Verlag Series
in Computational Mathematics 12.

Bridges, D. and Richman, F. (1987) Varieties in Constructive Mathematics, London Mathematical
Society Lecture Notes Series 97, Cambridge University Press.

Bridges, D. and Vita, L. (to appear). Techniques o f Constructive Analysis, Springer-Verlag
Universitext.

Brouwer, L. (1975) Collected Works, North-Holland.
Brouwer, L. E. J. (1921) Besitzt jede reelle Zahl eine Dezimalbruchentwicklung? M ath. Ann. 83 (3-4)

201- 210 .
Brouwer, L. E. J. (1927) Ü ber Definitionsbereiche von Funktionen. M ath. Ann. 97 (1) 60-75.
Ceitin, G. S. (1959) Algorithmic operators in constructive complete separable metric spaces. Dokl.

Akad. Nauk SSSR 128 49-52.
Ceitin, G. S. (1962) Algorithmic operators in constructive metric spaces. Trudy M at. Inst. Steklov.

67 295-361.
Constable, R. L., Allen, S. F., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D. J.,

Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J.T. and Smith, S.F. (1986) Implementing
M athematics with the N uprl Development System , Prentice-Hall.

Coq Development Team (2004) The Coq Proof Assistant Reference Manual. (Available at f t p : / /
f tp .in r ia .f r /IN R IA /c o q /c u r re n t/d o c /R e fe re n c e -M a n u a l.p s .g z .)

Coquand, T. (1994) Infinite objects in type theory. In: Barendregt, H. and Nipkow, T. (eds.) Types
for Proofs and Programs, International Workshop, TYPES’93. Springer-Verlag Lecture Notes in
Computer Science 806 62-78.

Coquand, T. and Paulin, C. (1990) Inductively defined types. In: COLOG-88: Proceedings o f the
international conference on computer logic, Springer-Verlag 50-66.

http://www.hpl.hp.com/
ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual.ps.gz

H. Geuvers, M .N iqu i, B .S p itte rs and F. W iedijk 32

Crosilla, L. and Schuster, P. (2005) From Sets and Types to Topology and Analysis - Towards
Practicable Foundations fo r Constructive Mathematics, Oxford Logic Guides 48, Oxford University
Press.

Cruz-Filipe, L., Geuvers, H. and Wiedijk, F. (2004) C-CoRN: the Constructive Coq Repository
at Nijmegen. In: Asperti, A., Bancerek, G. and Trybulec, A. (eds.) M athematical Knowledge
Management, Proceedings of M KM 2004. Springer-Verlag Lecture Notes in Computer Science
3119 88-103.

Cruz-Filipe, L. and Letouzey, P. (2005) A Large-Scale Experiment in Executing Extracted Programs.
Electronic Notes in Theoretical Computer Science.

Cruz-Filipe, L. and Spitters, B. (2003) Program extraction from large proof developments. In:
Theorem Proving in Higher Order Logics, 16th International Conference, TPHOLs 2000. Springer
Verlag Lecture Notes in Computer Science 205-220.

De Bruijn, N. G. (1980) A survey of the project AUTOMATH. In: Hindley, J. R. and Seldin, J.P.
(eds.) Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press 580-606.

Di Gianantonio, P. (1996) A golden ratio notation for the real numbers. Technical Report CS-R9602,
Centrum voor Wiskunde en Informatica (CWI).

Di Gianantonio, P. and Miculan, M. (2003) A unifying approach to recursive and co-recursive
definitions. In: Geuvers, H. and Wiedijk, F. (eds.) Types for Proofs and Programs: International
Workshop, TYPES 2002. Springer-Verlag Lecture Notes in Computer Science 2646 148-161.

Dijkstra, E. W. (1980) On the productivity of recursive definitions. Personal note EWD 749.
Du, Z., Eleftheriou, M., Moreira, J. E. and Yap, C. (2002) Hypergeometric functions in exact

geometric computation. In: Brattka, V., Schröder, M. and Weihrauch, K. (eds.) CCA 2002
Computability and Complexity in Analysis. Electronic Notes in Theoretical Computer Science 66.
(Also: 5th International Workshop, CCA 2002, Malaga, Spain, July 12-13 2002.)

Dybjer, P. (1997) Representing inductively defined sets by wellorderings in M artin-Löf’s type theory.
Theoretical Computer Science 176 (1-2) 329-335.

Edalat, A. (1997) Domains for computation in mathematics, physics and exact real arithmetic. Bull.
Symbolic Logic 3 (4) 401-452.

