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Constructive Interference in 802.15.4:

A Tutorial
Tengfei Chang, Thomas Watteyne, Xavier Vilajosana, Pedro Henrique Gomes

Abstract—Constructive Interference (CI) can happen when
multiple wireless devices send the same frame at the same time.
If the time offset between the transmissions is less than 500 ns, a
receiver will successfully decode the frame with high probability.
CI can be useful for achieving low-latency communication or low-
overhead flooding in a multi-hop low-power wireless network.
The contribution of this article is three-fold. First, we present the
current state-of-the-art CI-based protocols. Second, we provide
a detailed hands-on tutorial on how to implement CI-based
protocols on TelosB motes, with well documented open-source
code. Third, we discuss the issues and challenges of CI-based
protocols, and list open issues and research directions. This article
is targeted at the level of practicing engineers and advanced
researchers and can serve both as a primer on CI technology
and a reference to its implementation.

I. INTRODUCTION

IEEE802.15.4 [1] is a standard which defines both the physi-

cal and link layers for low-rate wireless personal area networks

(LR-WPAN). Numerous low-power wireless industrial tech-

nologies build upon it, including Zigbee [2], Z-Wave, WIA-

PA, ISA100.11a [3] and WirelessHART [4]. The 2015 revision

of IEEE802.15.4 includes the Time Slotted Channel Hopping

(TSCH) link-layer mode, targeting deterministic access and

industrial-grade reliability. 6TiSCH, a standardization activity

at the IETF, integrates TSCH with IPv6 [5], [6], yielding

Internet-enabled low-power wireless networks with industrial

performance. This combination is seen as a key enabler for

the Industrial Internet of Things. Even though many different

technologies and protocols are – and will be – exploited to

improve the performance of low-power wireless applications,

everything indicates that IEEE802.15.4 will remain a major

standard in this field.

Just like any wireless communication technology,

IEEE802.15.4 is subject to external interference. This is

all the more true in the unlicensed spectrum, such as the

2.400–2.485 GHz “Industrial, Scientific and Medical” (ISM)

band. In face of this challenge, several techniques have

been developed to cope with external interference. Examples

include channel hopping, network coding and temporal

diversity, all of which exploit some sort of diversity.

In an entirely counter-intuitive manner, however, interfer-

ence can be beneficial for the network, which occurs when

one exploits “constructive interference” (CI) [7]. The idea of
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CI is simple: if two or more devices send the exact same frame

at the exact same time1, there is no collision, and the receiver

perfectly decodes the frame. Better, in some cases, the frame

is received at a signal strength higher than if only one device

were transmitting.

For a protocol designer, having CI in his/her toolbox

changes everything. In the past, he/she had to make absolutely

sure concurrent communications happened at different times

(TDMA), different frequencies (FDMA) or using different

coding schemes (CDMA). CI relaxes those requirements: if

multiple devices have the same information to transmit, they

can do so provided they send it at exactly the same time.

Constructive interference enables at least 2 very interesting

network features.

First, stateless relaying, a simplification in networking.

Traditionally, a routing protocol operates in the network to

elect, for each node, a “next hop” neighbor. When the node

has a packet to relay, it sends it to just that neighbor. With

CI, a node can broadcast the packet to all of its neighbors.

And, provided those neighbors repeat the packet at the same

time, the information floods the network, eventually reaching

the destination. Of course, many optimizations can be added

to this uncontrolled flooding (see Section V), but avoiding the

need for a rigid routing scheme opens up many possibilities,

including “lazy routing” and mobility.

Second, ultra-low latency, a service to the application. In-

line with stateless relaying, a device can relay packets without

having to worry about solving contention to the medium.

Without CI, solving contention can mean waiting for the right

time slot, or adopting a back-off scheme, all of which takes

time. With CI, a device can relay immediately. Assuming short

packets, per-hop latencies of 100’s of µs can be achieved.

There are, of course, challenges associated with the use of

CI. First, from an implementation point of view, maintaining

synchronization is hard, as devices need to transmit within

500 ns (see Section II), a very short time. Even with state-of-

the-art TSCH protocol, network-wide sub-µs synchronization

is not achievable at a reasonable energy cost. Synchronization

hence needs to rely on a local and ephemeral time reference

such as the reception timestamp of the last frame. We have

crafted the hands-on portion of this article (Section VIII) to

go into a deep discussion of how to efficiently implement CI.

Section VIII should hence lift this challenge.

Second, from a protocol design point of view, achieving

energy efficiency remains a challenge. If the radios of all

1 To be precise, in IEEE802.15.4, the signals must be sent within 500 ns
of one another, as detailed in Section II.
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devices remain continuously on, using CI is a solved problem.

But, to challenge the energy efficiency of today’s state-of-

the-art TSCH networks [8], sub-50 µA average current draw

must be achieved, which necessarily translates into aggressive

radio duty cycling. As discussed in Section IX, there is a

real opportunity for combining the scheduled nature of TSCH

networks with CI. This is largely not addressed in the literature

at this point, leaving energy efficiency as an open problem,

especially in large networks.

Third, and probably most importantly, security remains a

major question mark. Not so much at the application layer,

as the data communicated between the source and destination

can be end-to-end protected. But while it is traversing the

network, all relaying devices need to send the exact same

frame, which eliminates the opportunity of using per-link keys

or even authenticated tags in which the MAC address of the

transmitter is used as part of the link-layer keying material.

The simplest approach is to have a single network-wide key

for link-layer protection. This is undesirable as it makes device

repudiation hard. As discussed in Section IX, security is one

of the strong remaining barriers to using CI in an industrial

setting.

IEEE802.15.4 TSCH brings low power consumption and

high-reliability to industrial applications [9], [10], [11].

6TiSCH adds the Internet Protocol (IP) to TSCH for industrial

IoT. With the RPL routing layer, the end-to-end latency for a

TSCH network could be in the order of a few seconds. It meets

the general requirements of industrial application for classes 4

and 5 defined in RFC5673 [12] (detailed in Section. IX). But

for some applications involving control loops, more stringent

requirements may be necessary (classes 2 and 3 in RFC5673).

CI brings down the latency to the millisecond level. At the

same time, it is possible to completely remove the routing

layer and achieve end-to-end communication through flooding.

Introducing CI into IEEE802.15.4 could improve its overall

performance dramatically.

This article is crafted to be a primer on constructive inter-

ference in IEEE802.15.4 networks. It is tailored to the level

of practicing engineers and advanced researchers and serves

three roles. First, it introduces CI, taking the reader through

a comprehensive presentation of the state-of-the-art literature

on CI-based protocols, which are classified in three different

categories. Second, it is a hands-on tutorial, explaining in a

simple yet comprehensive manner how CI is implemented on a

reference platform, the TelosB mote. All the source code used

is provided as open-source alongside this article, allowing the

reader to repeat the tutorial, and to use any part of the code,

including in a commercial setting. Third, it offers a use-case

driven discussion on the issues and challenges and research

directions on the use of CI technique.

The organization of this article reflects these three goals,

with three distinct sections focusing on a primer on CI

(Sections IV, V and VI), a hands-on tutorial (Section VIII)

and issues, challenges and future work (Section IX). While

numerous internal references link these three sections together,

each of them can be read independently and used as a

reference.

Before going through the CI tutorial, it is important to

introduce the key concepts that will help the reader under-

stand the underlying phenomena that make CI work, and the

reason behind some decision-making during the design of the

protocols to be introduced in Sections IV, V and VI. These

concepts are introduced in Section II.

II. BASIC CONCEPTS OF CONSTRUCTIVE INTERFERENCE

Interference is a phenomenon that happens whenever signals

overlap in frequency, time and space. If two (or more) different

signals interfere with one another, the probability of correctly

decoding either is reduced. Another common phenomenon in

wireless communication is the capture effect. It occurs when

one single signal is “captured” and correctly demodulated in

spite of other interfering signal(s) being received at the same

time. Capture happens if one signal is much stronger (higher

receive power) than the others, or if it starts to be demodulated

earlier than the others. When the capture effect dominates the

reception, interfering signals are not perceived by the receiver.

This phenomenon is present in low-power networks and can

influence the behavior of protocols.

When exactly the same signal is transmitted by nodes A
and B to node C, what C receives is the sum of both signals.

This sum can be constructive or destructive, depending on the

time offset between the signals. Two sine waves shifted by

90 degrees completely cancel each other out; on the other

hand, two in-phase sine waves add up. The same happens

with more complex modulation schemes, such as O-QPSK in

IEEE802.15.4. For CI to work, the different signals should

be sent precisely at the same time. What is the maximum

allowable time offset between the signals for CI to work?

The answer depends on modulation and bit rate. We focus

on IEEE802.15.4 [1] at 2.4 GHz, which uses Offset Quadrature

Phase-Shift Keying (O-QPSK) modulation and Direct Se-

quence Spread Spectrum (DSSS). Transmission can be divided

into 3 phases: (i) bit-to-symbol conversion, (ii) symbol-to-

chip conversion, (iii) modulation of the chip stream. The data

stream is initially grouped into 4-bit symbols. Each symbol

is then converted into a 32-bit pseudo-random noise (PN)

sequence, specified in the IEEE802.15.4 standard. Each binary

value in a PN sequence is called a chip. The stream of chips

is then modulated onto a carrier using O-QPSK with half-sine

pulse shaping. The transmission chip rate is 2 Mcps (Mega-

chips per second), which results in a data rate of 250 kbps.

The chip duration Tc is 500 ns. Fig. 1 shows that Q-phase

chip is delayed by Tc with respect to the I-phase chips.

When receiving a signal, the same happens, in reverse order.

The modulated carrier is first converted to chips, which are

grouped in PN sequences. A decision-making process in the

receiver then converts PN sequences to 4-bit symbols. The

redundancy included in the PN sequences is such that the bits

can be recovered even when some chips have been corrupted

during transmission.

The effect of delayed replicas in MSK baseband signals

on bit error rate is a well-understood problem. Even though

MSK and O-QPSK signals are similar, the introduction of PN

sequences makes the theoretical analysis harder. The work

in [13] includes a simulator-based statistical analysis. The
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Fig. 1. The Q-phase chip is delayed by Tc with respect to the I-phase, where
Tc is the inverse of the chip rate.

result is that, when two frames are offset by 250 ns, the

receiver still correctly receives 98% of them. An offset larger

than 500 ns reduces that to less than 20%. Similar results

appear in [14], in which a mathematical analysis is used to

show a frame reception rate of 90% for DSSS signals offset by

150 ns. These results are confirmed by additional experimental

and theoretical analysis [15], [16]. The resulting rule-of-thumb

is that, when using IEEE802.15.4 at 2.4 GHz, for CI to work

with high probability, frames need to be offset by at most

500 ns.

III. CLASSIFYING CI PRIOR ART

The use of CI in (low power) wireless networks has been

explored for almost a decade. The first work that applies

CI to IEEE802.15.4-based nodes is from 2008, by Dutta et

al. [17]. In this early work, hardware-generated acknowledg-

ment frames are used to facilitate anycast communication.

