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Abstract

In this paper, we review the procedures for constructing feedforward neural networks in
regression problems. While standard back-propagation performs gradient descent only in the
weight space of a network with fixed topology, constructive procedures start with a small
network and then grow additional hidden units and weights until a satisfactory solution
is found. The constructive procedures are categorized according to the resultant network
architecture and the learning algorithm for the network weights.
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1 Introduction

In recent years, many neural network models have been proposed for pattern classification,
function approximation and regression problems. Among them, the class of multi-layer feed-
forward networks is perhaps the most popular. Standard back-propagation performs gradient
descent only in the weight space of a network with fixed topology; this approach is analogous
to parametric estimation techniques in statistics. In general, these parametric procedures are
useful only when the network architecture (i.e. model) is chosen correctly. Too small a net-
work cannot learn the problem well, but a size too large will lead to over-generalization and
thus poor performance. Hence, recent studies have sought to optimize network size for a par-
ticular class of networks which have the same architecture. There are two general approaches
to this optimization problem. One involves using a larger than needed network and training
it until an acceptable solution is found. After this, hidden units or weights are removed if
they are no longer actively used. Methods using this approach are called pruning procedures
[37, 47, 55, 68, 76]. The other approach, which corresponds to constructive procedures, starts
with a small network and then grows additional hidden units and weights until a satisfactory
solution is found.

The pruning approach has several shortcomings. Firstly, in practice, one does not know
how big a network to start with. Secondly, since the majority of the training time is spent with
a network that is larger than necessary, this method is computationally wasteful. Thirdly,
many networks with different sizes may be capable of implementing acceptable solutions.
Since the pruning approach starts with a large network, it may not be able to find the smallest
acceptable solution. Fourthly, these pruning procedures usually measure the change in error
when a hidden unit or weight in the network is removed. However, such change can only be
approximated? for computational efficiency, and hence may introduce large errors, especially
when many are to be pruned. Regularization [8, 35, 99] solves some of these problems, but
it requires a delicate balance between the error term and the penalty term. It also increases
the training time, and the penalty term tends to create additional local minima in which one
will frequently get stuck while searching for a “good” solution to the minimization problem
[35]. Hence, constructive algorithms seem to be more promising than pruning algorithms.

In this survey paper, we will mainly concentrate on regression problems? In a regres-
sion problem, one is given a d-dimensional random vector X, the components of which are
called predictor variables, and a random variable, Y, called response. A regression surface
[ describes a general relationship between variables X and Y. The constructive procedure
attempts to find a network that is an exact representation or, as is more often the case, a good

2Typically, approximation involves using up to the first [47, 68] or second [37, 55] term in the Taylor series
expansion for the change in error. Further approximation is possible by computing these values as weighted
averages during the course of learning or by assuming that the Hessian matrix of the error function is diagonal
[55].

?For simplicity, we assume that there is only one target function to be approximated. When there are more
than one target functions, each corresponding to one output unit in a neural network, one could approach this
by simply treating the approximation of each target function as a different (unrelated) regression problem.
Other methods that utilize the relationship among these target functions are discussed in [27].



enough approximation of f. Classification problems can be considered as a special case. For
example, for a classification problem with K classes, one can in principle construct a neural
network with K output units, whose activation values are usually constrained to [0,1]. The
kth output unit (1 < k < K) corresponds to class C and learns the posterior probability of
class (', given the input z. A number of other constructive methods that can only be applied
to classification problems (such as [2, 15, 23, 62]) will not be discussed here. Interested readers
may consult the short surveys in [21, 70].

This paper will review both purely constructive procedures and procedures that have con-
structive components for feedforward neural networks. The rest of this paper is organized as
follows. In Section 2, general issues on constructive approximation will be discussed. A taxon-
omy of constructive procedures based on the resultant network architecture will be presented
in Section 3. In Section 4, we will discuss algorithms used to determine the network weights.
Criteria to determine when to stop the addition of new hidden units will be summarized
briefly in Section 5, followed by some concluding remarks in the last section.

2 Issues in Constructive Approximation

2.1 Defining the Problem as a Function Space Search

The problem of finding a suitable neural network to approximate the target function can be
viewed as a function space search problem, with the search space, initial states, goal states,
and the control strategy defined by the constructive procedure.

2.1.1 Search Space

The search space is a subspace in a certain function space. The function space is typically
a normed linear space?! The norm gives us a notion of distance: If w,v are in the normed
linear space, then the distance from w to v (or v to w) is ||v — w||. Different norms, and hence
different function spaces, are useful in different problems. A few examples will be given in
Section 2.1.3.

An exhaustive search in the whole function space is computationally prohibitive. Hence
the search space, containing all network functions that can possibly be implemented by the
constructive algorithm, is only a subspace and is determined by the way hidden units are
generated:

e How the net input to a new hidden unit is computed?

*A normed linear space [51] is a linear space defined with a real-valued function || - || called the norm. For
any v in the space, the norm satisfies the following three properties:

1. |lv|| > 0 with equality if and only if v = 0.
2. ||[Av|| = |Al||v]| for any scalar A.
3. lv +w| < vl 4 |lw]|-



¢ How a new hidden unit is connected to the existing network?
o What is the transfer function of the new hidden unit?
¢ How are the new and existing network weights determined?