Edalat, A. (2005) Exact Computation - Implementations. (Available at h ttp : / /w w w .d o c .ic .a c .
uk /~ ae/exac t-com pu ta tion /#bm :im p lem en ta tions.)

Edalat, A. and Escardo, M. (1996) Integration in Real PCF (extended abstract). In: Proceedings o f
the 11th Annual IE E E Symposium on Logic In Computer Science 382-393.

Edalat, A. and Heckmann, R. (2002) Computing with real numbers: (i) LFT approach to real
computation, (ii) Domain-theoretic model of computational geometry. In: Barthe, G., Dybjer, P.,
Pinto, L. and Saraiva, J. (eds.) Applied Semantics. Springer-Verlag Lecture Notes in Computer
Science 2395 193-267.

Edalat, A. and Lieutier, A. (2004) Domain theory and differential calculus (functions of one
variable). Mathematical Structures in Computer Science 14 (6) 771-802.

Edalat, A. and Potts, P. J. (1997) A new representation for exact real numbers. In: Brookes, S.
and Mislove, M. (eds.) M athematical Foundations of Progamming Semantics, Thirteenth Annual
Conference (MFPS XIII). Electronic Notes in Theoretical Computer Science 6.

Edalat, A., Potts, P. J. and Sunderhauf, P. (1999) Lazy computation with exact real numbers. In:
Berman, M. and Berman, S. (eds.) Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming (ICFP-98). A C M SIG P L A N Notices 34 (1) 185-194.

Escardo, M. (1996) PCF extended with real numbers. Theoretical Computer Science 162 (1) 79-115.
Escardo, M., Hofmann, M. and Streicher, T. (2004) On the non-sequential nature of the interval

domain model of real-number computation. Mathematical Structures in Computer Science 14 (6)
803-814.

http://www.doc.ic.ac

Constructive analysis, types and exact real numbers 33

Escardô, M. and Streicher, T. (1999) Induction and recursion on the partial real line with applications
to Real PCF. Theoretical Computer Science 210 (1) 121-157.

Filliatre, J.-C. (2005) Constructive reals OCaml library. (Available at h t t p : / /w w w . l r i . f r /
~ f i l l i a t r / c r e a l . e n .h tm l .)

Fourman, M.P. and Grayson, R. J. (1982) Formal spaces. In: The L .E .J . Brouwer Centenary
Symposium (Noordwijkerhout, 1981), Studies in Logic and the Foundations of Mathematics
110, North-Holland 107-122.

Geuvers, H. (1992) Inductive and coinductive types with iteration and recursion. In: Nordstrom, B.,
Pettersson, K. and Plotkin, G. (eds.) Informal Proc. of Workshop on Types for Proofs and
Programs, Bâstad, Sweden, 8-12 June 1992, Dept. of Computing Science, Chalmers Univ. of
Technology and Göteborg Univ 193-217.

Geuvers, H. and Niqui, M. (2002) Constructive real numbers in Coq: Axioms and categoricity.
In: Callaghan, P., Luo, Z., McKinna, J. and Pollack, R. (eds.) Types for Proofs and Programs:
International Workshop, TYPES 2000. Springer-Verlag Lecture Notes in Computer Science 2277
79-95.

Gimenez, E. (1996) Un Calcul de Constructions Infinies et son Application a la Verification des
Systemes Communicants, Ph.D. thesis, PhD 96-11, Laboratoire de l’Informatique du Parallelisme,
Ecole Normale Superieure de Lyon.

Gonthier, G. (2005) A computer-checked proof of the four colour theorem. Technical report,
Microsoft Research Cambridge.

Gowland, P. and Lester, D. (2001) A survey of exact arithmetic implementations. In: Blanck, J.,
Brattka, V. and Hertling, P. (eds.) Computability and Complexity in Analysis: 4th International
Workshop, CCA 2000. Springer-Verlag Lecture Notes in Computer Science 2064 30-47.

Gunter, C. A. and Scott, D.S. (1990) Semantic domains. In: Handbook o f Theoretical Computer
Science, Volume B: Formal M odels and Sematics (B) , Elsevier 633-674.

Guy, M. (2005) bignum/BigFloat. (Available at h ttp : / /m e d ia la b .f r e a k n e t .o rg /b ig n u m /.)
Hagino, T. (1987) A Categorical Programming Language. Ph.D. thesis CST-47-87, Laboratory for

Foundations of Computer Science, Department of Computer Science, University of Edinburgh.
Hallnös, L. (1990) On the syntax of infinite objects: an extension of M artin-Löf’s theory of

expressions. In: Martin-Löf, P. and Mints, G. (eds.) COLOG-88, International Conference on
Computer Logic. Springer-Verlag Lecture Notes in Computer Science 417 94-194.

