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� Introduction

In recent years� many neural network models have been proposed for pattern classi	cation�
function approximation and regression problems� Among them� the class of multi�layer feed�
forward networks is perhaps the most popular� Standard back�propagation performs gradient
descent only in the weight space of a network with 	xed topology
 this approach is analogous
to parametric estimation techniques in statistics� In general� these parametric procedures are
useful only when the network architecture �i�e� model� is chosen correctly� Too small a net�
work cannot learn the problem well� but a size too large will lead to over�generalization and
thus poor performance� Hence� recent studies have sought to optimize network size for a par�
ticular class of networks which have the same architecture� There are two general approaches
to this optimization problem� One involves using a larger than needed network and training
it until an acceptable solution is found� After this� hidden units or weights are removed if
they are no longer actively used� Methods using this approach are called pruning procedures

��� ��� ��� ��� ���� The other approach� which corresponds to constructive procedures� starts
with a small network and then grows additional hidden units and weights until a satisfactory
solution is found�

The pruning approach has several shortcomings� Firstly� in practice� one does not know
how big a network to start with� Secondly� since the majority of the training time is spent with
a network that is larger than necessary� this method is computationally wasteful� Thirdly�
many networks with di�erent sizes may be capable of implementing acceptable solutions�
Since the pruning approach starts with a large network� it may not be able to 	nd the smallest
acceptable solution� Fourthly� these pruning procedures usually measure the change in error
when a hidden unit or weight in the network is removed� However� such change can only be
approximated� for computational e�ciency� and hence may introduce large errors� especially
when many are to be pruned� Regularization 
�� ��� ��� solves some of these problems� but
it requires a delicate balance between the error term and the penalty term� It also increases
the training time� and the penalty term tends to create additional local minima in which one
will frequently get stuck while searching for a �good� solution to the minimization problem

���� Hence� constructive algorithms seem to be more promising than pruning algorithms�

In this survey paper� we will mainly concentrate on regression problems�� In a regres�
sion problem� one is given a d�dimensional random vector X� the components of which are
called predictor variables� and a random variable� Y � called response� A regression surface
f describes a general relationship between variables X and Y � The constructive procedure
attempts to 	nd a network that is an exact representation or� as is more often the case� a good

�Typically� approximation involves using up to the �rst ���� ��� or second �	�� 

� term in the Taylor series
expansion for the change in error� Further approximation is possible by computing these values as weighted
averages during the course of learning or by assuming that the Hessian matrix of the error function is diagonal
�

��

�For simplicity� we assume that there is only one target function to be approximated� When there are more
than one target functions� each corresponding to one output unit in a neural network� one could approach this
by simply treating the approximation of each target function as a di�erent 
unrelated� regression problem�
Other methods that utilize the relationship among these target functions are discussed in �����
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enough approximation of f � Classi	cation problems can be considered as a special case� For
example� for a classi	cation problem with K classes� one can in principle construct a neural
network with K output units� whose activation values are usually constrained to 
����� The
kth output unit �� � k � K� corresponds to class Ck and learns the posterior probability of
class Ck given the input x� A number of other constructive methods that can only be applied
to classi	cation problems �such as 
�� ��� ��� ���� will not be discussed here� Interested readers
may consult the short surveys in 
��� ����

This paper will review both purely constructive procedures and procedures that have con�
structive components for feedforward neural networks� The rest of this paper is organized as
follows� In Section �� general issues on constructive approximation will be discussed� A taxon�
omy of constructive procedures based on the resultant network architecture will be presented
in Section �� In Section �� we will discuss algorithms used to determine the network weights�
Criteria to determine when to stop the addition of new hidden units will be summarized
brie�y in Section �� followed by some concluding remarks in the last section�

� Issues in Constructive Approximation

��� De�ning the Problem as a Function Space Search

The problem of 	nding a suitable neural network to approximate the target function can be
viewed as a function space search problem� with the search space� initial states� goal states�
and the control strategy de	ned by the constructive procedure�

����� Search Space

The search space is a subspace in a certain function space� The function space is typically
a normed linear space�� The norm gives us a notion of distance� If w� v are in the normed
linear space� then the distance from w to v �or v to w� is kv�wk� Di�erent norms� and hence
di�erent function spaces� are useful in di�erent problems� A few examples will be given in
Section ������

An exhaustive search in the whole function space is computationally prohibitive� Hence
the search space� containing all network functions that can possibly be implemented by the
constructive algorithm� is only a subspace and is determined by the way hidden units are
generated�

� How the net input to a new hidden unit is computed�

�A normed linear space �
�� is a linear space de�ned with a real�valued function k � k called the norm� For
any v in the space� the norm satis�es the following three properties�

�� kvk � � with equality if and only if v � ��

�� k�vk � j�jkvk for any scalar ��

	� kv �wk � kvk� kwk�
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� How a new hidden unit is connected to the existing network�

� What is the transfer function of the new hidden unit�

� How are the new and existing network weights determined�

Note that in contrast to conventional learning with 	xed�sized networks� there are two levels of
search for constructive procedures� The 	rst level searches for the �nearly� optimal network
architecture� With the architecture determined� the second level searches for the �nearly�
optimal set of weights�

Usually� the design of the resultant network architecture will have to answer the following
questions�

� Whether it is a multi�layer perceptron� a radial basis function network� or others�

� Whether it has a single hidden layer� or multiple hidden layers�

� Whether the connections are regular in the sense that the hidden units are fully con�
nected to all hidden �or input� units in the previous layer and to all hidden �or output�
units in the next layer� or there may be irregular connections across the layers�

Most resultant network architectures do have su�ciently strong approximation power
�Section ����� and hence no representation bias in the machine learning sense� But� on the
other hand� constructive methods introduce procedural bias by favoring smaller networks�
Moreover� if the target function can be represented su�ciently closely by a reasonably sized
network constructed from the procedure� generalization performance can be good� Otherwise�
generalization will be poor �Section ����� Hence� di�erent constructive procedures� by de	ning
�constraining� di�erent subspaces to be searched� introduce di�erent forms of learning bias

���� and it is important that the particular type of bias matches with the problem at hand�
Thus� just as di�erent network architectures favor di�erent types of function 
���� there is no
constructive procedure that dominates all others over all potential target functions�

����� Initial State

The initial state refers to the network function before the constructive procedure starts� All
procedures start with a network with no hidden units� In certain algorithms 
���� the initial
network has direct connections from inputs to outputs� Training is 	rst performed on this
initial structure� and hidden units are added only when the performance is not satisfactory�
This ensures that the regression problem at hand is out of the capability of simple linear re�
gression� or� if it is a classi	cation problem� that the pattern classes are not linearly separable�
For the other cases when there is no connection among the �input and output� units� we take
this initial state to be the null function�
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����� Goal States

The goal states are network functions that are acceptable solutions to the problem� that
is� those that are su�ciently good approximations to the true target function� Whether an
approximation is good or not depends on how we measure the �closeness� between functions�
which in turn is problem dependent� As mentioned in Section ������ this distance measure is
induced from the norm used in the function space� For two functions f� g de	ned on an input
space X � commonly used distance measures include the uniform distance�

kf � gk � sup
x�X

jf�x�� g�x�j� ���

If f is the target function to be learned and g is the actual function implemented� the uniform
distance singles out x values at which the approximation is worst �that is� where the absolute
error is greatest� and assigns as a measure of closeness these worst possibilities� It thus
provides absolutely certain bounds on the error at the expense of these bounds having to be
large enough to be valid at every point� no matter how exceptional�

Another commonly used measure is the Lp distance�

kf � gkp �

�Z
X
jf�x�� g�x�jpd��x�

���p
� ���

where � is the input environment measure� and p is a real number� p � �� In the case p � ��
we recover the usual Euclidean distance� Note that as in both ��� and ���� the distance
measure computed has to be based on the whole input space X � not just on the patterns in
the training set� The implications will be re�examined in Section ����

Moreover� there are more than one goal states� i�e�� there exist many networks that are
su�ciently good approximators� The good side is that it is usually not necessary to 	nd the
globally best network� and most constructive procedures just give one of these su�ciently
good approximators as solution� The bad side is that di�erent network solutions� though
equally good as approximators� may have di�erent interpretations� It is sometimes desirable
to examine multiple solutions before selecting the one that explains the data best� This may
be done� for example� by repeating the constructive procedure several times� using di�erent
initial weights in the learning process�

����� Control Strategy

The generate�and�test methodology is taken in all the constructive procedures�

�� Generate a possible network according to the control strategy� which de	nes the way to
search for a solution �architecture and weights��

�� Test to see if this solution is acceptable�

�� If it is acceptable� exit
 otherwise� go back to step ��
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The search for the best set of weights can be performed using various optimization algo�
rithms� which will be discussed in Section ���� For the architecture� constructive procedures
always search the smaller networks 	rst� and then extend to larger and larger networks�
Besides having better generalization performance� smaller networks also enjoy the following
advantages�

� The cost of computation� measured by the number of arithmetic operations� is of O�W �
on a serial computer� where W is the number of weights� Hence� a smaller network is
more e�cient both in forward computation and in learning�

� A smaller network can be more easily described by a simpler set of rules� Moreover� the
function of each hidden unit may be more easily visualized�

With a given number of hidden units� certain constructive procedures can only produce
one network architecture 
�� ��� ��� ��� ��� ��� ��� ��� ����� and hence there is only a single
network architecture that can possibly be generated given the current network con	guration�
and so the control strategy is simple� In more powerful procedures� however� there are several
such possibilities and some kind of searching technique is required� This allows for greater
exploration of the function space� possibly leading to better architectures found� at the expense
of longer time� The following search strategies have been employed�

������� Depth�First Search with Backtracking

Depth�	rst search� one of the most straightforward ways to implement systematic generate�
and�test procedures� is used in 
���� However� depth�	rst search is an exhaustive search
technique� For it to be e�ective� one should ensure that unproductive partial paths are never
too long� This is done in 
��� by de	ning certain networks as not �promising�� backtracking
is then used to recover from these dead�end positions�

������� Best�First Search

Teng and Wah 
��� proposed a population�based learning system for designing feedforward
networks� Under this scheme� a pool of networks� each having no hidden unit initially� is
maintained� The most promising network is selected� trained and allowed to grow for a
certain time quantum� Its performance� based on a number of factors such as the training
error� its rate of change and also the number of epochs trained� is then measured� This cycle
repeats again until a satisfactory network solution is found� Note that as learning progresses�
the pool may have networks with di�erent numbers of hidden units�

������� Nondeterministic Search

For example� in 
���� a new architecture is randomly chosen from the set of possible ar�
chitectures� An energy criterion� modi	ed from the minimal description length �MDL� 
���
information criterion� is then computed for the new network and the question of whether to
accept or reject this network is determined via simulated annealing�
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������� Genetic Algorithms

A related approach is the use of evolutionary approaches� By viewing the search for the opti�
mal architecture as searching a surface de	ned by levels of trained network performance above
the space of possible network architectures� 
��� mentioned that such a surface is typically

� in	nitely large� as the number of possible hidden units and connections is unbounded


� non�di�erentiable� since changes in the number of units or connections must be discrete�
and can have a discontinuous e�ect on network performance


� complex and noisy� as it is dependent on initial conditions


� deceptive� as structurally similar networks can have very di�erent network performance�
and

� multi�modal� as structurally dissimilar networks can have very similar performance�

The main idea of using genetic algorithm based evolutionary approaches is then that they are
good at dealing with these kinds of search spaces� A review of evolutionary arti	cial neural
networks �EANN� can be found in 
���� ����� However� note that in the direct encoding
scheme for EANN connectivity �such as in 
����� the size of the connectivity matrix has to be
pre�de	ned� and hence they cannot be used with constructive procedures� Moreover� these
methods� besides being very demanding in time and storage� also require a good representation
of the network structure and a good design of the genetic operators�

��� Universal Approximation and Convergence Properties

Given a constructive algorithm� we need to consider the universal approximation capability
of the resulting network architecture� Is the family of functions implemented by the net�
work broad enough to contain f or a good enough approximation of f� The next question
concerns the convergence properties� Can the procedure produce a convergent sequence of
network functions that� in the limit� approximates the target function as closely as desired� In
other words� does the sequence ffng so generated strongly converges� to f as n��� Appar�
ently� the universal approximation capability of a network structure is a prerequisite for the
convergence of its learning procedure� Attempts to solving the problem without considering
these questions could be very time�consuming if not fruitless�

Note that� as mentioned earlier� the norm used in the convergence de	nition has to be
based on the whole input space X � not just on the training patterns as is done in 
��� ����
This is because one is usually more interested in the generalization performance rather than
performance on the training set� and a perfect recall of the training set is always possible
simply by having more hidden units� Hence� �convergence�� in the sense of reducing the
training error to zero 
��� ���� is not quite interesting�

�A sequence ffng strongly converges �
�� to f if limn�� kf � fnk � �� where k � k is the norm for the
function space being considered� such as those de�ned in 
�� and 
���
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��� Bias�Variance Tradeo�

Denote the function estimator corresponding to a neural network with n hidden units as fn�
The mean squared error �MSE� 
��� of fn at an input point x can be decomposed into two
components�

MSEffn�x�g � E
�f�x�� fn�x��
��

� �f�x�� E
fn�x���
� �E
�fn�x��E
fn�x���

��

� 
bias�x��� � variance�x��

where E
�� is the mathematical expectation taken over all training samples of size N � The
integrated mean squared error �IMSE� is obtained by integrating MSE�x� over all x�s in the
input domain X � As empirically shown in 
���� bias falls and variance increases with the
number of hidden units� This phenomenon agrees well with what one generally observes in
practice� When a neural network is trained� the error on the training patterns continues to
decrease� The IMSE� on the other hand� tends to decrease in step with the training error
initially� as the network generalizes from the training data to the underlying function� At
some point� however� the network starts to take advantage of these idiosyncrasies in the
training data and the IMSE starts to increase again even though the training error continues
to decrease �Figure ��� Hence� it is important to have a proper tradeo� of the bias and
variance by stopping the network growth appropriately 
����

Training error

high bias

optimal

Number of Hidden Units

high variance
IMSE

Figure �� Typical error curves with increase in the number of hidden units�

� Network Architecture

This section describes the various constructive procedures� categorized by the resulting net�
work architectures they produce� The approximation capabilities of these architectures are
also discussed� One can see that an important goal of these constructive procedures is to
develop powerful feature detectors without using excessive weights or hidden units� Pruning
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is sometimes used in the procedures mentioned in this section� The network may be pruned
after completion of the constructive process 
��� ���� or be interleaved with the constructive
process 
���� However� details of these pruning methods will not be discussed in this paper�

��� Single Hidden Layer

New hidden units are always fully connected to all input and output units� with the resultant
network having one single hidden layer �Figure ��� Because of the regular network structure
and constant fan�in for the hidden units� hardware implementation is simple� The hidden
units may be of simple or complex functional forms�

output

input

hidden units

Figure �� Single hidden layer architecture� In the diagram� empty circles represent in�
put�hidden�output units while a black dot refers to a connection between units�

����� Simple Hidden Units

There are two main categories� The 	rst category is based on the multi�layer perceptron

�MLP�� like the dynamic node creation network 
�� and 
��� ��� ��� ��� ��� ���� ����� The
hidden unit transfer function in a MLP is of the form�

g�x� � ��aTx� ���

where � is usually the sigmoidal function ��z� � ���� � e�z��
The other category is based on the radial basis function network �RBFN�� like the Gaus�

sian potential function network �GPFN� 
���� the resource�allocating network �RAN� 
����
and the supervised growing cell structures �GCS� 
���� The hidden units� also called radial

basis functions �RBF�� are of the form�

g�x� � ��kx� xik��

where k � k is usually the Euclidean norm or a weighted norm 
��� and xi is the center of the
basis function� � is a radial kernel function� the most common form of which is the Gaussian
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function�

��z� � exp��
z�

���
��

where � is called its width�
Coarse�coding resource�allocating network 
��� is similar to RAN� but replaces the layer

of multi�dimensional Gaussian basis functions by a layer of one�dimensional Gaussian basis
functions and a layer of pi�neurons� The multiplication operation of the pi�neurons basically
mimics the multi�dimensional units using its one�dimensional counterparts� but sharing of
the one�dimensional units among di�erent pi�neurons is allowed� resulting in more compact
networks and hence more e�cient learning�

The approximation properties of these two types of network are well known� Universal
approximation of single hidden layer MLP using di�erent distance measures has been exten�
sively discussed in the literature �see for example 
��� ��� ��� ����� while that of RBFN can
be found in 
��� ��� ���� Intuitively� the results mean that these two types of network� with
as few as one hidden layer� can approximate any �reasonable� real�valued function to any
desired accuracy� provided that su�ciently many hidden units are available�

In practice� the two networks may have di�erent performances in di�erent problems�
While a RBF unit responds signi	cantly to only a small localized region of the input space�
a hidden unit in a MLP has spreads that are in	nitely large along directions orthogonal to
the vector a� Hence� RBFN may not perform well for high�dimensional data� because of the
�curse of dimensionality� 
�� which arises from the fact that data in high�dimensional space
are surprisingly sparse 
���� Single hidden layer MLP� on the other hand� may not work well
for certain kinds of highly nonlinear problems� like the two�spirals problem 
����

����� Flexible Hidden Units

In this category� the network constructed still has only a single hidden layer� but the hidden
unit transfer functions are more ��exible� and are capable of forming more complicated feature
detectors 
���� This �exibility is achieved at the expense of requiring additional parameters
in each hidden unit transfer function� Thus� for the same number of hidden units� this kind of
networks will have a smaller bias but a larger variance than those with simple hidden units�

������� Adaptive Spline Networks

The 	rst method is the adaptive spline networks �ASP� 
���� which is developed from the
statistical technique multivariate adaptive regression splines �MARS� 
���� The regression
surface is represented in the form�

fn�x� �
nX

j��

�jgj�x��
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where �j is the weight connecting the output to the jth hidden unit gj � which is of the form�

gj�x� �

KjY
k��

�xj�k� � tkj�
q
	�

Here � � j�k� � d selects an input component� � � Kj � d is the number of factors in the
product� tkj is the knot location� and q is the order of the spline� �xj�k�� tkj�

q
	� known as the

truncated power function� is de	ned as�

�xj�k� � tkj�
q
	 �

�
� xj�k� � tkj �

�xj�k� � tkj�
q xj�k� 	 tkj �

MARS� and hence also ASP� can realize both additive functions and binary tree topology
similar to those generated by recursive partitioning strategies like the classi�cation and re�

gression tree �CART� 
��� Both additive and CART methods have been highly successful in
many complementary situations� additive modeling when the target function is close to addi�
tive� and CART when it has signi	cant high order interactions between the input variables�
Thus� MARS and ASP are likely to be successful in a wide range of situations�

������� Projection Pursuit

The second class of methods is also related to a statistical technique� called projection pursuit

regression
 �PPR� 
��� ���� In PPR� the regression surface is approximated by a sum of n
empirically determined univariate functions gj of linear combinations of the predictors� i�e�

fn�x� �
nX

j��

gj�a
T
j x�� ���

where aj is the projection vector with kajk � �� The gj �s are called smoothers in the statistics
literature� The obvious similarity between ��� and single hidden layer neural networks� by
taking the gj �s as hidden unit transfer functions� suggests that a direct formulation of PPR
into neural network is possible� such as in projection pursuit learning �PPL� 
��� ����

This class of methods can be further sub�categorized depending on whether the hidden
unit transfer function is nonparametric or parametric�

��������� Flexible Nonparametric Hidden Units

In this category� the hidden unit transfer functions are nonparametric� i�e�� they are not
restricted to any pre�speci	ed family of functions� In PPR� gj is obtained by a variable span
smoother called the supersmoother 
���� whose basic building block is a symmetric k�nearest
neighbor linear least squares 	tting procedure� The optimal value of k� called the span of
the supersmoother� is chosen for each input point using a local cross�validation procedure�
However� the use of supersmoothers su�ers from several disadvantages� as discussed in 
����

�PPR has also been applied to classi�cation problems� see ���� ����
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�� the use of large regression tables�

�� unstable approximation in calculating derivatives� and

�� piecewise interpolation in computing activation values�

Automatic smoothing spline projection 
��� uses smoothing splines 
���� which are also
non�parametric� as smoothers� They can give accurate derivative calculation and smooth
interpolation� but still require the use of a smoother matrix� Moreover� the generalized cross
validation statistic� which is used to select the degree of smoothness� tends to under�smooth

���� Consequently� heuristics are required to remedy this problem� On the computational
aspect� smoothing splines are usually more computationally intensive�

The universal approximation capability of PPR networks� with respect to the L� norm�
follows directly from its convergence property� which will be discussed in Section ������

��������� Flexible Parametric Hidden Units

Here� the hidden unit transfer function is of a certain parametric form� instead of non�
parametric� though the form is still very �exible� Compared to the use of nonparametric
hidden units in PPR� this method enables smooth interpolation� instead of piecewise inter�
polation� Moreover� the derivative of the hidden unit transfer function is usually simple�
enabling fast and accurate computation of the derivatives without the use of large regression
tables� However� the �exibility or complexity of the hidden units is controlled by a parameter�
The selection of this parameter may be very critical and a wrong selection may lead to poor
training and generalization performance�

In projection pursuit learning �PPL� 
���� the hidden unit transfer function is represented
as a linear combination of the Hermite functions�

g�z� �
RX
r��

crhr�z��

where hr�z��s are the orthonormal Hermite functions and R� called the order � controls the
complexity of the hidden unit� This parameter is less crucial to performance when a bias
term is added to the linear combination of the predictor variables 
����

Another method is to use 	xed�sized neural networks as hidden units� For example�
connectionist projection pursuit regression 
��� uses sigmoidal networks� Saha et al� 
���
use radial basis function networks� The number of hidden units in these 	xed�size networks
controls their �exibility� The universal approximation capabilities for these networks and PPL
networks follow directly from the universal approximation results for traditional feedforward
networks� provided that a bias term is included in the linear combination of the predictor
variables 
����

In ridge polynomial networks �RPN� 
���� each hidden unit is a pi�sigma network �PSN�

����

g�x� �
kY
i��

�aTi x� �i��

��



where k is called its degree� Hidden units added to the network have increasing degrees� i�e��
the 	rst hidden unit is a PSN of degree one� the second one is of degree two� and so on� Thus�
subsequent hidden units have an increasing number of parameters associated and become
increasingly �exible� The RPN is a sum of these PSNs�

f�x� �
nX

j��

gj�x� �
nX

j��

jY
i��

�aTjix� �ji��

Its universal approximation capability� with respect to the uniform norm� is mentioned in

����

��� Multiple Hidden Layers

In this category� the resultant network has more than one hidden layers� Moreover� there
may be irregular connections across di�erent layers� This �exibility over single hidden layer
networks allows powerful high�order feature detectors to be developed�

����� Full Connection to All Pre�existing Units

In the cascade�correlation architecture 
���� the hidden unit transfer function is still of simple
form� such as sigmoidal or radial basis functions� However� when a new hidden unit is to
be created� besides establishing connection with each of the network�s original inputs and
outputs� it also establishes connection with every pre�existing hidden unit� Each new unit
therefore adds a new one�unit �layer� to the network� lending to a cascade architecture �Fig�
ure ��� Cascade�correlation architecture has been applied to segmentation of magnetic reso�
nance images of the brain 
���� prediction of software reliability 
���� classi	cation of cervical
cells 
���� implementation of the inverse kinematic transformations of a robot arm controller

���� modeling of human cognitive development on balance scale problems 
���� and model�
ing of chaotic timeseries 
���� A parallel implementation of the original cascade�correlation
architecture using the Time Warp Operating System is also available 
����

The resultant deep network structure leads to the creation of very powerful high�order
feature detectors even with simple hidden unit transfer function� This is sometimes very
advantageous� However� it also gives rise to long propagation delays and an ever�increasing
fan�in of the hidden units as more units are added� All these make VLSI implementation
di�cult� Generalization could also have problems�

There are many variants of this basic architecture� For example� in 
���� instead of having
the hidden units connected to all output units� each output unit has its own set of hidden
units� It is reported to have faster training and better generalization� at the expense of using
more hidden units� In the cascade network architecture 
���� after a hidden unit g is trained�
nonlinear functions of g are also added to the network together with g� The cascade structure
may also be combined with hidden units of more powerful transfer function such as those
mentioned in Section ������ For example� the hidden units in the cascade LLM networks 
���
are local linear maps� Each such hidden unit learns a linear approximation of the target
function that is valid within its �receptive 	eld��

��



output

input

{hidden units

Figure �� Multiple hidden layer network with full connection to all pre�existing units�

The universal approximation capability is obvious� as this cascade architecture can be
reduced to the regular single hidden layer network by removing all the hidden�to�hidden
weights�

����� Partial Connection to Some Pre�existing Units

To avoid the problems resulted from full connection� one may use pruning to reduce the degree
of connectivity� In 
���� as each hidden unit is trained� the saliency of its weights is calculated
and the weights that are determined to be weak are eliminated� However� such an approach is
computationally expensive and the saliency can only be approximated� sometimes with high
error� A natural alternative which will be discussed in this section is to limit the fan�in of
the hidden units and connect the new hidden units to only a selected few of the pre�existing
units�

������� Fixed Connection Policy

The very deep structure in the cascade�correlation architecture is caused by many one�unit
hidden layers� Phatak and Koren 
��� modi	ed it by allowing more than one hidden units in
each layer� and instead of connecting the new hidden units to all pre�existing hidden units�
they are connected only to the previous hidden layer� The fan�in of the hidden units can
thus be controlled by restricting the number of units allowed in each hidden layer� When this
maximum is reached and a new hidden unit is to be added� the output layer is 	rst collapsed
into a new hidden layer� with the new hidden units added to this new layer� As a result� a
regular multiple hidden layer structure is formed �Figure ���

However� while the hidden units in the higher layers �i�e� those that are closer to the
output layer� are capable of implementing complex functions in the input space� simpler
functions may be di�cult to realize when no direct input to hidden connections are provided
in the architecture� Moreover� the maximum number of hidden units allowed in each layer
may be crucial� Restricting this to a small number limits the ability of the hidden units to
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Figure �� Modi	ed cascade�correlation architecture with partial connection�

form complicated feature detectors� as each hidden unit can only see its previous hidden layer
outputs� With this restriction in mind� the universal approximation capability of this kind
of architecture� even when the number of hidden layers is allowed to grow without bound�
seems unclear� This weakness� however� can be removed by re�introducing connections from
all hidden units to the input and output units�

A similar method is the stacking learning algorithm 
���� which also produce hidden layers
by collapsing the output layer� The hidden units have direct connections to all input and
output units� hence the resultant network architecture is an universal approximator� However�
additional hidden units are not added to these collapsed layers� i�e�� the number of hidden
units in each hidden layer is always equal to the number of output units� This restriction
possibly impedes the network performance�

������� Competitive Connection Policy

Another class of algorithms which also produces multiple hidden layers is inspired from the
group method of data handling �GMDH� 
���� Here� instead of pre�determining the way in
which new hidden units are connected� a lot of candidate units using di�erent connections
are generated and the new hidden unit is then chosen from among these candidate units in a
competitive manner�

In 
���� new connections may be created by any possible combination of the outputs from
the preceding hidden �or input� layer� Candidate hidden units are then added to the network
whenever their performances satisfy certain performance measure� In the self�organizing

neural network 
���� candidate hidden units are generated by allowing connections to any
input or pre�existing hidden unit� A new hidden unit is then randomly selected from this
candidate pool and simulated annealing is used to determine whether to accept or reject this
addition� The resulting architecture is no longer a regular multiple hidden layer structure�
but has many intra�layer connections �Figure ���

Because of the large number of candidate units that are to be created� the hidden unit
transfer functions are usually constrained to be of some simple form for computational reasons
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Figure �� GMDH�type architecture�

�details in Section ������� of which the polynomial form is the commonest� such as�

g�i� j� � a� bioi � bjoj � cio
�
i � cjo

�
j � dijoioj �

where the a� b� c� d�s are the connection weights� and i� j represent the indices of the units
where connections are made� and oi� oj are the corresponding output activations from these
selected units�

����� Other Ad hoc Methods

For example� in 
���� a whole hidden layer may be added to the network between the last
hidden layer and the output layer� The number of hidden units in the new layer nnew is
heuristically set to be�

nnew � b
no � nh

�
c�

where no is the number of output units and nh is the number of hidden units in the last
hidden layer� Obviously� this method is quite ad hoc�

� Learning Algorithm

��� Training of the Network Weights

To add a new hidden unit� the weights of both the new and existing connections have to be
determined� This section summarizes the methods that are commonly used� and also their
convergence properties� Note that computational concern is usually an important issue� If the
network has a 	xed size� its weights have to be optimized only once� However� in constructive
algorithms� this optimization process has to be repeated each time a hidden unit is added� In
some cases� each new hidden unit has a number of candidates and optimization is required
for each candidate� Hence� to be computationally e�cient is very important�
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����� Encoding the Novel Pattern

For algorithms that can be used for sequential learning� the network weights may simply
be obtained from the training pattern� For example� in RAN� 
��� ���� which uses radial
basis functions as hidden units� the network allocates a new hidden unit to memorize a novel
pattern� A pattern is considered novel when it is far away from all basis units in the network
and its error� which is the di�erence between the desired output of the pattern and the
network output� is large� Another novelty detection method is discussed in 
���� The center
of the new unit is set to the novel pattern� with its width proportional to the distance from
the pattern to the center of the nearest basis function� The weights connecting this new unit
to the output is set to the error vector� On the other hand� when the pattern is not novel
enough� no new unit is added and the parameters of the nearest basis function and its weights
to the output are updated accordingly to reduce the error� GPFN 
��� also uses a similar
method� The convergence properties of these procedures are not known�

As mentioned in 
���� the problem with this approach is that noisy data may lead to a large
number of hidden units� Moreover� there is a resolution parameter that speci	es the smallest
distance two RBF units can have and features that are smaller than that will get averaged
out� This makes it impossible to model functions appropriately that vary on a smaller scale�

����� Retraining the Whole Network

The next simplest approach is to use nonlinear optimization techniques such as the well�
known backpropagation algorithm to train the whole network after hidden unit addition

�� ���� Convergence of the network functions to the true function using this method follows
directly if the universal approximation capability of the network architecture holds�

However� optimization becomes increasingly di�cult and slow as the network grows in size�
Moreover� learning all the weights at the same time su�ers from the so�called moving target

problem 
���� Intuitively� each hidden unit is trying to evolve into a useful feature detector�
but its task is greatly complicated by the fact that all the other hidden units are changing at
the same time� The hidden units in a given layer of the network cannot communicate with
one another directly
 each unit sees only its inputs and the error signal propagated back to
it from the network�s outputs� The error signal� de	ning the problem that the unit is trying
to solve� changes constantly� Instead of a situation in which each unit moves quickly and
directly to assume some useful role� we see a complex dance among all the units that takes a
long time to settle down�

����� One Unit at a Time

A less computationally intensive method that also avoids the moving target problem is by
keeping the weights of the pre�existing hidden units 	xed �input weight freezing�� while allow�
ing only the new hidden unit and the weights connecting hidden and output units to learn�
This is commonly used in many algorithms� such as PPL�type algorithms 
��� ��� ��� ��� ����

�A function space approach to analyzing the learning algorithm of RAN is developed in �����
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cascade�correlation architecture and its variants 
��� ��� ��� ��� ���� ����� and methods in

��� ����� Experimentally� this strategy allows the network to learn faster� Moreover� the hid�
den units� acting as feature detectors� are never cannibalized once built� They are available
from that time on for producing outputs or more complex features�

However� because the parameters of the hidden units are kept 	xed after installation into
the network� the convergence property of the constructive algorithm does not follow readily
from the universal approximation capability of the network architecture� In some cases�
convergence can still be shown to exist� For example� strong convergence of PPR is proved in

���� which states that if each new gn in ��� at stage n is given by the conditional expectation

����

gn�z� � E�f � fn��ja
T
nX � z��

and the projection direction an is chosen as long as

E�gn�a
T
nX��� 	 
 sup

bTb��
E�gn�b

TX����

where � � 
 � � is 	xed� then fn in ��� strongly converges to the desired f � Convergence
properties of the other algorithms will be discussed in later sections�

To make up for the possible degradation in performance� back�	tting 
��� ��� is sometimes
used to 	ne tune the existing hidden units when a new hidden unit has been added� This
consists of cyclically adjusting the parameters associated with each previously installed hidden
unit� while keeping the parameters of the other units 	xed� until there is no signi	cant change�
Alternatively� training of the new hidden unit�s� can be followed by retraining the whole
network� as in the sequential network construction method 
����

Training of the new hidden unit can be performed by back�propagation as usual� However�
for e�cient modeling of discontinuities in the target function� 
��� used data from di�erent
localized portions of the input space to train each new unit� It is reported to have more
accurate results and require considerably less computation when compared with standard
back�propagation� for functions with many discontinuities�

����� One Unit and One Layer at a Time

Training can often be speeded up by proceeding in a layer�by�layer manner� First� the weights
feeding into the new hidden unit are trained �input training�� They are then kept constant
and the weights connecting from it to the output units are trained �output training�� In so
doing� only one layer of weights needs to be optimized each time and there is never any need
to back�propagate the error signals�

There are several criteria which can be used in input training� For example� in 
����
the new hidden unit is treated as an interim output unit� and the usual �squared� error
criterion is used� In the cascade�correlation architecture 
��� and its variant 
��� ����� the
new hidden unit maximizes a correlation function between the residual error and the hidden
unit activation� Some other correlation�based functions are proposed in 
��� ��� ���� The
convergence property of the cascade�correlation learning procedure� for networks using the
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hyperbolic tangent as hidden unit transfer function and assuming the input environment
measure to be uniform� is proved in 
���� More general results� extending to other hidden
unit transfer functions� correlation functions in 
��� ��� and input environment measures� are
discussed in 
���� However� for the criterion function in 
���� its convergence property is not
known�

Besides� a projection index 
����� which 	nds �interesting� projections that deviate from
Gaussian distributions� can be used� However� this criterion is probably more suitable for ex�
ploratory data analysis 
��� rather than for regression� as projections that are of the Gaussian
form may also be useful� Its convergence properties is� again� unknown�

Alternatively� one can use the same error criterion in both input and output training
�such as the squared error criterion�� such as in 
��� ���� One can also use a scheme similar
to that proposed in 
��� The weights in each layer are updated in turn� by keeping all the
other weights unchanged� and the whole process is cycled many times� For example� in PPL

���� the order of updating is 	rst the projection directions� then the parameters associated
with the hidden unit transfer function� next follows the output weights� then back to the
projection directions� and so on� Note that only the optimization of the projection directions
is a nonlinear problem� while the other two are linear�

In RPN� there is only one single layer of weights for each PSN� so all the weights can be
updated at the same time� However� this updating scheme can lead to instability problems
unless the learning rate is su�ciently small 
���� To remedy the problem� an asynchronous
rule is used� If the new hidden unit �which is a PSN� is of degree k� then one of the k
projection vectors is chosen and updated according to the squared error criterion� For the
same input pattern� the output is recomputed with the updated projection vector� and the
error is used to update another projection vector� This procedure is performed k times for
every input so that all k sets of weights are updated once� The convergence of this procedure
is unknown�

����� Reducing to a Linear Problem

An entirely di�erent method is to use a restricted class of transfer functions so that the hidden
unit output is linear with respect to its parameters� as is common in GMDH�type networks

��� ���� Optimizing the parameters with respect to the squared error criterion reduces to a
linear problem� i�e� computation of the pseudo�inverse with closed�form solution� The speed
thus gained allows repetition of this optimization problem for each connectivity pattern during
unit addition�

����� Miscellaneous Scheme

In supervised GCS 
���� adaptation of the parameters associated with the RBF units is similar
to that of Kohonen�s feature map 
���� while that of the weights connecting the RBF units to
the output units is by the delta rule� When a new unit is to be added �which is determined
by resource variables distributed among the RBF units�� the new weights are obtained from
units in its neighborhood�

��



��� Optimization Algorithm

Training can be done by any nonlinear optimization algorithm that works for 	xed�size net�
works� such as back�propagation or its variants like quickprop 
���� Alternatively� standard
optimization methods such as quasi�Newton� conjugate gradient� Newton�Raphson� Gauss�
Newton or Levenberg�Marquardt methods 
��� or other methods like recursive least�squares

��� extended Kalman 	lter 
��� and genetic algorithms 
���� can also be used� A review can
be found in 
��� �����

In algorithms that have the optimization problem boiled down to a linear problem� the
optimal weights may simply be computed by the pseudo�inverse� instead of the methods
mentioned above�

��� Use of Patience Parameter

For those constructive algorithms in which the optimization problem boils down to a linear
problem during training� the connection weights can be obtained fairly easily� Otherwise� it
is computationally more e�ective to stop the training of each new hidden unit prematurely�
through the use of a patience parameter as is done in 
�� ��� ��� ����� Training is stopped
when the training error does not decrease by a certain fraction after a pre�speci	ed number
�the patience� of training epochs� Experimentally� the use of patience can save a substantial
amount of training time� compared to running to a 	xed number of training epochs determined
a priori � without degrading the overall performance 
����

��� Use of Candidates

The use of candidates during training of the new hidden unit is common in many constructive
algorithms� A number of candidates are generated� from which the �best� one is selected to be
installed into the network� Training of the di�erent candidates may start from di�erent initial
seeds� hence a large candidate pool gives a better chance of 	nding a good local optimum in the
nonlinear optimization problem� In a way� this corresponds to the Monte Carlo sampling of the
weight space to get the best solution to the problem� For GMDH�type algorithms� candidates
are a result of the competitive connection policy� in which di�erent candidates using di�erent
combinations of connections or di�erent transfer functions are generated� Candidates are
also used to allow for the selection for di�erent hidden unit transfer functions in the cascade�
correlation architecture 
���� and for di�erent orders of the hidden unit transfer function in
PPL 
����

On the selection of the candidate� the winner may simply be the one producing the smallest
residual error� However� more complex hidden units may be able to produce smaller training
error� but with worse generalization performance� Hence� information criterion such as MDL

��� may also be used in the selection process�

��



� Criterion to Stop Adding New Hidden Units

This involves the issues of evaluating network performance� and 	nding the architecture with
the best expected performance� Model selection is a big topic� and we give only a brief sum�
mary here� For example� it may be based on the training error� when it is less than a threshold

��� or �ats out� However� it is well known that the training error is biased� Alternatively� it
may be based on a separate test set 
���� or on more complicated cross�validation 
��� or boot�
strapping methods� Criteria like Akaike�s information criterion �AIC�� Bayesian information

criterion �BIC�� �nal prediction error �FPE�� generalized cross�validation �GCV�� generalized
prediction error �GPE�� predicted squared error �PSE� etc� 
��� may also be used� Besides�
the Bayesian evidence 
���� by formulating in a Bayesian framework� may also be used�

� Conclusion

In this paper� we review the di�erent procedures used for constructing feedforward neural
networks� Although the list of articles surveyed here is not exhaustive� one can still notice
a conglomeration of various network architectures and learning algorithms� All constructive
procedures attempt to construct good feature detectors� i�e� the hidden units� for the speci	c
problem under investigation� without using excessive weights or hidden units� While proce�
dures that construct networks with a single layer of simple hidden units may not be able
to solve certain highly nonlinear problems� other procedures develop powerful feature detec�
tors either by increasing the complexity of the hidden unit transfer function or by building a
multi�layer structure� In the process� di�erent procedures induce di�erent learning biases� and
hence di�erent constructive procedures are suitable for di�erent types of target function to be
learned� The identi	cation of what class of target functions is most suitable for a particular
constructive procedure will be particularly useful from a practical point of view�

Moreover� computational e�ciency is always an important concern� One may also notice
a close relationship between the hidden unit transfer function� the number of possibilities to
connect the new hidden unit� and the learning algorithm� Training of complex hidden units
is usually more time�consuming than the simple ones� and hence the learning algorithm for
network weights sometimes requires freezing the previously installed hidden units� Restricting
the hidden unit transfer function to parametric form� and learning in a layer�by�layer manner�
are also tricks to make the computation more e�cient� In the case when many di�erent
connection patterns are tried for a new hidden unit� as in GMDH�type algorithms� the hidden
unit transfer function may have to be further simpli	ed to be of the polynomial form�

Besides� the close link between constructive procedures and forward stepwise regression
techniques in statistics is worth mentioning� As discussed before� a number of the con�
structive procedures have been inspired by statistical techniques like MARS� PPR� and
GMDH� The close relationship between various statistical methodologies �like discriminant
analysis� regression and cluster analysis� and neural network models has been discussed in

�� �� ��� ��� ��� ��� ���� A number of other nonlinear regression techniques may possibly also
have neural network formulations�

��



Also� although the approximation capabilities of many network architectures have been
examined extensively in recent years� the convergence properties of most constructive proce�
dures are still unknown� This de	nitely deserves more attention in the future�
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