Note that in contrast to conventional learning with fixed-sized networks, there are two levels of
search for constructive procedures. The first level searches for the (nearly) optimal network
architecture. With the architecture determined, the second level searches for the (nearly)
optimal set of weights.

Usually, the design of the resultant network architecture will have to answer the following
questions:

e Whether it is a multi-layer perceptron, a radial basis function network, or others?
o Whether it has a single hidden layer, or multiple hidden layers?

o Whether the connections are regular in the sense that the hidden units are fully con-
nected to all hidden (or input) units in the previous layer and to all hidden (or output)
units in the next layer, or there may be irregular connections across the layers?

Most resultant network architectures do have sufficiently strong approximation power
(Section 2.2), and hence no representation bias in the machine learning sense. But, on the
other hand, constructive methods introduce procedural bias by favoring smaller networks.
Moreover, if the target function can be represented sufficiently closely by a reasonably sized
network constructed from the procedure, generalization performance can be good. Otherwise,
generalization will be poor (Section 2.3). Hence, different constructive procedures, by defining
(constraining) different subspaces to be searched, introduce different forms of learning bias
[65], and it is important that the particular type of bias matches with the problem at hand.
Thus, just as different network architectures favor different types of function [27], there is no
constructive procedure that dominates all others over all potential target functions.

2.1.2 Initial State

The initial state refers to the network function before the constructive procedure starts. All
procedures start with a network with no hidden units. In certain algorithms [18], the initial
network has direct connections from inputs to outputs. Training is first performed on this
initial structure, and hidden units are added only when the performance is not satisfactory.
This ensures that the regression problem at hand is out of the capability of simple linear re-
gression, or, if it is a classification problem, that the pattern classes are not linearly separable.
For the other cases when there is no connection among the (input and output) units, we take
this initial state to be the null function.



2.1.3 Goal States

The goal states are network functions that are acceptable solutions to the problem, that
is, those that are sufficiently good approximations to the true target function. Whether an
approximation is good or not depends on how we measure the “closeness” between functions,
which in turn is problem dependent. As mentioned in Section 2.1.1, this distance measure is
induced from the norm used in the function space. For two functions f, g defined on an input
space X, commonly used distance measures include the uniform distance,

I/ = gll = sup [f(z) — g(x)|. (1)
z€X

If f is the target function to be learned and g is the actual function implemented, the uniform
distance singles out x values at which the approximation is worst (that is, where the absolute
error is greatest) and assigns as a measure of closeness these worst possibilities. It thus
provides absolutely certain bounds on the error at the expense of these bounds having to be
large enough to be valid at every point, no matter how exceptional.

Another commonly used measure is the L, distance:

1/p

17 =gl = | [ 17) = gtoPdnta)] g

where p is the input environment measure, and p is a real number, p > 1. In the case p = 2,
we recover the usual Fuclidean distance. Note that as in both (1) and (2), the distance
measure computed has to be based on the whole input space X, not just on the patterns in
the training set. The implications will be re-examined in Section 2.2.

Moreover, there are more than one goal states, i.e., there exist many networks that are
sufficiently good approximators. The good side is that it is usually not necessary to find the
globally best network, and most constructive procedures just give one of these sufficiently
good approximators as solution. The bad side is that different network solutions, though
equally good as approximators, may have different interpretations. It is sometimes desirable
to examine multiple solutions before selecting the one that explains the data best. This may
be done, for example, by repeating the constructive procedure several times, using different
initial weights in the learning process.

2.1.4 Control Strategy

The generate-and-test methodology is taken in all the constructive procedures:

1. Generate a possible network according to the control strategy, which defines the way to
search for a solution (architecture and weights).

2. Test to see if this solution is acceptable.

3. If it is acceptable, exit; otherwise, go back to step 1.



The search for the best set of weights can be performed using various optimization algo-
rithms, which will be discussed in Section 4.2. For the architecture, constructive procedures
always search the smaller networks first, and then extend to larger and larger networks.
Besides having better generalization performance, smaller networks also enjoy the following
advantages:

e The cost of computation, measured by the number of arithmetic operations, is of O(W)
on a serial computer, where W is the number of weights. Hence, a smaller network is
more efficient both in forward computation and in learning.

e A smaller network can be more easily described by a simpler set of rules. Moreover, the
function of each hidden unit may be more easily visualized.

With a given number of hidden units, certain constructive procedures can only produce
one network architecture [3, 18, 39, 43, 57, 75, 88, 91, 104], and hence there is only a single
network architecture that can possibly be generated given the current network configuration,
and so the control strategy is simple. In more powerful procedures, however, there are several
such possibilities and some kind of searching technique is required. This allows for greater
exploration of the function space, possibly leading to better architectures found, at the expense
of longer time. The following search strategies have been employed.

2.1.4.1 Depth-First Search with Backtracking

Depth-first search, one of the most straightforward ways to implement systematic generate-
and-test procedures, is used in [69]. However, depth-first search is an exhaustive search
technique. For it to be effective, one should ensure that unproductive partial paths are never
too long. This is done in [69] by defining certain networks as not “promising”, backtracking
is then used to recover from these dead-end positions.