Hanrot, G., Lefevre, V., Pelissier, P., Zimmermann, P., Boldo, S., Daney, D., Dutour, M., Jeandel,
E., Fousse, L., Rouillier, F. and Ryde, K. (2005) The M PFR Library. (Available at h t t p : / /
www.mpfr.org/.)

Harrison, J. (1994) Constructing the real numbers in HOL. Formal M ethods in System Design 5
35-59.

Hayashi, S. and Nakano, H. (1987) PX, a Computational Logic. Technical report, Research Institute
for Mathematical Sciences, Kyoto University.

Heyting, A. (1956) Intuitionism. A n introduction, Studies in Logic and the Foundations of
Mathematics, North-Holland.

Hofmann, M. (1995) Extensional concepts in intensional type theory, Ph.D. thesis, Laboratory for
Foundations of Computer Science, University of Edinburgh. (Available at h t tp : / /w w w .lf c s .
in fo rm a tic s .ed .ac .u k /rep o rts /9 5 /E C S -L F C S -9 5 -3 2 7 /.)

Howard, W. A. (1980) The formulae-as-types notion of construction. In: Hindley, J. R. and Seldin,
J. P. (eds.) Essays on Combinatory Logic, Lambda Calculus and Formalism. Dedicated to H askell B.
Curry on the occasion o f his 80th birthday, Academic Press 479-490.

Hughes, J. and Niqui, M. (2006) Admissible digit sets. Theoretical Computer Science 351 (1) 61-73.

http://www.lri.fr/
http://medialab.freaknet.org/bignum/
http://www.mpfr.org/
http://www.lfcs

H. Geuvers, M . Niqui, B .S p itte rs and F. W iedijk 34

Hyland, J. (1982) The effective topos. In: Troelstra, A. and Dalen, D. V. (eds.) The L.E.J. Brouwer
Centenary Symposium, North-Holland 165-216.

IEEE Task P754 (1985) IEEE standard for binary floating-point arithmetic. A C M SIG P L A N Notices
22 (2) 9-25.

Jacobs, B. (1999) Categorical logic and type theory, Studies in Logic and the Foundations of
Mathematics 141, North-Holland.

Jacobs, B. (2005) Introduction to Coalgebra. Towards Mathematics of States and Observations.
(Draft available at h ttp ://w w w .c s .ru .n l/B .Ja c o b s /C L G /Ja c o b sC o a lg e b ra In tro .p d f.)

Jacobs, B. and Rutten, J. (1997) A tutorial on (co)algebras and (co)induction. Bulletin o f the
European Association fo r Theoretical Computer Science. E A T C S 62 222-259.

Kearfott, B. R. (1996) Interval computations: Introduction, uses, and resources. Euromath Bulletin
2 (1) 95-112.

Kleene, S. and Vesley, R. (1965) The foundations o f intuitionistic mathematics, especially in relation
to recursive functions, North-Holland.

Knuth, D.E. (1997) The A rt o f Computer Programming volume 2: Seminumerical Algorithms, 3rd
edition, Addison-Wesley.

Koneray, M. (2000) Many-Valued Real Functions Computable by Finite Transducers using IFS-
Representations, Ph.D. thesis, School of Computer Science, The University of Birmingham.

Kornerup, P. and Matula, D. (1988) An on-line arithmetic unit for bit-pipelined rational arithmetic.
Journal o f Parallel and Distributed Computing 5 310-330.

Kramer, W. (1997) A priori worst-case error bounds for floating-point computations. In: Lang, T.,
Muller, J.-M. and Takagi, N. (eds.) 13th IEEE Symposium on Computer Arithmetic. Symposium
on Computer Arithmetic 13 64-73.

Kreckel, R. (2005) CLN - Class Library for Numbers. (Available at h ttp ://w w w .g inac.de/C L N /.)
Kreisel, G., Lacombe, D. and Shoenfield, J. R. (1957a) Fonctionnelles récursivement definissables et

fonctionnelles recursives. C. R. Acad. Sci. Paris 245 399-402.
Kreisel, G., Lacombe, D. and Shoenfield, J. R. (1957b) Partial recursive functionals and effective

operations. In: Constructivity in mathematics: Proceedings o f the colloquium held at Amsterdam
1957 (edited by A. H eyting), Studies in Logic and the Foundations of Mathematics, North-
Holland 290-297.

Lambek, J. and Scott, P. J. (1988) Introduction to higher order categorical logic (reprint of the 1986
original), Cambridge Studies in Advanced Mathematics 7, Cambridge University Press. .

