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Abstract The key result in the present paper is a direct analogue of the celebrated
Thurston’s TheoremDouady andHubbard (ActaMath 171:263–297, 1993) formarked
Thurston maps with parabolic orbifolds. Combining this result with previously devel-
oped techniques, we prove that every Thurston map can be constructively geometrized
in a canonical fashion. As a consequence, we give a partial resolution of the general
problem of decidability of Thurston equivalence of two postcritically finite branched
covers of S2 (cf. Bonnot et al. Moscow Math J 12:747–763, 2012).

Keywords Thurston equivalence · Thurston obstruction · Lattès map ·
Geometrization

1 Introduction

A Thurston map is a basic object of study in one-dimensional dynamics: a branched
covering f of the 2-sphere with finite critical orbits. Such a map can be described in
a purely combinatorial language by introducing a suitable triangulation of S2 whose
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362 N. Selinger, M. Yampolsky

set of vertices includes the critical orbits of f . Different combinatorial descriptions of
the map lead to a natural combinatorial or Thurston equivalence relation. A natural
question arises whether given two such combinatorial objects, it can be decided if they
are equivalent or not in some systematic, i.e. algorithmic, fashion.

We briefly outline the history of the problem. A central theorem in the subject
is the result of Thurston (Douady and Hubbard 1993) that describes, in a topological
language,whichThurstonmaps are combinatorially equivalent to rationalmappings of
Ĉ. In the case when an equivalent rational mapping exists, it is essentially unique, and
the proof of the theorem (Douady and Hubbard 1993) supplies an iterative algorithm
for approximating its coefficients. The only obstacle for the existence of a Thurston
equivalent rational map is the presence of a Thurston obstruction which is a finite
collection of curves in S2 that satisfies a certain combinatorial inequality. Equivalence
to a rational mapping can thus be seen as a geometrization of the branched covering:
equipping the topological object with a canonical geometric description.

In Bonnot et al. (2012) it was shown that, outside of some exceptional cases, the
question of Thurston equivalence to a rational mapping is algorithmically decidable.
Namely, there exists an algorithm A1 which, given a combinatorial description of
f , outputs 1 if f is equivalent to a rational mapping and 0 otherwise. Moreover,
in the former case, A1 identifies the rational mapping. Since two different rational
mappings are easy to distinguish—for instance, by comparing their coefficients after
some normalization—this implies that in the case when either f or g has no Thurston
obstruction, the statement of the Main Theorem I can be deduced from the existence
of A1 (Bonnot et al. 2012).

Our work concentrates on the situation when Thurston maps are obstructed. In this
case, geometrization may be achieved by decomposition into geometrizable compo-
nents (Pilgrim 1827). We show:

Main Theorem I Every Thurston map admits a constructive canonical geometriza-
tion.

The main step in the proof is a direct analogue of Thurston’s Theorem for the
exceptional cases, Thurston maps with parabolic orbifolds:

Main Theorem II A marked Thurston map with parabolic orbifold is geometrizable
if and only if it has no degenerate Levy cycles.

Detailed versions of both statements will be given below (see Theorems 6.1 and
4.1), after some preliminaries. As a consequence we obtain a partial resolution of the
general question of decidability of Thurston equivalence:

Main Theorem III There exists an algorithm A which does the following. Let f
and g be marked Thurston maps and assume that every element of the canonical
geometrization of f has hyperbolic orbifold. The algorithmA, given the combinatorial
descriptions of f and g, outputs 1 if f and g are Thurston equivalent and 0 otherwise.
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Constructive Geometrization of Thurston Maps... 363

2 Geometric Preliminaries

Mapping Class Groups

When we talk about a surface with holes, we will always mean a surface S with
boundary, which is obtained from a surface without holes by removing a collection
of disjoint Jordan disks. A surface S is of finite topological type if it is a genus g
surface with m holes and n punctures, where g,m, n < ∞. The Mapping Class
GroupMCG(S) is defined as the group of homeomorphisms S → S which restrict to
the identity on ∂S, up to isotopy relative ∂S.

The elements ofMCG(S) are allowed to interchange the punctures of S; ifwe further
restrict to homeomorphisms which fix each puncture individually, we obtain the pure
Mapping Class Group PMCG(S). If we denote by �n the group of permutations of n
elements (punctures, in our case), then we have a short exact sequence

1 −→ PMCG(S) −→ MCG(S) −→ �n −→ 1.

We refer the reader to Farb andMargalit (2011) for a detailed discussion ofMapping
ClassGroups.Replacing homeomorphismswith diffeomorphisms, and/or isotopywith
homotopy leads to an equivalent definition of MCG(S).

Throughout the article, we denote by Tγ the Dehn twist around a curve γ . Let
PMCG(S2, P) be the pure Mapping Class Group of the two-dimensional sphere,
where P ⊂ S2 is a finite set of punctures. We use the following fact:

Proposition 2.1 The group PMCG(S2, P) is generated by a finite number of explicit
Dehn twists.

The finiteness of the number of generating twists is a classical result of Dehn; Lick-
orish (1964) has made the construction explicit. See, for example, Farb and Margalit
(2011) for an exposition.

3 Thurston Maps

In this section we recall the basic setting of Thurston’s characterization of rational
functions.

3.1 Branched Covering Maps

Let f : S2 → S2 be an orientation-preserving branched covering self-map of the
two-sphere. We define the postcritical set Pf by

Pf :=
⋃

n>0

f ◦n(� f ),

where � f is the set of critical points of f . When the postcritical set Pf is finite, we
say that f is postcritically finite.
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364 N. Selinger, M. Yampolsky

A (marked) Thurston map is a pair ( f, Q f ) where f : S2 → S2 is a postcritically
finite ramified covering of degree at least 2 and Q f is a finite collection of marked
points Q f ⊂ S2 which contains Pf and is f -invariant: f (Q f ) ⊂ Q f . Thus, all
elements of Q f are pre-periodic for f .

Thurston Equivalence

Two marked Thurston maps ( f, Q f ) and (g, Qg) are Thurston (or combinatorially)
equivalent if there are homeomorphisms φ0, φ1 : S2 → S2 such that

(1) the maps φ0, φ1 coincide on Q f , send Q f to Qg and are isotopic rel Q f ;
(2) the diagram

S2
φ1−−−−→ S2

⏐⏐� f

⏐⏐�g

S2
φ0−−−−→ S2

commutes.

We will use this notion of equivalence for Thurston maps throughout the article.

Orbifold of a Thurston Map

Given a Thurston map f : S2 → S2, we define a function N f : S2 → N ∪ ∞ as
follows:

N f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x /∈ Pf ,

∞ if x is in a cycle containing a critical point,

lcm
f k (y)=x

degy( f
◦k) otherwise.

The pair O f = (S2, N f ) is called the orbifold of f . The signature of the orbifold
(S2, N f ) is the set {N f (x) for x such that 1 < N f (x) < ∞}. TheEuler characteristic
of the orbifold is given by

χ(S2, N f ) := 2 −
∑

x∈Pf

(
1 − 1

N f (x)

)
. (1)

One can prove that χ(S2, N f ) ≤ 0. In the case where χ(S2, N f ) < 0, we say that the
orbifold is hyperbolic. Observe that most orbifolds are hyperbolic: indeed, as soon as
the cardinality |Pf | > 4, the orbifold is hyperbolic.
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Constructive Geometrization of Thurston Maps... 365

Thurston Maps with Parabolic Orbifolds

A complete classification of postcritically finite branched covers with parabolic orb-
ifolds has been given in Douady and Hubbard (1993). All postcritically finite rational
functions with parabolic orbifolds have been extensively described in Milnor (2006).
In this section, we remind the reader of basic results on Thurston maps with parabolic
orbifolds.

Recall that a map f : (S1, v1) → (S2, v2) is a covering map of orbifolds if

v1(x) degx f = v2( f (x))

for any x ∈ S1. The following proposition is found in Douady and Hubbard (1993):

Proposition 3.1 i. If f : S2 → S2 is a postcritically finite branched cover, then
χ(O f ) ≤ 0.

ii. If χ(O f ) = 0, then f : O f → O f is a covering map of orbifolds.

Equation (1) gives six possibilities for χ(O f ) = 0. If we record all the values of
v f that are bigger than 1, we get one of the following orbifold signatures.

(1) (∞,∞),

(2) (2, 2,∞),

(3) (2, 4, 4),
(4) (2, 3, 6),
(5) (3, 3, 3),
(6) (2, 2, 2, 2).

In cases (1)–(5) the orbifolds have a unique complex structure, and can be realized
as a quotient C/G of the complex plane by a discrete group of automorphisms G as
follows (cf. Douady and Hubbard 1993):

(1) G =< z 	→ z + 1 >,
(2) G =< z 	→ z + 1, z 	→ −z >,
(3) G =< z 	→ z + a, z 	→ i z >, where a ∈ Z[i],
(4) G =< z 	→ z + a, z 	→ wz >, where w = eiπ/3, a ∈ Z[w],
(5) G =< z 	→ z + a, z 	→ w2z >, where w = eiπ/3, a ∈ Z[w].

We are mostly interested in the last case. We will refer to a Thurston map that
has orbifold with signature (2, 2, 2, 2) simply as a (2, 2, 2, 2)-map. An orbifold with
signature (2, 2, 2, 2) is a quotient of a torus T by an involution i; the four fixed points
of the involution i correspond to the points with ramification weight 2 on the orbifold.
The corresponding branched cover p : T → S2 has exactly four simple critical points
which are the fixed points of i. It follows that a (2, 2, 2, 2)-map f can be lifted to a
covering self-map f̂ of T .

An orbifold with signature (2, 2, 2, 2) has a unique affine structure of the quotient
R
2/G where

G =< z 	→ z + 1, z 	→ z + i, z 	→ −z > .
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366 N. Selinger, M. Yampolsky

We will denote this quotient by the symbol ◊, which graphically represents a
“pillowcase”—a sphere with four corner points.

An important example of a (2, 2, 2, 2)-map is a flexible Lattés rational map con-
structed as follows. Let

T 
 T	 = C/	

where the lattice 	 =< 1, τ >, with τ ∈ H. Set i(z) = −z. Then Tλ/i 
 Ĉ and the
branched cover

℘ : C → C/	 → Ĉ

is the Weierstrass elliptic function ℘ with periods 1, τ . Consider the parallelogram
P with vertices 0, 1, τ , and 1 + τ which is the fundamental domain of 	. The four
simple fixed points of the involution i are the ℘-images of 0, 1/2, τ/2 and (1+ τ)/2.
They are the critical points of the branched cover T	 → Ĉ (Fig. 1).

Set

A(z) ≡ az + b, where a ∈ Z with |a| > 1, and b = (m + nτ)/2 ∈ 	/2.

Fig. 1 Illustration of the branched cover ℘. The critical points of ℘ are marked in a fundamental parallel-
ogram of the lattice 	, as well as their images
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Constructive Geometrization of Thurston Maps... 367

The complex-affine map A projects to a well-defined rational map

L : Ĉ → Ĉ

of degree a2. Trivially, all of the postcritical set of L lies in the projection of 	/2 in
Ĉ and hence is finite. Note that as long as the values of a, m, and n are the same, two
different maps L are topologically conjugate for all values of τ . In particular, they
cannot be distinguished by Thurston equivalence, which shows that the uniqueness
part of Thurston’s Theorem does not generally hold in the parabolic orbifold case.

As before, let f be a (2, 2, 2, 2)-map, and p : T → S2. Take any simple closed
curve γ on S2\Q f . Then p−1(γ ) has either one or two components that are simple
closed curves.

The following propositions are straightforward (see, for example, Selinger 2013):

Proposition 3.2 If there are exactly two postcritical points of f in each complemen-
tary component of γ , then the p-preimage of γ consists of two components that are
homotopic in T and non-trivial in H1(T, Z). Otherwise, all preimages of γ are trivial.

Every homotopy class of simple closed curves γ on T defines, up to sign, an element
〈γ 〉 of H1(T, Z). If a simple closed curve γ on S2\Q f has two p-preimages, then they
are homotopic by the previous proposition. Therefore, every homotopy class of simple
closed curves γ on S2\Q f also defines, up to sign, an element 〈γ 〉 of H1(T, Z). It is
clear that for any h ∈ H1(T, Z) there exists a homotopy class of simple closed curves
γ such that h = n〈γ 〉 for some n ∈ Z.

Since H1(T, Z) ∼= Z
2, the push-forward operator f̂∗ is a linear operator. It is easy

to see that the determinant of f̂∗ is equal to the degree of f̂ , which is in turn equal to
the degree of f . Existence of invariant multicurves for f is related to the action of f̂∗
on H1(T, Z).