2.1.4.2 Best-First Search

Teng and Wah [96] proposed a population-based learning system for designing feedforward
networks. Under this scheme, a pool of networks, each having no hidden unit initially, is
maintained. The most promising network is selected, trained and allowed to grow for a
certain time quantum. Its performance, based on a number of factors such as the training
error, its rate of change and also the number of epochs trained, is then measured. This cycle
repeats again until a satisfactory network solution is found. Note that as learning progresses,
the pool may have networks with different numbers of hidden units.

2.1.4.3 Nondeterministic Search

For example, in [97], a new architecture is randomly chosen from the set of possible ar-
chitectures. An energy criterion, modified from the minimal description length (MDL) [79]
information criterion, is then computed for the new network and the question of whether to
accept or reject this network is determined via simulated annealing.



2.1.4.4 Genetic Algorithms

A related approach is the use of evolutionary approaches. By viewing the search for the opti-
mal architecture as searching a surface defined by levels of trained network performance above
the space of possible network architectures, [64] mentioned that such a surface is typically

o infinitely large, as the number of possible hidden units and connections is unbounded;

¢ non-differentiable, since changes in the number of units or connections must be discrete,
and can have a discontinuous effect on network performance;

e complex and noisy, as it is dependent on initial conditions;

e deceptive, as structurally similar networks can have very different network performance,
and

e multi-modal, as structurally dissimilar networks can have very similar performance.

The main idea of using genetic algorithm based evolutionary approaches is then that they are
good at dealing with these kinds of search spaces. A review of evolutionary artificial neural
networks (EANN) can be found in [100, 103]. However, note that in the direct encoding
scheme for EANN connectivity (such as in [64]), the size of the connectivity matrix has to be
pre-defined, and hence they cannot be used with constructive procedures. Moreover, these
methods, besides being very demanding in time and storage, also require a good representation
of the network structure and a good design of the genetic operators.

2.2 Universal Approximation and Convergence Properties

Given a constructive algorithm, we need to consider the universal approximation capability
of the resulting network architecture: Is the family of functions implemented by the net-
work broad enough to contain f or a good enough approximation of f? The next question
concerns the convergence properties: Can the procedure produce a convergent sequence of
network functions that, in the limit, approximates the target function as closely as desired. In
other words, does the sequence {f,} so generated strongly converges®to f as n — 0o? Appar-
ently, the universal approximation capability of a network structure is a prerequisite for the
convergence of its learning procedure. Attempts to solving the problem without considering
these questions could be very time-consuming if not fruitless.

Note that, as mentioned earlier, the norm used in the convergence definition has to be
based on the whole input space X, not just on the training patterns as is done in [11, 60].
This is because one is usually more interested in the generalization performance rather than
performance on the training set, and a perfect recall of the training set is always possible
simply by having more hidden units. Hence, “convergence”, in the sense of reducing the
training error to zero [11, 60], is not quite interesting.

°A sequence {fn} strongly converges [51] to f if limp_oo ||f — ful| = 0, where || - || is the norm for the
function space being considered, such as those defined in (1) and (2).



2.3 Bias-Variance Tradeoff

Denote the function estimator corresponding to a neural network with n hidden units as f,.
The mean squared error (MSE) [32] of f, at an input point 2 can be decomposed into two
components:

MSEL fa(2)}

E[(f(x) = fu(2))*]
(f(2) = E[ful2)])* + E[(fu(2) = E[fa(2)])?]

= [bias(z)]* + variance(x),

where F[-] is the mathematical expectation taken over all training samples of size N. The
integrated mean squared error (IMSE) is obtained by integrating MSE(z) over all 2’s in the
input domain X. As empirically shown in [32], bias falls and variance increases with the
number of hidden units. This phenomenon agrees well with what one generally observes in
practice. When a neural network is trained, the error on the training patterns continues to
decrease. The IMSE, on the other hand, tends to decrease in step with the training error
initially, as the network generalizes from the training data to the underlying function. At
some point, however, the network starts to take advantage of these idiosyncrasies in the
training data and the IMSE starts to increase again even though the training error continues
to decrease (Figure 1). Hence, it is important to have a proper tradeoff of the bias and
variance by stopping the network growth appropriately [32].

IMSE

Training error

Number of Hidden Units

optimal

Figure 1: Typical error curves with increase in the number of hidden units.

3 Network Architecture

This section describes the various constructive procedures, categorized by the resulting net-
work architectures they produce. The approximation capabilities of these architectures are
also discussed. One can see that an important goal of these constructive procedures is to
develop powerful feature detectors without using excessive weights or hidden units. Pruning



is sometimes used in the procedures mentioned in this section. The network may be pruned
after completion of the constructive process [39, 43], or be interleaved with the constructive
process [69]. However, details of these pruning methods will not be discussed in this paper.

3.1 Single Hidden Layer

New hidden units are always fully connected to all input and output units, with the resultant
network having one single hidden layer (Figure 2). Because of the regular network structure
and constant fan-in for the hidden units, hardware implementation is simple. The hidden
units may be of simple or complex functional forms.

output O
hidden units D) CO—e
iNnput

Figure 2: Single hidden layer architecture. In the diagram, empty circles represent in-
put/hidden/output units while a black dot refers to a connection between units.

3.1.1 Simple Hidden Units

There are two main categories. The first category is based on the multi-layer perceptron
(MLP), like the dynamic node creation network [3] and [39, 49, 66, 86, 91, 104, 106]. The
hidden unit transfer function in a MLP is of the form:

9(x) = ¢(a’x +0),

where ¢ is usually the sigmoidal function ¢(z) = 1/(1+ 7).

