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ABSTRACT.We propose a non-standard interpretation of Alternating-time Temporal Logic with
imperfect information, for which no commonly accepted semantics has been proposed yet.
Rather than changing the semantic structures, we generalize the usual interpretation of for-
mulae insinglestates tosetsof states. We also propose a new epistemic operator for “practi-
cal” or “constructive” knowledge, and we show that the new logic (which we call Constructive
Strategic Logic) is strictly more expressive than most existing solutions, while it retains the same
model checking complexity. Finally, we study properties ofconstructive knowledge and other
operators in this non-standard semantics.

KEYWORDS:Alternating-time Temporal Logic, strategic ability, imperfect information, epistemic
logic.

1. Introduction

Modal logics of strategic ability (Alur, Henzinger et Kupferman 1997, Alur, Hen-
zinger et Kupferman 2002, Pauly 2000, Pauly 2002) form one ofthe fields where logic
and game theory can successfully meet. The logics have clearpossible worlds seman-
tics, are axiomatizable, and have some interesting computational properties. More-
over, they are underpinned by a clear and intuitively appealing conceptual machinery
for modeling and reasoning about systems that involve multiple autonomous agents.
The basic notions, used here, originate from temporal logic(i.e., the logic of time
and computation) (Prior 1967, Emerson 1990, Fisher 2006), and classical game the-
ory (von Neumann et Morgenstern 1944, Nash 1950, Osborne et Rubinstein 1994)
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which emerged in an attempt to give precise meaning to common-sense notions like
choices, strategies, or rationality – and to provide formalmodels of interaction be-
tween autonomous entities. Modal logics that embody basic game theory notions –
and at the same time build upon branching-time temporal logics, well known and
studied in the context of computational systems – seem a goodstarting point for in-
vestigating multi-agent systems.

Alternating-time Temporal Logic (ATL ), proposed in (Aluret al.1997) and further
developed in (Alur, Henzinger et Kupferman 1998, Aluret al. 2002), is probably the
most important logic of strategic ability that has emerged in recent years. The key
elements ofATL are so calledcooperation modalities〈〈A〉〉, one for each possible set
of agentsA. Informally, the meaning of〈〈A〉〉ϕ is that the groupA has a joint strategy
to ensure that, no matter what the other agents do,ϕ will become true. However,
ATL considers only agents that possess perfect information about the current state
of the world, and such agents seldom exist in reality. On the other hand, imperfect
information and knowledge are addressed in epistemic logicin a natural way (Halpern
1995). A combination ofATL and epistemic logic, calledAlternating-time Temporal
Epistemic Logic(ATEL), was introduced in (van der Hoek et Wooldridge 2002, van der
Hoek et Wooldridge 2003) to enable reasoning about agents acting under imperfect
information. Still, it has been pointed out in several places (Jamroga 2003, Jamroga et
van der Hoek 2004, Jonker 2003, Ågotnes 2004) that the meaning of ATEL formulae
can be counterintuitive. Most importantly, an agent’s ability to achieve propertyϕ
should imply that the agent has enough control and knowledgeto identifyandexecute
a strategy that enforcesϕ.

EXAMPLE 1. — Let us consider a variant of the example from (Schobbens 2004).
There is a bankerb (who knows the code that opens the safe), and a robberr who does
not know the code. The banker can also change the code, and he does so from time
to time. If a person is in the vault, and types the code correctly, the safe opens. If
incorrect code is typed, the vault door closes, jailing the person inside.

Intuitively, there is no feasible plan forr to quickly open the safe whenever he
wants to (unless he threatens or corrupts the banker to reveal the code). Reason: what-
ever the current code is, the vault looks the same tor, and a sensible plan should
specify the same choices in indistinguishable situations (otherwise the plan cannot be
executed). On the other hand, thereis a behavior specification (formally: a function
from states to actions) that allowsr to rob the bank, and it reads as follows: “if you are
outside then enter the vault; if you are inside and the code is00000 then type00000;
if the code is00001 then type00001 etc.”. Clearly, not every specification like this
makes up a strategy that can be executed by the player. Those that do are sometimes
calleduniform strategies, and are required to prescribe the same choices in indistin-
guishable states.1 Unfortunately,ATEL accepts all functions from states to actions as

1. This very much in agreement with game-theoretical treatment of games with imperfect infor-
mation. A strategy in such games is a function frominformation sets(i.e., sets of indistinguish-
able states) to actions.



Constructive knowledge 425

a strategies, which does not blend well with the assumption that agents’ knowledge is
limited.

It should be noted that it is not always enough to restrict strategies to uniform ones.
Consider a situation whenb has set the code to23087 and gone for lunch (so he will
not change it again for a while), andr is now standing in front of the safe. Obviously,
there is a uniform strategy forr that leads to opening the safe, namely: “type23087,
regardless of anything”. The robber even knows that such a successful strategy exists.
On the other hand, he does not know which strategy it is (because he does not know
what the current state is), and thus he does not have the ability to open the safe for
sure. �

Reasoning about the collective abilities of teams requireseven more sophisticated
concepts.

EXAMPLE 2. — Suppose that, instead of a single robberr, a gang of robbers
r1, ..., rn is operating. If they can discuss their plans before acting,they can share their
individual information about the current state of affairs in order to determine the best
strategy (which seems to somehow be related to the notion ofdistributed knowledge
from epistemic logic). If they have to coordinate on the fly, without communicating,
then it is desirable that they all can separately identify the same winning strategy, and
they all know that the others can identify this strategy, andthey all know that they
all know etc. (which looks very much likecommon knowledge). Thus, there seems
to be no single notion of collective knowledge that suffices for all possible scenarios
involving collective strategic ability. �

EXAMPLE 3. — Let us also consider an industrial company that wants to start pro-
duction, and looks for a good strategy when and how it should do it. Such a strategy
is feasible if it can be carried out by the company (i.e., by its management and em-
ployees). However, it does not have to bepreparedby members of the company
themselves. In many cases, a consulting firm is hired to work out the best plan. Then,
it is enough that members of the consulting firm can work out a good strategy which
can be executed by the management and employees of the industrial company. �

A number of logics were proposed to capture these, and similar, properties (Jam-
roga 2003, Jamrogaet al.2004, Schobbens 2004, Jonker 2003, van Otterloo et Jonker
2004, Herzig et Troquard 2006), yet none of them seems the ultimate definitive so-
lution. Most of the solutions agree that only uniform strategies should be taken into
account (cf.Example 1). However, in order to identify a successful strategy, the agents
must consider not only the possible courses of action starting from the current (actual)
state of the system, but also from states that the agents cannot distinguish from the
current one. There are many variants here, especially when group epistemics is con-
cerned, as Examples 2 and 3 demonstrate. The agents may have common, mutual,
or distributed knowledge2 about a strategy being successful, or they may be hinted
the right strategy by a distinguished member (the “boss”), asubgroup (“headquarters

2. See Section 2.2 for precise definitions.
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committee”) or even another group of agents (“consulting company”) etc. In other
words, there are many subtle cases in which the (subjectively possible) initial situa-
tions should be represented with different sets of states. Some existing solutions treat
only some of the cases (albeit often in an elegant way), whilethe others offer a very
general treatment of the problem at the expense of an overblown logical language
(which is by no means elegant).Our aim is to come up with a logic of ability under
imperfect information, which is both general and elegant.By “general”, we mean that
it allows to characterize as many meaningful levels of strategic ability as possible (and
at least as many asATOL (Jamrogaet al. 2004)). In particular, it should enable the
distinction between various readings of knowing a strategy“de re” and “de dicto” for
individual as well as collective players. By “elegant”, we mean that it allows us to
express various levels of ability bycompositionof epistemic operators with strategic
operators, instead of assigning a specialized modality to every conceivable combina-
tion.

To achieve this, we build our proposal around new epistemic operators for what
we call “practical” or “constructive” knowledge. The idea has been inspired by the
tradition of constructivismwhich argues that one must find (or “construct”) a math-
ematical object to prove that it exists (Troelstra 1991). Inthe same spirit, agentsA
constructively knowthat 〈〈B〉〉ϕ if they can present a strategy forB that guarantees
achievingϕ. The logic which we propose in this paper has a fairly non-standard se-
mantic interpretation. We use the same semantic structuresthat were used before for
ATEL, ATOL, ATL ir etc.; however, in our semantics formulae are interpreted oversets
of statesrather than single states. This reflects the intuition that the “constructive”
ability to enforceϕmeans that the agents in question have a single strategy thatbrings
aboutϕ for all subjectively possible initial situations – and not merely that a success-
ful strategy exists foreachinitial situation (because those could be different strategies
for different situations). To do it in a flexible and general way, the type of satisfac-
tion relation in our proposal forces one to specify the set ofinitial states explicitly. In
consequence, we writeM,Q |= 〈〈A〉〉ϕ to express the fact thatA must have a strategy
which is successful for all states in a set of statesQ.

Semantically, the constructive knowledge operators yieldsets of states for which
a single evidence (i.e., a successful strategy) should be presented (instead of checking
if the required property holds in each of the states separately, like standard epistemic
operators do). For example,M, q |= Ka〈〈a〉〉ϕ holds iff 〈〈a〉〉ϕ is satisfied byM,Q,
whereQ is the set of states which agenta cannot distinguish fromq. We point out
that the new operators capture the notion of knowing “de re”,while the standard epis-
temic operators refer to knowing “de dicto”. We call the resulting logic Constructive
Strategic Logic(CSL) to emphasize that, in order to proveM,Q |= ϕ true, one must
produce “constructive” evidence for all possible cases inQ, rather than “circumstan-
tial” evidence that deals with every caseq ∈ Q separately.