Proposition 3.3 Suppose that a component γ ′ of the f -preimage of a simple closed
curve γ on S2\Q f is homotopic γ . Take a p-preimage α of γ . Then f̂∗(〈α〉) = ±d〈α〉,
where d is the degree of f restricted to γ ′.

More generally, we obtain the following.

Proposition 3.4 Let γ be a simple closed curve on S2\Q f such that there are two
points of the postcritical set Pf in each complementary component of γ . If all com-
ponents of the f -preimage of γ have zero intersection number with γ in S2\Q f , then
f̂∗(〈γ 〉) = ±d〈γ 〉, where d is the degree of f restricted to any preimage of γ .

Geometrization of a Thurston Map with Parabolic Orbifold

As seen above, every parabolic orbifold, which is a topological 2-sphere, can be
obtained by considering a quotient of R

2 by the action of a discrete group G of
Euclidean isometries that depends only on the signature of the orbifold. We will call
G the orbifold group. Up to equivalence, we may thus assume that a Thurston map f
with parabolic orbifold is a self-map of the O f = R

2/G.
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Theorem 3.5 Let f be a Thurston map with postcritical set P = Pf and no extra
marked points (Q f = Pf ) with parabolic orbifold. Then f is equivalent to a quotient
of a real affine map by the action of the orbifold group. This affine map is unique up
to affine conjugation.

Proof Since O f is parabolic there are three cases: #P is either 2, 3 or 4. In the first two
cases, the orbifold has a unique complex structure and f is equivalent to a quotient of
a complex affine map (see Douady and Hubbard 1993). In the third case, the orbifold
O f = ◊, so it is the quotient of R

2 by the action of

G = 〈z 	→ z + 1, z 	→ z + i, z 	→ −z〉.

Note that the elements of G are either translations by an integer vector or symmetries
around a preimage of a marked point. We will denote

Sw · z = 2w − z

the symmetry around a point w ∈ R
2. Consider a lift F : R

2 → R
2 of f and denote

P̃ = {1/2(Z + iZ)}

the full preimage of P by the projection map.

Lemma 3.6 A lift F of a continuous map f : ◊ → ◊ is affine on P̃.

Proof Since F is a lift of f , it defines a push-forward map F∗ : G → G such that

F(g · z) = F∗g · F(z) for any z ∈ R
2 and g ∈ G.

It is clear that F∗ is a homeomorphism and it sends translations to translations and
symmetries to symmetries: F∗Sz = SF(z). We immediately see that

F(z + w) = Aw + F(z)

for some integer matrix A and any w ∈ Z + iZ. Since

F(0) = F(S1/2 · 1) = SF(1/2) · F(1) = SF(1/2) · (A(1, 0)T + F(0))

= 2F(1/2) − (A(1, 0)T + F(0)),

we see that

F(1/2) = F(0) + A(1/2, 0)T .

Similar computations for F(1/2i) and F(1/2+1/2i) conclude the proof of the lemma.
��

123



Constructive Geometrization of Thurston Maps... 369

Thus F(z) agrees with an affine map L(z) = Az + b on P̃ , where A is an integer
matrix and b ∈ 1/2(Z + iZ) and F∗g = L∗g for all g ∈ G. Therefore the map
φ̃ = L−1 ◦ F is G-equivariant and projects to a self-homeomorphism φ of O f which
fixes P .

Lemma 3.7 Let l(z) be a quotient of an affine map L(z) = Az + b where A is an
integer matrix and b ∈ 1/2(Z + iZ) by the action of G, and φ be an element of
PMCG(◊). If l(z) ◦ φ has a lift L ′ to R

2 such that L ′(z) = Az + b for all points in P̃,
then φ is trivial.

Proof If l(z) ◦ φ and l(z) have lifts that agree on P̃ , then φ must have a lift that is
identical on P̃ .

The pure mapping class group PMCG(◊) is a free group generated by Dehn twists
Tα and Tβ around simple closed curves α and β that lift to horizontal and vertical
straight lines in R

2 respectively. As a representative of Tα and Tβ we can take unique
homeomorphisms on ◊ that are quotients of

(
x
y

)
	→

[
1 2
0 1

] (
x
y

)
and

(
x
y

)
	→

[
1 0
2 1

] (
x
y

)

on R
2 by the action of G. This representation of PMCG(◊) is faithful, and therefore

only the trivial element can have a lift which is identical on P̃ . ��
By the previous lemma, the homeomorphism φ represents the trivial element of

PMCG(◊) and, hence, is homotopic to the identity relative to P . Define l to be the
quotient of L by the action of G. Then the commutative diagram

projects to the commutative diagram

which realizes Thurston equivalence between f and l.
On the other hand, suppose that l1 and l2 are quotients of two affinemaps, which are

Thurston equivalent. Then l1 and l2 are conjugate on P , hence lifts thereof are conjugate
on P̃ by an affine map (in the case when O f = ◊ this follows from Lemma 3.6; the
other cases are similar) and the uniqueness part of the statement follows.
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Thurston Linear Transformation

Let Q be a finite collection of points in S2. We recall that a simple closed curve
γ ⊂ S2 − Q is essential if it does not bound a disk, is non-peripheral if it does not
bound a punctured disk.

Definition 3.8 Amulticurve� on (S2, Q) is a set of disjoint, nonhomotopic, essential,
non-peripheral simple closed curves on S2\Q. Let ( f, Q f ) be a Thurston map, and set
Q = Q f . Amulticurve� on S\Q is f-stable if for every curve γ ∈ �, each component
α of f −1(γ ) is either trivial (meaning inessential or peripheral) or homotopic rel Q
to an element of �.

To any multicurve is associated its Thurston linear transformation f� : R
� → R

� ,
best described by the following transition matrix

Mγ δ =
∑

α

1

deg( f : α → δ)

where the sum is taken over all the components α of f −1(δ) which are isotopic rel Q
to γ . Since this matrix has nonnegative entries, it has a leading eigenvalue λ(�) that
is real and nonnegative (by the Perron–Frobenius theorem).

We can now state Thurston’s theorem:
Thurston’s Theorem Let f : S2 → S2 be a marked Thurston map with a hyperbolic
orbifold. Then f is Thurston equivalent to rational function g with a finite set of
marked pre-periodic orbits if and only if λ(�) < 1 for every f -stable multicurve �.
The rational function g is unique up to conjugation by an automorphism of ¶1.

The proof of Thurston’s Theorem for Thurston maps without additional marked
points is given in Douady and Hubbard (1993), for the proof for marked maps see e.g.
Buff et al. (2014).

When a multicurve � has a leading eigenvalue λ(�) ≥ 1, we call it a Thurston
obstruction for f . A Thurston obstruction � is minimal if no proper subset of � is
itself an obstruction. We call � a simple obstruction if no permutation of the curves in
� puts M� in the block form

M� =
(
M11 0
M21 M22

)
,

where the leading eigenvalue of M11 is less than 1. If such a permutation exists, it
follows that M22 is a Thurston matrix of the corresponding sub-multicurve with the
same leading eigenvalue as M� . It is thus evident that every obstruction contains a
simple one.

In the original formulation in Douady and Hubbard (1993), a Thurston obstruction
was required to be invariant. Omitting this requirement makes the statement of the
theorem weaker in one direction and stronger in the other direction. However, in
Selinger (2011) is shown that if there exists a Thurston obstruction for f , then there
also exists a simple f -stable obstruction.

The following is an exercise in linear algebra (c.f. Selinger 2012):
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Constructive Geometrization of Thurston Maps... 371

Proposition 3.9 A multicurve � is a simple obstruction if and only if there exists a
positive vector v such that M�v ≥ v.

For what follows, let us make a note of a particular kind of Thurston obstructions:

Definition 3.10 A Levy cycle is a multicurve

� = {γ0, γ1, . . . , γn−1}

such that each γi has a nontrivial preimage γ ′
i , where the topological degree of f

restricted to γ ′
i is 1 and γ ′

i is homotopic to γ(i−1) mod n rel Q. A Levy cycle is degen-
erate if each γi has a pre-image γ ′

i as above such that γ ′
i bounds a disk Di and the

restriction of f to Di is a homeomorphism and f (Di ) is homotopic to D(i+1) mod n

rel Q.

Proposition 3.11 A Thurston map f admits a Levy cycle if and only if so does its
iterate f n.

Proof If a simple closed curve γ generates a Levy cycle for f , then it obviously does
so for f n .

Suppose γ generates a Levy cycle for f n of length m, i.e. there is a collection of
simple closed curves {γ0, . . . , γnm−1} such that f (γi ) = γi+1 for all 0 ≤ i ≤ nm − 1
and f (γnm−1) = γ is isotopic to γ0, and f restricted to any γi is a homeomorphism.
Moreover, all γin represent pairwise disjoint isotopy classes of simple closed curves.
If all γi were to represent pairwise disjoint isotopy classes of simple closed curves,
then γ0 would generate a Levy cycle for f , by definition. However this does not have
to be the case. Changing f by isotopy if needed, we may assume that all intersections
between γi are transversal.

Consider a connected component A of
⋃

γi containing γ0. Let k = min{i > 0|γi ∈
A}. Then f k send A homeomorphically to B = A ∪ γ \γ0 and B is isotopic to A.
Note that

⋃
γi is a union of disjoint nm/k homeomorphic copies of A. The graphs A

and B separate the sphere into a collection of discs Ci and Di with boundaries αi and
βi respectively, where αi is isotopic to βi . If βi is peripheral, then f has at most one
singular value inside Di , which implies that there exists C j such that f k(C j ) = Di

and deg f k |C j = deg f k |α j = 1. Since deg f > 1, we see that there exists β0 which
is non-peripheral (we allow ourselves to slightly abuse the notation here).

Define inductively βi+1 = f k(αi ). Then all βi are also non-peripheral and since
they are chosen from a finite set, βs = β0 for some s ≥ 0. Therefore β0 has a degree 1
f ks-preimagewhich is homotopic to β0. Note that all the βi represent pairwise disjoint
isotopy classes of simple closed curves. We conclude that β0 generates a Levy cycle
for f . ��

A Thurston map f is called a topological polynomial if there exists a point w such
that f −1(w) = {w}. The following was proved by Levy (1985):

Theorem 3.12 If f is a topological polynomial and � is a Thurston obstruction for
f , then � contains a degenerate Levy cycle.
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Example Let us give a simple yet instructive example. Let f : C → C be a postcriti-
cally finite polynomial of degree deg f = d ≥ 2 and let p be a fixed point of f which
does not lie in Pf . Perform a topological surgery on Ĉ 
 S2 inserting a topological
disk Dx at each point x ∈ ∪ j≥0 f − j (p). Modify the map f accordingly to send Dx to
D f (x). Finally, select a new dynamics on D = Dp so that there are at least two fixed
points a, b ∈ D. The resulting topological polynomial g has the same degree as f .
Select the marked set

Qg ≡ Pg ∪ {a, b}.

With this choice of the marked, the Thurston map (g, Qg) is clearly obstructed—a
simple closed curve γ ⊂ D which separates a and b from Pg is a degenerate Levy
cycle.

Thurston Iteration on the Teichmüller Space

For the basics of the Teichmüller Theory see e.g. Imayoshi and Taniguchi (1992). Let
S2n denote the two-spherewith nmarked points. Themoduli spaceM(S2n ) parametrizes
distinct complex structures on S2n . For n ≤ 3 it consists of a single point. For n > 3,
it is naturally identified with the n − 3 dimensional complex manifold consisting of
all n-tuples (z1, . . . , zn) of points in Ĉ defined up to a Möbius transformation. The
Teichmüller space T (S2n ) is the universal covering space of M(S2n ). We will use the
notation || · ||T for the Teichmüller norm on T (S2n ).

The Teichmüller space T (S2n ) can be naturally constructed as the space of equiva-
lence classes of almost complex structures on S2n with μ1 ≡ μ2 if μ1 = h∗μ2 where
h is a quasiconformal mapping of S2n = Ĉ isotopic to the identity relative the marked
points. Another interpretation of T (S2n ) is as the space of equivalence classes of qua-
siconformal mappings φ : S2n → Ĉ with φ1 ≡ φ2 if and only if there exists a Möbius
map h : Ĉ → Ĉ such that h ◦ φ1 is isotopic to φ2 relative the marked points. The
correspondence between the two viewpoints is standard: an almost complex structure
μ on S2n is obtained as the pullback of the standard structure σ0 on Ĉ by φ:

μ = φ∗(σ0).