In 2010, the same concept is employed as the basis for

asynchronous receiver-initiated MAC protocol A-MAC [18],

which outperformed the state-of-the-art protocols at that time.

A larger interest emerged more recently after the publication

in 2012 of Glossy protocol by Ferrari et al. [13]. Glossy

provides a thorough investigation on how to achieve optimized

network flooding in IEEE802.15.4-based networks using CI.

It leverages CI to enable simple network-wide synchronization

and implements an efficient network flooding mechanism.

Results in [13] on end-to-end delay and reliability triggered

further optimizations.

We categorize the main prior-art considering three main

aspects:

1) modeling and optimization (Section IV) includes sem-

inal papers [18], [13], as well as recent develop-

ments [19], [15], [14]. These studies are concerned with

understanding how constructive interference takes place,

and focus on specific “atomic” issues, such as time drift,

capture effect or packet length.

2) protocol proposals (Section V) which utilize CI to

target a particular problem, such as data prediction [20],

bulk transfer [21], neighbor counting and identify-

ing [22], etc. through the proposal of new networking

protocols. Most of the studies take a stable implementa-

tion such as Glossy, and build on top of it. In addition,

the International Conference on Embedded Wireless

Systems and Networks (EWSN) has held a dependability

competition in its 2016, 2017 and 2018 editions, in

which most competitors have based their implementation

on CI.

3) security challenges (Section VI) focuses on security

aspects and possible attacks on CI-based networks. This

is an important and not (yet) solved issue that impacts

the adoption of a CI-based solution in industrial settings.

Different types of tutorials and surveys on low-power

wireless already exist. Some of them are focused on use

cases, for example illustrating different mobility management

protocols using 6LoWPAN technology [23], discussing the

application of WSN in Urban Areas [24] and multiple stream-

ing in WSN [25]. Others are focused on protocol stack

design, for example, analyzing the performance of multiple

resource allocation algorithms at different protocol layers [26]

and multichannel routing algorithms [27]. A third type is

focused on specific techniques, for example utilizing channel

bonding to increase the bandwidth of wireless networks [28]

and presenting a new fuzzy logic based node localization

mechanism [29]. This article is part of the third type of work.

We present a overview of CI and a hands-on tutorial.

The requirement of a maximum offset of 500 ns limits the

design of the MAC layer in CI-based networks. Flooding is

generally the employed method for constructive interference

to disseminate the message throughout the network. These fea-

tures distinguish our tutorial on CI from the general low-power

wireless surveys, which usually cover different MAC and

routing layer designs. Section IV focuses on the techniques

at the physical layer closely related to the core of CI. Since

CI-based protocols have a very simple layering approach, we

group all upper-layer designs together as protocol proposals

in Section V. Most of the protocols are either MAC layer or

application-oriented designs. Security in CI is presented as a

topic that needs further work (Section VI).

IV. MODELING AND OPTIMIZING CI

This section illustrates how CI and related approaches have

evolved over time.

A. Optimizing CI

The first work that employs CI in IEEE802.15.4 is Back-

cast [17], presented in 2008. Backcast utilizes the hardware

automatically acknowledge (ACK) reply features to enable

anycast communication. The transmitter node sends a frame

and all receivers that match the destination address – which can

be unicast, multicast or broadcast – reply with identical ACKs

that constructively interfere and are received by the transmitter.

Backcast allows the sender to know that at least one node

has correctly received the transmitted packet. Backcast is not

focused on relaying data in a multi-hop manner using CI, but

to allow acknowledgment for anycast communication.
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Later on, the authors of Backcast proposed the receiver-

initiated low-power protocol A-MAC [18]. The receiver pe-

riodically sends probe frames; a probe frame has the “ac-

knowledgment requested” bit set in the IEEE802.15.4 header.

Senders that have pending frames to the receiver set their

radio to automatically generate ACKs. When a receiver sends a

probe and hears back an ACK, it knows at least one sender has

a frame pending for it. The receiver then leaves its radio on.

A back-off mechanism is used to solve collisions when there

are multiple transmitters. The receiver can optionally send ad-

ditional probes to randomly spread the packet retransmissions.

A-MAC was implemented and evaluated on CC2420 ra-

dios [30]. The evaluation shows higher packet delivery ratio

and lower energy consumption when compared to LPL [31]

and RI-MAC [32], the state-of-the-art transmitter-initiated

and receiver-initiated protocols at the time, respectively. An

emulator-based evaluation in [18] shows that the packet deliv-

ery ratio decreases significantly if the time between two ACKs

is greater than 500 ns, the chip period Tc of IEEE802.15.4 (see

Section II).

Backcast nor A-MAC provide a thorough design analysis

on CI. However, this changed with Glossy [13]. Among all

work related to CI technique, Glossy had the highest influence

and it is currently the basis of most of CI-based protocol

implementations.

Glossy uses CI in the forwarding process of all frames

across multi-hop routes. It is based on controlled flooding,

where the network activity is decoupled from other application

tasks running on the nodes. Simulation results focus on how

the time offset between different IEEE802.15.4 frames affects

the capacity of correctly receiving them. The results show that,

when the timing offset between two current transmissions is

less than 500 ns, there is a high probability of achieving CI.

These results are in-line with Section II.

The synchronization of nodes in Glossy is done implicitly

through the flooding process. The source node (flood initiator)

adds a 1-byte relay counter c to the frames. Counter c is

initialized to 0 and is incremented at each hop. A node only

retransmits packets in which counter c is higher than previous

copies it has received. The counter has an upper limit to scope

the flooding process.

Fig. 2 shows the state machine when a flooding process

of Glossy is executed. There are mainly four states: Off,

Transmit, Receive and Wait. Initially, all nodes turn their

radio off and wait for the beginning of Glossy flooding. When

Glossy starts, the initiator transmits a packet and changes

its state to Transmit. The other nodes change their state to

Receive at the same time. Once a node recognizes the start of a

packet reception, its micro-controller starts to read the packet

from the receive buffer and transitions to Receive state. If the

frame reception fails, the node returns to Wait state and keeps

listening. If the frame reception succeeds, the node modifies

the received packet by incrementing the counter C by one and

writes it into the transmit buffer. This action corresponds to a

transition of Transmit. To increase the reliability of Glossy, a

node transmits the packet N times. After N re-transmissions,

the node turns its radio off and waits for the next Glossy

execution period.

Fig. 2. The Glossy [13] state machine.

Glossy can be used as a loose network-wide synchronization

mechanism. This relies on the assumption that it takes a

deterministic time for a packet to be relayed by a node. That

time is expressed in (1), in which Tsw is the delay introduced

by the software, Tcal is the delay due to radio calibration,

Tpr, Tf , Tl and Tm are the transmission durations for the

preamble, SFD, length and MPDU, respectively, and Td is

the delay introduced by the receiver radio at the beginning of

frame reception.

Thop = Tsw + Tcal + Tpr + Tf + Tl + Tm + Td (1)

All durations are due to the radio operation, except Tsw

which is introduced by the micro-controller. Glossy details

how to make Tsw deterministic by limiting code execution,

choosing a fixed packet size, and calibrating the unstable dig-

itally controlled oscillator which clocks the micro-controller

using a stable low-power crystal.

In Glossy, network flooding happens periodically. The

nodes switch between a flooding period and a period when

the micro-controller executes non-deterministic tasks. During

that second period, the node switches off its radio to conserve

energy. The ratio between the two periods trades off energy

conservation and end-to-end communication delay. Nodes only

need to be loosely synchronized, as an arbitrarily large guard

time can be introduced at the beginning of the flooding period

to account for the synchronization inaccuracy between nodes.

Glossy became a seminal work on the exploitation of CI in

IEEE802.15.4 networks. Several other works have improved

upon it. Glossy improvements add features such as frequency

hopping, power and topology control, or exploit hardware

features to solve issues and limitations of the original proposal.

SCIF [33] is an improvement of Glossy for large-scale

networks. The challenge with scalability and CI is that the

synchronization error accumulates with the number of hops.

Some neighbor nodes far from the source node may be off by

more than 500 ns because they synchronize across different

multi-hop paths. Assuming M is the number of independent

paths to the sink, and H the depth of the network in hops, if

M → ∞ and H → ∞, the probability of communication at

the edge of the network is zero.

SCIF uses Glossy-like flooding, with two twists. First, the

multi-hop synchronization paths interleave with each other
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whenever possible. Second, independent propagation paths

with a large number of hops are avoided whenever possible.

These two rules, which together form the Spine-based Con-

structive Interference Flooding (SCIF) algorithm, reduces the

number of nodes involved in the flooding and, consequently,

the time drift.

In practice, SCIF consists of two phases: spine construction

and flooding. During the spine construction phase, the position

of the nodes and their (theoretical) communicating range are

used to estimate how a packet would flood the network. If

a node is part of two independent branches of the flooding

tree, it is not part of the “spine” of the network. During the

flooding phase, only nodes which belong to the spine relay

packets. Simulation results based on real data traces show that,

for a network with 4,000 nodes, SCIF yields an end-to-end

reliability of 94%. In the same setting, regular Glossy yields

only 30% end-to-end reliability.

TriggerCast [19] selects the links that participate in CI

based on detailed observations on the capture effect on CI.

The authors observe that when the difference of reception

power between two frames is above 3 dB, the capture effect

dominates and no further improvement is provided by CI.

They also observe that, when nodes participating in CI are

at very different distances from the receiver, the difference in

propagation delay can significantly reduce the packet delivery

ratio. Distance differences higher than 40 m may reduce the

packet delivery ratio (PDR) by 20%.

Through mathematical derivation based on the signal to

noise ratio (SNR) and signal power, the authors propose the

following three rules for CI to work:

1) concurrent frames should have a time offset below

500 ns.

2) the time offset between the i-th frame and the frame

with the strongest reception power should be less than

a threshold which is a function of their relative received

power.

3) the ratio between the minimum and maximum SNR

of concurrent signals should be larger than a threshold

which is a function of the time offset between all

concurrent signals.

TriggerCast selects only the links that satisfy those con-

ditions. TriggerCast compensates clock skew and radio pro-

cessing delay, to increase the probability of CI to work.

The results from a real experiment using TelosB motes show

that TriggerCast achieves 95% reliability when the time offset

between frames is below 250 ns, a situation in which Glossy

only achieves 85% reliability. Further experiments carried out

with different levels of PDR links (<5%, 5%-95%, >95%)

show that TriggerCast increases the RSSI and packet delivery

ratio of links with different qualities, and make very weak links

become stronger.

B. Modeling CI

Wilhelm et al. [14] extend the mathematical analysis of

TriggerCast by building a model to predict the outcome of

concurrent transmissions. The model takes into account the

power ratio (SINR), the timing offset between concurrent

frames, the channel coding, the packet content, and the carrier

phase. The model considers two different types of chip-to-

symbol decoding mechanisms for DSSS signals. Hard Deci-

sion Decoding (HDD) considers the highest bit-wise cross-

correlation of the chip sequences. Soft Decision Decoding

(SDD) adds weights to the bits, improving the quality of

demodulation.

