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CONSTRUCTIVE  ASPECTS  OF  NOETHERIAN  RINGS1

FRED  RICHMAN

Abstract. If R is a discrete Noetherian ring, in the sense of

Tennenbaum, such that finitely generated ideals are finitely related

and detachable, then so is /?[jc]. This shows that a large class of rings

enjoy the property that finitely generated ideals are detachable, and

that intersections and quotients of finitely generated ideals are

finitely generated.

1. What is Noetherian? The idea of a commutative Noetherian ring

grows naturally out of the study of polynomial rings over fields, and of

rings of integers in algebraic number fields. There are many classical

characterizations of the Noether condition, the two most common being

the following:

(1) Every ideal is finitely generated.

(2) Every ascending chain of ideals is eventually constant.

From a constructive point of view condition (1) is too much to ask for.

To understand why, let In be the set of integers consisting of 0 together

with the multiples of the least positive integer kSn, if any, such that the

sequence 0123456789 occurs in the first k digits of the decimal expansion

of 77. Then 7= U In is an ideal in the ring of integers, and we can even check

any integer to see if it is in 7, but we are currently unable to exhibit a

finite set of generators for 7. Similarly, condition (2) is a bit too strong

but becomes^more plausible if we restrict ourselves to finitely generated

ideals, which would be silly in condition (1) but is classically equivalent in

condition (2). Finding the point of eventual stabilization is still too much

to hope for, as can be seen from the sequence of ideals /„, so we might

content ourselves with just finding two ideals that are equal. Tennenbaum

[1] refines this idea and proposes the following definition:

There exists an operation p taking finite sequences of elements

of R into 7? such that p(ax, ■ ■ ■ , an)—an is in the ideal generated

by ax, ■ ■ ■ , an_x, and, given any infinite sequence {a¡}, there

exists an n such that p(ax, ■ ■ ■ , an) = 0.
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We call such a ring a Tennenbaum ring. By replacing R by an 7?-module

M in condition T, we get the notion of a Tennenbaum module. It turns out

[1] that, given an ascending chain of finitely generated submodules of a

Tennenbaum module, we can find two equal submodules.

Tennenbaum [1] proves that if R is a Tennenbaum ring, then so is

R[x], the ring of polynomials with coefficients in R. This is a constructive

version of the Hubert basis theorem. He also shows that a direct sum of

Tennenbaum modules is again Tennenbaum. Thus if 7? is Tennenbaum,

then so are finite rank free 7?-modules. We will make use of both these

results.

We shall consider only discrete rings. These are rings such that, given

two elements a and b, we can decide whether a=b or a^b. Indeed the

results of Tennenbaum that we have quoted apply only to such rings.

One difficulty with relying solely on condition (2) to capture the con-

structive meaning of Noetherian is that quite often you want certain

ideals to be finitely generated. For example, if 7 and J are finitely generated

ideals in a Noetherian domain R you might like to lay your hands on a

finite set of generators for 77_1 or I(~\J or T.J. You can certainly do this if

7? is the ring of integers. You might even want to find a set of generators

for the kernel of a homomorphism between two finite rank free Ä-modules,

which you can also do, by diagonalizing a matrix, if 7? is the ring of integers.

Another highly desirable, although apparently unrelated, property is

that finitely generated ideals be detachable, that is, you can decide whether

a given element of the ring is in a given finitely generated ideal. To establish

this property for a large class of rings, one is led to study polynomial

rings. It then becomes apparent that a useful condition to have on the ring

of coefficients is for finitely generated ideals to be finitely related. This

condition also allows us to find the generators mentioned above (Lemma 3),

and so becomes a central theme.

2. Finitely related modules. A module M is finitely related if there

exists a map /from a finite rank free module onto M such that ker/is

finitely generated. Thus M may be specified by a finite number of generators

and a finite number of relations. The following two lemmas are well known

but proofs are included to insure that there are no problems from the

constructive point of view. The first says that any finite family of generators

of a finitely related module is as good as any other.

Lemma 1. If M is finitely related, then any map of a finite rank free

module onto M has a finitely generated kernel.