Let f : S2 → S2 be a Thurston map of the 2-sphere with marked set Q f . We will
further assume that f is quasi-regular (even piecewise linear, see Sect. 3.2).We denote
M f and T f the moduli space and the Teichmüller space respectively of the sphere S2

with marked points Q f . It is straightforward to verify that the operation defined on
almost complex structures by [μ] 	→ [ f ∗μ] yields a well-defined analytic mapping

σ f : T f → T f

which we call the Thurston pullback mapping. It is equally easy to see that if f and
g are two equivalent Thurston maps then σ f coincides with σg up to isomorphism of
Teichmüller spaces T f and Tg .
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In terms of the description of T f by equivalence classes of homeomorphisms φ :
S2n → Ĉ, the mapping σ f is defined as follows. We can pull back the almost complex
structure μ = φ∗σ0 by f to

μ′ ≡ f ∗μ = f ∗φ∗σ0.

Using Measurable Riemann Mapping Theorem to integrate μ′, we get a mapping
φ′ : S2n → Ĉ satisfying

φ′∗σ0 = μ′.

We now set

σ f [φ] = [φ′].

The key starting point of the proof of Thurston Theorem is the following:

Proposition 3.13 (cf. Douady and Hubbard (1993), Proposition 3.2.2) A Thurston
map f is equivalent to a rational function if and only if σ f has a fixed point.

Proof Since the standard almost complex structure σ0 on Ĉ is invariant under the
pullback by a rational function, the “if” direction is obvious. For the “only if” direction,
consider a pair of homeomorphisms φ and φ′ which describe the same point in the
Teichmüller space and such that φ′ = σ f (φ). The mapping

fτ ≡ φ ◦ f ◦ (φ′)−1 : Ĉ → Ĉ

preserves the almost complex structure σ0 by construction, and therefore is analytic,
and hence rational. Let h be a Möbius map such that φ′ is isotopic to h ◦ φ relative
Q f . Then the rational mapping fτ ◦ h is Thurston equivalent by h: the diagram

(S2, Q f )
h−1◦φ′

−−−−→ Ĉ
⏐⏐� f

⏐⏐� fτ ◦h

(S2, Q f )
φ−−−−→ Ĉ

commutes up to isotopy relative Q f . ��
It is straightforward that

||dσ f ||T ≤ 1.

Moreover, when f has a hyperbolic orbifold, there exists k ∈ N such that

||d(σ k
f )||T < 1

(see e.g. Buff et al. 2014). It follows that:
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Proposition 3.14 Suppose that f has a hyperbolic orbifold, and σ f has a fixed point
in T f . Then the fixed point is unique, and every σ f -orbit converges to it.

Weak contraction properties of σ f imply that non-existence of a fixed point means
that for every compact subset K � T f and every starting point [τ0] ∈ T f there is a

moment j ∈ N when [σ j
f τ0] /∈ K . The next section gives a more precise explanation,

due to Pilgrim (2001).

Canonical Obstructions

For a general hyperbolic Riemann surface W we denote ρW , dW , and lengthW the
hyperbolic metric, distance, and length onW . When we want to emphasize the depen-
dence of the hyperbolic metric on the choice of the complex structure τ on a surface S,
we will write ρτ for the hyperbolic metric on Sτ ≡ (S, τ ), lengthτ for the hyperbolic
length, and dτ for the hyperbolic distance. For a non-trivial homotopy class of closed
curves [γ ] on S we let �τ ([γ ]) denote the length of the unique geodesic representative
of [γ ] in Sτ .

The following is straightforward (see e.g. Pilgrim 2001):

Proposition 3.15 Suppose there exists τ ∈ T f such that for a non-trivial homotopy
class of simple closed curves [γ ] the lengths

�σ n
f τ

([γ ]) −→
n→∞ 0.

Then the same property holds for any other starting point τ ′ ∈ T f .

Definition 3.16 The canonical obstruction � f of f is the collection of all non-trivial
homotopy classes γ such that

�σ n
f τ

([γ ]) −→
n→∞ 0

for some (equivalently, for all) τ ∈ T f .

Pilgrim proved the following:

Theorem 3.17 (Pilgrim 2001) Suppose f is a Thurston map with a hyperbolic orb-
ifold. If the canonical obstruction is empty, then f is Thurston equivalent to a rational
function. If the canonical obstruction is non-empty, then it is a Thurston obstruction.

Pilgrim further showed:

Theorem 3.18 (Pilgrim 2001) Let τ0 ∈ T f . There exists a constant E = E(τ0) such
that for every non-trivial simple closed curve γ /∈ � f we have

inf �σ n
f τ0

([γ ]) > E .
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Pilgrim’s Decompositions of Thurston Maps

What follows is a very brief review; the reader is referred to K. Pilgrim’s book Pilgrim
(1827) for details. We adhere to the notation of Pilgrim (1827), for ease of reference.

As a motivation, consider that for the canonical Thurston obstruction �c � γ , there
is a choice of complex structure τ for which �τ ([γ ]) is arbitrarily small, and remains
small under pullbacks by f . It is thus natural to think of the punctured sphere S2\Pf

as pinching along the homotopy classes [γ ] ∈ �c; instead of a single sphere we then
obtain a collection of spheres interchanged by f .

More specifically, let f be a Thurston map, and � = ∪γ j an f -stable multicurve.
Consider also a finite collection of disjoint closed annuli A0, j which are homotopic
to the respective γ j . For each A0, j consider only non-trivial preimages; these form a
collection of annuli A1,k , each of which is homotopic to one of the curves in�. Pilgrim
says that the pair ( f, �) is in a standard form (see Fig. 2) if there exists a collection
of annuli A0, j , which we call decomposition annuli, as above such that the following
properties hold:

(a) for each curve γ j the annuli A1,k in the same homotopy class are contained inside
A0, j ;

(b) moreover, the two outermost annuli A1,k as above share their outer boundary
curves with A0, j .

We call the components of the complement of the decomposition annuli the thick
parts.

AThurstonmapwith amulticurve in a standard form can be decomposed as follows.
First, all annuli A0, j are removed, leaving a collection of spheres with holes, denoted
S0( j). For each j , there exists a unique connected component S1( j) of f −1(∪S0( j))
which has the property ∂S0( j) ⊂ ∂S1( j). Any such S1( j) is a sphere with holes, with
boundary curves being of two types: boundaries of the removed annuli, or boundaries
of trivial preimages of the removed annuli.

Fig. 2 Pilgrim’s decomposition of a Thurston map
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The holes in S0( j) ⊂ S2 can be filled as follows. Let χ be a boundary curve of a
component D of S2\S0( j). Let k ∈ N be the first iterate f k : χ → χ , if it exists. For
each 0 ≤ i ≤ k − 1 the curve χi ≡ f i (χ) bounds a component Di of S2\S0(mi ) for
some mi . Denote di the degree of f : χi → χi+1. Select homeomorphisms

hi : D̄i → D̄ so that hi+1 ◦ f ◦ h−1
i (z) = zdi .

Set f̃ ≡ f on ∪S0( j). Define new punctured spheres S̃( j) by adjoining cups
h−1
i (D̄\{0}) to S0( j). Extend the map f̃ to each Di by setting

f̃ (z) = h−1
i+1 ◦ (hi (z))

di .

We have thus replaced every hole with a cap with a single puncture. We call such a
procedure patching a thick component.

By construction, the map

f̃ : ∪S̃( j) → ∪S̃( j)

contains a finite number of periodic cycles of punctured spheres. For every periodic
sphere S̃( j) denote by F the first return map f k j : S̃( j) → S̃( j). This is again a
Thurston map. The collection of maps F and the combinatorial information required
to glue the spheres S0( j) back together is what Pilgrim calls a decomposition of f .

Pilgrim shows:

Theorem 3.19 For every obstructed marked Thurston map f with an obstruction �

there exists an equivalent map g such that (g, �) is in a standard form, and thus can
be decomposed.

Topological Characterization of Canonical Obstructions

The first author showed in Selinger (2013):

Theorem 3.20 (Characterization of Canonical Obstructions) The canonical obstruc-
tion � is a unique minimal obstruction with the following properties.

• If the first-return map F of a cycle of components in §� is a (2, 2, 2, 2)-map, then
every curve of every simple Thurston obstruction for F has two postcritical points
of f in each complementary component and the two eigenvalues of F̂∗ are equal
or non-integer.

• If the first-return map F of a cycle of components in §� is not a (2, 2, 2, 2)-map
or a homeomorphism, then there exists no Thurston obstruction of F.
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3.2 Algorithmic Preliminaries

A Piecewise-Linear Thurston Map

For the purposes of algorithmic analysis, we will require a finite description of a
branched covering f : S2 → S2.

Since we will workmainly in the piecewise linear category, it is convenient to recall
here some definitions.

Simplicial complexes Following Thurston (1997) (chapter 3.2 and 3.9) we call a sim-
plicial complex any locally finite collection � of simplices satisfying the following
two conditions:

• a face of a simplex in � is also in �, and
• the intersection of any two simplices in � is either empty or a face of both.

The union of all simplices in � is the polyhedron of � (written |�|).
Piecewise linear maps A map f : M → N from a subset of an affine space into
another affine space is piecewise linear (PL) if it is the restriction of a simplicial map
defined on the polyhedron of some simplicial complex.

We also define piecewise linear (PL)manifolds as manifolds having an atlas where
the transition maps between overlapping charts are piecewise linear homeomorphisms
between open subsets of R

n . It is well known that any piecewise linear manifold has
a triangulation: there is a simplicial complex � together with a homeomorphism
|�| → X which is assumed to be a PL map (see Thurston (1997), proof of theorem
3.10.2).

One example of such a manifold is the standard piecewise linear (PL) 2-sphere,
which is nicely described in Thurston (1997) as follows: pick any convex 3-
dimensional polyhedron K ⊂ R

3, and consider the charts corresponding to all the
possible orthogonal projections of the boundary (topological) sphere ∂K onto hyper-
planes in R

3. The manifold thus obtained is the standard piecewise linear 2-sphere.
One can prove that another choice of polyhedron would lead to an isomorphic object
[see exercise 3.9.5 in Thurston (1997)].

It is known that in dimension three or lower, every topological manifold has a PL
structure, and any two such structures are PL equivalent [in dimension 2, see Radó
(1925), for the dimension 3 consult Bing (1959)].
Piecewise linear branched coversWe begin by formulating the following proposition
which describes how to lift a triangulation by a PL branched cover [see Douady and
Douady (2005), section 6.5.4]:

Proposition 3.21 (Lifting a triangulation) Let B be a compact topological surface,
π : X → B a finite ramified cover of B. Let� be the set of branch points of π , and let
T be a triangulation of B such that � is a subset of vertices of T (� ⊂ K0(T ) in the
established notation). Then there exists a triangulation T ′ of X, unique up to bijective
change of indices, so that the branched covering map π : X → B sends vertices
to vertices, edges to edges and faces to faces. Moreover, if X = B is a standard PL
2-sphere and π is PL, then T ′ can be produced constructively given a description of
T .
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We consider PL maps f of the standard PL 2-sphere which are postcritically finite
topological branched coverings with a finite forward-invariant set Q f of marked
points. We call such a map a piecewise linear Thurston map.

Remark 3.22 Note that any such covering may be realized as a piecewise-linear
branched covering map of a triangulation of Ĉ with rational vertices. An algorithmic
description of a PL branched covering could thus either be given by the combinatorial
data describing the simplicial map, or as a collection of affine maps of triangles in Ĉ

with rational vertices. We will alternate between these descriptions as convenient.

We note:

Proposition 3.23 (Bonnot et al. 2012) Every marked Thurston map f is Thurston
equivalent to a PL Thurston map.

For ease of reference we state:

Theorem 3.24 There exists an algorithm A1 which, given a finite description of a
marked Thurston map f with hyperbolic orbifold, outputs 1 if there exists a Thurston
obstruction for f and0 otherwise. In the latter case,A1 also outputs a finite description
which uniquely identifies the rational mapping R which is Thurston equivalent to f ,
and the pre-periodic orbits of R that correspond to points in Q f .

The paper (Bonnot et al. 2012) contains a proof of the above theorem for the case of
an unmarked Thurston map (Q f = Pf ), the proof extends to the general case mutatis
mutandis.

Verifying Homotopy

Let us quote several useful results from Bonnot et al. (2012):

Proposition 3.25 There exists an algorithm A2 to check whether two simple closed
polygonal curves on a triangulated surface S are homotopic.

Proposition 3.26 There exists an algorithm A3 which does the following. Given a
triangulated sphere with a finite number of punctures S = S2 − Z and a triangulated
homeomorphism h : S → S, the algorithm identifies whether h is isotopic to the
identity.

Enumeration of the Multicurves and Elements of the Mapping Class Group

We again quote Bonnot et al. (2012):

Proposition 3.27 Given a finite set of punctures W, there exist algorithms A5, A6
which enumerate the elements of MCG(S\W ) and PMCG(S\W ) respectively.