Through modeling and simulation, Wilhelm et al. [14]

conclude that, if the signal power is greater than the noise

and the sum of interference signal power, the capture effect

ensures correct reception of concurrent frames at the receiver

side. For the case when the concurrent frames are identical, it

can be received correctly even when power ratio is negative.

Further, under this setting, using SDD yields a PDR radio

above 90%, if the time offset is below 150 ns, and with HDD

a PDR of 60-80% can be achieved with a maximum drift of

100 ns.

Wilhelm et al. also compare when there is a single interferer

at a high power and several interferers at low power. In the

latter case, the total power is identical to the former case,

and interferers have independent uniformly distributed time

offsets. The result is that the multiple-interferer case has a

higher impact when the frame sent are different, but no impact

when the frames are identical.

Yuan and Hollick [15] further model CI, focusing on one-

hop networks and argue that, even in simple cases, CI is hard

to be achieved and does not depend only on the timing offset

between frames. They use Glossy and CC2420 radio chips.

Their study is based on an experimental scenario with N motes

and one root; motes and root are 1 m apart. The system runs on

a 1 s time slot, which implements 2 communication patterns.

At time offset 0 ms, the root node polls all motes in a round-

robin fashion. This allows the root to continuously monitor

the received signal strength from each mote. At time offsets

250 ms, 500 ms, and 750 ms in each 1 s time slot, the root

transmits a frame and all motes retransmit it. This results in

potentially N concurrent transmissions and allows the root to

measure the success rate of CI.

Yuan and Hollick use this experimental setup to model

the one-hop delay of Glossy. They look at the three main

timing components: (i) the duration of frame transmission;

(ii) the delay between the end of transmission and the end of

reception, introduced by the radio, and (iii) the delay from

the end of the packet to the start of the acknowledgment,

introduced by the software. Transmission or reception of

frames is timestamped using a logic analyzer connected to the

Start of Frame Delimiter (SFD) pins of the CC2420 radios.

Results indicate that the duration of packet transmission

varies slightly from one frame to another. However, this

variation is larger when we compare different nodes. The

transmission time of 10-byte packets vary a maximum of about

0.04 µs but do not change between different nodes. On the

other hand, the transmission time of 126-byte packets shows

much larger variability (closer to 0.10 µs) among different

nodes. The time offset between two concurrent frames can be

modeled with (2), in which l is the frame length in bytes, and

k1 and k2 are the drifts of the two radio crystals in ppm (parts

per million).
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DT = 32(l + 12)(
1

1 + k1 × 10−6
−

1

1 + k2 × 10−6
) (2)

The latency introduced by the radio and the software are

measured and modeled as normal random variables: the mean

radio latency is 3.79 µs with a variance of 0.0019; the mean

software latency is 23.28 µs with a variance of 0.0080. Radio

and software latency can be considered independent. Eq. 3

expresses the time offset between concurrent frames sent by

two motes, where Y is a normal random variable with µY = 0
µs and σY = 0.0198.

D∆ = 32(l+12)(
1

1 + k1 × 10−6
−

1

1 + k2 × 10−6
)+Y (3)

As for the capture effect, Yuan and Hollick observe that it

takes place when the time difference between two concurrent

transmissions is less than the duration of the preamble.

Combining the results from constructive interference and

capture effect, Yuan and Hollick propose an algorithm that

predicts the success rate of concurrent transmissions. The al-

gorithm takes the set of nodes, the transmission start time and

signal strength of each node, noise floor and the SER (Symbol

Error Rate) vs. SINR model obtained from measurements as

the inputs, and returns whether the CI will be successful. In

the 2-mote case, the model has 90% accuracy when predicting

CI success, and close to 100% when predicting CI failure. In

the 6-mote case, the prediction accuracy drops to 70%.

Rao et al. [16] also provide a list of conditions necessary

for the success of CI based on real-world experiments and

introduce DIPA (Destructive Interference-based Power Adap-

tation) protocol. It considers the fact that power imbalance

among concurrent transmitters aids packet reception [19] and

proposes an algorithm that dynamically adapts power transmis-

sion in order to improve the performance of CI. The proposed

heuristic consists of a feedback byte appended to the frames

that indicates the success or failure of last transmissions of

concurrent packets. The nodes decrease transmit power if the

last n consecutive transmissions were successful; they increase

the power if a negative feedback is received, and randomly

choose a transmit power if negative feedback persists for more

than k transmissions. The main caveat of this solution is

that the CRC has to be calculated in software so that only

the feedback byte is changed in the frame and a destructive

interference of such byte indicates a negative feedback. DIPA

is able to yield up to 25% lower bit error rate (BER), and

a reduction of around 50% in energy consumption when

compared to Glossy.

C. Summary

The works listed in this section focus on better understand-

ing why CI works and predicting when/whether it does/does

not work. The following are the factors that were found to

play important roles to make CI work:

• Time offset between concurrent IEEE802.15.4 frames

must be below 500 ns. This is empirically and theoreti-

cally verified in all works in this section.

Fig. 3. Slot schedule in LWB [34] communication rounds.

• Having more concurrent nodes or more hops in the net-

work is bad for CI. This is because time synchronization

is harder to be achieved with more nodes [33].

• Having a large power imbalance is good for CI. The

difference between the minimum and maximum SNR be-

tween concurrent frames has to be larger than a threshold

to contribute to CI, which is derived from the phase shift

of all received signals [19];

• Large frames are bad for CI. This is because the bit-

error-rate tends to stay constant during a frame: the more

bits in the frame, the larger the probability that one gets

corrupted.

V. PROTOCOL PROPOSALS

This section provides a tutorial on the design of application

protocols that exploit CI.

Low-Power Wireless Bus (LWB) [34] is a protocol intro-

duced by Glossys authors that provides fast data dissemina-

tion in multi-hop low-power networks2. It supports many-to-

many, one-to-many or many-to-one communication patterns.

In LWB, data dissemination is based on floods that are

globally scheduled. All nodes participate in the transmission

and data relay; the multi-hop network operates like a bus to

which all nodes are connected.

LWB separates the communication into rounds as shown

in Fig. 3. Nodes keep their radio off between two rounds

to save energy. Each round consists of a sequence of time

slots which can be used for different purposes during the

data dissemination process. Within each time slot, a single

node initiates a data transmission, all others retransmit the

packet in a Glossy-like flood. The first slot of each round is

a schedule slot; it contains a message indicating the duration

of current round (Tl) and the mapping of the following data

slots to nodes that have previously requested a transmission

opportunity. A contention slot follows the schedule slot; nodes

can use these slots to request opportunities to send data. These

requests are used by the central scheduler to compute a new

schedule. A sequence of data slots follows the contention slot.

In each data slot, a single node starts flooding a packet through

the network.

CRYSTAL [20] uses Glossy to improve the energy con-

sumption of networks where data prediction is used. In data

prediction applications, the data generated by the nodes is

2 The authors make Glossy and LWB implementations available at https:
//github.com/ETHZ-TEC/LWB.

https://github.com/ETHZ-TEC/LWB
https://github.com/ETHZ-TEC/LWB
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Fig. 4. An example CRYSTAL [20] active period.

such that a model can predict future values based on past

values. Nodes are aware of that model, and only send data if

this data differs from what the model has predicted. In very

specific applications, this can dramatically reduce the number

of packets transmitted by the nodes.

CRYSTAL uses a sequence of synchronized slots similar to

LWB but with a different communication pattern. As shown

in Fig. 4, each active period starts with slots of type S
used for synchronizing the whole network for the following

communication and long sleep interval. It is followed by a

sequence of pairs of slots T and A for node transmission

and sink acknowledgment, respectively. The number of pairs

(slots T and A) depends on the number of nodes with data

to transmit and the desired reliability. At each slot T , a

node with data to transmit acts as a flooding initiator. If the

destination node receives the data, it floods back an ACK in

the subsequent slot A. This process repeats until all nodes

with data to transmit send their data to the destination. It

is expected that all pairs of slots T and A have an initiator

transmitting. Whenever a number of consecutive pairs contain

no data but only negative acknowledgments, the active period

ends. CRYSTAL introduces R consecutive silent pairs of slots

T and A to determine whether to sleep under two conditions:

(i) the sink sleeps after R consecutive slots T without data. So

if a data packet is not successfully delivered in a slot T , the

node has R − 1 additional attempts to transmit it before the

sink stops listening. (ii) the nodes sleep after N consecutive

negative acknowledgments, since it knows the sink is going to

sleep as well. CRYSTAL also contains a solution for handling

the case when the acknowledgment is missing. CRYSTAL is

shown to reduce the radio duty cycle by a factor of more

than 7 while keeping close to 100% end-to-end reliability

when compared to the Collection Tree Protocol CTP [35]

using Derivation Based Prediction DBP [36], the state-of-the-

art model for data prediction.

Choco [37] focuses on data collection and – similarly to

CRYSTAL – employs a specific slot type for synchronizing

all nodes. Fig. 5 shows one inner packet interval slot schedule

defined in Choco. The interval starts with a sync slot for

synchronization. The following slot is a sensing slot and allows

a node to read data from its sensor. This is followed by

multiple control/data slots, which can be used to transmit a

control packet (C), transmit data (T ), wait (W ), or transmit a

sleep packet (S). The control packet contains the schedule for

the following slots, indicating which node sends in which slot.

During the first control/data slot shown in Fig. 5 (1), the sink

Fig. 5. Slot schedule in one inner packet interval (IPI) in Choco [37].

transmits a control packet to nodes 1 and 2 using glossy-like

flooding. The following two slots are for nodes 1 and 2 to

transmit data packets. During a wait slot, a node listens for

a packet if it does not own that slot. When node 2 fails to

transmit a packet to the sink (indicated as (4) in Fig. 5), in the

following control slot (2), it schedules another transmit slot for

node 2 to re-transmit the packet. During the third control/data

slot, the sink transmits a sleep packet to nodes 1 and 2 asking

them to sleep, since there is no more data to send.

“Packet in Pipe” (PIP) [21] is designed for transferring a

large amount of data as fast as possible. Its design goal is

to fully utilize the wireless medium and collect data at the

sink node. In a linear topology, this is achieved by alternating

transmissions at odd and even hops from the destination node.

To avoid interference, communication happens at different

frequencies. In a network with a tree routing structure, the

size of each subtree can be chosen so that the destination

node receives exactly one packet in every time slot, at most.

Such structure results in optimal throughput, but solving

this in all cases is known to be NP-hard (the capacitated

minimum spanning tree problem). Besides, the interference

graph may require more channels than the number of channels

available. Every time transmitting a frame fails (no link-layer

acknowledgment is received), it needs to be re-transmitted, and

the pipeline “falls behind”. CI helps to avoid this situation as

it improves the probability of receiving both data and ACK.

Splash [38] applies constructive interference on the pipeline

networking problem of PIP. Instead of transmitting on a single

path, Splash floods data packets through the entire network.

This avoids having to maintain a routing structure and avoid

interference.