Proof. Let/and g be maps of finite rank free modules Fand G onto

M. We shall show that if ker/is finitely generated, then so is ker g. Map
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G©ker/onto M by g©0. Since G is free and/is onto we can write g=fh

for some map // from G to F. If we extend // to C7©ker/by letting // be the

identity on ker/ then // is onto Fand///=g©0 on G©ker/(see diagram).

C7© kerf

Since n is onto we can write Gffiker/=G'©F' where hG'=0 and h takes

F' isomorphically onto F. Then kerg©ker/=ker(g©0) = G'©7£' where

K'^F' and hK' = kerf. But G', being a summand of C7©ker/, is finitely

generated, and K', being isomorphic to ker/, is also finitely generated.

Hence ker g is finitely generated, being a summand of G'®K'.    D

LetJt' be the class of modules M such that any map/of a finite rank free

module into M has a finitely generated kernel. Note that replacing "finite

rank free" by "finitely generated" yields an equivalent statement. The

class Jé consists of those modules such that every finitely generated sub-

module is finitely related.

Lemma 2.    If A and B/A are in Jt', then B is in Jt'.

Proof. Denote by// the natural map from B to B/A. Suppose/is a

map from a finitely generated module into B. Then ker pf is finitely

generated since B\A is in^#. Hence the kernel of the map induced by/

from ker pf to A is finitely generated since A is in~#. But this last module is

just ker/.    D

The next two lemmas are important from the constructive point of view.

Recall that if B and C are submodules of an 7?-module, then B: C consists

of those elements r in R such that rC^B.

Lemma 3. Let A be an element ofJi. If B and C are finitely generated

submodules of A, then BC\C and B:C are finitely generated.

Proof. Let/and g be maps of finite rank free modules F and G onto

B and C. Then/— g maps F©G into A, so ker(f-g) is finitely generated.

Hence g-trG(ker(f— g))=BC\C is finitely generated, where 77 G is the pro-

jection on G. To show that B: C is finitely generated it suffices, by what we

have just proved, to assume that C is cyclic. Then G can be taken to be the

ring 7?, and -nC!(ker(f—g))=B:C is finitely generated.    □

A subset A of a set B is said to be detachable if, given an element of B,

you can decide whether or not it is in A.

Lemma 4. Let A and B\A be in J( and suppose that A is detachable

(from B) and that finitely generated submodules of A and B/A are detachable.

Then finitely generated submodules of B are detachable.
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Proof. Suppose C is a finitely generated submodule of B and b £ B.

If b $ C (mod A), then b $ C. If b £ C (mod A), then b — c £ A for some

c£ C. Hence b £ C if and only if b — c £ CC\A. But CnA =kerf, where

f:C->B/A, so Cn/I is finitely generated and hence C is detachable.    □

Observe that a consequence of these lemmas is that if R has the property

that finitely generated ideals are finitely related (and detachable), then the

same is true for finitely generated submodules of free /v-modules.

3. The basis theorem revisited. Let F be a property of a ring that is

classically equivalent to the ring's being Noetherian. Suppose we show,

constructively, that if R has property P, then so does R[x]. We are then

legitimately entitled to claim that we have proved a constructive version of

Hubert's basis theorem. The usefulness of such a theorem will result from

the balance between the strength of F and the possibility of verifying P. As

Tennenbaum points out, you can even take P to be condition (1), a con-

dition so strong as to admit no constructive examples, and prove the basis

theorem. The condition we suggest adding to the notion of a Tennenbaum

ring is that finitely generated ideals be finitely related and detachable. The

justification is that this is a useful condition that the integers satisfy and

that is inherited under many constructions. In particular it is inherited by

R[x] from 7?, which is our main result. First a technical lemma regarding

the structure of finitely generated ideals in R[x].

Lemma 5. Let R be a discrete Tennenbaum ring such that finitely

generated ideals are finitely related. Let I be a finitely generated ideal in

R[x]. Then there exists a finitely generated R-submodule M of R[x], and

an integer n, such that

(1) M generates I as an ideal in R[x],

(2) iffe M, then degfSn,
(3) iffe M and deg/<n, then xfe M.

Proof. Let Mx be an 7?-submodule of R[x] generated by a finite set of

generators of 7. Let n be the maximum of the degrees of elements of Mx.