Proposition 3.28 Given a finite set of punctures W, there exists an algorithm A7
which enumerates all non-peripheral multicurves on S2\W.
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We combine Propositions 3.28 and 3.25 to formulate:

Proposition 3.29 Given a marked PL Thurston map f , there exists an algorithm A8
which enumerates all f -stable multicurves.

InBonnot et al. (2012), Propositions 3.26 and3.27 are combined in a straightforward
fashion to prove:

Proposition 3.30 There exists and algorithmA9 which, given two equivalent marked
PL Thurston maps f and g verifies the equivalence, by presenting an element of
MCG(S2\Q) which realizes it.

We also need to state a constructive version of Theorem 3.19:

Proposition 3.31 There exists and algorithmA10 which, given an obstructed marked
PL Thurston map f and an obstruction �, finds an equivalent PL Thurston map which
is in a standard form, and such that the boundary curves of the thick parts are polygons.

Sketch of proof We use a brute force search combined with algorithm A3 (Proposi-
tion 3.26) to find a PL approximation of themap g fromTheorem3.19.We thenmodify
the triangulation near the boundary curves of the thick parts to obtain the desired map.
We leave it to the reader to fill in the straightforward details.

Algorithmic Complexity of the Mapping Class Group

Let us recall that a group G is finitely generated if it is isomorphic to a quotient of the
free group FS on a finite set S by a normal subgroup N � FS . The elements of S are
generators of G. A finitely generated group is finitely presented if there exists a finite
set of words R ⊂ FS such that N is the normal closure of R (the smallest normal
subgroup of FS which contains R). The words in R are called relators; thus a finitely
presented group can be described using a finite set of generators and relators.

The Word Problem for a finitely presented group G can be stated as follows:
Let S and R be given. For a word w in FS decide whether or not w represents the

identity in G. Equivalently, for two words w1, w2 ∈ FS decide whether w1 and w2
represent the same element of G.

The Conjugacy Problem is stated similarly:
Let S and R begiven. For twowordsw1,w2 decidewhetherw1 andw2 are conjugate

elements of G, that is, whether there exists x ∈ G such that w1 = xw2x−1.
The Word Problem is a particular case of the conjugacy problem, since being

conjugate to the identity element e ∈ G is the same as being equal to it.
Both problems were explicitly formulated by Dehn (1911), who subsequently pro-

duced an algorithm deciding the Conjugacy Problem for a fundamental group of a
closed orientable surface Dehn (1992). An example of a finitely presented group
with an algorithmically unsolvable word problem was first given in 1955 by Novikov
(1955), a different construction was obtained by Boone (1958).

We begin by noting the following (cf. Lickorish 1964; Farb and Margalit 2011):
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Theorem 3.32 Let S be an orientable surface of finite topological type. Then there
exists an explicit finite presentation of MCG(S) and of PMCG(S). This presentation
can be computed from a PL presentation of S.

As was shown by Hemion (1979):

Theorem 3.33 Let S be an orientable surface of finite topological type. Then the
Conjugacy Problem in MCG(S) is algorithmically solvable.

It is known that the Conjugacy Problem in MCG(S) is solvable in exponential time
(Tao 2013; Hamenstädt 2009).

Hurwitz Classification of Branched Covers

Let X and Y be two finite type Riemann surfaces. We say that two finite degree
branched covers φ and ψ of Y by X are equivalent in the sense of Hurwitz if there
exist homeomorphisms h0, h1 : X → X such that

h0 ◦ φ = ψ ◦ h1.

An equivalence class of branched covers is known as a Hurwitz class. Enumerating
all Hurwitz classes with a given ramification data is a version of theHurwitz Problem.
The classical paper of Hurwitz (1891) gives an elegant and explicit solution of the
problem for the case X = Ĉ.

We will need the following narrow consequence of Hurwitz’s work (for a modern
treatment, see Bartholdi et al. (2013):

Main Theorem III There exists an algorithm A which, given PL branched covers φ

and ψ of PL spheres and a PL homeomorphism h0 mapping the critical values of φ

to those of ψ , does the following:

(1) decides whether φ and ψ belong to the same Hurwitz class or not;
(2) if the answer to (1) is affirmative, decides whether there exists a homeomorphism

h1 such that h0 ◦ φ = ψ ◦ h1.

4 Classification of Marked Thurston Maps with Parabolic Orbifolds

Let f be a Thurston map with postcritical set Pf and marked set Q f ⊃ Pf . In what
follows, we will drop the subscript f and will denote these sets simply P and Q. The
goal of this section is to prove the following theorem:

Theorem 4.1 Let f be a Thurston map with postcritical set P and marked set Q ⊃ P
such that the associated orbifold is parabolic and the associated matrix is hyperbolic.
Then either f is equivalent to a quotient of an affine map or f admits a degenerate
Levy cycle.

Furthermore, in the former case the affine map is defined uniquely up to affine
conjugacy.
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Remark 4.2 We note that in the case when the associated matrix has eigenvalue ±1,
the two options are not mutually exclusive. We do not to consider this case since it is
not needed to prove Theorem 6.1. Indeed, the curve γ corresponding to the eigenvalue
±1 will have d preimages of degree 1, which are all homotopic to γ relative Pf , where
d is the degree of the Thurston map f . Thus the Thurston matrix corresponding to
{γ } is equal to d > 1 and the canonical obstruction of f necessarily contains a curve
isotopic to γ relative Pf ; in particular, it is not empty.

4.1 The Case When the Associated Matrix is Expanding

We will first derive Theorem 4.1 in the case when the matrix of the corresponding
affine map is expanding.

Theorem 4.3 Let ( f, Q) be a Thurston map with postcritical set P and marked set
Q ⊃ P with parabolic orbifold, such that ( f, P) is equivalent to a quotient l of a real
affine map L(z) = Az + b by the orbifold group where both eigenvalues of A have
absolute value greater than 1. Then ( f, Q) is equivalent to a quotient of a real affine
map by the action of the orbifold group if and only if f admits no degenerate Levy
cycle.

Proof Let φ0 and φ1 realize Thurston equivalence between ( f, P) and l, i.e. φ0 ◦ f =
l ◦ φ1 and φ0 is isotopic to φ1 relative P . The following argument is fairly standard
(compare Shishikura 2000; Bonk andMeyer 2010).We can lift the isotopy between φ0
and φ1 by l to obtain an isotopy between φ1 and the lift φ2 of φ1 (see the commutative
diagram below).

Since both eigenvalues of A have absolute value greater than 1, the map l is expand-
ing with respect to the Euclidean metric dE on O f . This implies that the distance
between φn(z) and φn+1(z) decreases at a uniform geometric rate for all z ∈ O f . We
see that the sequence {φn} converges uniformly to a semi-conjugacy φ∞ between f
and l. One of the following is true then.

Case I Suppose φ∞ is injective on Q. Let n be such that dE (φ∞(z), φn(z)) < ε

and dE (φn+1(z), φn(z)) < ε for all z ∈ O f , where ε is small. Consider an isotopy,
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which is nontrivial only in the ε-neighborhood of Q\P that transforms φn to φ′
n such

that φ′
n agrees with φ∞ on Q. We lift the isotopy between φn and φ′

n starting at φn+1
to get the lift φ′

n+1 of φ′
n which is 2ε-close to φ∞ and, hence, agrees with φ∞ on Q if

ε was chosen small enough. It is also clear that for ε small φ′
n and φ′

n+1 are homotopic
relative Q, realizing Thurston equivalence between ( f, Q) and (l, φ∞(Q)).

Case II Suppose φ∞ is not injective on Q. Consider a point z0 which is the image
of at least two different points q1 and q2 in Q (i.e φ∞(q1) = φ∞(q2) = z0); obviously
z0 is either periodic or pre-periodic.

If f (q1) = f (q2), then the distance between φn(q1) and φn(q2) is tending to 0,
while l(φn(q1)) = l(φn(q2)) so the map l is not injective in any neighborhood of
z0 = φ∞(q1), i.e. z0 has to be a critical point of l. We see that l(z0) is one of the
critical values of l, but f (q1) is not a critical value of f . Hence, l(z0) will be the
image of at least two distinct points in Q: one of the critical values of f and f (q1).
Of course, if f (q1) and f (q2) are distinct, then l(z0) is also the image of at least two
different points in Q. Thus, we can assume that z0 is periodic with period, say, m.

Consider a small simple closed curve γ around z0 (for example, we can take a
circle around z0 of radius ε). Since z0 is periodic it is not a critical point of l; the m-th
iterate of l sends γ to another simple closed curve γ ′ around z0, which is evidently
homotopic to γ relative φ∞(Q), in one-to-one fashion, moreover the disk bounded by
γ that contains z0 is mapped homeomorphically to the disk bounded by γ ′. This yields
that, for n large enough, α′ = φ−1

n (γ ′) and α = φ−1
n+m(γ ) are homotopic relative Q

and f m homeomorphically maps a disk bounded by α to a disk bounded by α′. We
see that α, f (α), . . . , f m−1(α) form a degenerate Levy cycle. ��
Remark 4.4 Note that if P has only three points, the matrix A is a multiplication by
a complex number and both eigenvalues of A have the same absolute value, which is
greater than 1.

4.2 When the Associated Matrix is Hyperbolic

Wenowwant to proveTheorem4.1 for any (2, 2, 2, 2)-map such that the corresponding
linear transformation is hyperbolic but not expanding. Throughout this section we
assume that ( f, Q) is a Thurston (2, 2, 2, 2)-mapwith postcritical set P andmarked set
Q ⊃ P , such that ( f, P) is equivalent to a quotient l of a real affinemap L(z) = Az+b
by the orbifold group where both eigenvalues of A are not equal to ±1.

Definition 4.5 Let f be a (2, 2, 2, 2)-map and let z be an f -periodic point with period
n. Fix a lift F of f to the universal cover and take a point z̃ in the fiber of z. If z /∈ P ,
we define the Nielsen index indF,n(z̃) to be the unique element g of the orbifold group
G such that Fn(z̃) = g · z̃. If z ∈ P then the Nielsen index of z is defined up to
pre-composition with the symmetry around z.

Below, when we say that a point z has a period n, we do not imply that n is the
minimal period of z.

Definition 4.6 Let f be a (2, 2, 2, 2)-map and let z1, z2 be f -periodic points with
period n. We say that z1 and z2 are in the same Nielsen class of period n if there
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exists a lift Fn of f n to the universal cover and points z̃1, z̃2 in the fibers of z1, z2
respectively, such that both z̃1 and z̃2 are fixed by Fn . We say that z1 and z2 are in the
same Nielsen class if there exists an integer n such that they are in the same class of
period n.

Note that if two points are in the same Nielsen class of period n, then they are in the
same Nielsen class of period mn for any m ≥ 1. Clearly, being in the same Nielsen
class (without specifying a period) is an equivalence relation, which is preserved under
Thurston equivalence for points in Q.

Lemma 4.7 Periodic points z1 and z2 of period n are in the same Nielsen class if and
only if, for any lift F of f to the universal cover, there exist points z̃1, z̃2 in the fibers
of z1, z2 respectively such that indF,n(z̃1) = indF,n(z̃2).

Proof If g = indF,n(z̃1) = indF,n(z̃2) ∈ G for some lift F of f to the universal cover
and points z̃1, z̃2 , then g−1 · Fn(z̃i ) = z̃i for i = 1, 2 and hence z1 and z2 are in the
same Nielsen class.

In the other direction, suppose Fn(z̃i ) = z̃i for i = 1, 2 and some cover Fn of f n .
For any cover F of f , its iterate Fn can be written in the form Fn = g · Fn where
g ∈ G. Therefore indF,n(z̃1) = indF,n(z̃2) = g. ��

We will need the following statement.

Lemma 4.8 Let A be a 2 × 2 integer matrix with determinant greater than 1 and
both eigenvalues not equal to ±1. If v is a non-zero integer vector, then A−n · v is
non-integer for some n > 0.

Proof Suppose, on contrary, that A−n ·v = (pn, qn)T where pn, qn ∈ Z for all n > 0.
If both eigenvalues of A have absolute values greater than 1, then evidently both pn
and qn tend to 0. Thus for some n, pn = qn = 0 and, multiplying (pn, qn)T by An ,
we see that v is also a zero vector. Since by assumption, eigenvalues are not equal
to ±1, the only case we need to consider is when A has two distinct real irrational
eigenvalues |λ1| > 1 and |λ2| < 1.