Fig. 6 shows the fours cycles of Splash, as indicated by the

sub-figures (a) to (d). During the first cycle (a), the initiator

starts to transmit the first packet P1. During the second cycle

(b), the first-hop nodes receive P1 and forward it to the

second-hop nodes using CI. During the third cycle (c), the

second-hop nodes receive P1 and forward it to the third-hop

nodes. At the same time, the initiator starts to transmit the

second packet P2 as the first-hop nodes are free to receive.

During the fourth cycle (d), similarly to cycle (b), the first-hop

nodes forward the packet P2 to the second-hop nodes. At the

same time, the third-hop nodes forward them to the fourth-hop

nodes, and so on.
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Fig. 6. Splash [38] splits traffic between hops.

P3 [39] is an improvement over Splash by the same authors.

It splits the intermediate nodes (not including source and

destination) into two different groups. The two groups are

scheduled to transmit and receive at consecutive slots. The

probability of data stalling in the middle of the pipe is thereby

reduced, and P3 is able to double the throughput of Splash.

Fig. 7 shows how P3 works in four cycles for an 8 node

network. The cycles are indicated as (a) to (d). The nodes

in the network are grouped as odd packet handler (dashed

white circles) and even packet handler (solid white circles).

The packet handlers are indicated by solid gray circles. During

the first cycle (a), the source node sends the first packet P1
to its first-hop neighbors 1, 2, 3 and 4. Since this is the odd

number packet, only nodes 1 and 2 receive it, and nodes 3 and

4 abort the reception. During the second cycle (b), the source

node sends the second packet P2 to nodes 3 and 4. At the

same time, nodes 1 and 2 forward P1 to nodes 5 and 6 using

CI. Node 7 also hears P1 transmitted by node 2, but aborts

reception since node 7 is an even packet handler. During the

third cycle (c), the source node sends the third packet P3 to

nodes 1 and 2 (which are now done transmitting P1). At the

same time, nodes 5 and 6 forward P1 received from nodes

1 and 2 to the destination node. Even packet handlers 3 and

4 forward P2 to nodes 7 and 8. During the fourth cycle (d),

similarly to (c), the source node sends P4 to nodes 3 and 4.

Nodes 7 and 8 forward P2 to the destination node at the same

time. Meanwhile, nodes 1 and 2 forward P3 to nodes 5 and

6. It can be seen that P3 doubles the throughput compared to

Splash protocol.

Different from the previous CI-based protocol designs fo-

cusing on conveying data to the destination, Dingming et

al. [22] utilize CI for neighbor discovery and identifica-

tion. Counting and identify neighbors are two fundamental

operations for most of low-power wireless networks. The

authors propose two fast and accurate mechanisms for this two

purposes: Power based Counting, (Poc) and Power based

Identification, (Poid).

The main technique behind the two mechanisms is power

assignment. In such a network, each node is assigned a

different transmit power to respond to a specific frame used

for counting purpose. In the beginning, the node broadcasts a

predicate frame. All neighbors that receive the predicate frame

respond using an identical ACK. Because of CI, the central

node receives the ACK frame as a superposed signal. Through

pre-modeled response power for each neighbor, the node can

count the number of neighbors and identify them by looking

at a mapping table between power and neighbor setting. The

advantage of the mechanism is that it utilizes CI to make the

process faster with only one transmission.

Reliable one-to-one communication is needed when a sensor

node forwards a state change to a destination. This problem

was exactly the challenge proposed in a dependability compe-

tition of the International Conference on Embedded Wireless

Systems and Networks (EWSN), in 2016 3, 2017 4 and 2018 5.

A short summary of the main works that tackled this problem

employing CI-based protocols is shown in Section V-A.

A. EWSN Dependability Competition

In the dependability competition of 2016, 2017 and 2018,

TelosB motes are randomly placed in an indoor environment.

One of the motes is the source: an external circuit controls

a bright light mounted on top of the TelosB’s light sensor.

Another mote is the destination: an external circuit timestamps

when one of the TelosB’s GPIO pins transitions low to high or

vice-versa 6. All motes are programmed by the participating

teams. The goal of the competition is to have the pin on the

destination mote reflect the state of the LED on the source

node. That is, each time the LED switches on/off, the source

node should send the corresponding signal to the destination

node so it switches its pin to high/low state. Source and

destination are far enough apart that they are out of radio

range, and other TelosB nodes need to be used as relays. All

competitors go through the same 35-min test, during which

reliability (how many transitions occur), latency and overall

energy consumption of the network are measured. During the

test, an separate set of TelosB nodes are used to generated

interference and all WiFi networks are turned off.

In the dependability competition of 2018, the setup changed

a little bit. Instead of sensing the light status, the source detects

the GPIO pins voltage level and sends those information to

a destination or a set of destinations. Multiple sources are

also presented inside the network. Those settings create the

scenarios of point to multiple point (P2MP) and multiple point

to multiple point (MP2MP). The performance indicators are

3http://ewsn2016.tugraz.at/cms/index.php%3Fid=5.html
4http://www.ewsn2017.org/dependability-competition.html
5https://ewsn2018.networks.imdea.org/call-for-competitors.html
6In the 2018 edition of the competition the source and destination nodes

are not fixed for the whole experiment, but always there is only one source
and one destination in the network

http://ewsn2016.tugraz.at/cms/index.php%3Fid=5.html
http://www.ewsn2017.org/dependability-competition.html
https://ewsn2018.networks.imdea.org/call-for-competitors.html
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Fig. 7. P3 [39] improves Splash by splitting traffic between hops and groups of neighbors.

still the same as previous competitions: reliability, latency and

energy consumption of the network.

The used of CI technique fits the competition very well.

The top 3 competitors in all 3 editions [40], [41], [42], [43],

[44], [45], [46], [47], [48] used a CI-based solution.

P. Sommer and Y.-A. Pignolet [40] added channel hopping

to Glossy. Based on the counter c, each node determines

the channel to be used from a static sequence, resulting in

channel hopping across the 16 available frequencies. The

number of employed channels impacts the reliability and

energy consumption, as explained in Section VIII.

Chaos [49] builds an all-to-all information dissemination

protocol on top of Glossy. It implements a sequence of

network-wide computations and data aggregation to optimize

dissemination. In [41], [42] the authors introduce Robust

Chaos, which extends the Chaos framework with channel

hopping and channel blacklisting to improve its performance in

environments with high levels of interference. Robust Chaos

adaptively selects a subset of channels to hop on at different

locations in the network, depending on the local pattern of

external interference sources.

RedFixHop [43], [44] improves the delay by taking advan-

tage of the hardware-generated ACK frames. In this approach,

data packets are generated by nodes when the packet relay

counter c is even. For odd values of c, hardware-generated

ACKs are employed, which completely bypasses the micro-

controller and improves the delay and synchronization. This

is the same techniques described in detail in Section VIII, the

hands-on tutorial part of this article.

R. Lim et al. [45] add a mechanism to solve the problem

of flood stalling when a subset of channels in the hopping

sequence is blocked. Relay nodes re-transmit a packet also

based on a timeout when no relayed packets are overheard.

Yet, since the timeout used for that is much longer than the

duration of a time slot, the probability of drifting by more

than 500 ns is higher. The authors overcome this by exploiting

the capture effect using a randomized transmit power among

nodes.

BigBangBus [46] does not rely simply on CI, but also on

the capture effect. The authors argue that pure CI at 2.4 GHz

is hard to achieve because of the frequency deviation problem

and the random phase of signals. In this solution, one unique

schedule is agreed by the nodes once in life time (Big Bang)

and then it is executed. The schedule does not have any idle

gap or guard time and the source is always transmitting each

event, while relays repeat the heard packet a fixed number of

time. Varying the repetition pattern and how multiple channels

is used lets you trade off energy, delay and reliability.

Trobinger et al. [47] modified the CRYSTAL [20] protocol

by adding frequency hopping over all 16 channels and used

CRYSTAL control messages (S and A) to piggy-back the

sensor information.

Mao et al. [50], [48] designed OF∂COIN to flood the mes-

sage which partially uses constructive interference. OF∂COIN

defines a special frame where parts of it are transmitted by all

nodes. Besides, the topology is studied during the first period

of the competition to assign a rank to each node. These ranks

are be carried inside the frame in the non-CI part. The capture

effect helps this part to be received correctly. For flooding

the message through the network, OF∂COIN utilizes three

channels to transmit message, and one channel is selected as

the lock channel. The node starts transmitting on the other

two channels and then on the lock channel. The transmission

restarts on the two channels and back to the lock channel

for listening. Nodes turn off their radio if it received a valid

message. A node retransmits if an invalid message or nothing

is received.

The solutions proposed for the competition add the fol-

lowing improvements to Glossy: (i) channel hopping, (ii)

hardware-generated ACK frames and (iii) power control.

The resulting solutions are highly optimized for the competi-

tion, however, and whether the solution is useful in the general

case is questionable.

Tab. I compares the protocols mentioned in this section.

LWB is a MAC layer protocol scheduling each flood using CI

in a reserved slot for each node. CRYSTAL is a MAC layer

protocol that also uses slots, but includes an ACK packet for

reliability. Choco mixes MAC and application layers by intro-

ducing a sensing slot in its schedule for reading sensor data.

Also, its schedule is dynamically created at each control slot

rather than fixed as in LWB and CRYSTAL. Crystal Clear

is an updated version of CRYSTAL that utilizing channel

hopping in its approach. The EWSN competition proposal [40]

and Chaos are the transformations of Glossy. The former

uses channel hopping to increase reliability and the later

uses cahnnel hopping and blacklisting technique to further

increase reliability. RedFixHop and BigBangBus are both

focusing on low latency. RedFixHop achieves low latency

by using hardware-ACK feature. BigBangBus achieves low

latency by increasing frequency of data sending. Splash is
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an application-oriented protocol that applies CI at different

hops at the same time to increase the throughput. P3 is an

enhancement over Splash that applies CI at different hops,

and groups the neighbors to further increase the throughput.

Finally, Poc&Poid is a protocol designed for fast neighbors

counting and identification.

VI. SECURITY CHALLENGES

Security is clearly the Achilles heel of CI. One perceived

technical reason is that the overhead associated with security

makes synchronization harder. This point is, however, largely

debunked in Section VIII. The real security problem with CI

is that all transmitting nodes need to use the same key for

encrypting the frames, making per-link keys impossible to

use. While end-to-end encryption is possible (i.e. relay nodes

cannot decrypt the payload they are relaying), the requirements

of having network-wide keys clearly favor Denial-of-Service

(DoS) attacks.

The fact that none of the solutions presented so far include

any type of security is rather astonishing. This is all the more

worrying as Glossy-like approaches are being discussed for

critical industrial applications (see discussion in Section IX).

And while, to the best of our knowledge, no real security

solution for CI has been designed, some work exists which

analyzes the vulnerability of Glossy-like solution to different

types of attacks.

K. Hewage et al. [51] provide an experimental study on

the possible attacks that CI-based network is vulnerable to.