The other category is based on the radial basis function network (RBFN), like the Gaus-
stan potential function network (GPFN) [57], the resource-allocating network (RAN) [75],
and the supervised growing cell structures (GCS) [29]. The hidden units, also called radial
basis functions (RBF'), are of the form:

9(x) = o([Jx = xif]),

where || - || is usually the Euclidean norm or a weighted norm [33] and x; is the center of the
basis function. ¢ is a radial kernel function, the most common form of which is the Gaussian



function:

6(2) = exp(—5 ).

where o is called its width.

Coarse-coding resource-allocating network [14] is similar to RAN, but replaces the layer
of multi-dimensional Gaussian basis functions by a layer of one-dimensional Gaussian basis
functions and a layer of pi-neurons. The multiplication operation of the pi-neurons basically
mimics the multi-dimensional units using its one-dimensional counterparts, but sharing of
the one-dimensional units among different pi-neurons is allowed, resulting in more compact
networks and hence more efficient learning.

The approximation properties of these two types of network are well known. Universal
approximation of single hidden layer MLP using different distance measures has been exten-
sively discussed in the literature (see for example [13, 31, 40, 41]), while that of RBFN can
be found in [36, 71, 72]. Intuitively, the results mean that these two types of network, with
as few as one hidden layer, can approximate any “reasonable” real-valued function to any
desired accuracy, provided that sufficiently many hidden units are available.

In practice, the two networks may have different performances in different problems.
While a RBF unit responds significantly to only a small localized region of the input space,
a hidden unit in a MLP has spreads that are infinitely large along directions orthogonal to
the vector a. Hence, RBFN may not perform well for high-dimensional data, because of the
“curse of dimensionality” [6] which arises from the fact that data in high-dimensional space
are surprisingly sparse [28]. Single hidden layer MLP, on the other hand, may not work well
for certain kinds of highly nonlinear problems, like the two-spirals problem [18].

3.1.2 Flexible Hidden Units

In this category, the network constructed still has only a single hidden layer, but the hidden
unit transfer functions are more “flexible” and are capable of forming more complicated feature
detectors [67]. This flexibility is achieved at the expense of requiring additional parameters
in each hidden unit transfer function. Thus, for the same number of hidden units, this kind of
networks will have a smaller bias but a larger variance than those with simple hidden units.

3.1.2.1 Adaptive Spline Networks

The first method is the adaptive spline networks (ASP) [25], which is developed from the
statistical technique multivariate adaptive regression splines (MARS) [26]. The regression
surface is represented in the form:

Jul@) = iﬁjgy‘(ﬂﬁ),



where (3; is the weight connecting the output to the jth hidden unit g;, which is of the form:

K,
gi(z) = T (zj0 — tri)%-
k=1
Here 1 < j(k) < d selects an input component, 1 < K; < d is the number of factors in the
product, t; is the knot location, and ¢ is the order of the spline. (wj(k) —t;)% , known as the
truncated power function, is defined as:

0 k) < thys
(x](k) — tk]‘)q Tik) > trj.

(20 — i)} = {

MARS, and hence also ASP, can realize both additive functions and binary tree topology
similar to those generated by recursive partitioning strategies like the classification and re-
gression tree (CART) [7]. Both additive and CART methods have been highly successful in
many complementary situations: additive modeling when the target function is close to addi-
tive, and CART when it has significant high order interactions between the input variables.
Thus, MARS and ASP are likely to be successful in a wide range of situations.

3.1.2.2 Projection Pursuit

The second class of methods is also related to a statistical technique, called projection pursuit
regression® (PPR) [28, 42]. In PPR, the regression surface is approximated by a sum of n
empirically determined univariate functions ¢; of linear combinations of the predictors, i.e.

) = Y gytalx) ®)

where a; is the projection vector with ||a;|| = 1. The g;’s are called smoothers in the statistics
literature. The obvious similarity between (3) and single hidden layer neural networks, by
taking the ¢;’s as hidden unit transfer functions, suggests that a direct formulation of PPR
into neural network is possible, such as in projection pursuit learning (PPL) [43, 52].

This class of methods can be further sub-categorized depending on whether the hidden
unit transfer function is nonparametric or parametric.

3.1.2.2.1 Flexible Nonparametric Hidden Units

In this category, the hidden unit transfer functions are nonparametric, i.e., they are not
restricted to any pre-specified family of functions. In PPR, ¢; is obtained by a variable span
smoother called the supersmoother [95], whose basic building block is a symmetric k-nearest
neighbor linear least squares fitting procedure. The optimal value of k, called the span of
the supersmoother, is chosen for each input point using a local cross-validation procedure.
However, the use of supersmoothers suffers from several disadvantages, as discussed in [43]:

®PPR has also been applied to classification problems, see [22, 81].
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1. the use of large regression tables,
2. unstable approximation in calculating derivatives, and

3. piecewise interpolation in computing activation values.

Automatic smoothing spline projection [82] uses smoothing splines [95], which are also
non-parametric, as smoothers. They can give accurate derivative calculation and smooth
interpolation, but still require the use of a smoother matrix. Moreover, the generalized cross
validation statistic, which is used to select the degree of smoothness, tends to under-smooth
[38]. Consequently, heuristics are required to remedy this problem. On the computational
aspect, smoothing splines are usually more computationally intensive.