We begin with a short presentation of Alternating-time Temporal Logic and the
attempts that have been made to extendATL to scenarios with imperfect information
(Section 2). In Section 3 we present the main contribution ofthis paper: a new, non-
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standard semantics for the logic of strategic ability, imperfect information and knowl-
edge. We show that it is strictly more expressive than the existing solutions, with
the possible exception ofETSL (Section 4), while it retains the same model checking
complexity (Section 5). Then, in Section 6, we study the properties of constructive
knowledge itself. It turns out that, when “standard” knowledge is assumed to be S5,
constructive knowledge is KD45. Moreover, a simple syntactical restriction is suffi-
cient to guarantee validity of axiom T for constructive knowledge. In Section 7 we
show that standard knowledge is definable from constructiveknowledge. We also
observe that, when we allow a formula to be interpreted in a set of states, several
definitions of negation (corresponding to different ways ofquantifying over the set)
are possible. We introduce and discuss such alternative negations and related opera-
tors. Finally, in Section 8 we investigate the relative expressiveness of some of these
operators in detail, and we define a normal form for formulae of our language.

Some preliminary results of this research have been reported in (Jamroga et
Ågotnes 2005b, Jamroga et Ågotnes 2006b).

2. What agents can achieve

Alternating-time Temporal LogicATL (Alur et al. 1997, Aluret al. 1998, Aluret
al. 2002) was introduced by Alur, Henzinger and Kupferman in order to capture prop-
erties ofopen computational systems(such as computer networks), where different
components can act autonomously. Computations in such systems are effected by the
components’ combined actions. Alternatively,ATL can be seen as a logic for systems
involving multiple agents, that allows one to reason about what agents can achieve in
game-like scenarios. AsATL does not include imperfect information in its scope, it can
be seen as a logic for reasoning about agents who always have complete knowledge
about the current state of affairs.

2.1. ATL: ability in perfect information games

ATL can be understood as a generalization of the branching time temporal logic
CTL (Clarke et Emerson 1981, Emerson 1990), in which path quantifiers are replaced
with so calledcooperation modalities. The formula〈〈A〉〉ϕ, whereA is a coalition
of agents, expresses thatA have a collective strategy to enforceϕ. ATL formulae
include temporal operators: “g” (“in the next state”),� (“always from now on”) and
U (“until”). Operator♦ (“now or sometime in the future”) can be defined as♦ϕ ≡
⊤U ϕ. Similarly to CTL, every occurrence of a temporal operator is immediately
preceded by exactly one cooperation modality.3 The broader language ofATL∗, in
which no such restriction is imposed, is not discussed in this paper.

3. The logic to which such a syntactic restriction applies issometimes called“vanilla” ATL

(resp. “vanilla”CTL etc.).
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Formally, the recursive definition ofATL formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ

whereA is a set of agents.

ExampleATL properties are:〈〈jamesbond〉〉♦win (James Bond has an infallible
plan to eventually win), and〈〈jamesbond, bondsgirl〉〉funU shot-at (Bond and his
current girlfriend have a collective way of having fun untilsomeone shoots at them).

A number of semantics have been defined forATL , most of them equiva-
lent (Goranko 2001, Goranko et Jamroga 2004). In this paper,we use a vari-
ant of concurrent game structures(CGSs) as models. ACGS is a tupleM =
〈Agt, St,Π, π, Act, d, o〉 which includes a nonempty finite set of all agentsAgt =
{1, ..., k}, a nonempty set of statesSt, a set of atomic propositionsΠ, a valua-
tion of propositionsπ : St → P(Π), and a set of (atomic) actionsAct. Function
d : Agt × St → (P(Act) \ ∅) defines nonempty sets of actions available to agents
at each state, ando is a (deterministic) transition function that assigns the outcome
stateq′ = o(q, α1, . . . , αk) to stateq and a tuple of actions〈α1, . . . , αk〉, αi ∈ d(i, q),
that can be executed byAgt in q. A strategysa of agenta is a conditional plan that
specifies whata is going to do for every possible situation:sa : St → Act such
that sa(q) ∈ d(a, q). A collective strategySA for a group of agentsA is a tuple of
strategies, one per agent fromA.

REMARK 4. — This is a deviation from the original semantics ofATL (Alur et al.
1997, Aluret al.1998, Aluret al.2002), where strategies assign agents’ choices tose-
quencesof states, which suggests that agents can by definition recall the whole history
of each game. Both types of strategies yield equivalent semantics for “vanilla” ATL ,
but the choice of one or the other notion of strategy does affect the semantics of the full
ATL * and mostATL variants for games with imperfect information (Schobbens 2004).
The main reason why we use “memoryless” strategies here is that model checking
strategic abilities of agents with perfect recall and imperfect information is believed to
be undecidable (cf. Section 2.10). �

A pathΛ in modelM is an infinite sequence of states that can be effected by subse-
quent transitions, and refers to a possible course of action(or a possible computation)
that may occur in the system; byΛ[i], we denote theith position on pathΛ. Function
out(q, SA) returns the set of all paths that may result from agentsA executing strategy
SA from stateq onward:

out(q, SA) = {λ = q0q1q2... | q0 = q and for everyi = 1, 2, ... there exists a tuple
of agents’ decisions〈α1, ..., αk〉 such thatαa = SA(a)(qi−1) for eacha ∈ A,
andαa ∈ d(a, qi−1) for eacha /∈ A, ando(qi−1, α1, ..., αk) = qi}.

Informally speaking,M, q |= 〈〈A〉〉ϕ iff there is a collective strategySA such that
ϕ holds for everyΛ ∈ out(q, SA). Formally, the semantics ofATL formulae can be
given via the following clauses:
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M, q |= p iff p ∈ π(q) (for p ∈ Π);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ andM, q |= ψ;

M, q |= 〈〈A〉〉 gϕ iff there is a collective strategySA such that, for everyΛ ∈
out(q, SA), we haveM,Λ[1] |= ϕ;

M, q |= 〈〈A〉〉�ϕ iff there existsSA such that, for everyΛ ∈ out(q, SA), we have
M,Λ[i] for everyi ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there existsSA such that for everyΛ ∈ out(q, SA) there is
ani ≥ 0, for whichM,Λ[i] |= ψ, andM,Λ[j] |= ϕ for every0 ≤ j < i.
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q1 q2

nop,nop

set0,nop

nop,type0
nop,type1

nop,type1

nop,type0

jail

set1,nop

nop,nop

(A) q0

open

a

nop,nop

set0,nop

nop,type0

nop,type1

jail

set1,nop

nop,nop

(B)

q3 q4

q1 q2

nop,type1

nop,type0

Figure 1. The banker and the robber: (A) concurrent game structureM1 for the per-
fect information case; (B) concurrent epistemic game structureM2 for the imperfect
information case

EXAMPLE 5. — Consider a simple formalization of the scenario from Example 1,
presented in Figure 1A. First, the banker sets the code to either 0 or 1, and walks
away. Then, the robber tries to open the safe by typing a number. If the number
is correct, the safe opens; otherwise the robber is jailed inthe vault. Nodes in the
graph represent global states of the system. Transitions are labeled by combinations
of actions fromb, r, andnop stands for “no operation” or “do nothing” (formally,nop
is just another action).

ATL addresses agents with perfect information, so the following naturally holds:
M1, q0 |= 〈〈r〉〉♦open. The right strategy for the robber is to wait first to see which
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code is set, and then to type the appropriate number:sr(q0) = nop, sr(q1) = type0,
andsr(q2) = type1. �

REMARK 6. — Concurrent game structures model actions as abstract atomic enti-
ties, with no underlying structure. This is not necessarilysatisfying for everyone’s
purposes. One may, e.g., want to define actions as state transformations that can occur
in the system, like in models of dynamic logic (Harel, Kozen et Tiuryn 2000);STIT

models assign actions/choices with even more complicated conceptual structure (Bel-
nap et Perloff 1988). We choose, after (Aluret al.2002, Schobbens 2004, Jamrogaet
al. 2004, Ågotnes 2006), to avoid the discussion on the nature ofactions, and make the
simplifying assumption that actions are identified by unique names. Note that this ap-
proach follows closely the tradition of game theory, and thedefinition of an extensive
game form in particular (Osborneet al.1994). �

One of the most appreciated features ofATL is its model checking complexity –
linear in the number of transitions in the model and the length of the formula. The
model checking problem is, given a formulaϕ and a modelM with a stateq, to decide
whetherM, q |= ϕ or not.

PROPOSITION7 (ALUR et al.2002). — TheATL model checking problem isPTIME-
complete, and can be done in timeO(ml), wherem is the number of transitions in the
model andl is the length of the formula.

Note that the complexity is measured, as usual, as a functionof the size of the
input. Thus, while infinite concurrent game structures makeperfect sense in general,
they cannot be subjects of model checking unless represented in a finite way.

REMARK 8. — The result in Proposition 7 does not seem so unambiguously opti-
mistic after a closer inspection,i.e., when we measure the size of models in the number
of states, actions and agents (Jamroga et Dix 2005a, Laroussinie, Markey et Oreiby
2006, Jamroga et Dix 2007), or when we represent systems withso called concurrent
programs (van der Hoek, Lomuscio et Wooldridge 2006). This remark is only meant
as a note of warning; such a detailed complexity analysis forthe logics of ability under
imperfect information (that are the main topic here) is beyond the scope of this paper.

�

2.2. ATL with epistemic logic

ATL is unrealistic in a sense: real-life agents seldom possess complete information
about the current state of the world. On the other hand, imperfect information and
knowledge are handled in epistemic logic in a natural way. A combination ofATL

and epistemic logic, calledAlternating-time Temporal Epistemic Logic(ATEL), was
introduced by van der Hoek and Wooldridge in (van der Hoeket al. 2002, van der
Hoeket al.2003) to enable reasoning about agents acting under imperfect information.