The attacks can be classified into three types: (i) Delaying

Packet Relay attack (DPR), where the concurrent transmis-

sions are delayed by some attacker node, (ii) Relaying Packet

Earlier attack (RPE), where attacker causes early concurrent

transmissions, and (iii) Modifying packet attack (MP), where

the content of the packet to be transmitted is modified. The

experiments are carried out in a 26-node testbed deployed

across an office building floor, running Glossy. An attacker

node is placed in-between source and destination. Without the

attack, the network yields 99.99% end-to-end reliability. The

experimental results show how a single DPR and RPE at-

tacker lowers the end-to-end reliability to 99.7% and 99.87%,

respectively. The authors discuss the fact that the capture effect

can counteract the effect of the attack. An MP attack has a

much more severe impact as it replaces the relay counter field

(used for synchronization) by a random value. Nodes cannot

synchronize, and packets get lost.

In the same vein, Z. He et al. [52] proposed a simple DoS

attack called Arpeggio. It exploits the fact that IEEE802.15.4

radios stay on listening mode for the number of bytes specified

in the PHY header of the frame. By frequently sending (bogus)

frames consisting only of a length byte with the maximum

value (127), the attackers can capture the wireless medium.

Clearly, the work on security discussed above is far from

complete. While implementing interesting “tricks”, both [51]

and [52] cannot be considered “security” proposals. What is

missing from CI literature is a true security solution, in which

mechanisms are used to ensure data confidentiality, integrity,

and authentication. This solution should be based on well-

known security solutions used in standards.

VII. SUMMARY OF THE CI TECHNIQUES

Table II summarizes the work illustrated in previous sec-

tions. We group the different proposals, and for each proposal,

we provide a brief summary.

VIII. A HANDS-ON TUTORIAL ON CONSTRUCTIVE

INTERFERENCE

This section is built as a standalone hands-on tutorial of a

complete CI implementation, called Flashflood. We are strong

believers that seeing is believing, that one learns best by doing,

and the devil is in the details. We, therefore, opt for a hands-

on tutorial, which is in our mind the best way to understand

exactly how CI works. This is all the more applicable to CI

since it is a quite complex technique to implement, which

requires a good understanding of low-level concepts. This

hands-on tutorial is targeted at the level of practicing engineers

and advanced researchers who have some experience with

embedded programming. Ideally, you have a setup similar to

the one described in Section VIII-B and you replicate the

experiment as you read through this hands-on tutorial. But if

you do not, you can read this tutorial alongside the source

code, and extract (most of) the same information, without

running the code.

Flashflood implements the different techniques introduced

in Section IV, and serves as a basis for the discussion in

Section IX. As an online companion to this article, all the

source code of Flashflood is published under an open-source

BSD license7,8 To make the tutorial as useful as possible,

and to demonstrate CI does not require cutting-edge hardware

support, Flashflood is implemented on the TelosB mote, a very

popular platform in the academic and startup communities.

We take the setup from the EWSN Dependability Compe-

tition (Section V-A) as a target application. In a Flashflood

network, the information that specifies who is the source and

the sink nodes is hard-coded (see how in Section VIII-B).

When the bulb shines a bright light onto the light sensor of the

source mote, it initiates a network-wide flood which indicates

this new state. You can “see” the flood happening as other

motes switch their LED on when the flood traverses them.

With an oscilloscope or a logic analyzer, you can also see the

pin at the destination mote go high. With a probe connected

to the source mote, you can precisely measure the end-to-end

latency. Similarly, when the light is switched off, the LEDs of

all motes switch off, and the pin at the destination mote goes

low.

We recommend you read through this tutorial in-order, as

it is organized in a didactic manner. Section VIII-A describes

what Flashflood firmware does. It describes the behavior of

the devices precisely, without entering (or “getting lost”) in

minute implementation details. Section VIII-B describes how

you can run the source code on your TelosB mote. It gives the

high-level steps, but refers to the README.md instructions of

7 https://github.com/twatteyne/flashflood/
8 TEMPORARY NOTE TO REVIEWERS: we understand IEEE Surveys

& Tutorials encourages multi-media additions to the articles it publishes. We
are happy to provide the source code under a form different from a link to a
public repository.

https://github.com/twatteyne/flashflood/
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TABLE I
PROTOCOLS COMPARISON

Protocol Layer Description

LWB MAC Slot communication. Transmission for each node is pre-scheduled.

CRYSTAL MAC
Slot communication. Transmission for each node is pre-scheduled. MAC layer
acknowledgement required.

Choco MAC/APP
Slot communication. Reading sensor is scheduled in a slot. Transmission for
each nodes are dynamically scheduled.

Crystal Clear MAC An updated version of CRYSTAL using channel hopping.

[40] MAC Transformation of Glossy. Use channel hopping to increase reliability.

Chaos MAC
Transformation of Glossy. Use channel hopping and blacklisting technique to
further increase reliability

RedFixHop MAC Low latency design utilizing hardware-ACK feature.

BigBangBus MAC
Low latency design through transmitting source data frequently on multiple
channels, in a cost of energy.

Splash APP Multiple concurrent CI floods at different hops.

P3 APP Multiple concurrent CI floods at different hops. Neighbors are grouped.

Poc&Poid MAC/PHY Specific for Fast Neighbor Counting and Identifying.

[45] MAC Using capture offect to overcome non-constructive interference.

OF∂COIN MAC Partial CI-based frames flood through networks on multiple channels.

the repository for details such as what to install or specific

commands to enter. Section VIII-C goes through the imple-

mentation “gotchas” and tricks that are key to the performance

of Flashflood, including the auto-ACK feature of the radio, the

calibration of the clock sources, etc. Section VIII-D presents

the measured performance of Flashflood (reliability, latency,

lifetime, throughput) which you should be able to measure as

well.

A. Overview of Flashflood

Fig. 8 shows the setup we use to describe how Flashflood

operates. It contains many important details, the explanation

of which we refine throughout this tutorial. The setup consists

of a multi-hop topology with source and destination motes

separated by 4 hops, and with 2 relay motes at each hop.

We call “hop 1 motes” all the motes which are exactly one

hop from the source, i.e. motes 2 and 3 in Fig. 8. We

replicate this on a bench-top setup when running the code

(Section VIII-B) and when measuring the performance of

Flashflood (Section VIII-D). Section VIII-B3 details the subtle

differences in addressing between the bench-top setup (in

which multi-hop communication is forced) and a final real-

world deployment; for now, we focus on the bench-top setup.

Each mote is identified by an address my_addr, which is

used as the IEEE802.15.4 short address of the device. Several

motes have the same address, which is key for using CI.

We take advantage of the auto-ACK feature of the radio (see

Section VIII-C4), but for this to work, all frames exchanged

must be formatted according to the IEEE802.15.4 standard.

The source mote (mote 1) generates a 1-bit piece of data

indicating the state of the light (off or on). This data floods

through the network and is carried by an alternation of DATA

frames (in hops 1, 3, 5, etc.) and ACK frames (in hops 2,

4, 6, etc.). In the IEEE802.15.4 frame, the data is carried in

the 1-byte DSN (Data Sequence Number) field. This field is

normally used to match DATA and ACK frames; in Flashflood

this field is overloaded to carry the actual data. The key is

that, per the IEEE802.15.4 standard, the ACK frame contains

the same DSN as the DATA frame it acknowledges, thereby

propagating the data (light state).

Referring to Fig. 8, when mote 1 generates a DATA packet

(with the state of the light encoded in the DSN field), it is

sent to destination address 0x0002. Both motes 2 and 3 are

configured with that short address, so both motes generate an

ACK frame. This is done in hardware, so both ACK frames

are sent at exactly the same time, resulting in CI. Both motes

4 and 5 receive the ACK, and, in software, generate a new

DATA packet. Making sure that DATA frames leave the radio

of both motes 4 and 5 at the same time is the tricky part;

Section VIII-C discussed in detail how this is done. The DATA

frames sent by motes 4 and 5 are logically equivalent to that

sent by mote 1. The result is that the data floods the network

hop by hop, each hop resulting in either a DATA or an ACK

frame.

Of course, timing is everything in Flashflood as in any CI-

based solution. Fig. 9 shows a chronogram of the activity of

the different motes, annotated with different durations. The

explanation and value of these durations are shown in Table III.

Specifically, Fig. 9 shows the activity of the SFD (“Start

of Frame Delimiter”) pin of the motes, which allows us to

visualize when a mote transmits/receives a frame.

As shown in Fig. 9, Flashflood operates in cycles, with

one cycle every Tcycle, which can be tuned. In every cycle,

the source mote sends a packet which contains the state of the

light (on/off):

• source mote. It takes Tdata µs for that frame to be sent

by the source node and received by the hop 1 motes.

• hop 1 motes. The radio chip of the hop 1 motes

automatically generate and send an ACK frame, a process

that takes Dhw (the time for the hardware to generate the

ACK), plus Tpr (the time to send the physical preamble

of the ACK), plus TACK (the time to send the ACK,

excluding its physical preamble). Since the generation

of the ACK is done entirely in hardware, all hop 1

motes start transmitting the ACK at most tens of ns
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TABLE II
CLASSIFICATION OF RESEARCH ON CONSTRUCTIVE INTERFERENCE

Category Name Description Additions to

Glossy

Modeling & Optimizing

A-MAC [18]
Use hardware-generated ACKs to enable CI on receiver-initiated low-power
networks.

—

Glossy [13]
Flooding protocol based on CI using IEEE802.15.4 O-QPSK signals. 500 ns
maximum de-synchronization.

—

SCIF [33]
Mathematical analysis of CI. Limiting the number of concurrent paths and
nodes involved increases scalability.

Limited paths
and nodes used

TriggerCast [19]
Mathematical analysis of CI. Establishes three necessary conditions for CI and
organizes the network as a tree satisfying those conditions.

—

[14]
Investigates the 4 key factors that enable CI: power ratio, signal timing, channel
coding, packet contents.

—

[15]
Models one-hop Glossy networks. Shows the influence of packet size and
capture effect on CI.

Limited packet
size

DIPA [16]
Analyzes and compares most assumptions from previous works. Proposes a
power control algorithm to improve CI.

Power control

Protocol Proposals

LWB Many-to-many and one-to-many protocol with Glossy-based time slots. Synchronization
& Data time slots

CRYSTAL [20] Reduces the energy waste of prediction application with Glossy time slots. —

Choco [37]
Uses a control time slot to schedule the medium to nodes with data to be
collected.

Control time slot

PIP [21] Creates a schedule of Glossy-based time slots for fast data transfer. Scheduling
Splash [38] &
P3 [39]

Fast data transfer based on flooding. Different channels are used to increase
throughput.

Multiple
channels

Poc&Poid [22]
Fast neighbor counting and identify through CI. The power of superposed signal
is used for identifying the neighbors.

—

EWSN Compe-

tition: [40]
Glossy with time slots and frequency hopping. Frequency Hop-

ping
EWSN

Competition:

Robust

Chaos [41],
[42]

Glossy with channel hopping and adaptive blacklisting. Frequency Hop-
ping

EWSN Compe-

tition: RedFix-

Hop [43], [44]
Glossy with hardware-generated ACK frames. Hardware-

generated ACK
EWSN Compe-

tition: [45]
Glossy with re-transmissions based on timeouts. Timeouts for data

re-transmission
EWSN Compe-

tition: BigBang-

Bus [46]
Tight timeslots with no guard time and use of capture effect. —

EWSN Compe-

tition: [47]
CRYSTAL [20] protocol with channel hopping and sensor information piggy-
backing.