In this case, A is diagonalizable; write v as a linear combination v = v1 + v2 of
two eigenvectors v1 = (x1, y1)T and v2 = (x2, y2)T . Then A−n · v = λ−n

1 v1 +λ−n
2 v2

so pn = x1λ
−n
1 + x2λ

−n
2 and qn = y1λ

−n
1 + y2λ

−n
2 . Note that qnλ

−n
1 = y1λ

−2n
1 +

y2(λ1λ2)−n → 0 because |λ1| > 1 and λ1λ2 = det A > 1; thus |λ1|−n = o(1/|qn|).
Then

∣∣∣∣
pn
qn

− x2
y2

∣∣∣∣ =
∣∣∣∣∣
(x1y2 − x2y1)λ

−n
1

y2qn

∣∣∣∣∣ = O

(∣∣∣∣∣
λ−n
1

qn

∣∣∣∣∣

)
= o

(
1

q2n

)
.

Since λ2 is a quadratic algebraic number, the ratio x2/y2 must also be quadratic
algebraic. No quadratic algebraic number, however, can be approximated by rationals
this way and we arrive at a contradiction. ��
Corollary 4.9 Let L(z) = Az+b be a real affine map such that A is an integer matrix
with | det A| > 1 and b is a vector with entries in 1

q Z for some q ∈ N, and assume
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that A has eigenvalues not equal to ±1. If L−n(v) ∈ 1
q Z for all n ≥ 0, then v is equal

to the fixed point of L.

Proof The case when b = 0 follows immediately from the previous lemma. If b �= 0,
we conjugate L(z) by t (z) = z − x , where x is the unique fixed point of L(z) (note
that x is rational), to obtain a real linear map L ′(z). Then L ′(z) and t (v) also satisfy
the assumption of this corollary (possibly with a different q) and we conclude that
t (v) = v − x = 0. ��
Definition 4.10 Suppose that one of the complementary components to a simple
closed curve γ in (◊, Q) contains at most one point of P (so that γ is trivial in
(◊, P)). We call that component int(γ ) the interior of γ .

Proposition 4.11 Let {γn} be a sequence of simple closed curves in (◊, Q) that are
inessential in (◊, P) such that a (2, 2, 2, 2)-map f sends γn+1 to γn and Q′ =
int(γn) ∩ Q is the same for all n. Then there exits m such that all points in Q′ are
periodic with period m and lie in the same Nielsen class.

Proof Since all γn are inessential in (◊, P), the map f sends int(γn+1) homeomor-
phically onto int(γn). Indeed, int(γn) contains at most one critical value of f , and if it
does contain a critical value p, then the unique preimage of p in int(γn+1) must be p
itself, which is not a critical point. Therefore f is a bijection on Q′ and every point in
Q′ is periodic; denote m the least common multiple of the periods of points in Q′. It
is enough to prove that for f m , the subset Q′ of the set of fixed points lies in a single
Nielsen class.

Let F be a lift of f m to the universal cover such that a point r̃ in the fiber of r ∈ Q′
is fixed by F . Let s be any other point in Q′. Since Q′ ∩ P contains at most one point,
we may assume that s /∈ P . Connect r and s by a curve α1 in int(γ1)\P . The lift α̃1 of
α1 that starts at r̃ will end at some point s̃1 in the fiber of s; in the case r ∈ P take either
of the two lifts. Denote g1 = indF,1(s̃1); in other words, g1 is a unique transformation
in G such that F(s̃1) = g1 · s̃1. Consider the lift α2 of α1 by f m that starts at r .
Since r ∈ int(γm+1) the whole curve α2 lies in int(γm+1) and, thus, ends in the unique
preimage of s within int(γm+1), which is s itself. Therefore the lift α̃2 = F−1(α̃1) of
α2 starts at r̃ and ends at some point s̃2 in the fiber of s. We conclude by induction that

F−n(s̃1) = s̃n+1

with s̃n+1 in the fiber of s for all n. Denote

gn = indF,1(s̃n),

which is a unique element of G such that

s̃n−1 = F(s̃n) = gn · s̃n for all n ≥ 2.

Then

gn · s̃n = s̃n−1 = F(s̃n) = F(gn+1 · s̃n+1) = F∗(gn+1) · F(s̃n+1) = F∗(gn+1) · s̃n .
Since s̃n /∈ P̃ , this yields F∗(gn+1) = gn for all n.
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By Theorem 3.5 ( f m, P) is Thurston equivalent to a quotient of an affine map
L(z) = Az + b; the push-forward map F∗ is easily computed: for a translation

Tv · z = z + v

we get

F∗(Tv) = TAv

and for a symmetry

Sv · z = 2v − z

we get

F∗(Sv) = SAv+b.

It follows that if g1 is equal to a translation Tv , then

gn = TA−n+1v for all n ≥ 2.

In particular, all A−n+1v are integer vectors andCorollary 4.9 yields v = 0.We see that

indF,1(s̃1) = g1 = id

and s̃1 is fixed by F so r and s are in the same Nielsen class.
Similarly, if g1 = Sv , then gn = SL−n+1(v) and Corollary 4.9 also applies, implying

that L(v) = v and g1 = gn for all n. But then

s̃1 = g2 · g3 · s̃3 = S2v s̃3 = s̃3

and F2 fixes both r̃ and s̃1. ��
Lemma 4.12 Amap f admits a degenerate Levy cycle if and only if so does its iterate
f n. Two points z1, z2 are in the same Nielsen class for f if and only if they are in the
same Nielsen class for f n.

Proof The first statement follows from Proposition 3.11. In our case every Levy cycle
is degenerate. Indeed, Proposition 3.4 implies that if a Levy cycle consists of curves
that are non-peripheral in (◊, P), then the associated matrix must have an eigenvalue
with absolute value 1, which contradicts the assumptions we made in the beginning of
this section. If all curves in the Levy cycle are peripheral in (◊, P) then the interiors
thereof are mapped homeomorphically.

The second statement follows immediately from the definitions. ��
Proposition 4.13 A map f admits a degenerate Levy cycle if and only if there exist
two distinct periodic points in Q in the same Nielsen class.
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Proof In view of Lemma 4.12, we can freely replace f by any iterate of f and assume
that all periodic points in Q are fixed. Suppose an essential simple closed curve γ

forms a Levy cycle of length 1, i.e. f (γ ) is homotopic to γ and the degree of f
restricted to γ is 1. Recall that ( f, P) is equivalent to a quotient of z 	→ Az + b.
Essential simple closed curves on (◊, P) are in one-to-one correspondence with non-
zero integer vectors (p, q)T such that gcd(p, q) = 1. The action of f on the first
homology group of (◊, P) is (in the appropriate basis) the multiplication by A so that
if γ1 and γ2 are simple closed essential curves labeled by (p1, q1) and (p2, q2) such
that f (γ2) = γ1, then

A(p2, q2)
T = ±d(p1, q1)

T

where d is the degree of f restricted to γ2. This yields that γ is inessential in (◊, P)

because otherwise Amust have an eigenvalue ±1, which contradicts the assumptions.
We are now in the setting of Proposition 4.11 and we see that all points in int(γ ) are
in the same Nielsen class with some period m.

Suppose now that there are at least two fixed points of f in Q in the same Nielsen
class C . Consider all points of Q in this class. Replacing f by an iterate, we may
assume that all of them are in the same Nielsen class of period 1, i.e. there exists a lift
F of f to the universal cover such that for each point q ∈ C , some lift q̃ is fixed by
F . Note that these will be the only fixed points of F . Note that C contains at most 1
point of P . ��
Lemma 4.14 There exists a simple closed curve γ on (◊, Q), which is inessential in
(◊, P), such that int(γ )∩Q = C and some lift γ̃ of γ separates F-fixed lifts of points
in C from the rest of the lifts of points in Q.

Proof Let s̃ be a fixed lift of a point s ∈ C and assume s /∈ P . Let s̃′ be any other
point inR

2\Q̃. Take a path connecting s̃ and s̃′ inR
2\Q̃ and construct aG-equivariant

isotopy Ht (z) that moves s̃ along this path. Since H is G-equivariant and the chosen
path is disjoint from P̃ , the former projects to an isotopy h on (◊, P). Thus we find a
map f ′ = h1 ◦ f ◦ h−1

1 , which is conjugate to f , such that its lift

F ′ = H1 ◦ F ◦ H−1
1

fixes s̃′ instead of s̃. Continuing in this manner, we can move all fixed points of F into
a small round disk D, which contains no other lifts of points in Q. If C ∩ P = ∅, then
D projects homeomorphically to ◊; if p = C ∩ P , then we can take the lift of p to be
in the center of D. In both cases, the boundary of this disk and the projection thereof
satisfy the conclusion of the proposition for the modified f ; the images of these curves
by the conjugating maps will do the same for the map f itself. ��

Consider a curve γ0 as in the lemma above. Since γ̃0 surrounds all fixed points of
F , so does its preimage γ̃n = F−n(γ̃0), which projects to a simple closed curve γn on
(◊, Q). Let an be the intersection number of γn and γn+1 (we may always assume that
γ0 and γ1 have only finitely many intersections, all of which are transversal). Clearly
an is non-increasing. If an = 0 for some n, then γn and γn+1 are disjoint and have
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the same marked points in their interiors, hence they are homotopic and γn forms a
Levy cycle of length 1. Otherwise, by truncating the sequence, we may assume that
an = a > 0 for all n ≥ 0. In this case, γn ∪ γn+1 is mapped homeomorphically to
γn−1 ∪ γn . Let β0 ⊂ γ0 ∪ γ1 be a simple closed curve and denote βn to be a unique
one-to-one f n-preimage of β0 that is a subset of γn ∪ γn+1.

Lemma 4.15 Let {βn} be a sequence of simple closed curves in (◊, Q) such that f
sends βn+1 to βn with degree 1. Then all βn are inessential in (◊, P).

Proof Since the degree of f restricted to any βn is 1, the following holds (see the
proof of Proposition 4.13) :

An(pn, qn)
T = ±(p0, q0)

T ,

where βn corresponds to ±(pn, qn)T in the first homology group of (◊, P). By
Lemma 4.8, we see that p0 = q0 = 0. ��

Thus, all βn are inessential in (◊, P). As β0 was any simple closed curve in γ0∪γ1,
we infer that there exists a connected component M of ◊\(γ0 ∪ γ1) that contains at
least 3 points of P . Indeed, if there exists a component with exactly 2 points of P ,
then the boundary β thereof is essential in (◊, P), which is a contradiction. If there
are exactly 4 components, each containing a single point of P , one can find a simple
closed curve in γ0 ∪ γ1 that has exactly 2 points in each complementary component
by induction on the number of components. Indeed, it is easy to see that there always
exists a pair of adjacent components such that their closures intersect at exactly 1
boundary arc; removing that arc reduces the number of components by 1. From now
on we assume that β0 = ∂M .

Denote

Qn = int(βn) ∩ Q.

Since #Qn is non-increasing, we may assume, by further truncating the sequence if
necessary, that #Qn is constant. Recall that we assumed that all points in Q are either
fixed or strictly pre-periodic. This implies Qn = Q0 for all n.We are now in the setting
of Proposition 4.11, which yields all points in Q0 are in the same Nielsen class. Recall
that

int(γ0) ∩ Q = int(γ1) ∩ Q = C

contains at most 1 point of P so M is in the complement of int(γ0) ∪ int(γ1). We see
that all marked points in the complement of M are in C . This readily implies that all
γn are homotopic to β and γ0 forms a Levy cycle of length 1, which concludes our
proof of Proposition 4.13.

Proposition 4.16 Let {γn} be a sequence of essential simple closed curves in (◊, Q)

such that f sends γn+1 to γn with degree 1. Then f admits a degenerate Levy cycle.
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Proof By Lemma 4.15 all γn are inessential in (◊, P). Replacing {γn} by a subse-
quence {γnk+l}, for some integers k, l, we can always assume that Q′ = int(γn) ∩ Q
is the same for all n (see the previous proof). Since γn are essential in (◊, Q), the set
Q′ contains at least two points. By Proposition 4.11, these two points are in the same
Nielsen class and Proposition 4.13 implies existence of a Levy cycle. ��
Corollary 4.17 If f admits no Levy cycle, then for every simple closed curve γ in
(◊, Q), which is inessential in (◊, P), there exists an integer d such that all connected
components of f −d(γ ) are inessential in (◊, Q).

Proof Define the depth of γ to be the largest integer d(γ ) such that f −d(γ )(γ ) has an
essential component. The goal is to prove that dγ is finite for all inessential in (◊, P)

curves. Clearly,

d(α) = 1 + max d(αi )

where αi are the connected components of the preimage of a simple closed curve α.
Therefore, if γ has infinite depth, so does at least one of its preimages γ1.We construct
thus an infinite sequence of essential in (◊, Q) curves γn such that f maps γn+1 to γn .
Since a preimage of a trivial in (◊, P) curve is also trivial in (◊, P), truncating the
sequence if necessary, we may assume that all γn are either all trivial or all non-trivial
in (◊, P). In both cases, the degree of f restricted to γn is 1 for all n and the previous
proposition yields existence of a Levy cycle. ��

The above result immediately implies:

Corollary 4.18 If f admits no Levy cycle, then every curve of every simple Thurston
obstruction for f is essential in (◊, P).