The universal approximation capability of PPR networks, with respect to the L, norm,
follows directly from its convergence property, which will be discussed in Section 4.1.3.

3.1.2.2.2 Flexible Parametric Hidden Units

Here, the hidden unit transfer function is of a certain parametric form, instead of non-
parametric, though the form is still very flexible. Compared to the use of nonparametric
hidden units in PPR, this method enables smooth interpolation, instead of piecewise inter-
polation. Moreover, the derivative of the hidden unit transfer function is usually simple,
enabling fast and accurate computation of the derivatives without the use of large regression
tables. However, the flexibility or complexity of the hidden units is controlled by a parameter.
The selection of this parameter may be very critical and a wrong selection may lead to poor
training and generalization performance.

In projection pursuit learning (PPL) [43], the hidden unit transfer function is represented
as a linear combination of the Hermite functions:

R
g(Z) = Z_: CThT(Z)7

where h,(z)’s are the orthonormal Hermite functions and R, called the order, controls the
complexity of the hidden unit. This parameter is less crucial to performance when a bias
term is added to the linear combination of the predictor variables [52].

Another method is to use fixed-sized neural networks as hidden units. For example,
connectionist projection pursuit regression [98] uses sigmoidal networks. Saha et al. [83]
use radial basis function networks. The number of hidden units in these fixed-size networks
controls their flexibility. The universal approximation capabilities for these networks and PPL
networks follow directly from the universal approximation results for traditional feedforward
networks, provided that a bias term is included in the linear combination of the predictor
variables [52].

In ridge polynomial networks (RPN) [88], each hidden unit is a pi-sigma network (PSN)
[87]:

k

g(x) = H(aZTX + 02)7

=1
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where k is called its degree. Hidden units added to the network have increasing degrees, i.e.,
the first hidden unit is a PSN of degree one, the second one is of degree two, and so on. Thus,
subsequent hidden units have an increasing number of parameters associated and become
increasingly flexible. The RPN is a sum of these PSNs,

n noJ

fl@)y=3gi(x)=>_ [I(afix+0;).

Its universal approximation capability, with respect to the uniform norm, is mentioned in

[88].

3.2 Multiple Hidden Layers

In this category, the resultant network has more than one hidden layers. Moreover, there
may be irregular connections across different layers. This flexibility over single hidden layer
networks allows powerful high-order feature detectors to be developed.

3.2.1 Full Connection to All Pre-existing Units

In the cascade-correlation architecture [18], the hidden unit transfer function is still of simple
form, such as sigmoidal or radial basis functions. However, when a new hidden unit is to
be created, besides establishing connection with each of the network’s original inputs and
outputs, it also establishes connection with every pre-existing hidden unit. Each new unit
therefore adds a new one-unit “layer” to the network, lending to a cascade architecture (Fig-
ure 3). Cascade-correlation architecture has been applied to segmentation of magnetic reso-
nance images of the brain [34], prediction of software reliability [48], classification of cervical
cells [63], implementation of the inverse kinematic transformations of a robot arm controller
[90], modeling of human cognitive development on balance scale problems [89], and model-
ing of chaotic timeseries [12]. A parallel implementation of the original cascade-correlation
architecture using the Time Warp Operating System is also available [93].

The resultant deep network structure leads to the creation of very powerful high-order
feature detectors even with simple hidden unit transfer function. This is sometimes very
advantageous. However, it also gives rise to long propagation delays and an ever-increasing
fan-in of the hidden units as more units are added. All these make VLSI implementation
difficult. Generalization could also have problems.

There are many variants of this basic architecture. For example, in [90], instead of having
the hidden units connected to all output units, each output unit has its own set of hidden
units. It is reported to have faster training and better generalization, at the expense of using
more hidden units. In the cascade network architecture [59], after a hidden unit ¢ is trained,
nonlinear functions of g are also added to the network together with ¢g. The cascade structure
may also be combined with hidden units of more powerful transfer function such as those
mentioned in Section 3.1.2. For example, the hidden units in the cascade LLM networks [58]
are local linear maps. FEach such hidden unit learns a linear approximation of the target
function that is valid within its “receptive field”.

12
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Figure 3: Multiple hidden layer network with full connection to all pre-existing units.

The universal approximation capability is obvious, as this cascade architecture can be
reduced to the regular single hidden layer network by removing all the hidden-to-hidden
weights.

3.2.2 Partial Connection to Some Pre-existing Units

To avoid the problems resulted from full connection, one may use pruning to reduce the degree
of connectivity. In [92], as each hidden unit is trained, the saliency of its weights is calculated
and the weights that are determined to be weak are eliminated. However, such an approach is
computationally expensive and the saliency can only be approximated, sometimes with high
error. A natural alternative which will be discussed in this section is to limit the fan-in of
the hidden units and connect the new hidden units to only a selected few of the pre-existing
units.