—

EWSN Compe-

tition: [50], [48]
Flooding protocol with partial constructive interference frame on multiple
channel.

—

Security Challenges
[51]

Explores three types of DoS attacks: delaying packet relay, relaying packet
earlier and modifying packet attack. The later shows more effectiveness.

—

Arpeggio [52]
The attacker sends short frames with a fake length field to capture the medium,
destroying CI.

—

TABLE III
FLASHFLOOD TIMING.

Time Value Description

Tpr 160 µs physical preamble & SFD TX duration

Tdata 320 µs Data frame TX duration

TACK 192 µs ACK frame TX duration

Dsw 214 µs software delay before Data frame TX

Dhw 192 µs radio delay before ACK frame TX

from one another9. This is well below the maximum

de-synchronization of 500 ns for CI to work. Since the

hardware copies the contents of the DSN field from the

9 This is a value we have measured, and which corresponds to the CC2420
buffer setup times [30].

received DATA frame into the transmitted ACK frame,

the data originally from the source mote reaches the hop

2 motes.

• hop 2 motes. While the processing is equivalent to that

of the hop 1 motes (the data is relayed), the mechanism

is very different as there is no radio hardware feature

to forward data. Instead, when the radio of hop 2 motes

hears the ACK frame from the hop 1 motes, the micro-

controller wakes up, reads out the received ACK frame,

creates a new DATA frame (copying the contents of the

DSN field), and transmits that DATA frame. The key is

that, for CI to work, all hop 2 motes need to start sending

their DATA frames within 500 ns of one another, which

is a challenge given the available timers. How this is
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Fig. 8. Topology of the network used in the experiments.

Fig. 9. Activity of the SFD (“Start of Frame Delimiter”) pin of the motes as a packet floods the network. This pin which goes high at the beginning of a
frame, and low at the end, both when a frame is transmitted or received by the radio.

achieved is detailed in Section VIII-C5.

• odd hop motes (hops 3, 5, 7, etc.). Their behavior is

equivalent to that of the hop 1 motes.

• even hop motes (hops 2, 4, 6, etc.). Their behavior is

equivalent to that of the hop 2 motes.

B. Running Flashflood

We strongly encourage the reader to download and run

the source code, as you will be able to see the behavior

described in this article for yourself. Alternatively, you can

have the code open and read it as you go through this

tutorial. The source code consists of a single 1114-line C

file named flashflood.c. The toolchain (compiler, linker,

debugger) we have used to develop the code is IAR10, a

leading Integrated Development Environment for embedded

programming. We provide a number of IAR project files,

which differ in the debug features that are enabled. Not to

overload this article, we refer the interested reader to the

10 http://www.iar.com/

source code (and specifically the README.md file at the

root of the repository) for installation instructions as well as

instructions on which project to launch.

1) Bench-top Setup: Fig. 10 is a picture of the setup we

have used to develop and benchmark Flashflood. It consists of

8 TelosB motes connected to a USB hub. This setup exactly

replicates the topology from Fig. 8. We switch on a bright

light (not shown in Fig. 10) above mote 1 to trigger a state

switch.

In the bottom part of the figure, there is a logic analyzer that

we use to capture the timestamps of different events happening

along the protocol execution.

2) Debug Pins: Throughout the Flashflood source code,

we add statements to switch several pins of the TelosB board

high or low. We use a Saleae logic analyzer11, shown at the

bottom of Fig. 10 to visualize and trace the activity of the

motes it is connected to. We use 6 different pins, and assign

a specific meaning to each:

11 https://www.saleae.com/

http://www.iar.com/
https://www.saleae.com/
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Fig. 10. Bench-top setup. 8 TelosB motes are connected to a USB hub A
logic analyzer monitors the state of the 6 debug pins of different motes.

• The light pin indicates the state of the light of the

source mote: it is high when the light is on, low when

the light is off;

• The timerAisr pin is high when the micro-controller

executes a Timer A Interrupt Service Routine, low oth-

erwise;

• The timerBisr pin is high when the micro-controller

executes a Timer B Interrupt Service Routine, low other-

wise;

• The rxforme pin is low by default, and pulses high/low

when the incoming frame passes address recognition;

• The sfd pin mimics the status of SFD pin of CC2420.

This is the pin used to create Fig. 9;

• The radio pin is set high when the radio’s oscillator is

on, low otherwise. It can be used to see when the radio

is on and to visualize the radio duty cycle.

Tab. IV shows where those pins are located on the TelosB

board, i.e. where to connect the probes of your logic analyzer.

3) Forcing Multi-hop: Without modification, all motes hear

one another in the bench-top setup, and the communication

between the source and destination motes is single-hop. We,

therefore, hard-code two identifiers in each mote: my_addr –

its IEEE802.15.4 short address – and my_hop – the number

of hops it is from the source. Both are used to filter received

frame, artificially creating multi-hop communication.

TABLE IV
THE PINS USED FOR VISUALIZING THE ACTIVITY OF THE MOTES USING A

LOGIC ANALYZER, AND THEIR LOCATION ON THE TELOSB BOARD.

name MSP430f1611 pin TelosB expansion header pin

light P2.3 6-pin U28 header, pin 3

timerAisr P3.4 10-pin U2 header, pin 4

timerBisr P6.6 6-pin U28 header, pin 1

rxforme P2.6 6-pin U28 header, pin 4

sfd P3.5 10-pin U2 header, pin 2

radio P6.7 6-pin U28 header, pin 2

The Flashflood firmware indicates to the mote’s radio its

my_addr short address and configures it so that it drops

any DATA frame with a destination address different from

my_addr. The result is that, for example, mote 4 drops

the DATA frames it receives from mote 1. When receiving

an ACK, the Flashflood firmware verifies the “hop” field it

contains (see Section VIII-C2) and drops any frame with a

value different from my_hop. The result is that, for example,

mote 6 drops the ACK frames it receives from node 2.

In a real deployment, we disable this feature by (i) config-

uring each mote with the same my_addr short address and

(ii) disabling the filtering based on the my_hop value. This is

done in the source code by not defining the LOCAL_SETUP

symbol as a pre-compiler directive, as explained in the

README.md file.

C. Flashflood Implementation Details

The source code consists of only a single 1114-line C file.

It is written and annotated as a tutorial, the numerous in-

line comments should allow you to follow the computation

done in the different functions. Rather than repeating the

annotations in the source code, this section details the high-

level implementation principles and “tricks” that make CI

work, and the implementation efficient. We recommend you

open the flashflood.c file alongside reading this section.

1) Event-Driven Execution: The source code is organized

around a main() function – which handles the initialization

of a board – and two “Interrupt Services Routines” which han-

dle interrupts from the two onboard timers: TIMERA1_ISR

for Timer A and TIMERB1_ISR for Timer B. This means

that, once the initialization is done, the micro-controller is

only woken up for handling one of those two timers. The

micro-controller then operates exclusively in interrupt mode,

resulting in pure event-driven execution.

The code in the interrupt handlers is written very “linearly”,

with very little branching (e.g. if and switch statements),

and without relying on complex operations such as the modulo

operation, which can take hundreds of microseconds to exe-

cute. The goal is that we want the interrupt handler to execute

fast and take roughly the same time to execute every time (low

jitter).

2) Frame Formats: Fig. 11 shows the format of the two

frames used in Flashflood. Both are compliant with the

IEEE802.15.4 standard.

The DATA frame is 9 bytes long, including the 2-byte CRC.

Per IEEE802.15.4 standard, the two first bytes are the Frame

Control Field, which indicates how the rest of the fields are
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Fig. 11. The IEEE802.15.4 DATA and ACK frame formats used in the
Flashflood protocol.

TABLE V
FRAME CONTROL FIELD (FCF) CONTENTS OF THE DATA FRAME.

bit name value meaning

0-2 frame type b001 DATA frame

3 security enabled b0 no security

4 frame pending b0 no frame pending

5 ACK requested b1 ACK requested

6 intra PAN b1 source PANID elided

7-9 reserved b000 —

10-11 destination address mode b10 16-bit destination addr.

12-13 frame version b01 IEEE802.15.4-2006

14-15 source address mode b00 elided

organized. The contents are detailed in Table V. Specifically,

there is no source address present, but an ACK is always

requested.

As detailed in Section VIII-A the data is carried in the DSN

field. This field is designed to match DATA and ACK frames,

but it is overloaded in Flashflood. As shown in Fig. 11 the

1-byte field is sub-divided into 3 fields:

• the light (L) bit which contains the state of the light, the

actual data carried.

• the hop count field which indicates the hop count of

the transmitter of this frame. This is used in the bench-

top setup to artificially create a multi-hop topology (see

Section VIII-B3).

• The sequence number field is incremented by the source

node at each new packet flooded, and used for channel

hopping (see Section VIII-C7).

The ACK frame is also IEEE802.15.4-compliant, but carries

only the DSN field besides the FCF and the CRC. This frame

is auto-generated by the hardware (see Section VIII-C4). The

ACK frame is 5-byte long.

3) Pre-loading TXFIFO: The CC2420 radio has a TXFIFO

buffer which stores the frame to be sent. The radio does not

use this buffer when auto-generating an ACK frame, so in

the context of the Flashflood, the TXFIFO will always hold

DATA frames. As long as the radio is powered (including

when the front-end is off), the state of the TXFIFO is kept. In

addition, the CRC is calculated on-the-fly, i.e., while the frame

is being transmitted. As a result, to speed up the execution,

the Flashflood firmware pre-loads a DATA frame into the

TXFIFO. Whenever that frame needs to be transmitted, the

firmware overwrites the DSN field of the pre-loaded frame

and has the radio transmit it. This requires a single-byte SPI

write operation into the TXFIFO at each transmission, rather

than a full reload of the whole frame.

4) Hardware Auto-ACK: Per IEEE802.15.4 standard, a

device which receives a frame that has the “ACK requested”

flag set must send back an acknowledgment frame, echoing

the DSN field. The CC2420 has hardware support for that,

so, given the right configuration, it generates and sends an

ACK without micro-controller intervention. This auto-ACK

feature was added to the CC2420 to simplify the code running

on the micro-controller. We are using it for another benefit:

the duration between the end of the DATA frame and the

transmission of the ACK is always exactly the same value,

to within a handful of tens of ns, allowing CI.

For this to work, three bits in the MDMCTRL0 configuration

register of the CC2420 need to be set to enable (i) address

recognition and (ii) auto-ACK. The exact behavior of the

radio is then as follows. When a DATA frame with the “ACK

requested” flag set is received, the destination address of the

DATA frame is checked against the short address of the mote.

If address recognition passes, the radio creates an ACK by

copying the DSN field from the DATA and appending a 2-

byte CRC. The ACK is sent exactly 12 symbols after the end

of the reception of the DATA frame. If address recognition

fails, the CC2420 aborts the reception of the DATA frame

without sending an ACK.