For future reference, let us summarize:

Corollary 4.19 • Let f be marked (2, 2, 2, 2)-map such that the corresponding
matrix does not have eigenvalues ±1. Then f is equivalent to a quotient of an
affinemapwithmarked pre-periodic orbits if and only if every curve of every simple
Thurston obstruction for f has two postcritical points of f in each complimentary
component.

• Amarked Thurstonmap f with a parabolic orbifold that is not (2, 2, 2, 2) is equiv-
alent to a quotient of an affine map if and only it admits no Thurston obstruction.

Proof The first statement follows immediately from the previous corollary and The-
orem 4.26. The second statement follows from Theorem 4.3. Indeed, suppose that a
Thurston map f with a parabolic orbifold with signature other than (2, 2, 2, 2) admits
a simple obstruction �. If the signature is (∞,∞) or (∞, 2, 2), then f (or at least its
second iterate in the former case) is an obstructed topological polynomial and there-
fore admits a Levy cycle (Theorem 3.12) which is necessarily degenerate. In other
cases all points in the postcritical set of f are not critical. As before, we pass to an
iterate of f such that all marked points are either fixed or pre-fixed (in particular, all
postcritical points are fixed in this case) and set the interior int(γ ) to be the unique
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component of the complement to γ which contains at most 1 postcritical point. Up to
passing to yet another iterate of f , we may assume that some γ ∈ � has a preimage
γ ′ homotopic to γ . If int(γ ) contains no postcritical points, then int(γ ′) contains no
critical points. If int(γ ) contains a postcritical point p, then p is the unique preimage
of itself within int(γ ′), and again int(γ ′) contains no critical points. Therefore in both
cases {γ } is a degenerate Levy cycle. ��
Definition 4.20 Denote byRMCG(◊, Q) the relativemapping class group of (◊, Q),
which is the group of allmapping classesφ forwhich there exists a lift φ̃ to the universal
cover that is identical on Q̃.

We now need the following generalization of Lemma 3.7.

Theorem 4.21 The group RMCG(◊, Q) is generated by Dehn twists around trivial
curves in (◊, P) and by second powers of Dehn twists around non-trivial inessential
curves in (◊, P).

Proof The proof of this theorem is similar to the proof of classical results on generators
ofMCG (cf. Farb andMargalit 2011).Weproceed by induction on the number of points
in Q. When Q = P , the group RMCG(◊, Q) is trivial by Lemma 3.7.

Suppose that the statement is true for the marked set Q ⊂ ◊ and let us prove it for
Q′ = Q ∪ {q} where q /∈ Q. There exists an obvious projection map

Forget : PMCG(◊, Q′) → PMCG(◊, Q),

which simply regards a self-homeomorphism of (◊, Q′) as a self-homeomorphism of
(◊, Q), forgetting about the existence of q. Take anyφ ∈ RMCG(◊, Q′); by inductive
assumption, Forget(φ) ∈ RMCG(◊, Q) can be represented in PMCG(◊, Q) as a
product

∏
T ni

γi of Dehn twists around trivial curves in (◊, P) and second powers of
Dehn twists around non-trivial inessential curves in (◊, P).Wemay assume that every
γi does not pass through the point q; otherwise we replace γi by a curve γ ′

i , which
is homotopic to γi relative Q, that does not pass through q (note that in this case the
homotopy class of γ ′

i in (◊, Q) is not uniquely defined). Then

Forget(Tγi ) = Tγi

where Tγi is viewed as an element of both PMCG(◊, Q′) and PMCG(◊, Q). Thus

ψ = φ ◦
(∏

T ni
γi

)−1

is a well defined element of PMCG(◊, Q′) such that Forget(ψ) = id. It is, hence,
sufficient to show that everyψ ∈ RMCG(◊, Q′) such that Forget(ψ) = id is generated
by (squares of) Dehn twists.

Recall the Birman exact sequence (cf. Farb and Margalit 2011):

1 −→ π1(◊\Q, q)
Push−→ PMCG(◊, Q′) Forget−→ PMCG(◊, Q) −→ 1,
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where Push is the map that sends a loop based at q to a homeomorphism, which can be
obtained at the end of a isotopy relative Q that pushes the point q along this loop. Since
ψ lies in the kernel of Forget, we infer ψ = Push(γ ) for some loop γ ∈ π1(◊\Q, q).
Since ψ is also an element of RMCG(◊, Q′), it has a lift ψ̃ to the universal cover
which is identical on the fiber of q. Pick a point q̃ in this fiber; in particular, q̃ is fixed
by ψ̃ . It is clear that the lift γ̃ of γ starting at q̃ ends at ψ̃(q̃) = q̃ , i.e. γ̃ is a loop
based at q̃ . On the other hand, each loop γ̃ in R

2\Q̃ based at q̃ produces a unique
homeomorphism Push′(γ̃ ) := Push(γ ) where γ is the projection of γ̃ . We see that
Push′ is an isomorphism between RMCG(◊, Q′) ∩ ker(Forget) and π1(R

2\Q̃, q̃),
where the latter is generated by simple loops around a single point in Q̃.

Applying the same approach as in the proof of Lemma 4.14, one proves that for
every point a in P̃ there exists a simple loop α̃ based at q̃ , such that the bounded
component of the complement of the loop contains a and no other points from Q̃,
which projects two-to-one to a simple loop α based at q in ◊. Then α is inessential in
(◊, P) and

Push′(α̃) = Push(α2) = T 2
α .

Similarly, for every point b in Q̃\P̃ there exists a simple loop β̃ based at q̃ , such that
the bounded component of the complement of the loop contains b and no other points
from Q̃, which projects one-to-one to a simple loop β based at q in◊. Then β is trivial
in (◊, P) and

Push′(β̃) = Push(β) = Tβ.

As π1(R
2\Q̃, q̃) is generated by all possible curves α and β, the statement of the

theorem follows. ��
Definition 4.22 Denote by Lift(φ) the virtual endomorphism of PMCG(◊, Q) that
acts by lifting by f , i.e. we write Lift(φ) = ψ whenever there exists ψ ∈
PMCG(◊, Q) such that φ ◦ f = f ◦ ψ as mapping classes.

Proposition 4.23 Lift(φ) : RMCG(◊, Q) → RMCG(◊, Q) is a well-defined endo-
morphism. If f admits no Levy cycles, then for every φ ∈ RMCG(◊, Q), there exist
an n such that Liftn(φ) = id.

Proof It is enough to prove the statement for a generating set of RMCG(◊, Q). By
Theorem 4.21 we only need to consider two cases.

Case I Suppose φ = Tα where α is a simple closed curve in (◊, Q), which is
trivial in (◊, P). All connected components αi of f −1(α) are pairwise disjoint simple
closed curves that are trivial in (◊, P) and are mapped by f to α with degree 1. It is
straightforward to see that

Tα ◦ f = f ◦
∏

Tαi .

Thus

Lift(Tα) =
∏

Tαi ∈ RMCG(◊, Q)
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is well-defined. Similarly, denote by αn
i all connected components of f −n(α); then

Tα ◦ f n = f n ◦
∏

Tαn
i
and Liftn(Tα) =

∏
Tαn

i
.

By Corollary 4.17, there exists an integer n such that all αn
i are inessential in (◊, Q),

implying

Liftn(Tα) =
∏

Tαn
i

= id.

Case II Suppose φ = T 2
β where β is a simple closed curve in (◊, Q), which is

non-trivial and inessential in (◊, P). The interior of β contains a unique critical value
p of f . All connected components βi of f −1(β) are pairwise disjoint simple closed
curves that are inessential in (◊, P). Each int(βi ) contains a unique f -preimage pi
of p. If pi ∈ P , then it is not a critical point of f and βi is mapped by f to β with
degree 1. If pi /∈ P , then it is a critical point and βi is trivial in (◊, P) and is mapped
by f to β with degree 2. As in the Case I, we see that

T 2
β ◦ f = f ◦

⎛

⎝
∏

pi∈P

T 2
βi

◦
∏

pi /∈P

Tβi

⎞

⎠

and

Lift(T 2
β ) =

∏

pi∈P

T 2
βi

◦
∏

pi /∈P

Tβi ∈ RMCG(◊, Q)

is well-defined. We also see that

Liftn(T 2
β ) =

∏

pni ∈P

T 2
βn
i

◦
∏

pni /∈P

Tβn
i

where βn
i are the connected components of f −n(β) and pni denote the corresponding

f n-preimages of p. By Corollary 4.17, there exists an integer n such that all βn
i are

inessential in (◊, Q), implying

Liftn(T 2
β ) =

∏

pni ∈P

T 2
βn
i

◦
∏

pni /∈P

Tβn
i

= id.

��
Lemma 4.24 If ψ = Lift(φ) for some φ ∈ PMCG(◊, Q), then f ◦ φ is Thurston
equivalent to f ◦ ψ .

Proof f ◦ ψ = φ ◦ f = φ ◦ ( f ◦ φ) ◦ φ−1. ��
We arrive at the following statement.
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Theorem 4.25 If f admits no Levy cycle andφ ∈ RMCG(◊, Q) then f ◦φ is Thurston
equivalent to f .

Proof By proposition 4.23 and the previous lemma, there exists n such that f ◦ φ is
equivalent to f ◦ Liftn(φ) = f ◦ id = f . ��

We can now prove the first part of the statement of Theorem 4.1.

Theorem 4.26 Let ( f, Q) be a Thurston (2, 2, 2, 2)-map with postcritical set P and
marked set Q ⊃ P, such that ( f, P) is equivalent to a quotient l of a real affine map
L(z) = Az + b by the orbifold group where both eigenvalues of A are not equal to
±1. Then ( f, Q) is equivalent to a quotient of a real affine map by the action of the
orbifold group if and only if f admits no degenerate Levy cycle.

Proof Necessity Suppose a quotient (l, Q) of a real affine map L(z) = Az + b by the
orbifold groupG admits a degenerate Levy cycle. By Proposition 4.13, there exist two
distinct periodic points q1, q2 ∈ Q in the same Nielsen class and Lemma 4.7 implies
that there exist points q̃1, q̃2 in the fibers of q1, q2 respectively such that

indL ,n(q̃1) = indL ,n(q̃2) = g ∈ G, i.e. Ln(q̃i ) = g(q̃i ) for i = 1, 2.

Since

Ln(z) = Anz + b′ and g(z) = c ± z

for some integer vectors b′ and c, the equation

Ln(q̃i ) = g(q̃i )

is equivalent to

(An ± I )z = c − b′

where I denotes the identity matrix. By assumption, the eigenvalues of A are not equal
to ±1, hence the matrix (An ± I ) is non-degenerate. This yields q̃1 = q̃2, which is a
contradiction.

Sufficiency Suppose f admits no Levy cycles and, hence, no two distinct points of
Q are in the same Nielsen class by Proposition 4.13. Consider a lift F of f to the
universal cover; by Lemma 3.6

F(z) = L(z) = A′z + b′ for all z ∈ P̃ .

Conjugating the original f by a quotient of an affine transformation, if necessary, we
may assume that A′ = A and b′ = b. Pick a point q̃ in the fiber of a periodic point
q ∈ Q of period n. Let s be a unique solution of the equation

Ln(z) = indF,n(q̃) · z.
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We can push the point q̃ by a G-equivariant isotopy �t (z) : R
2 → R

2 along some
path α in R

2\Q̃ (except for the starting point q̃ and, possibly, the end point) that ends
at s. Since � is G-equivariant, it pushes the point

Fn(q̃) = indF,n(q̃) · q̃

along the path indF,n(q̃) · α to the point

indF,n(q̃) · s = Ln(s).

Therefore, for F1 = �1 ◦ F ◦ �−1
1 , we have Fn

1 (s) = Ln(s). Let s′ = g · s, where
g ∈ G, be any other point in the same fiber as s. Then G-equivariance of � implies

Fn
1 (s′) = �1 ◦ Fn ◦ �−1

1 (g · s) = �1 ◦ Fn(g · �−1
1 (s)) =

�1(F
n∗ g · Fn ◦ �−1

1 (s)) = Fn∗ g · �1 ◦ Fn ◦ �−1
1 (s) = Fn∗ g · Fn

1 (s) = Fn∗ g · Ln(s).