3.2.2.1 Fixed Connection Policy

The very deep structure in the cascade-correlation architecture is caused by many one-unit
hidden layers. Phatak and Koren [74] modified it by allowing more than one hidden units in
each layer, and instead of connecting the new hidden units to all pre-existing hidden units,
they are connected only to the previous hidden layer. The fan-in of the hidden units can
thus be controlled by restricting the number of units allowed in each hidden layer. When this
maximum is reached and a new hidden unit is to be added, the output layer is first collapsed
into a new hidden layer, with the new hidden units added to this new layer. As a result, a
regular multiple hidden layer structure is formed (Figure 4).

However, while the hidden units in the higher layers (i.e. those that are closer to the
output layer) are capable of implementing complex functions in the input space, simpler
functions may be difficult to realize when no direct input to hidden connections are provided
in the architecture. Moreover, the maximum number of hidden units allowed in each layer
may be crucial. Restricting this to a small number limits the ability of the hidden units to
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Figure 4: Modified cascade-correlation architecture with partial connection.

form complicated feature detectors, as each hidden unit can only see its previous hidden layer
outputs. With this restriction in mind, the universal approximation capability of this kind
of architecture, even when the number of hidden layers is allowed to grow without bound,
seems unclear. This weakness, however, can be removed by re-introducing connections from
all hidden units to the input and output units.

A similar method is the stacking learning algorithm [19], which also produce hidden layers
by collapsing the output layer. The hidden units have direct connections to all input and
output units, hence the resultant network architecture is an universal approximator. However,
additional hidden units are not added to these collapsed layers, i.e., the number of hidden
units in each hidden layer is always equal to the number of output units. This restriction
possibly impedes the network performance.

3.2.2.2 Competitive Connection Policy

Another class of algorithms which also produces multiple hidden layers is inspired from the
group method of data handling (GMDH) [20]. Here, instead of pre-determining the way in
which new hidden units are connected, a lot of candidate units using different connections
are generated and the new hidden unit is then chosen from among these candidate units in a
competitive manner.

In [73], new connections may be created by any possible combination of the outputs from
the preceding hidden (or input) layer. Candidate hidden units are then added to the network
whenever their performances satisfy certain performance measure. In the self-organizing
neural network [97], candidate hidden units are generated by allowing connections to any
input or pre-existing hidden unit. A new hidden unit is then randomly selected from this
candidate pool and simulated annealing is used to determine whether to accept or reject this
addition. The resulting architecture is no longer a regular multiple hidden layer structure,
but has many intra-layer connections (Figure 5).

Because of the large number of candidate units that are to be created, the hidden unit
transfer functions are usually constrained to be of some simple form for computational reasons
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Figure 5: GMDH-type architecture.

(details in Section 4.1.5), of which the polynomial form is the commonest, such as:
g(i,j) =a+ bo; + b]‘Oj + CZ'OZ2 + C]‘O? + dijOin,

where the a,b,c,d’s are the connection weights, and ¢, 7 represent the indices of the units
where connections are made, and o;,0; are the corresponding output activations from these
selected units.

3.2.3 Other Ad hoc Methods

For example, in [69], a whole hidden layer may be added to the network between the last
hidden layer and the output layer. The number of hidden units in the new layer n,e, is
heuristically set to be:

Ny + np

Npew = Lijv
2

where n, is the number of output units and np is the number of hidden units in the last
hidden layer. Obviously, this method is quite ad hoc.

4 Learning Algorithm

4.1 Training of the Network Weights

To add a new hidden unit, the weights of both the new and existing connections have to be
determined. This section summarizes the methods that are commonly used, and also their
convergence properties. Note that computational concern is usually an important issue. If the
network has a fixed size, its weights have to be optimized only once. However, in constructive
algorithms, this optimization process has to be repeated each time a hidden unit is added. In
some cases, each new hidden unit has a number of candidates and optimization is required
for each candidate. Hence, to be computationally efficient is very important.
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4.1.1 Encoding the Novel Pattern

For algorithms that can be used for sequential learning, the network weights may simply
be obtained from the training pattern. For example, in RAN7 [14, 75], which uses radial
basis functions as hidden units, the network allocates a new hidden unit to memorize a novel
pattern. A pattern is considered novel when it is far away from all basis units in the network
and its error, which is the difference between the desired output of the pattern and the
network output, is large. Another novelty detection method is discussed in [80]. The center
of the new unit is set to the novel pattern, with its width proportional to the distance from
the pattern to the center of the nearest basis function. The weights connecting this new unit
to the output is set to the error vector. On the other hand, when the pattern is not novel
enough, no new unit is added and the parameters of the nearest basis function and its weights
to the output are updated accordingly to reduce the error. GPFN [57] also uses a similar
method. The convergence properties of these procedures are not known.

As mentioned in [29], the problem with this approach is that noisy data may lead to a large
number of hidden units. Moreover, there is a resolution parameter that specifies the smallest
distance two RBF units can have and features that are smaller than that will get averaged
out. This makes it impossible to model functions appropriately that vary on a smaller scale.

4.1.2 Retraining the Whole Network

The next simplest approach is to use nonlinear optimization techniques such as the well-
known backpropagation algorithm to train the whole network after hidden unit addition
[3, 39]. Convergence of the network functions to the true function using this method follows
directly if the universal approximation capability of the network architecture holds.