5) Timer Usage: Flashflood uses both timers from the

micro-controller: TimerA and TimerB.

TimerA is used as the slow timer. It is clocked by the 32 kHz

crystal which is present on the TelosB board. That is, every

1/32768 second (roughly 30.5 µs), it increments by 1. The

micro-controllers’ low-power mode is set to LPM3, meaning

that TimerA never stops, even when the micro-controller does

not execute code. The advantage of TimerA configured like

this is that it provide a constant sense of time for a very low

power consumption (around 2 µA). The disadvantage is that

the speed of the timer does not give nearly enough precision

to kick off actions with < 500 ns timing accuracy.

For that, a second timer is used: TimerB. It is clocked from

a 4.9 MHz Digitally Controller Oscillator (DCO) inside the

micro-controller. At that speed, it gives a time accuracy of

1/4.9 MHz = 200 ns, which is below the 500 ns limit for CI

to work. The disadvantage is that the timer consumes close to

1 mA when on. The firmware hence switches on TimerB only

parsimoniously to conserve energy. TimerB also suffers from

a large drift, see Section VIII-C6.

The operation of both timers is as follows. TimerA contin-

uously runs. When TimerA signals the beginning of a cycle

(which happens every Tcycle, see Fig. 9), the firmware switches

TimerB on. TimerB is used to timestamp the reception of an

ACK time, and precisely measure Dsw (see Table III), the

duration from the end of the ACK frame reception to the

beginning of the DATA frame transmission. This measurement



16

must be deterministic so different motes having received the

same ACK send a DATA frame within 500 ns of one another,

resulting in CI. After the mote has participated in the flood, it

turns its radio and TimerB off until the start of the next cycle.

6) DCO Calibration: While the DCO clocking TimerB

is very fast, it is also very unstable. That is, because it

consists of a simple resonating circuit, it is very susceptible

to temperature and supply voltage differences, and while its

nominal frequency is 4.9 MHz, it can swing between 4.4 MHz

and 5.4 MHz. The challenge is that TimerB is used for

triggering the transmission of the DATA frame. If two different

nodes have their DCO run, one at 4.9 MHz, the other at

5.4 MHz, counting 1000 ticks would take 204.08 µs and

185.19 µs, respectively. The difference, 18.89 µs, is well above

the 500 ns limit, and CI would not work.

The Flashflood firmware therefore periodically calibrates

the (unstable) DCO with the (very stable) crystal. It does so

by counting how many TimerB ticks there are in a TimerA

tick. It then uses a scaled value of the result to measure the

time between receiving an ACK frame and sending a DATA

frame.

7) Channel Hopping: To combat external interference and

multi-path fading, Flashflood implements a simple channel

hopping scheme: at each cycle, the motes switch to a different

frequency. The idea is that, if communication at 2.405 GHz

did not succeed, rather than retrying on the same frequency,

the devices retry at a different frequency, e.g. 2.485 GHz [53].

To achieve this, the motes use the current sequence number

to loop through the frequencies according to some pre-agreed

hopping sequence.

The first challenge with this is that it takes longer for a node

to hear its first packet and learn the current sequence number to

be able to join the communication. With a 16-channel hopping

sequence, it takes on average 8 cycles for a node to hear its

first packet when listening on a random channel. Assuming

a Tcycle = 20 ms (the default in Flashflood), this means that

after being switched on, a mote listens on average for 160 ms

before “joining” the network.

A second challenge is that packets can be lost. That is, a

mote can relay a packet with sequence number 10, but not hear

any packet with sequence number 11. In that case, Flashflood

has to artificially increment the sequence number every Tcycle

to be listening on the right frequency when the flood with

sequence number 12 traverses the network.

8) Radio Duty Cycling: Because each frame contains a hop

count field, any mote can compute when the current cycle

started, based on the hop count value. And because Tcycle

is known, it can also compute when the next cycle starts.

The Flashflood firmware has a mote switch off its radio after

having relayed a frame, and switch it back on at the beginning

of the next cycle.

D. Measured Flashflood Performance

The performance of Flashflood is measured using the

bench-top setup depicted in Fig. 10. We connect the logic

analyzer to different boards for different measurements and

automate the measurements to present statistically relevant

results gathered over a large number of runs.
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Fig. 12. Histogram of the time offset between both 2-hop motes. For 90%
of the packet, the time offset is below 500 ns.

1) Time Offset: The time offset is the difference in time

between different boards at the same hop transmitting frames.

For CI, we want this time offset to be below 500 ns. Per the

discussion in Section VIII-C5, the hard part is to get different

motes to relay a DATA frame at the same time. We, therefore,

connect the logic analyzer to motes 4 and 5 (both at hop 2)

and timestamp the instant at which they transmit the DATA

frame using the sfd debug pin. The logic analyzer samples at

16 MHz, giving us a timestamp granularity with an accuracy

of 62.5 ns.

We have the source node to transmit 1000 packets, and plot

in Fig. 12 the histogram of the absolute time offset between

both motes. We see that for 90% of the packet, the time offset

is below 500 ns, our target.

2) Reliability: We call reliability the portion of data sent

by the source that reaches the destination. In Fig. 8, that is the

percentage of packets sent by mote 1 that reaches mote 8. We

measure the reliability by having mote 1 send 10,000 packets,

and counting the number os packets received by mote 8.

The experiment is conducted in an office environment with

heavy 2.4 GHz WiFi and IEEE802.15.4 traffic. We use unmod-

ified Flashflood with channel hopping on all 16 IEEE802.15.4

frequencies. The experiment results in 94.88% end-to-end

reliability over 4 hops.

Packet loss happens because of external interference. Sec-

tions VIII-E and X discuss the improvements which could be

done to bring the reliability to 100%.

3) Latency: We call end-to-end latency the amount of

time between the moment the light switches on and the

moment the destination mote receives the packet containing

the information that the light has switched on.

End-to-end latency consists of three parts: (i) the time it

takes the source mote to detect the light is switched on; (ii) the

time it takes for the source mote to send the packet containing

that information; (iii) the time it takes for that packet to travel

across the network. The end-to-end latency is expressed in (4),

in which Dsensor, Dsource and Dnetwork(H) account for the
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TABLE VI
DATASHEET CURRENT CONSUMPTION NUMBERS OF THE CC2420 RADIO

state Ioff Iidle Itx Irx
current 0.02 µA 426 µA 17.4 mA 18.8 mA

3 components. H is the number of hops between source and

destination.

Lend2end(H) = Dsensor +Dsource +Dnetwork(H) (4)

Since the light sensor is read every Tcycle, Dsensor =
Tcycle/2 as it takes over average half Tcycle for a light change

to be detected.

Once the light change is detected, the mote calibrates the

radio and loads the packet to be sent. This takes Dsource =
901 µs, a value measured experimentally.

The network’s delay Dnetwork(H), expressed in (5), is the

sum of the delay at the first hop, at every odd hop and at every

even hop. The delay at the first hop, Dfirst is expressed in (6).

The delay at each odd and even hop is expressed in (7) and (8),

respectively. These equations directly result from Fig. 9.

Dnetwork(H) = Dfirst+
∑

# odd hops

Dodd+
∑

# even hops

Deven

(5)

Dfirst = Tpr + TData (6)

Dodd = Dsw + Tpr + TData (7)

Deven = Dhw + Tpr + TACK (8)

We measure the end-to-end latency by attaching the logic

analyzer to the source and destination nodes and timestamp the

instant that the light switches on, and the high-to-low transition

of the sfd at the destination (indicating it just received a full

frame). We have the source node transmit 1,000 packets to the

destination node. We verify that Dsensor follows a uniform

distribution in [0, Tcycle], with an average value of 10 ms

(Tcycle = 20 ms by default)

Fig. 13 shows the calculated and measured end-to-end

latencies side by side, for a destination node located 1, 2,

3, 4 hops from the source. It shows that calculated and

measured values match. Latency increases quasi-linearly with

the number of hops (not perfectly linearly as Dodd 6= Deven).

4) Battery Lifetime: The energy consumption of a mote

depends on how far it is from the source. The more hops

between the source and the mote, the more energy it consumes.

The charge C(h) consumed at every cycle by a mote at hop

h is given by (9). Iidle is the current of the radio when in the

idle state, i.e. when the radio has been switched on but not yet

in transmitting or reception state. Itx and Irx is the current of

the radio when in transmitting or reception state, respectively.

The radio consumes Ioff when switched off. Table VI gives

the datasheet current consumption numbers of the CC2420

radio.
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measured

average std.dev.

1 11381.00 11406.15 21.36

2 11925.00 11955.53 21.15

3 12619.00 12678.75 20.80

4 13163.00 13226.91 21.77

Fig. 13. Measured and calculated end-to-end latency of Flashflood.

TABLE VII
MOTE LIFETIME WHEN POWERED BY A 2000 MAH PAIR OF AA BATTERIES

hop source 1 2 3 4

charge per cycle (uC) 11 21 35 45 49

lifetime (days) 20 ms cycle 151 78 48 37 34

C(h) = DinitIidle + Ttx(h)Itx + Trx(h)Irx (9)

Ttx(h) =



















Tpr + TDATA (source)

Tpr + TACK (odd)

Tpr + TDATA (even)

0 (destination)

(10)

Trx(H) =







































0

(source)

Trx(H − 1) + TDATA +DHW + Tpr + TACK

(odd)

Trx(H − 1) + TACK +DSW + Tpr + TDATA

(even)
(11)

Between cycles, Flashflood turns the radio off, and leaves

the micro-controller in LPM3 mode, a low-power mode in

which only the 32 kHz crystal runs, consuming 2 µA. As-

suming a cycle every 20 ms, Table VII gives the lifetime of a

mote when powered by a 2000 mAh pair of AA batteries.

5) Throughput: The achievable throughput depends on the

value of Tcycle, which is 20 ms by default. With this setting,

the maximum throughput of Flashflood is 50 pkts/s. Changing

the value of Tcycle trades off throughput, energy consumption

and end-to-end latency.
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E. Where Next?

With a single 1114-line C file, Flashflood is a simple

implementation built to illustrate the different concepts devel-

oped in Section II. It offers a balanced performance between

reliability, end-to-end latency, battery lifetime and throughput.

This section contains a number of ideas for modifying the base

Flashflood source code to optimize one of those parameters.

Battery lifetime could be improved by having the motes

wake up later. That is, as depicted in Fig. 9, a hop 2 mote

could wake up right before it expects to receive the hop 2

frame, rather than at the beginning of the cycle. The downside

is that a hop 2 mote could not become a hop 1 mote at a future

cycle.

Throughput could be improved by having Tcycle changed

dynamically. That is, the packet flooded could contain the

value the next Tcycle to use, allowing the source node to

change the rate at which it can generate data packets. The

downside is that this scheme would require additional signal-

ing, in an already well-used DSN field.

Reliability could be improved by having each mote monitor

whether it overhears its frame being retransmitted. If not,

it could serve as a local source during the “off” period

before the next cycle starts. The downside is that this would

require significant additional signaling to coordinate multiple

re-transmitters.