Lambov, B. (2005) The RealLib Project. (Available at h ttp : //w w w .b r ic s .d k /~ b a rn ie /R e a lL ib /.)
Lester, D. (2001) Effective continued fractions. In: Burgess, N. and Ciminiera, L. (eds.) 15th IE E E

Symposium on Computer Arithmetic, IEEE Computer Society Press 163-172.
Lester, D. (2005) Exact Arithmetic Implementations. (Available at h ttp ://w w w .cs .m a n .a c .u k /

a r c h /d le s te r /e x a c t .h tm l.)
Letouzey, P. (2004) Programmation fonctionnelle certifiée - L ’extraction de programmes dans l ’assistant

Coq, Ph.D. thesis, Universite de Paris XI Orsay.
Lietz, P. (2004) From Constructive M athematics to Computable Analysis via the Realizability

Interpretation, Ph.D. thesis, Darm stadt University of Technology.
Lindstroöm, I. (1989) A construction of non-well-founded sets within Martin-Loöf’s type theory.

Journal o f Symbolic Logic 54 (1) 57-64.
Luo, Z. (1994) Computation and reasoning: a type theory fo r computer science, Oxford University

Press.
Martin-Löf, P. (1984) Intuitionistic type theory, Studies in Proof Theory 1, Bibliopolis.
Martin-Loöf, P. (1990) Mathematics of infinity. In: Martin-Löof, P. and Mints, G. (eds.) COLOG-88,

International Conference on Computer Logic. Springer-Verlag Lecture Notes in Computer Science
417 149-197.

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://www.ginac.de/CLN/
http://www.brics.dk/~barnie/RealLib/
http://www.cs.man.ac.uk/

Constructive analysis, types and exact real numbers 35

Mencer, O. (2000) Rational Arithmetic Units in Computer Systems, Ph.D. thesis, Stanford University.
Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda calculus.

Annals o f Pure and Applied Logic 51 159-172.
Mendler, N. P., Panangaden, P. and Constable, R. L. (1986) Infinite objects in type theory. In:

Symposium on Logic in Computer Science (L IC S ’86), IEEE Computer Society Press 249-255.
Menissier-Morain, V. (1994) Arithmétique exacte, conception, algorithmique et performances d ’une

implementation informatique en precision arbitraire, These, Université Paris 7.
Monagan, M., Geddes, K., Heal, K., Labahn, G. and Vorkoetter, S. (1997) Maple V Programming

Guide fo r Release 5, Springer-Verlag.
Muller, N. (2005) iRRAM - Exact Arithmetic in C + + . (Available at h ttp : //w w w .in fo rm a tik .

un i-trie r .d e /iR R A M /.)
Muller, N.T. (2001) The iRRAM : Exact arithmetic in C + + . In: Blanck, J., Brattka, V. and Hertling,

P. (eds.) Computability and Complexity in Analysis: 4th International Workshop, CCA 2000.
Springer-Verlag Lecture Notes in Computer Science 2064 222-252.

Nipkow, T., Paulson, L. and Wenzel, M. (2002) Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Springer-Verlag Lecture Notes in Computer Science 2283.

Niqui, M. (2004) Formalising E xact Arithmetic: Representations, Algorithms and Proofs, Ph.D. thesis,
Radboud Universiteit Nijmegen.

Niqui, M. (2005) Formalising exact arithmetic in type theory. In: Cooper, S. B., Loöwe, B. and
Torenvliet, L. (eds.) New Computational Paradigms: First Conference on Computability in
Europe, CiE 2005. Springer-Verlag Lecture Notes in Computer Science 3526 368-377.

Nordström, B., Peterson, K. and Smith, J. M. (1990) Programming in M a rtin -L ö f’s Type Theory: an
introduction, Oxford Science Publications.

O’Connor, R. (2005) Few Digits 0.4.0. (Available at h t t p : / / r 6 .c a /F e w D ig its /.)
Pattinson, D. (2003) Computable functions on final coalgebras. In: Proc. of 6th Workshop on

Coalgebraic Methods in Computer Science, CMCS’03. Electronic Notes in Theoretical Computer
Science 82 (1).

Paulin-Mohring, C. (1993) Inductive definitions in the system Coq - rules and properties. In: Bezem,
M. and Groote, J. F. (eds.) Proceedings of the 1st TLCA conference. Springer-Verlag Lecture Notes
in Computer Science 664 328-345.

Pfenning, F. (2001) Logical frameworks. In: Handbook o f Automated Reasoning, Elsevier Science
Publishers 1063-1147.