Given M¡ we construct Mj+X as follows. The elements of M¡ of degree

strictly less than n form a finitely generated 7\-module N¡, being the inter-

section of two finitely generated submodules of a finite rank free R-

module. Set Mjl.x = Mj+xNj. Then Mj+X is also a finitely generated R-

module that generates 7as an ideal in R[x], and consists of polynomials of

degree not exceeding n. The chain M, £ M2 £ • • ■ sits inside a free 7v-module

of rank n+1. Hence, since R is Tennenbaum, we have Mj+x = Mj for some

j. Let M = Mj. Note that M={F£ I: deg FSn}.

Theorem. Let R be a discrete Tennenbaum ring such that finitely

generated ideals are finitely related (and detachable). Then the same holds

for R[x].
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Proof. That R[x] is a discrete Tennenbaum ring is proved in [1]. Let 7

be a finitely generated ideal in R[x], and let M be the finitely generated R-

submodule of R[x] constructed in Lemma 5. To show that 7 is finitely

related, let S be a finite set of generators of M, including generators for

{a e M:deg a<n}, such that if s e S and deg s<n, then xs £ S. This last

condition, together with the generators of the 7?-module relations on S,

gives a finite set of relations 01 on S. Now S generates the 7v-module M

and hence the ideal 7. We shall show that any relation 2sSs rss=0, where

rs £ R[x] is a consequence of the relations in 01. We proceed by induction

on n/ = max deg rs. If deg s<n and deg rs>0 for some s in S, we can use

the relations in 01 involving multiplication by x to arrange that deg rsS0

without disturbing the other rt for deg tSdeg s, and without increasing m.

Hence we may assume that deg s<n only if deg rsS0. If mSO, then rs£ R

for all í in S so 2 rss~0 is a consequence of 01. If m>0, let us be the

coefficient of xm in rs. Then 2 uss has degree strictly less than n so there are

elements v, in R such that 2 uss= 2 vss, and vs = 0 if deg s=n. But this is a

consequence of 01, so we can use 01 to decrease m, and we are done by

induction.

Suppose, in addition, that finitely generated ideals of 7? are detachable.

Clearly 7=A/+.xA/-|-jt2A/-|-- • ■ . By induction it is easily seen that iffe

^f¡=0xiM and deg/<n+&, then xf'e 2¿=o •*'M'. Now suppose we are

given / in R[x] such that degfSn+s. Then fe 2£U ^M for some

m^iso xm~sfe 2™o X*M. Thus

m s

xm~'fe 2 x'M = xm-s^x'M,
i= m—s i=0

whereupon fe 2¿=o x'M. So to check iff is in 7, we check to see iff is in

the finitely generated, and hence detachable, 7?-submodule 2¡=o xiM. □

Note that one corollary to this theorem is that finitely generated ideals

in the polynomial ring Z[xx, • • • , xn] are finitely related and detachable,

answering a question of Tennenbaum. Moreover this property is clearly

preserved under the taking of finite products. If we take the quotient of such

a ring modulo a finitely generated ideal, we certainly get a discrete Tennen-

baum ring. It remains to show that we get a ring in which finitely generated

ideals are finitely related (they are clearly detachable) to establish a con-

jecture of Tennenbaum that finitely generated ideals are detachable in

any ring gotten from the integers by forming polynomial rings, quotient

fields, finite products, and dividing out by finitely generated ideals.

Proposition. Let R be a ring such that finitely generated ideals are

finitely related, and let I be a finitely generated ideal of R. Then finitely

generated ideals of Rjl are finitely related.
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Proof. Let J\I be a finitely generated ideal in R\I. Then J is a finitely

generated ideal in R. Let/and g map finite rank free Tv-modules Fand G

onto J and 7. Then/— g maps F@G onto 7©7 with finitely generated kernel

K. Now/induces a map of the finite rank free 7\/7-module F/7F onto 7/7.

The kernel of this map is readily seen to be (-nFK)\IF which is finitely

generated.    D

One last remark. If 7? is a ring in which finitely generated ideals are

detachable, then condition T can be simplified to read

.  ,     Given any infinite sequence {a,} of elements of R, there exists an

n such that an is in the ideal generated by ax, ■ • ■ , an_x.

In fact we simply set p(ax, ■ • • , an) equal to 0, or to an, depending on

whether an is in the ideal generated by ax, ■ ■ ■ , an_x or not.
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