It is clear that CI opens the door for numerous intuitive

delta-improvements, yielding very specific solutions. Yet, re-

gardless of the improvements that are added, the question

is whether CI can be useful at all, in particular in critical

industrial applications.

IX. ISSUES AND CHALLENGES OF CONSTRUCTIVE

INTERFERENCE IN IEEE802.15.4

IEEE802.15.4 is a standard for wireless low-power, low

data-rate networks. All CI techniques discussed in Sections IV,

V and VI are based on the IEEE802.15.4 physical layer. The

IEEE802.15.4 standard specifies four different MAC layer

protocols focusing on different applications, including TSCH

that targets industrial networking. CI being integrated into

MAC layer protocols specified in the IEEE802.15.4 standard

would be beneficial for a large adoption of the technique and

its employment in more practical scenarios.

For industrial applications, reliability, latency, energy con-

sumption and security are important KPIs (Key Performance

Indicators). The nature of flooding in CI provides a protocol

design that has a very low latency. The energy consumption

can also be optimized when using CI, given that proper tuning

is done between energy and latency. Through a sophisticated

design, latency and energy consumption should not be a major

issue in CI technology.

We discuss in this section the issues and challenges of CI

in the scope of IEEE802.15.4 industrial standards, mainly

focusing on security and reliability aspects, which are the

two most critical yet-to-solve aspects of CI-based protocols.

We also discuss the amount of data CI could carry with

the IEEE802.15.4 and the new IEEE802.15.4g (sub-GHz)

protocols and the possibility of standardizing CI. We base

this discussion on the state-of-the-art articles in Sections IV,

V and VI, and the hands-on experience from the tutorial

in Section VIII. The goal of this section is to look for the

possibility of bringing CI from purely academic world to

industry.

This section organized as following. Section IX-A discuss

the big challenges that CI may face to become industrially

applicable. Section IX-B discuss the reliability that CI could

achieve to meet the industrial requirements. Section IX-C

discuss the amount of data CI is capable to convey, referring

IEEE802.15.4 standard. Section IX-D discuss the possibility

to bring CI to standard.

A. Security

One of the two most critical issues of CI is security. CI is

often presented as a solution for industrial emergency buttons.

Yet, we are not aware of any real attempt to come up with

a security scheme for CI. Some of the literature surveyed in

Section VI which falls under “security” merely present attacks

on CI, but are far from defining a security solution.

A security solution, as defined for example by the ANIMA

and ACE working groups in the IETF12 rely on cryptographic

mechanisms to secure frames (yielding confidentiality, in-

tegrity), and Key Management Protocols to manage the keying

material used by the communicating devices (yielding secure

joining and repudiation). In the security communities cited

above, if there exists a single exploit, a solution is considered

unsecured; “probabilistic security” does not exist. A CI solu-

tion which could be considered by the industrial community is

one that ensures only trusted devices are accepted in a network,

that a device can be removed from the trusted set at any time,

and which ensures confidentiality, integrity, and authentication

during communication.

Yet, the work needed does not appear technically over-

complicated, as all the security foundations are in place.

The IEEE802.15.4 standard has shipped with built-in link-

layer security mechanisms since its first version in 2003,

and virtually all commercial chips complying with it include

hardware acceleration. Using CCM*, the security mode most

commonly used, an entire frame can be secured (encrypted

and authenticated) in less time than it takes to transmit a single

byte.

What does remain to be answered are questions including

How does a new device securely join a CI-based network?

How does that device acquire link-layer keys? How are those

keys used? How does the network repudiate a device?

The flooding nature of CI presents an additional challenge.

Since the different frames participating in CI need to be

identical, they need to be secured using the same key. This

translates into the need of using network-wide link-layer keys,

rather than per-link link-layer keys.

B. Reliability

The second most critical issue with CI is reliability. To be

precise, end-to-end reliability. Reliability has received signif-

icant attention from the academic community, and virtually

12 http://tools.ietf.org/wg/anima/charters, https://tools.ietf.org/wg/ace/
charters

http://tools.ietf.org/wg/anima/charters
https://tools.ietf.org/wg/ace/charters
https://tools.ietf.org/wg/ace/charters
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all related work discussed in Section IV, Section V and

Section V-A touch upon it. CI is presented essentially as an

efficient flooding scheme; communication between source and

destination is very fast when it works, but it does not always

work.

Related work has put significant focus on increasing the

probability that a message gets to its destination. Yet, what is

missing is the ability for the device sending to know whether

its data got there. In the emergency button use case, the button

does not know whether the machine has stopped, using today’s

CI solutions. If it knew the machine had not stopped, it could

restart a CI flood within a handful of milliseconds after the first

try. And while worst-case latency necessary goes up with the

number of retries, the end-to-end reliability (including retries)

must be 100%.

C. Amount of Data

Based on the analysis of CI in [15], the longer the duration

of the transmissions is, the worse packet delivery ratio CI

would achieve. This is because the drift of clock between

two radios increases proportionally to the size of the packet.

IEEE802.15.4 allows a maximum length frame 127 bytes to

be transmitted. According to the result from [15], transmitting

126 bytes introduces offset between two transmissions close

to 0.10 µs. This is acceptable since does not exceeding the

0.5 µs limit of CI.

IEEE802.15.4g is an amendment for IEEE802.15.4 to

supports multiple sub-GHz physical layers to enable long-

range communication. It allows a maximum length frame of

2047 bytes. The large frame may introduce higher time offset

between two concurrent transmissions. In addition, the lower

chip rate (100 kcps or 1 Mcps depending on the frequency

band used) increases even more the clock drift and makes it

hard to comply with the 500 ns maximum offset. Theoretically,

there should be no limitation on the amount of data for CI to

be used with IEEE802.15.4g. However, the limits on the clock

offset between two concurrent transmissions when sending

long frames needs to be investigated experimentally.

D. Standardization

Large industrial end-users rarely use single-vendor solu-

tions, i.e. solutions which are sold only by a single company.

A good way to ensure interoperability is through standardiza-

tion. Having a standard that covers a technology serves two

purposes: (i) it acknowledges the interest of enough companies

to push the technology through the standardization process and

(ii) it ensures to a large extent multiple interoperable products

on the market.

To the best of our knowledge, no communication standard

exploits CI, and there is no ongoing standardization activity

that proposes it.

X. RESEARCH DIRECTIONS

According to the summary from the previous section, it

is clear that CI has two main issues – on security and

on reliability – for meeting the industrial requirements. CI

simply does not provide a complete solution to be adopted

by industrial standards. However, it could be a solution in

the future if it becomes part of a standardized protocol.

Time Synchronized Channel Hopping (TSCH), as a technique

adopted by multiple industrial standards, could be a target

protocol for standardization of CI.

In this section, we first introduced the TSCH protocol and

its related challenges. Second, we provide a discussion on

research directions to integrate CI with TSCH and possibly

solve the challenges exposed.

A. Time Synchronized Channel Hopping

For a wireless low-power industrial network, the standard

leading the market today is WirelessHART, a wireless exten-

sion of the HART standard. First published in 2008, Wire-

lessHART is now ubiquitous in the industrial space. The core

technology of WirelessHART is TSCH, a low-power wireless

medium access technique which combines synchronization to

achieve ultra-low power consumption and channel hopping to

achieve wire-like reliability.

In 2016, TSCH has become standardized as part of the

IEEE802.15.4 standard. 6TiSCH, a standardization working

group at the IETF, was created to combine IEEE802.15.4

TSCH with IPv6. Today, pre-6TiSCH products, such as Analog

Devices’ SmartMesh product lines, are on the market with the

following key performance indicators [8]:

• wire-like end-to-end reliability over 99.999%

• < 50 µA average power consumption at 3.6 V, yielding

over a decade of battery lifetime

• certified security

Tens of thousands of TSCH networks are operating today.

One vendor alone, Emerson13, announced at the time of

writing over 35,400 networks deployed, with an accumulated

mote operation time of over 10,616,346,164 hours14.

TSCH has also become an important research topic. An in-

dication of this is that the 3 leading open-source IoT stack im-

plementations (OpenWSN, Contiki, RIOT) now use 6TiSCH at

the core of their protocol stack. A largely unanswered question

which is actively investigated is whether latency can be pre-

dicted in TSCH networks, which is essential for using TSCH

networks in control applications. Early demonstrations showed

a 6TiSCH network used to control an inverted pendulum [54].

B. Integrate CI with TSCH

Based on the discussion in Sec IX, CI will not replace

established solutions such as TSCH, as it covers only a very

small subset of the capabilities of TSCH. We do believe,

however, that there is a benefit in having a system for

transporting/flooding alarm messages across a network fast.

We also believe CI offers a performance trade-off between

the amount of data, latency and power consumption which

TSCH does not attain.

We, therefore, state that there is a benefit in adding CI

capabilities to TSCH. This could be done by (i) dedicated

13 www.emerson.com
14 http://www.emerson.com/en-us/expertise/automation/

industrial-internet-things/pervasive-sensing-solutions/wireless-technology

www.emerson.com
http://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
http://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
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TSCH cells to CI communications and (ii) adding a link-layer

acknowledgment to CI, in a way similar to [17]. CI would

benefit from the security solution being developed for example

in the IETF 6TiSCH working group. CI could appear as an

additional service offered by a TSCH network.

XI. CONCLUSION

This article starts by introducing the Constructive Interfer-

ence (CI) technique and presents the state-of-the-art in this

vibrant research topic. This tutorial covers related work which

spans 10 years and is presented in a chronological order to

highlight the progression of the technology.

It then provides a comprehensive hands-on tutorial about

CI. The Flashflood implementation is the example presented

and published as open-source as an online addition to this

article. All low-level subtleties (and complexities) related to

implementing CI are explained, including event-based pro-

gramming, frame formats, autoAck configuration, Timer us-

age, DCO calibration, channel hopping strategy and low power

duty cycling setting.

This article concludes with a discussion about the usefulness

of CI for Industrial IoT applications. Its relevance is very small

today. And although CI does not provide functionalities for the

IIoT solutions, as TSCH does, CI has sufficient potential for

justifying the effort of combining it with TSCH.
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ACRONYMS

Follow is the acronyms used in this paper and ordered by

the subsequence they appear in the paper.
CI Constructive Interference

LR-WPAN Low-Rate Wireless Personal Area Networks

TSCH Time slotted Channel Hopping

IIoT Industrial Internet of Thing

ISM Industrial, Scientific and Medical

TDMA Time Division Multiple Access

FDMA Frequency Division Multiple Access

CDMA Coding Devision Multiple Access

MAC Media Access Control

O-QPSK Offset Quadrature Phase-shift Keying

HDD Hard Decision Decoding

SDD Soft Decision Decoding

MSK Minimum Shift keying

DSSS Discrete Sequence Spread Spectrum

SFD Start of Frame delimiter

MPDU MAC protocol Data Unit

PDR Packet Delivery Ratio

SINR Signal to Interference plus Noise Ratio

DoS Denial of Service

DSN Data Sequence Number

DCO Digitally Controlled Oscillator
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