ATEL enriches the picture with an epistemic component, adding toATL operators
for representing agents’ knowledge:Kaϕ reads as “agenta knows thatϕ”. Additional
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operatorsEAϕ, CAϕ, andDAϕ, whereA is a set of agents, refer tomutual knowl-
edge(“everybody knows”),common knowledge, anddistributed knowledgeamong the
agents fromA. Thus,EAϕ means that every agent inA knows thatϕ holds, while
CAϕ means not only that the agents fromA know thatϕ, but they also know that they
know it, and that they know that they know that they know it, etc. The distributed
knowledge modalityDAϕ expresses that if the agents could share their individual
information they would be able to recognize thatϕ.

Models forATEL extend concurrent game structures with epistemic accessibility
relations∼1, ...,∼k⊆ Q × Q (one per agent) for modeling agents’ uncertainty.4 We
will call such modelsconcurrent epistemic game structures(CEGS) in the rest of the
paper. Agenta’s epistemic relation is meant to encodea’s inability to distinguish
between the (global) system states:q ∼a q′ means that, while the system is in stateq,
agenta cannot determine whether it is inq or q′. Then, the semantics ofKa is defined
as:

M, q |= Kaϕ iff M, q′ |= ϕ for everyq′ such thatq ∼a q′.

EXAMPLE 9. — Consider modelM2 from Figure 1B, with the epistemic link be-
tween statesq1 andq2 (we omit the reflexive indistinguishability links fromq0 to q0,
q1 to q1 etc. to make the figure easier to read). This time, the scenario is more real-
istic: the robber does not know the correct code. Thus, one cannot expect him to be
able to open the safe. Still, inATEL, we have thatM2, q0 |= 〈〈r〉〉♦open; the same
(non-uniform) strategy as in Example 5 can be used to demonstrate this. Moreover,
we have even thatM2, q0 |= Kr〈〈r〉〉♦open: using knowledge operators does not help,
because cooperation modalities are still underpinned by a notion of strategy that does
not agree with imperfect information of agents. This is a fundamental problem with
ATEL, which we discuss briefly in Section 2.3. �

Relations∼EA, ∼CA and∼DA , used to model group epistemics, are derived from the
individual relations of agents fromA. First,∼EA is the union of relations∼a, a ∈ A.
Next,∼CA is defined as the transitive closure of∼EA. Finally,∼DA is the intersection of
all the∼a, a ∈ A. The semantics of group knowledge can be defined as below (for
K = C,E,D):

M, q |= KAϕ iff M, q′ |= ϕ for everyq′ such thatq ∼K
A q

′.

Note thatKa ≡ C{a} ≡ E{a} ≡ D{a}, so individual knowledge operatorsKa are
actually redundant.

In order to explore the subtleties of collective play, we extend the model from Fig-
ure 1B slightly: the pattern is the same, but more complex properties can be demon-
strated.

4. The relations are assumed to be equivalences.
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Figure 2. Gambling Robots game. Nodes represent global states of the system; arrows
denote transitions, labeled with combinations of actions from all the agents. Dashed
lines indicate states that are indistinguishable for respective agents. Actions of the
environment agent are omitted from the picture to make it easier to read. As epistemic
relations are by definition reflexive, we omit reflexive epistemic links too

EXAMPLE 10 (GAMBLING ROBOTS). — Two robots (a andb) play a simple card
game. The deck consists of Ace, King and Queen (A,K,Q). Normally, it is assumed
thatA is the best card,K the second best, andQ the worst; so,A beatsK andQ, K
beatsQ, andQ beats no card. At the beginning of the game, the “environment” agent
deals a random card to both robots (actionsdealAK , dealAQ, . . . , dealQK), so that
each player can see his own card, but he does not know the card of the other player.
Then robota can choose to exchange his card for the one remaining in the deck (action
exch), or he can keep the current one (keep). At the same time, robotb can change the
priorities of the cards to a Rochambeau-like game (that is,A still beatsK andK beats
Q, butQ becomes better thanA), or he can do nothing (nop), i.e. leave the priorities
unchanged. Ifa has a better card thanb after that, then a win is scored, otherwise the
game ends in a “losing” state.

A CEGS for the game is shown in Figure 2; we will refer to the model asM3

throughout the rest of the paper. Stateq0 represents the situation before, and states
qAK , . . . , qQK after the cards have been dealt (eachqc1c2 stands for the situation when
a has got cardc1, andb has got cardc2). Actions of the environment are omitted from
the figure for the sake of readability. Similarly to the previous example,M3, q0 |=
〈〈a, b〉〉♦win (and evenM3, q0 |= C{a,b}〈〈a, b〉〉♦win), but there is nouniformstrategy
to achieve this: in order to win,a mustexchangehis card in stateqQK , so he must
exchangehis card inqQA too (if we require uniformity), and playingexch in qQA
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leads to the losing state. So, again, we have〈〈a, b〉〉♦win, although intuitively{a, b}
have no feasible way of ensuring a win. �

2.3. Problems with ATEL

It has been pointed out in several places that the meaning ofATEL formulae can be
counterintuitive (Jamroga 2003, Jamrogaet al.2004, Jonker 2003). Most importantly,
one would expect that an agent’s ability to achieve propertyϕ should imply that the
agent has enough control and knowledge toidentify andexecutea strategy that en-
forcesϕ (cf. also (Schobbens 2004)). ATEL adds toATL the vocabulary of epistemic
logic; still, in ATEL the strategic and epistemic layers are combined as if they were in-
dependent. They should be – if we do not ask whether the agentsin question are able
to identify and execute their strategies. They should not ifwe want to interpret strate-
gies asexecutable plans, about which the agentsknowthat they guarantee achieving
the goal.

First of all, executable plans should not specify differentactions in indistinguish-
able states. Most (if not all) current approaches to strategic ability under imperfect
information (Jamrogaet al. 2004, Schobbens 2004, Jonker 2003, van Otterlooet al.
2004, Herziget al.2006), agree with the postulate from (Jamroga 2003) that only uni-
formstrategies should be considered in the semantics of〈〈A〉〉. Formally, strategysa is
uniformiff q ∼a q′ implies thatsa(q) = sa(q

′); a collective strategySA is uniform iff
it consists of only uniform individual strategies. In otherwords, agents make choices
with respect to theirlocal (epistemic) states rather than global states of the system.
Agents are assumed to know their available actions (i.e., the choices open to them), so
they must have the same choices in indistinguishable states. That is, from now on we
consider only models in whichq ∼a q′ impliesd(a, q) = d(a, q′).

Second, it was suggested in (Jamrogaet al.2004) that, when reasoning about what
an agent canenforce, it seems more appropriate to require the agent toknow his win-
ning strategyrather than to know onlythat such a strategy exists. This problem is
closely related to the distinction between knowledgede reand knowledgede dicto,
well known in the philosophy of language (Quine 1956), as well as research on the in-
teraction between knowledge and action (Moore 1985, Morgenstern 1991, Wooldridge
2000). One can naturally distinguish at least four different levels of strategic ability
(cf. (Jamrogaet al.2004)):

1) Agenta has a strategy“de re” to enforceϕ, i.e., he has an executable winning
strategy and knows the strategy (he “knows how to play”);

2) Agenta has a strategy“de dicto” to enforceϕ (i.e., he knows only thatsome
executable winning strategy is available);

3) Agenta has an executable strategy to enforceϕ (but not necessarily even knows
about it);



434 Journal of Applied Non-Classical Logics. Volume 17 – No.4/2007

4) Agenta mayhappento behave in such a way thatϕ is enforced. However, the
behavior can have no executable specification (i.e., there might be no uniform strategy
that describes it).

Obviously, (1)⇒ (2) ⇒ (3) ⇒ (4), but not the other way around. We do think
that all of these concepts can be useful for reasoning about strategic ability under
imperfect information. However, we believe that (1) is particularly important and
natural. Unfortunately,ATEL enables to express only ability of type (4), as Example 9
showed. Several variations on “ATL with imperfect information” have been proposed
as alternatives, yet none of them seems the ultimate definitive solution. We summarize
the most important proposals in the following sections.

2.4. First try: ATEL with uniform strategies

The first attempt to cope with these problems was presented in(Jamroga 2003),
where it was proposed that only uniform strategies should beused in the semantics
of cooperation modalities. “UniformATEL” ( U-ATEL) captures ability of type (2) and
(3): 〈〈a〉〉ϕ says thata has a uniform strategy to achieveϕ, andKa〈〈a〉〉ϕ denotes
having a strategy “de dicto”. However,knowing how to playstill cannot be expressed.

EXAMPLE 11. — Consider modelM2 from Figure 1B, and assume thatq1 is the
current state. The robber does have a uniform strategy to open the safe in one step
(play type0at q1 andq2, andnopelsewhere), and indeedM2, q1 |= 〈〈r〉〉 gopen. He
also knows that such a strategy is available, and we haveM2, q1 |= Kr〈〈r〉〉 gopen (in
every stateq such thatq1 ∼r q,M, q |= 〈〈r〉〉 gopen). Still, the robber does not know
how to play inq1 to achieveopen, and this property has noU-ATEL counterpart. Note
also thatM2, q0 |= ¬〈〈r〉〉♦open∧〈〈∅〉〉 g〈〈r〉〉♦open, andM2, q0 |= ¬Kr〈〈r〉〉♦open∧
Kr〈〈∅〉〉 gKr〈〈r〉〉♦open (the robber has no strategy to open the safe inq0, but he can
simply wait a moment, and he will magically get one), which suggests that one should
be careful when talking about abilities of type (2) and (3).