However, optimization becomes increasingly difficult and slow as the network grows in size.
Moreover, learning all the weights at the same time suffers from the so-called moving target
problem [18]. Intuitively, each hidden unit is trying to evolve into a useful feature detector,
but its task is greatly complicated by the fact that all the other hidden units are changing at
the same time. The hidden units in a given layer of the network cannot communicate with
one another directly; each unit sees only its inputs and the error signal propagated back to
it from the network’s outputs. The error signal, defining the problem that the unit is trying
to solve, changes constantly. Instead of a situation in which each unit moves quickly and
directly to assume some useful role, we see a complex dance among all the units that takes a
long time to settle down.

4.1.3 One Unit at a Time

A less computationally intensive method that also avoids the moving target problem is by
keeping the weights of the pre-existing hidden units fixed (input weight freezing), while allow-
ing only the new hidden unit and the weights connecting hidden and output units to learn.
This is commonly used in many algorithms, such as PPL-type algorithms [28, 43, 82, 83, 98],

TA function space approach to analyzing the learning algorithm of RAN is developed in [46].
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cascade-correlation architecture and its variants [18, 59, 58, 91, 104, 105], and methods in
[86, 106]. Experimentally, this strategy allows the network to learn faster. Moreover, the hid-
den units, acting as feature detectors, are never cannibalized once built. They are available
from that time on for producing outputs or more complex features.

However, because the parameters of the hidden units are kept fixed after installation into
the network, the convergence property of the constructive algorithm does not follow readily
from the universal approximation capability of the network architecture. In some cases,
convergence can still be shown to exist. For example, strong convergence of PPR is proved in
[45], which states that if each new g, in (3) at stage n is given by the conditional expectation
[42]:

gn(z) = E(f - fn—1|agX = 2),

and the projection direction a, is chosen as long as

E(ga(ayX))? > p sup E(ga(b"X))?,
bTb=1

where 0 < p < 1 is fixed, then f, in (3) strongly converges to the desired f. Convergence
properties of the other algorithms will be discussed in later sections.

To make up for the possible degradation in performance, back-fitting [28, 43] is sometimes
used to fine tune the existing hidden units when a new hidden unit has been added. This
consists of cyclically adjusting the parameters associated with each previously installed hidden
unit, while keeping the parameters of the other units fixed, until there is no significant change.
Alternatively, training of the new hidden unit(s) can be followed by retraining the whole
network, as in the sequential network construction method [66].

Training of the new hidden unit can be performed by back-propagation as usual. However,
for efficient modeling of discontinuities in the target function, [56] used data from different
localized portions of the input space to train each new unit. It is reported to have more
accurate results and require considerably less computation when compared with standard
back-propagation, for functions with many discontinuities.

4.1.4 One Unit and One Layer at a Time

Training can often be speeded up by proceeding in a layer-by-layer manner. First, the weights
feeding into the new hidden unit are trained (input training). They are then kept constant
and the weights connecting from it to the output units are trained (output training). In so
doing, only one layer of weights needs to be optimized each time and there is never any need
to back-propagate the error signals.

There are several criteria which can be used in input training. For example, in [59],
the new hidden unit is treated as an interim output unit, and the usual (squared) error
criterion is used. In the cascade-correlation architecture [18] and its variant [91, 104], the
new hidden unit maximizes a correlation function between the residual error and the hidden
unit activation. Some other correlation-based functions are proposed in [11, 30, 53]. The
convergence property of the cascade-correlation learning procedure, for networks using the
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hyperbolic tangent as hidden unit transfer function and assuming the input environment
measure to be uniform, is proved in [16]. More general results, extending to other hidden
unit transfer functions, correlation functions in [30, 53] and input environment measures, are
discussed in [53]. However, for the criterion function in [11], its convergence property is not
known.

Besides, a projection index [105], which finds “interesting” projections that deviate from
Gaussian distributions, can be used. However, this criterion is probably more suitable for ex-
ploratory data analysis [24] rather than for regression, as projections that are of the Gaussian
form may also be useful. Its convergence properties is, again, unknown.

Alternatively, one can use the same error criterion in both input and output training
(such as the squared error criterion), such as in [59, 58]. One can also use a scheme similar
to that proposed in [1]. The weights in each layer are updated in turn, by keeping all the
other weights unchanged, and the whole process is cycled many times. For example, in PPL
[43], the order of updating is first the projection directions, then the parameters associated
with the hidden unit transfer function, next follows the output weights, then back to the
projection directions, and so on. Note that only the optimization of the projection directions
is a nonlinear problem, while the other two are linear.

In RPN, there is only one single layer of weights for each PSN, so all the weights can be
updated at the same time. However, this updating scheme can lead to instability problems
unless the learning rate is sufficiently small [88]. To remedy the problem, an asynchronous
rule is used. If the new hidden unit (which is a PSN) is of degree k, then one of the k
projection vectors is chosen and updated according to the squared error criterion. For the
same input pattern, the output is recomputed with the updated projection vector, and the
error is used to update another projection vector. This procedure is performed k times for
every input so that all k sets of weights are updated once. The convergence of this procedure
is unknown.

4.1.5 Reducing to a Linear Problem

An entirely different method is to use a restricted class of transfer functions so that the hidden
unit output is linear with respect to its parameters, as is common in GMDH-type networks
[73, 97]. Optimizing the parameters with respect to the squared error criterion reduces to a
linear problem, i.e. computation of the pseudo-inverse with closed-form solution. The speed
thus gained allows repetition of this optimization problem for each connectivity pattern during
unit addition.