Pierce, B. C. (2002) Types and Programming Languages, M IT Press.
Plotkin, G. D. (1977) LCF considered as a programming language. Theoretical Computer Science 5

(3) 225-255.
Potts, P. J. (1998) Exact Real Arithmetic using M obius Transformations, Ph.D. thesis, University of

London, Imperial College.
Potts, P. J. and Edalat, A. (1997) Exact real computer arithmetic. Technical Report DOC 97/9,

Department of Computing, Imperial College.
Rutten, J. J. M. M. (2000) Universal coalgebra: a theory of systems. Theoretical Computer Science

249 (1) 3-80.
Sambin, G. (1987) Intuitionistic formal spaces - a first communication. In: Skordev, D. (ed.)

M athematical logic and its Applications, Plenum 187-204.
Sambin, G. (2000) Formal topology and domains. In: Remagen-Rolandseck 1998. Electronic notes

in theoretical computer science 35.
Sambin, G., Valentini, S. and Virgili, P. (1996) Constructive domain theory as a branch of

intuitionistic pointfree topology. Theoretical Computer Science 159 (2) 319-341.

http://www.informatik
http://r6.ca/FewDigits/

H. Geuvers, M . Niqui, B. Spitters and F. W iedijk 36

Schwarz, J. (1989) Implementing Infinite Precision Arithmetic. In: Proc. 9th IE E E Symposium on
Computer Arithmetic 10-17.

Scott, D. (1970) Constructive validity. In: Lacombe, D. and Laudelt, M. (eds.) Symposium on
Automatic Demonstration. Springer-Verlag Lecture Notes in M athematics 237-275.

Scott, D. (1972) Lattice theory, data types, and semantics. In: Rustin, R. (ed.) Formal Semantics o f
Programming Languages, Courant Computer Science Symposia 2, Prentice-Hall 65-106.

Scott, D. (1976) D ata types as lattices. S IA M J. Comput. 5 (3) 522-587.
Sijtsma, B.A. (1989) On the productivity of recursive list definitions. A C M Trans. Program. Lang.

Syst. (T O P L A S) 11 (4) 633-649.
Simpson, A. K. (1998) Lazy functional algorithms for exact real functionals. In: Brim, L., Gruska, J.

and Zlatuska, J. (eds.) M athematical Foundations of Computer Science 1998, 23rd International
Symposium, M FCS’98. Springer-Verlag Lecture Notes in Computer Science 1450 456-464.

Telford, A. and Turner, D. (2000) Ensuring Termination in ESFP. Journal o f Universal Computer
Science 6 (4) 474-488.

Troelstra, A. and van Dalen, D. (1988a) Constructivism in mathematics. An introduction, Studies in
Logic and the Foundations of Mathematics 123, North-Holland.

Troelstra, A. S. (1977) Choice sequences: A chapter o f intuitionistic mathematics, Oxford Logic Guides,
Clarendon Press.

Troelstra, A. S. (1992) Comparing the theory of representations and constructive mathematics. In:
Computer science logic (Berne 1991). Springer-Verlag Lecture Notes in Computer Science 626
382-395.

Troelstra, A.S. (1998) Realizability. In: Handbook o f proo f theory, Studies in Logic and the
Foundations of Mathematics 137, North-Holland 407-473.

Troelstra, A. S. and van Dalen, D. (1988b) Constructivism in M athematics: A n Introduction, vol I,
Studies in Logic and the Foundations of Mathematics 121, North-Holland.

van Oosten, J. (2002) Realizability: a historical essay. Realizability (Trento 1999). Mathematical
Structures in Computer Science 12 (3) 239-263.

Vuillemin, J. E. (1990) Exact real computer arithmetic with continued fractions. IE E E Transactions
on Computers 39 (8) 1087-1105.

Weihrauch, K. (1997) A foundation for computable analysis. In: Plasil, F. and Jeffery, K. G. (eds.)
Theory and Practice of Informatics, 24th Seminar on Current Trends in Theory and Practice of
Informatics. Springer-Verlag Lecture Notes in Computer Science 1338 104-121.

Weihrauch, K. (2000) Computable Analysis: An introduction, Springer-Verlag.
Weihrauch, K. and Kreitz, C. (1987) Representations of the real numbers and of the open subsets

of the set of real numbers. Annals o f Pure and Applied Logic 35 247-260.
Wolfram, S. (1996) The M athematica book, Cambridge University Press.
Yap, C. and Dube, T. (1995) The exact computation paradigm. In: Du, D.-Z. and Hwang, F. (eds.)

Computing in Euclidean Geometry, 2nd edition, World Scientific Press.