Likewise, for the gambling robots we haveM3, q0 |= ¬〈〈a〉〉♦win, and even
M3, q0 |= ¬〈〈a, b〉〉♦win (see Section 2.2). On the other hand,M3, qAK |= 〈〈a〉〉♦win∧
Ka〈〈a〉〉♦win. �

2.5. Aggregating initial states: “feasible ATEL”

“FeasibleATEL” (Jonker 2003), which we will sometimes callF-ATEL, is an up-
date ofATEL, in which the “perfect information” cooperation modalities are kept, but
the language is extended with new modalities:〈〈A〉〉f , 〈〈A〉〉fE , 〈〈A〉〉fC , 〈〈A〉〉fKa

and

〈〈A〉〉fMa
, that represent agents’ ability to find a suitable uniform strategy, with the

semantics summarized below:
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M, q |= 〈〈A〉〉f gϕ iff there is a uniform collective strategySA such that, for every
Λ ∈ out(q, SA), we haveM,Λ[1] |= ϕ.
For 〈〈A〉〉f�ϕ and〈〈A〉〉fϕU ψ: analogously;

M, q |= 〈〈A〉〉fE
gϕ iff there is a uniform collective strategySA such that, for every

q′ such thatq ∼EA q′, and for everyΛ ∈ out(q′, SA), we haveM,Λ[1] |= ϕ.
For 〈〈A〉〉fE�ϕ and〈〈A〉〉fEϕU ψ: analogously;

M, q |= 〈〈A〉〉fC
gϕ iff there is a uniform collective strategySA such that, for every

q′ such thatq ∼CA q
′, and for everyΛ ∈ out(q′, SA), we haveM,Λ[1] |= ϕ.

For 〈〈A〉〉fC�ϕ and〈〈A〉〉fCϕU ψ: analogously;

M, q |= 〈〈A〉〉fKa

gϕ iff there is a uniform collective strategySA such that, for
everyq′ such thatq ∼a q′, and everyΛ ∈ out(q′, SA), we haveM,Λ[1] |= ϕ.
For 〈〈A〉〉fKa

�ϕ and〈〈A〉〉fKa
ϕU ψ: analogously;

M, q |= 〈〈A〉〉fMa

gϕ iff there is a uniform collective strategySA and stateq′ with
q ∼a q′, such that, for everyΛ ∈ out(q′, SA), we haveM,Λ[1] |= ϕ.
For 〈〈A〉〉fMa

�ϕ and〈〈A〉〉fMa
ϕU ψ: analogously.

The idea of cooperation modalities with subscripts that indicate the epistemic “mode”,
in which coalitionA can identify their winning strategy, was further developedin the
logic of ATOL, which we present in Section 2.6.

We note that “UniformATEL” can be seen as a subset of “FeasibleATEL”, as the
meaning of〈〈A〉〉ϕ proposed in (Jamroga 2003) is, for agents playing memoryless
strategies, equivalent to〈〈A〉〉fϕ from (Jonker 2003).

2.6. Going for expressive power: ATOL

Alternating-time Temporal Observational Logic (ATOL), proposed in (Jamrogaet
al. 2004), follows the same perspective, but it offers a richer language of strategic
operators to express subtle differences between various kinds of collective abilities of
teams. In this paper, we use the notation proposed in (Jamroga et van der Hoek 2005c).
The informal meaning of〈〈A〉〉K(Γ)ϕ is: “groupA has a (memoryless uniform) strategy
to enforceϕ, and agentsΓ can identify the strategy as successful forA in the epistemic
senseK”. For instance,M, q |= 〈〈A〉〉D(Γ)ϕ iff there isSA such that, for everyq′ with
q ∼DΓ q′, and everyΛ ∈ out(q′, SA), we have thatϕ is true forΛ.

Formally, letK = E,C,D. The semantics of the enhanced cooperation modalities
can be defined as follows:

M, q |= 〈〈A〉〉K(Γ)
gϕ iff there is a collective memoryless uniform strategySA

such that, for everyq′ with q ∼K
Γ q′, and everyΛ ∈ out(q′, SA), we have that

M,λ[1] |= ϕ.
For 〈〈A〉〉K(Γ)�ϕ and〈〈A〉〉K(Γ)ϕU ψ: analogously.
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EXAMPLE 12. — Coming back to our gambling robots, it is easy to see that
M3, q0 |= ¬〈〈a〉〉K(a)♦win, because, for everya’s (uniform) strategy, if it guaran-
tees a win in e.g. stateqAK then it fails in qAQ (and similarly for other pairs of
indistinguishable states). Let us also observe thatM3, q0 |= ¬〈〈a, b〉〉E({a,b})♦win:
in order to win, a must exchangehis card in stateqQK , so he mustexchange
his card inqQA too (by uniformity), and playingexch in qQA leads to the los-
ing state. On the other hand,M3, qAQ |= 〈〈a, b〉〉E({a,b})

gwin (a winning strategy:
sa(qAK) = sa(qAQ) = sa(qKQ) = keep, sb(qAQ) = sb(qKQ) = sb(qAK) = nop;
qAK , qAQ, qQK are the states that must be considered bya and b in qAQ). Still,
M3, qAK |= ¬〈〈a, b〉〉E({a,b})

gwin.

ATOL allows us to express other ways of identifying a winning strategy too: we
have thatM3, qAK |= 〈〈a, b〉〉D({a,b})

gwin∧〈〈a, b〉〉K(a)
gwin (the robots can identify

the strategy if they share their views of the world; also,a can be the “boss” who points
out the strategy), andM3, qAQ |= ¬〈〈a, b〉〉C({a,b})

gwin (despite botha, b knowing
the winning strategy, they do not have common knowledge about it). �

ATOL is quite expressive. However, it does not allow for combination of strategic
ability andarbitrary epistemic modes – the operators〈〈A〉〉K(Γ) are fixed by taking
K ∈ {C,E,D}. For example,〈〈A〉〉EAEA

ϕ is not a well formedATOL formula –
although it is easy to give an interpretation of such a formula in a similar manner to the
otherATOL operators. Furthermore, the trebly parameterized cooperation modalities
are rather baroque.

2.7. Elegance and simplicity: ATLir

Schobbens (Schobbens 2004) approached the problem of combining strategies
with uncertainty on a more abstract level. He suggested thatit makes sense to talk
about agents with perfect as well as imperfect information on one hand, and perfect
vs. imperfect recall on the other – and that these two fundamental semantic choices
are orthogonal. This gives rise to four different logics of strategic ability:ATL IR (for
perfectInformation and perfectRecall, i.e. the originalATL ), ATL iR (for imperfect
information and perfectRecall), etc. As we focus on imperfect information and mem-
oryless strategies in this paper, the logic ofATL ir is most interesting for us.

Informally,〈〈A〉〉irϕ holds inM, q iff there is a uniform collective strategySA such
that, for every agenta ∈ A, stateq′ with q ∼a q′, and pathΛ ∈ out(q′, SA), we have
thatϕ is true forΛ. In other words, there is a strategy such thateverybody inA knows
that executing this strategy will bring aboutϕ. Formally:

M, q |= 〈〈A〉〉ir gϕ iff there is a uniform collective strategySA such that, for every
a ∈ A, q′ such thatq ∼EA q′, and pathΛ ∈ out(SA, q

′), we haveM,λ[1] |= ϕ.
For 〈〈A〉〉ir�ϕ and〈〈A〉〉irϕU ψ: analogously.
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EXAMPLE 13. — For our gambling robots, we get e.g. that:M3, q0 |=
¬〈〈a〉〉ir♦win,M3, q0 |= ¬〈〈a, b〉〉ir♦win,M3, qAQ |= 〈〈a, b〉〉ir gwin, andM3, qAK |=
¬〈〈a, b〉〉ir gwin. �

Note that〈〈A〉〉irΦ is equivalent to the “FeasibleATEL” formula 〈〈A〉〉fEΦ, and the
ATOL formula〈〈A〉〉E(A)Φ. Moreover, it is not possible to express inATL ir thatA have
common knowledge about the successful strategy, or that they are able to identify it
if they share their information etc. On the other hand,ATL ir stands out among the
existing proposals for its simplicity and conceptual clarity, and can be treated as the
“core”, minimalATL -based language for ability under imperfect information.

The following proposition sums up some of the results presented in (Schobbens
2004, Jamroga et Dix 2006a, Jamrogaet al.2004):

PROPOSITION14. —Model checking “FeasibleATEL”, ATL ir and ATOL is ∆
P

2
-

complete in the number of transitions (and epistemic links)in the model, and the length
of the formula.

In Section 3, we will propose Constructive Strategic Logic (CSL) which strictly
subsumesATOL, while sharing (in our opinion) the elegance ofATL ir, and model
checking complexity of all of the approaches discussed above. The main idea behind
CSL is that we would like to express various levels of ability with combinations of
somekind of epistemic operators withsomekind of cooperation modalities. Before
we present our proposal, we want to mention two logics that, to a limited extent, have
achieved a similar trait. The logics are briefly presented inSections 2.8 and 2.9.

2.8. Abilities of rational players: ETSL

Epistemic Temporal Strategic Logic (van Otterlooet al. 2004) digs deeper in the
repository of game theory, and focuses on the concept ofundominated strategies. Its
variant of the cooperation modalities has a different flavorthan the ones fromATL ,
ATEL, ATOL etc. In a way,〈〈A〉〉ϕ in ETSL can be summarized as: “ifA play rationally
to achieveϕ (meaning: they never play a dominated strategy), they will achieveϕ”.