4.1.6 Miscellaneous Scheme

In supervised GCS [29], adaptation of the parameters associated with the RBF units is similar
to that of Kohonen’s feature map [50], while that of the weights connecting the RBF units to
the output units is by the delta rule. When a new unit is to be added (which is determined
by resource variables distributed among the RBF' units), the new weights are obtained from
units in its neighborhood.
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4.2 Optimization Algorithm

Training can be done by any nonlinear optimization algorithm that works for fixed-size net-
works, such as back-propagation or its variants like quickprop [17]. Alternatively, standard
optimization methods such as quasi-Newton, conjugate gradient, Newton-Raphson, Gauss-
Newton or Levenberg-Marquardt methods [84] or other methods like recursive least-squares
[4], extended Kalman filter [46] and genetic algorithms [101] can also be used. A review can
be found in [44, 102].

In algorithms that have the optimization problem boiled down to a linear problem, the
optimal weights may simply be computed by the pseudo-inverse, instead of the methods
mentioned above.

4.3 Use of Patience Parameter

For those constructive algorithms in which the optimization problem boils down to a linear
problem during training, the connection weights can be obtained fairly easily. Otherwise, it
is computationally more effective to stop the training of each new hidden unit prematurely,
through the use of a patience parameter as is done in [3, 18, 39, 104]. Training is stopped
when the training error does not decrease by a certain fraction after a pre-specified number
(the patience) of training epochs. Experimentally, the use of patience can save a substantial
amount of training time, compared to running to a fixed number of training epochs determined
a priori, without degrading the overall performance [94].

4.4 Use of Candidates

The use of candidates during training of the new hidden unit is common in many constructive
algorithms. A number of candidates are generated, from which the “best” one is selected to be
installed into the network. Training of the different candidates may start from different initial
seeds, hence a large candidate pool gives a better chance of finding a good local optimum in the
nonlinear optimization problem. In a way, this corresponds to the Monte Carlo sampling of the
weight space to get the best solution to the problem. For GMDH-type algorithms, candidates
are a result of the competitive connection policy, in which different candidates using different
combinations of connections or different transfer functions are generated. Candidates are
also used to allow for the selection for different hidden unit transfer functions in the cascade-
correlation architecture [18], and for different orders of the hidden unit transfer function in
PPL [54].

On the selection of the candidate, the winner may simply be the one producing the smallest
residual error. However, more complex hidden units may be able to produce smaller training
error, but with worse generalization performance. Hence, information criterion such as MDL
[79] may also be used in the selection process.

19



5 Criterion to Stop Adding New Hidden Units

This involves the issues of evaluating network performance, and finding the architecture with
the best expected performance. Model selection is a big topic, and we give only a brief sum-
mary here. For example, it may be based on the training error, when it is less than a threshold
[39] or flats out. However, it is well known that the training error is biased. Alternatively, it
may be based on a separate test set [73], or on more complicated cross-validation [66] or boot-
strapping methods. Criteria like Akaike’s information criterion (AIC), Bayesian information
criterion (BIC), final prediction error (FPE), generalized cross-validation (GCV), generalized
prediction error (GPE), predicted squared error (PSE) etc. [66] may also be used. Besides,
the Bayesian evidence [61], by formulating in a Bayesian framework, may also be used.

6 Conclusion

In this paper, we review the different procedures used for constructing feedforward neural
networks. Although the list of articles surveyed here is not exhaustive, one can still notice
a conglomeration of various network architectures and learning algorithms. All constructive
procedures attempt to construct good feature detectors, i.e. the hidden units, for the specific
problem under investigation, without using excessive weights or hidden units. While proce-
dures that construct networks with a single layer of simple hidden units may not be able
to solve certain highly nonlinear problems, other procedures develop powerful feature detec-
tors either by increasing the complexity of the hidden unit transfer function or by building a
multi-layer structure. In the process, different procedures induce different learning biases, and
hence different constructive procedures are suitable for different types of target function to be
learned. The identification of what class of target functions is most suitable for a particular
constructive procedure will be particularly useful from a practical point of view.

Moreover, computational efficiency is always an important concern. One may also notice
a close relationship between the hidden unit transfer function, the number of possibilities to
connect the new hidden unit, and the learning algorithm. Training of complex hidden units
is usually more time-consuming than the simple ones, and hence the learning algorithm for
network weights sometimes requires freezing the previously installed hidden units. Restricting
the hidden unit transfer function to parametric form, and learning in a layer-by-layer manner,
are also tricks to make the computation more efficient. In the case when many different
connection patterns are tried for a new hidden unit, as in GMDH-type algorithms, the hidden
unit transfer function may have to be further simplified to be of the polynomial form.

Besides, the close link between constructive procedures and forward stepwise regression
techniques in statistics is worth mentioning. As discussed before, a number of the con-
structive procedures have been inspired by statistical techniques like MARS, PPR, and
GMDH. The close relationship between various statistical methodologies (like discriminant
analysis, regression and cluster analysis) and neural network models has been discussed in
[5,9, 10, 27, 77, 78, 85]. A number of other nonlinear regression techniques may possibly also
have neural network formulations.
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Also, although the approximation capabilities of many network architectures have been
examined extensively in recent years, the convergence properties of most constructive proce-

dures are still unknown. This definitely deserves more attention in the future.
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