Since F = L on P̃ , their actions on the orbifold group are the same: F∗ = L∗. Thus,

Fn
1 (s′) = Fn∗ g · Ln(s) = Ln∗g · Ln(s) = Ln(g · s) = Ln(s′).

We repeat this procedure for each of the periodic points in Q to obtain a G-
equivariant isotopy �t (z) : R

2 → R
2 and set F2 = �1 ◦ F ◦ �−1

1 , such that for
any point s = �1(q̃), where q̃ is in the fiber of a periodic point of any period n from
Q, we have Fn

2 (s) = Ln(s). The only possible obstacle can occur when we need to
push some point q̃ from the fiber of q into the fiber of some other point q ′, which has
already been adjusted. This would immediately imply that q and q ′ are in the same
Nielsen class, which contradicts our assumptions.

Note that our construction automatically implies F2(s) = L(s) for all s = �1(q̃),
where q̃ is in the fiber of a periodic point q of any period n. Indeed, if Fn(z) = g · z,
then

Fn(F(z)) = F(Fn(z)) = F(g · z) = F∗g · F(z),

hence

indF,n(F(z)) = F∗indF,n(z) = L∗indF,n(z).

Therefore, if s = �1(q̃) is a unique solution of the equation

Ln(z) = indF,n(q̃) · z,

then L(s) is a unique solution of the equation

Ln(z) = indF,n(F(q̃)) · z = L∗indF,n(q̃) · z,
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because

Ln(L(z)) = L(Ln(z)) = L(indF,n(q̃) · z) = L∗indF,n(q̃) · L(z).

This yields �1(F(q̃)) = L(s) and

F2(s) = F2 ◦ �1(q̃) = �1 ◦ F(q̃) = L(s).

Now we perform an analogous procedure on all strictly pre-periodic points. Let
q ∈ Q be a strictly pre-periodic point and q̃ be some point in its fiber. Denote by
n the pre-period of q, i.e. the smallest integer such that f n(q) is periodic. We find
a G-equivariant isotopy that pushes q̃ to L−n(Fn

2 (q̃)) and leaves all fibers of other
points of Q in place. After repeating this process for all pre-periodic points of f , we
construct a G-equivariant isotopy �t (z) : R

2 → R
2 such that F3 = �1 ◦ F ◦ �−1

1
agrees with L(z) on �1(Q̃), in particular F3∗ = L∗.

Denote by f3 and ξ the quotients of F3 and �1 respectively by the action of G.
Then f3 = ξ1 ◦ f ◦ ξ−1

1 , and ( f, Q) is conjugate (and, hence, Thurston equivalent) to
( f3, ξ(Q)). Set �(z) = L−1 ◦ F3(z); we see that

�(g · z)=L−1 ◦ F3(g · z)=L−1(F3∗g · F3(z))=L−1(L∗g · F3(z))=g · L−1 ◦ F3(z),

i.e. � is G-equivariant. Therefore f3 = l ◦ θ where θ is the quotient of � by the
action of G. Since F3 = L on Q̃, the lift � of θ to the universal cover is identical
on Q̃ so θ ∈ RMCG(◊, Q). By Theorem 4.25 ( f3, ξ(Q)) and (l, ξ(Q)) are Thurston
equivalent, which concludes our proof. ��

4.3 Uniqueness

We now prove the uniqueness part of the statement of Theorem 4.1:

Theorem 4.27 Let (li , Qi ) be a Thurston map that is a quotient of an affine map
Li (z) = Ai z + b (Ai ∈ M2(Z)) by the action of an orbifold group G for i = 1, 2.
Suppose that eigenvalues of Ai are not equal to±1 for i = 1, 2. If (l1, Q1) and (l2, Q2)

are Thurston equivalent, then (l1, Q1) and (l2, Q2) are conjugate by a quotient of an
affine map. In other words, there exist g ∈ G and a real affine map S with linear part
in SL2(Z) such that L2 = g · S ◦ L1 ◦ S−1 and S sends Q̃1 to Q̃2.

Proof Let φ,ψ realize the Thurston equivalence of (l1, Q1) and (l2, Q2):
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where φ and ψ are homotopic relative Q1. Then there exist lifts φ̃ and ψ̃ of φ and ψ

to the universal cover such that the following diagram commutes:

By Lemma 3.6, both φ̃ and ψ̃ are affine on P̃ . Since φ andψ are homotopic relative
P ⊂ Q1, there exists g ∈ G such that ψ̃ = S and φ̃ = g · ψ̃ = g · S for all points
in P̃ , where S is a real affine map. Note that the linear part of S has determinant ±1
because φ and ψ are one-to-one maps. Therefore

L2 = φ̃ ◦ L1 ◦ ψ̃−1 = g · ψ̃ ◦ L1 ◦ ψ̃−1 = g · S ◦ L1 ◦ S−1 on P̃ .

As both sides of the last equation are real affine, the equation holds for all points in
R
2.
Replace L2 by another lift to the universal cover given by L ′

2 = g−1 · L2 of l2 so
that L ′

2 = S ◦ L1 ◦ S−1; set φ̃′ = g−1 · φ̃. Then both φ̃′ and ψ̃ agree with S on P̃ and
it follows that φ̃′ and ψ̃ agree on Q̃1 and act by φ̃′∗ = ψ̃∗ = S∗ on the first homology
group of ◊. Consider a lift q̃ of a periodic point q ∈ Q1 of some period n. Recall that
q̃ is a unique solution of Ln

1(z) = g1 · z, where g1 = indL1,n(q̃). Then

ψ̃(Ln
1(q̃)) = ψ̃(g1 · q̃) = S∗(g1) · ψ̃(q̃).

This yields

indL ′
2,n

(ψ̃(q̃)) = S∗(g1)

and ψ̃(q̃) is a unique solution of

L ′
2
n
(z) = S∗(g1) · z,

which is equivalent to

S ◦ L1 ◦ S−1(z) = S(g1 · S−1(z))

or

L1 ◦ S−1(z) = g1 · S−1(z).

We conclude that ψ̃(q̃) = S(q̃) for all lifts of periodic points in Q1.
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For a lift p̃ of a pre-periodic point p ∈ Q1, consider some k such that Lk
1( p̃) = q̃ ,

where q = lk1(p) is periodic. Then

ψ̃( p̃) = L ′
2
−k ◦ ψ̃ ◦ Lk

1( p̃) = L ′
2
−k ◦ ψ̃(q̃) = L ′

2
−k ◦ S(q̃) = S ◦ Lk

1(q̃) = S( p̃).

We have shown that S sends Q̃1 to Q̃2, therefore the quotient of S to ◊ not only
conjugates l1 and l2, but sends Q1 to Q2. ��

5 Constructive Geometrization of Thurston Maps with Parabolic
Orbifolds

Theorem 5.1 There exists an algorithm A9 which for any marked Thurston map f
with a parabolic orbifold whose matrix does not have eigenvalues ±1 finds either a
degenerate Levy cycle or an equivalence to a quotient of an affine map with marked
pre-periodic orbits.

Proof The proof is completely analogous to the argument given in Bonnot et al.
(2012). We begin by identifying the orbifold group G and finding an affine map
L(x) = Ax + b such that f without marked points is equivalent to the quotient l of L
by G (Theorem 3.5).

We now execute two sub-programs in parallel:
(I) we use algorithm A8 (Proposition 3.29) to enumerate all f -stable multicurves

�n . Using algorithmA2 (Proposition 3.25) we check whether �n is a degenerate Levy
cycle. If yes, we output degenerate Levy cycle found and halt;

(II) we identify all forward invariant sets Sk of pre-periodic orbits of l of the same
cardinality as the set of marked points of f . We use algorithm A6 (Proposition 3.27)
to enumerate the sequence ψn of all elements of PMCG(S2, Q). For every ψn and
each of the finitely many sets Sk we use algorithm A3 (Proposition 3.26) to check
whether hk ◦ ψn realizes Thurston equivalence between f and l with marked points
Sk , where hk : (S2, Q) → (S2, Sk) is an arbitrary chosen homeomorphism. If yes, we
output Thurston equivalence found, list the maps l, hk ◦ ψn and the set Sk and halt.

By Theorem 4.1 either the first or the second sub-program, but not both, will halt
and deliver the desired result.

6 Constructive Canonical Geometrization of a Thurston Map

Theorem 6.1 There exists an algorithmwhich for any Thurstonmap f finds its canon-
ical obstruction � f .

Furthermore, let F denote the collection of the first return maps of the canonical
decomposition of f along � f . Then the algorithm outputs the following information:

• for every first return map with a hyperbolic orbifold, the unique (up to Möbius
conjugacy) marked rational map equivalent to it;

• for every first return map of type (2, 2, 2, 2) the unique (up to affine conjugacy)
affine map of the form z 	→ Az + b where A ∈ SL2(Z) and b ∈ 1

2Z
2 with marked

points which is equivalent to f after quotient by the orbifold group G;
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• for every first return map which has a parabolic orbifold not of type (2, 2, 2, 2)
the unique (up to Möbius conjugacy) marked rational map map equivalent to it,
which is a quotient of a complex affine map by the orbifold group.

Proof The result of Bonnot et al. (2012) together with Theorem 5.1 implies the exis-
tence of the subprogramP which given a marked Thurston map f does the following:

(1) if f has a hyperbolic orbifold and is obstructed, it outputs a Thurston obstruction
for f ;

(2) if f has a parabolic orbifold not of type (2, 2, 2, 2) and a degenerate Levy cycle
it outputs such a Levy cycle;

(3) if f is a (2, 2, 2, 2)map such that the correspondingmatrix has two distinct integer
eigenvalues outputs a Thurston obstruction for f ;

(4) if f is a (2, 2, 2, 2) map with a degenerate Levy cycle outputs such a Levy cycle;
(5) in the remaining cases output a geometrization of f as described in the statement

of the theorem.

We apply the subprogram P recursively to decompositions of f along the found
obstructions until no new obstructions are generated (this will eventually occur by
Theorem 3.20 and Corollary 4.19).

Denote by � the union of all obstructions thus generated. Use algorithm A2 and
sub-program P to find the set S of all subsets �′ ⊂ � such that:

• �′ is a Thurston obstruction for f ;
• denote F ′ the union of first return maps obtained by decomposing along �′. Then
no h ∈ F ′ is a (2, 2, 2, 2) map whose matrix has distinct integer eigenvalues, and
every h ∈ F ′ which is not a homeomorphism is geometrizable.

Set

�c ≡ ∩�′∈S�′.

By Theorem 3.20 and Corollary 4.19, �c is the canonical obstruction of f . ��

7 Partial Resolution of the Problem of Decidability of Thurston
Equivalence

Denote by H the class of Thurston maps f such that every first return map in the
canonical decomposition of f has hyperbolic orbifold. In this section we prove the
following theorem:

Theorem 7.1 There exists an algorithm which given a PL Thurston map f ∈ H and
any PL Thurston map g decides whether f and g are equivalent or not.

We will need several preliminary statements.

Proposition 7.2 If ( f, Q f ) and (g, Qg) are Thurston equivalent marked rational
maps with hyperbolic orbifolds, then the pair φ,ψ realizing the equivalence

φ ◦ f = g ◦ ψ

is unique up to isotopy relative Q f .
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Proof The statement is equivalent to saying that there are no non-trivial self equiva-
lences of f . If φ ◦ f = f ◦ ψ , where φ and ψ represent the same mapping class h,
then σ f ◦ h = h ◦ σ f . If τ is the unique fixed point of σ f , then h(τ ) is also fixed,
yielding a contradiction. ��

For the following see Pilgrim (1827):

Theorem 7.3 Let f and g be two Thurston maps, and � f = {α1, . . . , αn} and
�g = {β1, . . . , βn} be the corresponding canonical obstructions. Let Ai , Bi be decom-
position annuli isotopic toαi , βi respectively. If f and g are equivalent then there exists
an equivalence pair h1, h2 such that h1(Ai ) = Bi (up to a permutation of indexes)
and h1 on ∂Ai is any given orientation-preserving homeomorphism of the boundary
curves.

Recall that the components of the complement of all Ai (resp Bi ) are called thick parts.

Corollary 7.4 If h1, h2 are as above then each thick component C is mapped by
h1 to a thick component C ′. The components C and C ′ must have the same period
and pre-period. When both are periodic, consider the patched components C̃ and C̃ ′
and consider the corresponding first-return maps FC̃ and FC̃ ′ . Then these maps are
Thurston equivalent.

Proposition 7.5 If f and g are equivalent Thurston maps in standard form then there
exists an equivalence pair (h1, h2) such that h1 and h2 restrict to the identity map on
all ∂Ai and h1 is homotopic to h2 on each thick component relative ∂Ai and Q f .