ETSL is underpinned by several interesting concepts. Unfortunately, its original
semantics from (van Otterlooet al.2004) comes with a plethora of auxiliary functions
and definitions (and a couple of omissions), which make it rather hard to read. More-
over, the semantics is defined only forfinite turn-based acyclicgame models, and the
satisfaction relation refers not only to models and states (respectively paths), but also
to a fixed strategySAgt (assumed to represent the current strategies of all agents). It
has been shown in (Jamroga 2006), that the semantics can be extended to concurrent
epistemic game structures, and given in a more compact way. Moreover, for “vanilla”
ETSL formulae,5 it can be given via standard semantic clauses for state formulae.

5. I.e, formulae in which every temporal operator is preceded by exactly one cooperation modal-
ity.
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Let M be a CEGS. First, we define the notion of domination as fol-
lows. Let Φ ≡ gψ, �ψ, or ψ1 U ψ2, where ψ, ψ1, ψ2 are “vanilla” ETSL

formulae. Moreover, let|Φ| denote the set of paths for whichΦ holds; for-
mally, | gψ| = {Λ |M,Λ[1] |= ψ}, |�ψ| = {Λ | ∀iM,Λ[i] |= ψ}, and|ψ1 U ψ2| =
{Λ | ∃i(M,Λ[i] |= ψ2 ∧ ∀0≤j<iM,Λ[j] |= ψ1}. Then,strategySA dominates strat-
egyTA wrt. M, q, andΦ iff both of the following conditions hold:

1) for everyq′ with q ∼EA q
′: if out(q′, TA) ⊆ |Φ| then alsoout(q′, SA) ⊆ |Φ|;

2) there isq′ such thatq ∼EA q′, andout(q′, SA) ⊆ |Φ|, andout(q′, TA) 6⊆ |Φ|.

StrategySA is undominatedwrt. M, q,Φ iff there is no strategy that dominatesSA
wrt M, q,Φ.

Now the semantics of〈〈A〉〉 in ETSL can be expressed entirely in terms of models
and their states:

M, q |= 〈〈A〉〉 gϕ iff for every strategySA, undominated wrtM, q, gϕ, and every
Λ ∈ out(q, SA), we have thatM,Λ[1] |= ϕ.
For 〈〈A〉〉�ϕ and〈〈A〉〉ϕU ψ: analogously.

The relationship betweenETSL and Constructive Strategic Logic is briefly dis-
cussed in Section 4.4. We conjecture that neither of them subsumes the other, but
there are several interesting associations. The most interesting feature ofETSL is per-
haps the fact that, by combining standard epistemic operators and its non-standard
cooperation modalities, we can capture “knowing how to play” for individual agents
(although this does not extend to collective agents), see (Jamroga 2006) or Section 4.4
for more details.

2.9. Explicit actions: ATEL-A

In AT(E)L, it is not possible to refer directly to particular actions in the logical lan-
guage. For example, it is not possible to express the fact that “if agenti chooses action
α, then formulaϕ will necessarily be true in the next moment”. ATEL-A (Ågotnes
2006) allows such expressions by introducing names of actions, in addition to names
of agents, inside cooperation modalities. For instance, the above expression can be
written as〈〈αi〉〉 gϕ. This makes it possible to capture the levels of ability, discussed
in Section 2.3, in the limited case of properties that can be achieved in one step:

(4), (3) 〈〈i〉〉 gϕ: agenti may behave in such a way thatϕ is enforced next. Note that
there is no difference between (4) and (3) when we only talk about the next state
– then uniformity does not play any role;

(2) Ki〈〈i〉〉 gϕ: agenti has a strategy “de dicto” to enforceϕ next;

(1)
∨
α∈ActKi〈〈αi〉〉 gϕ: agenti has a strategy “de re” to enforceϕ next.
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Because of explicit actions,ATEL-A is not directly comparable to the logics con-
sidered in this paper, and we will not discussATEL-A further.

2.10. Other possibilities

In the original formulation ofATL , agents were assumed to have perfect recall of
the game, in the sense that they could base their decisions onsequencesof states rather
than on single states. Variants ofATL for perfect recall and imperfect information have
also been considered,cf.ATL iR (Schobbens 2004) andATEL-R* (Jamrogaet al.2004).
However, as agents seldom have unlimited memory, and logicsof strategic ability
with imperfect information and perfect recall are believedto have undecidable model
checking (Aluret al. 2002, Schobbens 2004), we do not investigate this variant of
ability here.

Yet another, very recent, proposal (Herziget al. 2006) approaches the problem
of strategic abilities under imperfect information withinthe framework ofSTIT (the
logic of seeing to it that). STIT shares many similarities withATL , but it comes from
a different tradition, and its technical formulation is markedly different from that of
ATL . Thus, in order to analyzeSTIT-based proposals in our new framework, one must
first establish the precise relationship between both frameworks,i.e., compare models,
semantics, expressive power, pragmatics (e.g., verification issues) etc. Several impor-
tant results in this respect have already been reported (Wölfl 2004, Broersen, Herzig
et Troquard 2006), but there is still much to be done.

3. Constructive strategic logic: a new semantics for ability and knowledge

ATOL covers more cases thanATL ir and “FeasibleATEL”, and it is not committed
to any notion of rationality (unlikeETSL). One major drawback ofATOL is that it vastly
increases the number of modal operators necessary to express properties of agents. For
teamA, a whole family of cooperation modalities〈〈A〉〉K(Γ) is used (instead of a single
modality〈〈A〉〉 in ATL ) to specify who should identify the right strategy forA, in what
way etc. It would be much more elegant to modify the semanticsof “simple” cooper-
ation modalities〈〈A〉〉 and/or epistemic operators, so that they can be composed into
sufficiently expressive formulae. The problem with strategic ability under uncertainty
is that, when analyzing consequences of their strategies, agents must consider also the
outcome paths starting from states other than the current state – namely, from all states
that look the sameas the current state. Thus, a property of a strategy being success-
ful with respect to goalϕ is not local to the current state;the samestrategy must be
successful in all “opening” states being considered. In order to capture this feature of
strategic ability under imperfect information, we change the type of the satisfaction
relation|=, and define what it means for a formulaϕ to be satisfied in a set of states
Q ⊆ St of modelM . To our best knowledge, nobody has used this kind of semantics
yet.
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Moreover, we extend the language ofATEL with unary “constructive knowledge”
operatorsKa, one for each agenta, that yield the set of states, indistinguishable from
the current state froma’s perspective. Constructive common, mutual, and distributed
knowledge are formalized via operatorsCA,EA, andDA.

3.1. Language and semantics

The language of Constructive Strategic Logic (CSL) includes atomic propositions,
Boolean connectives, strategic formulae, standard epistemic operators, andconstruc-
tive knowledge operatorsfor groups of agents (individual knowledge can be defined
as a special case of collective knowledge – see below):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |
CAϕ | EAϕ | DAϕ.

whereA is a set of agents.

REMARK 15. — As we will show in Section 7.2, standard knowledge can bedefined
as a special kind of constructive knowledge, and therefore the standard knowledge op-
erators donot have to be included in the language. However, rather than immediately
derivingCA, EA, DA from CA,EA,DA, we choose to give the semantic clauses for
all of them, and only later prove the relationship formally. �

Models are concurrent epistemic game structures again; that is, we interpret the
formulae ofCSL over exactly the same class of models which was used forATEL,
ATL ir, ATOL etc. To recapitulate, aCEGScan be defined as a tuple

M = 〈Agt, St,Π, π, Act, d, o,∼1, ...,∼k〉,

where:

– Agt = {1, ..., k} is a finite nonempty set of all agents,
– St is a nonempty set of states,
– Π is a set of atomic propositions,
– π : St→ P(Π) is a valuation of propositions,
– Act is a nonempty set of (atomic) actions;
– functiond : Agt×St→ P(Act) defines actions available to an agent in a state;

d(a, q) 6= ∅ for all a ∈ Agt, q ∈ St,
– o is a (deterministic) transition function that assigns an outcome state to each

combination of a state and a vector of actions (one action peragent). That is,
o(q, α1, . . . , αk) ∈ St for everyq ∈ St and〈α1, . . . , αk〉 ∈ d(1, q) × · · · × d(k, q);

– ∼1, ...,∼k⊆ St × St are epistemic accessibility relations, one per agent. It is
assumed that each∼a is an equivalence relation, and thatq ∼a q

′ impliesd(a, q) =
d(a, q′).

Again, a (memoryless) strategysa of agenta is a conditional plan represented
by function sa : St → Act such thatsa(q) ∈ d(a, q) for every q. A collective
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strategySA is a tuple of strategies, one per agent fromA. Strategysa is uniform
iff q ∼a q′ implies sa(q) = sa(q

′); a collective strategy is uniform iff it consists
of only uniform individual strategies. A pathΛ is an infinite sequence of states that
can be effected by subsequent transitions; byΛ[i], we denote theith position on path
Λ. Functionout(q, SA) returns the set of all paths that may result from agentsA
executing strategySA from stateq onward (see Section 2.1 for the precise definition).
Collective epistemic relations are defined as:∼DA=

⋂
a∈A ∼a, ∼EA=

⋃
a∈A ∼a; ∼CA

is defined as the transitive closure of∼EA.

Now we define the notion of a formulaϕ being satisfied by a (non-empty) set
of statesQ in a modelM , writtenM,Q |= ϕ. We will also writeM, q |= ϕ as a
shorthand forM, {q} |= ϕ. Note that it is the latter notion of satisfaction (in single
states) that we will ultimately be interested in – but that notion is defined in terms of
the (more general) satisfaction in sets of states. Letimg(q,R) be the image of stateq
with respect to binary relationR, i.e., the set of all statesq′ such thatqRq′. Moreover,
we useout(Q,SA) as a shorthand for

⋃
q∈Q out(q, SA), andimg(Q,R) as a short-

hand for
⋃
q∈Q img(q,R). The new semantics is given through the following clauses.

In the semantics of cooperation modalities, only memoryless uniform strategies are
considered.

M,Q |= p iff p ∈ π(q) for everyq ∈ Q;

M,Q |= ¬ϕ iff M,Q 6|= ϕ;

M,Q |= ϕ ∧ ψ iff M,Q |= ϕ andM,Q |= ψ;

M,Q |= 〈〈A〉〉 gϕ iff there existsSA such that, for everyΛ ∈ out(Q,SA), we
have thatM, {Λ[1]} |= ϕ;

M,Q |= 〈〈A〉〉�ϕ iff there existsSA such that, for everyΛ ∈ out(Q,SA) and
i ≥ 0, we haveM, {Λ[i]} |= ϕ;

M,Q |= 〈〈A〉〉ϕU ψ iff there existsSA such that, for everyΛ ∈ out(Q,SA), there
is ani ≥ 0 for whichM, {Λ[i]} |= ψ andM, {Λ[j]} |= ϕ for every0 ≤ j < i.

M,Q |= KAϕ iff M, q |= ϕ for everyq ∈ img(Q,∼K
A) (whereK = C,E,D).

M,Q |= K̂Aϕ iff M, img(Q,∼K
A) |= ϕ (whereK̂ = C,E,D andK = C,E,D,

respectively).

The satisfaction relation|= gives us both the traditional notion of satisfaction in
a state, and the more general notion of satisfaction in a set of states. As mentioned
above, we are usually interested in the former, but in order to interpret, e.g., an ex-
pression such asCA〈〈A〉〉 gp in a single state, we must interpret the subexpression
〈〈A〉〉 gp in a set of states.
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Formally, the language includes only operators for representing knowledge of
teams. However, individual knowledge operators can be defined in the usual man-
ner as:

Kaϕ ≡ C{a}ϕ, and

Kaϕ ≡ C{a}ϕ.

As a brief example, take the formulaϕ = Ka〈〈a〉〉 gψ wherea is an agent.
We have thatM, q |= ϕ iff there is a strategySa for a such that for everyΛ ∈
out(img(q,∼a), Sa), M,Λ[1] |= ψ; in other words iff there is an (executable) strat-
egy for a which is successfull (achievesψ in the next state) in all the states thata
considers to be possible. Or, in the terminology of Section 2.3, a knows a winning
strategy –a has a strategyde re(for achievingψ). We will discuss how the logic cap-
tures many subtly different properties of ability under imperfect information in more
detail in Section 4, after we have clarified a few additional fundamental issues.

We employ the usual definition of the “sometime” operator:

♦ϕ ≡ ⊤U ϕ

We will also use derived propositional connectives. However, the exact meaning of
these in the non-standard semantics must be carefully studied, and we will do that in
Section 3.2. TheCSL concept of validity is discussed in Section 3.3.

A note on notation: as above, we will henceforth useKA to denote an arbitrary
standard knowledge operator for agentsA (i.e., CA, EA or DA), and we usêKA to
denote the constructive knowledge operator correspondingto KA, i.e., ĈA = CA,
ÊA = EA andD̂A = DA. We useK,K′,K1,K2 etc. to denote arbitrary standard
knowledge operators for arbitrary sets of agents, and, again, K̂, K̂′, K̂1, K̂2 etc. to
denote the corresponding constructive modalities.

3.2. Additional operators

In addition to the derived operators introduced in Section 3.1, we use a slightly
unusual definition of the Boolean “false” and “true” constants:

⊥ ≡ 〈〈∅〉〉(p ∧ ¬p)U (p ∧ ¬p), wherep is an arbitrary primitive proposition,

⊤ ≡ 〈〈∅〉〉(¬⊥)U (¬⊥)
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and the usual definition of Boolean connectives6:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and

ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ2).

The above Boolean operators have the following semantic characterizations:

PROPOSITION16. —

1) M,Q 6|= ⊥ for all Q ⊆ St,Q 6= ∅.
2) M,Q |= ⊤ for all Q ⊆ St,Q 6= ∅.
3) M,Q |= ϕ1 ∨ ϕ2 iff M,Q |= ϕ1 or M,Q |= ϕ2.
4) M,Q |= ϕ1 → ϕ2 iff M,Q |= ϕ1 impliesM,Q |= ϕ2.
5) M,Q |= ϕ1 ↔ ϕ2 iff we have thatM,Q |= ϕ1 iff M,Q |= ϕ2.

PROOF. —

1) Suppose thatM,Q |= ⊥ for someQ 6= ∅. ThenM,Q |= 〈〈∅〉〉(p ∧ ¬p)U (p ∧
¬p), so for all pathsΛ starting from the states inQ we haveM,Λ[0] |= p ∧ ¬p. That
is, for all q ∈ Q: M, q |= p ∧ ¬p. AsQ is nonempty, there is at least one suchq. But
that means thatp ∈ π(q) andp /∈ π(q), which cannot be the case.

2) Analogous.
3) M,Q |= ϕ1 ∨ ϕ2 iff M,Q |= ¬(¬ϕ1 ∧ ¬ϕ2) iff M,Q 6|= ¬ϕ1 ∧ ¬ϕ2 iff

M,Q 6|= ¬ϕ1 orM,Q 6|= ¬ϕ2 iff M,Q |= ϕ1 orM,Q |= ϕ2.
4), 5) Straightforward from the above. �

To conclude the analysis of standard connectives in this (rather non-standard) set-
ting, we observe that the¬ operator behaves like classical negation: it obeys the law
of double negation, the law of excluded middle, and the consistency requirement in
every possible context:

PROPOSITION17. — We have the following for everyM andQ ⊆ St:

1) M,Q |= ¬¬ϕ↔ ϕ,
2) M,Q |= ϕ ∨ ¬ϕ,
3) M,Q |= ¬(ϕ ∧ ¬ϕ).

PROOF. — Straightforward from Proposition 16 and the semantic definition of¬. �

It should be noted that there are other possibilities for defining negation, disjunc-
tion and implication, corresponding to the different ways of quantifying over the set
Q. We discuss the issue in more detail in Section 7.

6. The reason why we use the above definitions of⊤ and⊥ instead of the more common ones:
⊥ ≡ p ∧ ¬p, ⊤ ≡ ¬⊥ is that in the restricted languageCSL−, discussed in Section 6.3,
certain formulae are disallowed, namely the ones in which negation (or a sequence of conjunc-
tions, followed by negation) follows a constructive knowledge operator. Defining the Boolean
constants the way we do, we make sure that no unraveling of⊤ or ⊥ will ever lead to such a
formula.
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3.3. Validity

We say that a formula isweakly valid(or simplyvalid) if it is satisfied individually
by each statein every model,i.e., if M, q |= ϕ for all modelsM and statesq in M . It
is strongly validif it is satisfied by all non-emptysetsin all models;i.e., if for eachM
and every non-empty set of statesQ it is the case thatM,Q |= ϕ. We are ultimately
interested in the former (see Remark 19 below). The importance of strong validity, on
the other hand, lies in the fact that strong validity ofϕ↔ ψ makesϕ andψ completely
interchangeable (cf. Proposition 20.2). It is not difficult to see that the same is not true
for weak validity.

PROPOSITION18. —

1) Strong validity implies validity.
2) Validity does not imply strong validity.

PROOF. — (1) Straightforward. (2) We here take the liberty to referforward to some
simple results we haven’t proven yet, because it is instructive to point out the distinc-
tion between weak and strong validity at this point. By Propositions 16.5 and 44, we
have that for anyM and set of statesQ,M,Q |= 〈〈∅〉〉ϕU ϕ↔ ϕ iff ( ∀q∈QM, q |= ϕ
iff M,Q |= ϕ). It follows immediately that〈〈∅〉〉ϕU ϕ↔ ϕ is (weakly) valid, for any
ϕ. It follows from Lemma 38.1 that there is aM and a set of statesQ and a formula
ϕ such thatM,Q 6|= ϕ but∀q∈QM, q |= ϕ; thus〈〈∅〉〉ϕU ϕ↔ ϕ is not strongly valid.

�

REMARK 19. — The termthe logicis sometimes understood as the set of all valid
formulae in the logic. In this sense, we definethe logic ofCSL as the set of all weakly
valid formulae ofCSL. In a similar way, we say that a formulaϕ is CSL-satisfiableif it
is weakly satisfiable inCSL, i.e., there is a modelM and a stateq such thatM, q |= ϕ.

�

Propositions 16.4 and 16.5 from Section 3.2 have two important consequences.
First, the rule of Modus Ponens is correct with respect to this semantics. Second, if
ϕ1 ↔ ϕ2 is strongly valid, then formulaeϕ1 andϕ1 are completely interchangeable
under strong (and hence also weak) validity.

PROPOSITION20. —

1) If ϕ1 → ϕ2 is strongly (resp. weakly) valid, andϕ1 is strongly (resp. weakly)
valid, thenϕ2 is strongly (resp. weakly) valid.

2) If ϕ1 ↔ ϕ2 is strongly valid, andψ′ is obtained fromψ through replacing an
occurrence ofϕ1 byϕ2, thenM,Q |= ψ iff M,Q |= ψ′.

PROOF. — Straightforward. �

4. Expressing agents’ strategic abilities

In the language of Constructive Strategic Logic, strategicproperties of coalitions
can be expressed in a flexible and elegant way. To support thisclaim, we first show that
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the philosophical discourse on various levels of knowledgeand ability, mentioned in
Section 2.3, has its formal counterpart inCSL formulae. Then, we present a translation
of ATL ir, ATOL and “FeasibleATEL” to CSL, and thus prove that the latter embeds the
former ones. We also discuss the relationship betweenETSL and CSL. To avoid
confusion, we will use the satisfaction sign with subscripts (|=

ATOL
, |=

CSL
, |=

ETSL
etc.),

indicating which semantics is currently referred to.