Proof As was shown above, there exists an equivalence pair (h1, h2) of f and g that
descends to an equivalence of respective canonical decompositions. More precisely,
there is a correspondence between thick components of f and thick components of
g which conjugates the component-wise action of f to the action of g such that the
first return maps of corresponding periodic components are Thurston equivalent. We
fix coordinates on Ai and Bi and can choose h1 and h2 such that both restrict to the
identity map on all ∂Ai . Since h1 and h2 are homotopic relative Q f and coincide
on ∂Ai , restricted to each thick component of f the two homeomorphisms can differ
(up to isotopy relative the boundary of the component and the marked set) only by a
composition of somepowers ofDehn twists around the boundary components. Pushing
this Dehn twists inside the annuli Ai , we can further normalize the pair (h1, h2) so
that h1 is homotopic to h2 on each thick component.

The following is standard (see e.g. Farb and Margalit 2011):

Proposition 7.6 For every Thurston obstruction � = {α1, . . . , αn}, the Dehn twists
Tα j , j = 1 . . . n generate a free Abelian subgroup of PMCG(S\Q f ).

We write Z
� 
 Z

n to denote the subgroup generated by Tα j .
Let us try to glue together a Thurston equivalence (h1, h2) of two maps f, g ∈ H

using canonical decompositions thereof. By Proposition 7.5, we may look for h1 and
h2 in standard form. For every periodic thick component of f with first return map
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that has hyperbolic orbifold, the restriction of h1 to that component (after patching)
will represent the unique (by Proposition 7.2) mapping class that realizes Thurston
equivalence to the corresponding periodic thick component of g. This in turn defines
h2, and thus h1, uniquely up to isotopy relative ∂Ai and Q f on every thick component
that is a preimage of a periodic thick component by pulling back h1 by f . Repeating the
pullback procedure we can recover h1 on all thick components in the decomposition
of f . Therefore using the decomposition data we can define a mapping class h0 which
is homotopic to h1 on all thick components and defined arbitrarily on Ai . We conclude
the following.

Proposition 7.7 If f, g ∈ H are equivalent Thurston maps, then there exists an equiv-
alence pair (h1, h2) such that h1 = h0 ◦ m where h0 is constructed as above and
m ∈ Z

� .

Proof The restriction of m = h−1
0 ◦ h1 to every thick component is homotopic to the

identity and the restriction ofm to every annulus Ai is somepower of the corresponding
Dehn twist Tαi , i.e. m ∈ Z

� .

Notice that by construction if h1◦ f = g◦h2 where h1 = h0◦m for somem1 ∈ Z
� ,

then h2 is homotopic to h0 ◦ m2 for some other m2 ∈ Z
� . Since we cannot check all

elements of Z
� we will require the following proposition.

Proposition 7.8 There exists explicitly computable N ∈ N such that if n ∈ Z
� where

all coordinates of n are divisible by N, then (h0 ◦ (m1 + n)) ◦ f = g ◦ h1, with h1
homotopic to h0 ◦ (m2 + M�n) rel Q f , whenever (h0 ◦ m1) ◦ f = g ◦ h2, with h2
homotopic to h0 ◦ m2 rel Q f .

Proof We can take N to be the least common multiple of all degrees of f restricted to
preimages of the annuli Ai . Then n lifts through f to M�n and we have the following
commutative diagram:

S2
M�n−−−−→ S2

h1−−−−→ S2
⏐⏐� f

⏐⏐� f

⏐⏐�g

S2
n−−−−→ S2

h0◦m1−−−−→ S2

We can now present the proof of Theorem 7.1:

Proof The following algorithm solves the problem.

(1) Find the canonical obstructions � f = {α1, . . . , αn} and �g = {β1, . . . , βn}
(Theorem 6.1).

(2) Check whether the cardinality of the canonical obstructions � f = {α1, . . . , αn}
and �g = {β1, . . . , βn} is the same, and whether Thurston matrices coincide. If
not, output maps are not equivalent and halt.

(3) Construct decomposition annuli Ai and Bi as above. Geometrize the first return
maps of patched thick parts (Theorem 6.1).

(4) for all σ ∈ Sn do
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(5) Is there a homeomorphism hσ of S2 sending Ai → Bσ(i)? If not, continue.
Check that the component-wise dynamics of f and g are conjugated by hσ . If
not, continue.

(6) Construct equivalences between first return maps Fi and Gi of periodic thick
components corresponding by hσ . If the maps of some pair are not equivalent,
continue.

(7) For all thick components C f
j check whether the Hurwitz classes of the patched

coverings

f̃ : C̃ f
j → ˜

f (C f
j ) and g̃ : ˜

hσ (C f
j ) → ˜

g(hσ (C f
j ))

are the same (Theorem 3.2). If not, continue.
(8) Can the equivalences between first return mapsFi and Gi constructed at step (6)

be lifted via branched covers f̃ and g̃ to every thick component (Theorem 3.2)?
If not, continue.

(9) Check if the lifted equivalences preserve the set of marked points. If not, con-
tinue.

(10) Lift the equivalences, to obtain a homeomorphism h0 defined on all thick parts.
(11) Pick some initial homemorphisms ai : Ai → Bi so that the boundary values

agree with already defined boundary values of h0. This defines h0 on the whole
sphere.

(12) for all n ∈ Z
� with coordinates between 0 and N − 1, where N is as in

Proposition 7.8 do
(a) Try to lift h0 ◦ n through f and g so that (h0 ◦ n) ◦ f = g ◦ h2. If this does

not work, continue.
(b) By the discussion above h2 = h0 ◦ m with m ∈ Z

� . Compute m.
(c) Find a solution in Z

� of the equation Nx + n = M�Nx + m. If there is no
integer solution, continue.

(d) Output maps are equivalent and h0 ◦ (Nx + n) halt.
(13) end do
(14) end do
(15) output maps are not equivalent and halt.

If the algorithm outputs h0 ◦ (Nx + n) at step 12(d), then by Proposition 7.8
h0 ◦ (Nx +n) lifts through f and g to a map which is isotopic to h0 ◦ (M�Nx +m) =
h0 ◦ (Nx + n) producing an equivalence between f and g. If the algorithm fails to
find an equivalence pair in this way, then Proposition 7.7 implies that f and g are not
equivalent. ��

8 Concluding Remarks

In this paper the problem of algorithmic decidability of Thurston equivalence of two
Thurston maps f and g is resolved partially, when the decomposition of f (or g)
does not contain any parabolic elements or homeomorphisms. Note that if the first
return map F of a periodic component S̃ of the canonical decomposition of f is a
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homeomorphism, then the problem of equivalence restricted to S̃ is the conjugacy
problem in MCG(S̃). By Theorem 3.33, it can be resolved algorithmically.

By Theorem 4.27, in the case when F is parabolic, Thurston equivalence problem
restricted to S̃ reduces to a classical conjugacy problem of integer matrices:
Are two matrices inM2(Z) conjugate by an element of SL2(Z)?
This problem is solvable algorithmically as well (see e.g. Grunewald and Segal 1979).

Thus in both exceptional cases, we can constructively determine whether the first
returnmaps of the thick parts in the decompositions of f and g are Thurston equivalent
or not. However, in contrast with Proposition 7.2, in this case the homeomorphism
realizing equivalence is not unique. This poses an obvious difficulty with checking
whether f is equivalent to g, as we have to check not one, but all possible equiva-
lences of parabolic and homeomorphic components of the decomposition. In other
words, the homeomorphism h0 constructed in the proof of Theorem 7.1 is no longer
unique; instead we get a certain subgroup of the Mapping Class Group of possible
candidates. Extending our proof of decidability of Thurston equivalence to this case is
an interesting problem, which may require, in particular, an algorithm for computing
this subgroup.

Acknowledgments The authors gratefully acknowledge the support and hospitality of the IMS at Stony
Brook where a part of this work has taken place.

References

Bartholdi, L., Buff, X., Graf, H.-C., von Bothmer, Kröker, J.: Algorithmic construction of Hurwitz maps,
e-print (2013). arXiv:1303.1579

Bing, R.H.: An alternative proof that 3-manifolds can be triangulated. Ann. Math. 69(2), 37–65 (1959)
Bonk, M., Meyer, D.: Expanding Thurston maps, e-print (2010). arXiv:1009.3647
Bonnot, S., Braverman, M., Yampolsky, M.: Thurston equivalence is decidable. Moscow Math. J. 12, 747–

763 (2012)
Boone, W.: The word problem. Proc. Natl. Acad. Sci. 44, 1061–1065 (1958)
Buff, X., Guizhen, C., Lei, T.: Teichmüller spaces and holomorphic dynamics, 2014, Handbook of Teich-

müller theory, vol IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, pp 717–756
Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144 (1911)
Dehn, M.: Transformation der Kurven, auf zweiseitigen Flächen. Math. Ann. 72, 413–421 (1992)
Douady, A., Douady, R.: Algèbre et théories galoisiennes, Cassini (2005)
Douady, A., Hubbard, J.H.: A proof of Thurston’s topological characterization of rational functions. Acta

Math. 171, 263–297 (1993)
Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press (2011)
Grunewald, J., Segal, D.: The solubility of certain decision problems in arithmetic and algebra. Bull. AMS

(new series) 1, 6 (1979)
Hamenstädt, U.: Geometry of the mapping class group, ii: A biautomatic structure, 2009, e-print,

arXiv:0912.0137v1
Hemion, G.: On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds.

Acta Math. 142, 123–155 (1979)
Hurwitz, A.: Ueber Riemann’sche Fächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60

(1891)
Imayoshi, Y., Taniguchi, M.: An introduction to Teichmüller spaces. Springer, Tokyo (1992)
Levy, S.: Critically finite rational maps, Ph.D. Thesis (1985)
Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Philos.

Soc. 60, 769–778 (1964)
Milnor, J.: Lattès On, maps,: Dynamics on the Riemann sphere, pp. 9–43. Eur. Math. Soc, Zurich (2006)

123

http://arxiv.org/abs/1303.1579
http://arxiv.org/abs/1009.3647
http://arxiv.org/abs/0912.0137v1


402 N. Selinger, M. Yampolsky

Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory (in Russian). In:
Proceedings of the Steklov Institute of Mathematics, 44 (1955)

Pilgrim, K.: Thurston, Canonical, obstructions. Adv. Math. 158, 154–168 (2001)
Pilgrim, K.: Combinations of complex dynamical systems. Lecture Notes in Mathematics, Springer 2003

(1827)
Radó, T., Uber den Begriff der Riemannschen Flächen. Acta Litt. Sci. Szeged 101–121 (1925)
Selinger, N.: On Thurston’s characterization theorem for branched covers, Ph.D. Thesis (2011)
Selinger, N.: Thurston’s pullback map on the augmented Teichmüller space and applications. Invent. Math.

189, 111–142 (2012)
Selinger, N.: Topological characterization of canonical Thurston obstructions. J. Mod. Dyn. 7, 99–117

(2013)
Shishikura, M.: On a theorem of M. Rees for the matings of polynomials. In: The Mandelbrot set, theme

and variations. LondonMath. Soc. Lect. Note Ser. 274, Lei, Tan, pp. 289–305. Cambridge Univ. Press
(2000)

Tao, J.: Linearly bounded conjugator property for mapping class groups. GAFA 23, 415–466 (2013)
Thurston, W.P.: Three-dimensional geometry and topology. Princeton University Press (1997)

123


	Constructive Geometrization of Thurston Maps  and Decidability of Thurston Equivalence
	Abstract
	1 Introduction
	2 Geometric Preliminaries
	Mapping Class Groups

	3 Thurston Maps
	3.1 Branched Covering Maps
	Thurston Equivalence
	Orbifold of a Thurston Map
	Thurston Maps with Parabolic Orbifolds
	Geometrization of a Thurston Map with Parabolic Orbifold
	Thurston Linear Transformation
	Thurston Iteration on the Teichmüller Space
	Canonical Obstructions
	Pilgrim's Decompositions of Thurston Maps
	Topological Characterization of Canonical Obstructions
	3.2 Algorithmic Preliminaries
	A Piecewise-Linear Thurston Map
	Verifying Homotopy
	Enumeration of the Multicurves and Elements of the Mapping Class Group
	Algorithmic Complexity of the Mapping Class Group
	Hurwitz Classification of Branched Covers

	4 Classification of Marked Thurston Maps with Parabolic Orbifolds
	4.1 The Case When the Associated Matrix is Expanding
	4.2 When the Associated Matrix is Hyperbolic
	4.3 Uniqueness

	5 Constructive Geometrization of Thurston Maps with Parabolic Orbifolds
	6 Constructive Canonical Geometrization of a Thurston Map
	7 Partial Resolution of the Problem of Decidability of Thurston Equivalence
	8 Concluding Remarks
	Acknowledgments
	References