4.1. Capturing levels of strategic power

The reason why we need to interpret formulae over sets of states is that we need
non-standard epistemic operators:M, q |= Ka〈〈a〉〉ϕ expresses the fact thata has a
single strategy that enforcesϕ from all states indiscernible fromq, instead of stating
thatϕ can be achieved fromeverysuch stateseparately. Note that the latter property
is very much in the spirit of standard epistemic logic, and indeed can be captured with
the standard knowledge operator (viaKa〈〈a〉〉ϕ). Speaking in more abstract terms:

1) Ka〈〈a〉〉ϕ refers to agenta having a strategy“de re” to enforceϕ (i.e.having a
successful strategy and knowing the strategy);

2) Ka〈〈a〉〉ϕ refers to agenta having a strategy“de dicto” to enforceϕ (i.e.know-
ing only thatsomesuccessful strategy is available);

3) 〈〈a〉〉ϕ expresses that agenta has a strategy to enforceϕ from the current state
(but not necessarily even knows about it).

Above, each of the three formulae are informally interpreted in an assumed (single)
stateq of a modelM , i.e., we discuss the meaning of, e.g.,M, q |= Ka〈〈a〉〉ϕ. The
meaning of this formula in this single state is again defined by interpreting a sub-
formula in a certain set of states. Bystrategieshere, we only mean executable (i.e.,
uniform) strategies. Capturing different ability levels of coalitions is analogous, with
various “epistemic modes” of collective recognizing the right strategy.

EXAMPLE 21. — Robota has no winning strategy in the starting state of the game:
M3, q0 |= ¬〈〈a〉〉♦win, which implies that it has neither a strategy “de re” nor “de
dicto”: M3, q0 |= ¬Ka〈〈a〉〉♦win ∧ ¬Ka〈〈a〉〉♦win. On the other hand, he has a
successful strategy inqAK (just play keep) and it knows it has one (because an-
other action,exch, is bound to win inqAQ); still, the knowledge is not construc-
tive, sincea does not know which strategy is the right one in the current situation:
M3, qAK |= 〈〈a〉〉 gwin ∧Ka〈〈a〉〉 gwin ∧ ¬Ka〈〈a〉〉 gwin.

Other properties of the gambling robots, that we discussed in Examples 13
and 12, can be easily expressed in the new logic by combining construc-
tive knowledge with cooperation modalities:M3, q0 |= ¬E{a,b}〈〈a, b〉〉♦win,
M3, qAK |= D{a,b}〈〈a, b〉〉 gwin∧Ka〈〈a, b〉〉 gwin∧¬E{a,b}〈〈a, b〉〉 gwin,M3, qAQ |=
E{a,b}〈〈a, b〉〉 gwin ∧ ¬C{a,b}〈〈a, b〉〉 gwin etc. In fact, it turns out that the new logic
is expressive enough to embed most approaches we have discussed. We present an
appropriate translation in the next section. �
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Figure 3. Simple market example: modelM4

EXAMPLE 22. — Consider a market model, depicted in Figure 3, which formalizes
in a very simple way the scenario from Example 3. The economy is assumed to run in
simple cycles: after the moment of bad economy (bad-market), there is always a good
time for small and medium enterprises (s&m), after which the market tightens and an
oligopoly emerges. At the end, the market gets stale, and we have stagnation and bad
economy again.

The companyc is the only agent whose actions are represented in the model.The
company can wait (actionwait) or decide to start production: either on its own (own-
production), or as a subcontractor of a major company (subproduction). Both deci-
sions can lead to either loss or success, depending on the current market conditions.
However, the company management cannot recognize the market conditions: bad mar-
ket, time for small and medium enterprises, and oligopoly market look the same to
them, as the epistemic links forc indicate.

The company can call the services of two marketing experts. Expert 1 is a special-
ist on oligopoly, and can recognize oligopoly conditions (although she cannot distin-
guish between bad economy and s&m market). Expert 2 can recognize bad economy,
but he cannot distinguish between other types of market. Theexperts’ actions have
no influence on the actual transitions of the model, and are omitted from the graph
in Figure 3. It is easy to see that the company cannot identifya successful strat-
egy on its own: for instance, for the small and medium enterprises period, we have
thatM4, q1 |= ¬Kc〈〈c〉〉♦success. It is not even enough to call the help of a single
expert:M4, q1 |= ¬K1〈〈c〉〉♦success ∧ ¬K2〈〈c〉〉♦success, or to ask the experts to
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independently work out a common strategy:M4, q1 |= ¬E{1,2}〈〈c〉〉♦success. Still,
the experts can propose the right strategy if they join forces and cooperate to find the
solution:M4, q1 |= D{1,2}〈〈c〉〉♦success.

Note that this is not true any more for bad market,i.e., M4, q0 |=
¬D{1,2}〈〈c〉〉♦success, becausec is a memoryless agent, and it has no uniform strat-
egy to enforcesuccess from q0 at all. However, the experts can suggest a more
complex scheme that involves consulting them once again in the future:M4, q0 |=
D{1,2}〈〈c〉〉 gD{1,2}〈〈c〉〉♦success. �

For strategic abilities, standard knowledge corresponds to knowing “de dicto”,
while constructive knowledge captures “knowing how to play”. We observe that both
kinds of epistemic operators can be combined in a meaningfulway. For example,
KaKb〈〈b〉〉♦win says that agenta knows that playerb knows how to win. Note that this
is substantially different fromKaKb〈〈b〉〉♦win, which says that agenta can identify a
strategy whichb knows to be winning. Also, when interleaving epistemic operators
with strategic operators, we can, e.g., describe an abilityto acquire, distribute or main-
tain ability. For instance,Ka〈〈a〉〉�Kb〈〈b〉〉♦win means thata knows how to maintain
b’s (constructive) ability to win, whileKa〈〈a〉〉�Kb〈〈b〉〉♦win says only thata knows
that this is in principle possible, andKa〈〈a〉〉�Kb〈〈b〉〉♦win says thata knows how to
keepb aware that a winning strategy exists.

4.2. Expressivity of CSL

LetL be the logic ofATL ir, ATOL or F-ATEL, and letϕ, ψ be formulae ofL. Also,
let K = C,E,D andK̂ = C,E,D, respectively. Then, let the translation functiontr
be defined as follows:

tr(p) = p tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ) tr( gϕ) = gtr(ϕ)

tr(�ϕ) = �tr(ϕ) tr(ϕU ψ) = tr(ϕ)U tr(ψ)

tr(〈〈A〉〉irϕ) = EA〈〈A〉〉tr(ϕ) tr(〈〈A〉〉K(Γ)ϕ) = K̂Γ〈〈A〉〉tr(ϕ)

tr(〈〈A〉〉fϕ) = 〈〈A〉〉tr(ϕ) tr(〈〈A〉〉fKϕ) = K̂A〈〈A〉〉tr(ϕ)

tr(〈〈A〉〉fKb
ϕ) = Kb〈〈A〉〉tr(ϕ) tr(〈〈A〉〉fMb

ϕ) = ¬Kb¬〈〈A〉〉tr(ϕ)
tr(KAϕ) = KAtr(ϕ)

The following result justifies the translation.

THEOREM 23. — M, q |=
L
ϕ iff M, q |=

CSL
tr(ϕ).

Proof in the Appendix.

COROLLARY 24. —The translation yields a reduction ofATL ir, ATOL and “Feasible
ATEL” model checking problems toCSL model checking. The time needed for the
reduction, and the resulting formula, are linear in the length of the original formula.
We summarize the model checking complexity results forCSL in Section 5.
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PROPOSITION25. —Constructive Strategic Logic isstrictly more expressivethan
ATL ir, ATOL etc.

PROOF. — It is sufficient to prove that there is aCSL formulaϕ that has noATOL

equivalent (i.e., there is noATOL formula which holds in exactly the same models and
states asϕ). Consider the formulaϕ ≡ EAEA〈〈A〉〉ψ. For most models (M3 from
Figure 2 being an example) we have∼DA ( ∼EA ( ∼EA ◦ ∼EA ( ∼CA, soϕ is equivalent
to neither〈〈A〉〉D(A)ψ, 〈〈A〉〉E(A)ψ, nor〈〈A〉〉C(A)ψ. This is of course possible, because
EA (similarly toEA) is not a KD45 modality (see Theorem 40 in Section 6.4).�

Note that the semantics ofCSL is based onexactly the sameclass of models as
ATEL, ATOL, ATL ir etc. (i.e., on CEGSs). Thus, the above translation can also be used
for reduction of validity (resp. satisfiability) problems for ATL ir, ATOL and “Feasible
ATEL” to weak validity (resp. satisfiability) ofCSL. By Theorem 23, we have the
following.

COROLLARY 26. — ATLir, ATOL and “FeasibleATEL” can be embedded inCSL.

4.3. Constructive strategic logicvs. ATEL

As we already pointed out in Section 2.3,ATEL only enables expressing ability of
type (4): theATEL formula〈〈A〉〉ϕ says that agentsA mayhappento behave in such a
way thatϕ is enforced (but there might be no executable strategy to enforce it). Thus,
ATEL is about a kind of ability different from the “constructive”one we study in this
paper. Formally,ATEL differs from CSL in two main ways. First, it does not require
uniform strategies. Second, it does not have the constructive knowledge operators.

First, consider non-uniformity. Note that uniform strategies is not a new idea of
CSL (see Section 2), and that the differences between theATEL operators and the
uniform variants used byCSL are also shared by all the previously studied logics using
uniform strategies. We nevertheless comment briefly on the difference here. First, the
“nexttime” fragment ofATEL can be embedded inCSL, as the following proposition
shows. It should be remembered that theCEGSs used inATEL are slightly more general
than the ones used inCSL (and the other approaches we have discussed): they do not
require that the same actions are available in indistinguishable states. Below we refer
to suchCEGSs asuniformCEGSs.

PROPOSITION27. — Let ϕ be an ATEL formula that does not include operators
�, U andM be a uniformCEGS. Then,M, q |=

ATEL
ϕ iff M, q |=

CSL
ϕ.

PROOF. — It is sufficient to note thatM, q |=
ATEL

〈〈A〉〉 gϕ iff M, q |=
CSL

〈〈A〉〉 gϕ.
Thus, we have that the “nexttime” formulae have the same semantics in both logics
when interpreted at single states, andATEL formulae include no “constructive” opera-
tors for aggregating sets of states. �
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REMARK 28. — It is well known that cooperation modalities for strategies of perfect
information (e.g., the ones inATL andATEL) have the following fixpoint characteriza-
tions:

〈〈A〉〉�ϕ ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉�ϕ, (1)

〈〈A〉〉ϕU ψ ↔ ψ ∨ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉ϕU ψ. (2)

For uniform information strategies, the above formulae arenot valid any more (see
below). Still, it would be possible to embed the wholeATEL in CSL if we included
fixpoint operators in the latter. In that case, the followingtranslation could be used to
translateATL /ATEL modalities to equivalentCSL counterparts:

tr(〈〈A〉〉�ϕ) = νZ.ϕ ∧ 〈〈A〉〉 gZ,

tr(〈〈A〉〉ϕU ψ) = µZ.ψ ∨ ϕ ∧ 〈〈A〉〉 gZ.

�

We note that due to the uniformity ofCSL strategies, the set ofATEL validities
is not contained inCSL validities. A counter-example is the formula〈〈r〉〉�¬jail ↔
¬jail ∧ 〈〈r〉〉 g〈〈r〉〉�¬jail. It is valid in ATEL (it is an instance of the valid scheme that
gives a characterization of “always” in terms of “next” inATL andATEL). Still, the
formula is false in modelM2 and stateq0 from Example 9: the left hand side of the
biconditional is false, but the right hand side is true inM2, q0.

More importantly, we can show thatCSL is more powerful thanATEL when we
want to characterize sets of situations in actual systems. First, given a finite model,
everyATEL formula has aCSL counterpart (i.e., a CSL formula which holds in exactly
the same states). Second,CSL allows for finer-grained specifications thanATEL (in the
sense that there areCSL formulae for which there are noATEL formulae with the same
extension). The result is formalized in Propositions 29 and30.

PROPOSITION29. — Given a uniformCEGS, everyATEL formula has aCSL coun-
terpart with the same extension (i.e., one which is satisfied in exactly the same states
of the model).

PROOF (SKETCH). — For finite models: letM be a model with|M | states, and
ϕ be anATEL formula. All subformulae〈〈A〉〉�ψ can be equivalently rewritten as
(ψ ∧ 〈〈A〉〉 g)|M|ψ, where|M | is the number of states inM . This follows by the
property (1) above, and the fact that, after|M | steps, the system is bound to come
back to one of the previously visited states, for which a successful action has already
been found. Similarly, subformulae〈〈A〉〉ψ1 U ψ2 can be equivalently rewritten as
(ψ2∨ψ1 ∧〈〈A〉〉 g)|M|ψ2. This way, we get anATEL formulaϕ′ without�, U which
holds in exactly the same states asϕ. By Proposition 27,ϕ′ has the same extension in
ATEL andCSL. �

PROPOSITION30. — Given a uniformCEGS, there can beCSL formulae that have
no ATEL counterpart with the same extension (i.e., one which is satisfied in exactly the
same states of the model).
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Figure 4. A model with one agent. From each of the statesq1, q2, q3, q4, the same
outcomes can be achieved in one step, albeit through different actions

PROOF. — Consider modelM5 from Figure 4. The formulaKa〈〈a〉〉 gwin holds inq3
andq4, but not inq1 norq2. There is noATEL formula which is true exactly inq3, q4:
it is easy to see that anATEL formula is true inq1 iff it is true in q2 iff it is true in q3
iff it is true in q4. �

4.4. Constructive strategic logicvs. ETSL

CSL andETSL are underpinned by different notions of ability. ETSL can be treated
as a logic that describes the outcome ofrational playunder imperfect information,7 in
the same way asCSL can be seen as a logic that captures agents’ strategic abilities (re-
gardless of whether the agents play rationally or not). Thus, the focus ofCSL andETSL

is different, and we suspect that neither logic formally subsumes the other. However,
several interesting associations have been already proposed in (Jamroga 2006).

Let us consider only models with finite state spaces,8 and formulaeΦ ≡ gψ,�ψ,
orψ1 U ψ2 whereψ, ψ1, ψ2 are “vanilla” ETSL formulae.

PROPOSITION31 (JAMROGA 2006). — An agent has a strategy “de re” to enforce
Φ if, and only if, he knows that his rational play will bring about Φ. Formally:

M, q |=
ETSL

Ka〈〈a〉〉Φ iff M, q |=
CSL

Ka〈〈a〉〉Φ.

PROPOSITION32 (JAMROGA 2006). — If a coalition has common knowledge about
how to play, then it has common knowledge that rational play will be successful:

7. We emphasize that this is a specific notion of rationality (i.e., agents are assumed toplay only
undominated strategies). Game theory proposes several other rationality criteriaas well, based
e.g. on Nash equilibrium, dominant strategies, or Pareto efficiency. In fact, it is easy to imagine
ETSL-like logics based on these notions instead.
8. More generally, we can consider modelsM such that there exists at least one undominated
strategy wrtM, q, Φ.
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if M, q |=
CSL

CA〈〈A〉〉Φ then M, q |=
ETSL

CA〈〈A〉〉Φ.

The same holds for neither mutual nor distributed knowledge.

PROPOSITION33 (JAMROGA 2006). — If A have distributed knowledge that ratio-
nal play will bring aboutΦ, then they have distributed knowledge how to play to bring
aboutΦ. Formally:

if M, q |=
ETSL

DA〈〈A〉〉Φ then M, q |=
CSL

DA〈〈A〉〉Φ.

The same holds for neither mutual nor common knowledge.

A more definitive study of this issue is beyond the scope of this paper.

5. Verification of strategic abilities through model checking

The model checkingproblem asks whether a given formulaϕ holds in a given
modelM and stateq. We define thegeneral model checkingproblem as the problem
that asks whether formulaϕ holds in modelM andset of statesQ. Letmctl(ϕ,M)
be aCTL model checker that returns the set of all states which satisfy ϕ in M . Below,
we sketch an algorithmmcheck(ϕ,M,Q) that returnstrue if M,Q |=

CSL
ϕ andfalse

otherwise, running in time∆P

2
, i.e., in deterministic polynomial time with adaptive

queries to anNP oracle.

Caseϕ ≡ p: return(true) if p ∈ π(q) for all q ∈ Q, else return(false);

Caseϕ ≡ ¬ψ: return(true) if mcheck(ψ,M,Q) = false, else return(false);

Caseϕ ≡ ψ1 ∧ ψ2: return(true) if mcheck(ψ1,M,Q) = true and
mcheck(ψ2,M,Q) = true, else return(false);

Caseϕ ≡ KAψ: ComputeQ′ := img(Q,∼K
A), and then return(true) if

mcheck(ψ,M, q) = true for all q ∈ Q′, else return(false);

Caseϕ ≡ K̂Aψ: return(mcheck(ψ,M, img(Q,∼K
A)));

Caseϕ ≡ 〈〈A〉〉 gψ: Runmcheck(ψ,M, q) for everyq ∈ St, and label the states in
which the answer wastrue with an additional propositionyes (not used else-
where). Then, guess the strategy ofA, and “trim” modelM by removing all the
transitions inconsistent with the strategy (yielding a sparser modelM ′). Finally,
return(true) if Q ⊆ mctl(A gyes,M ′), else return(false).

NOTE: subformulaψ is checked in the original modelM , and not inM ′!

Caseϕ ≡ 〈〈A〉〉�ψ: Runmcheck(ψ,M, q) for everyq ∈ St, and label the states in
which the answer wastrue with an additional propositionyes (not used else-
where). Then, guess the strategy ofA, and “trim” modelM by removing all the
transitions inconsistent with the strategy (yielding a sparser modelM ′). Finally,
return(true) if Q ⊆ mctl(A�yes,M ′), else return(false). Again, note thatψ is
checked in the original modelM .
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Caseϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.

As model checkingCTL can be done in deterministic polynomial time (Clarke,
Emerson et Sistla 1986), we get the following.

PROPOSITION34. — General model checking for Constructive Strategic Logic isin
∆

P

2
when the input size is measured with the number of transitions (and epistemic

links) in the model, and the length of the formula.

For the lower bound, we observe thatCSL subsumesATL ir, and model checking
ATL ir is ∆

P

2
-complete (Schobbens 2004, Jamrogaet al. 2006a). Thus, we pay no

price in terms of complexity for using the more expressive language ofCSL:

THEOREM 35. — General model checking for Constructive Strategic Logic is∆
P

2
-

complete in the number of transitions (and epistemic links)in the model, and the length
of the formula.

6. Constructive knowledge

Philosophically, constructive knowledge draws inspiration from mathematical con-
structivism: in order to “constructively know” thatϕ, agentsAmust be able to find (or
“construct”) a mathematical object that supportsϕ. This is relevant whenϕ ≡ 〈〈B〉〉ψ
– in that case, the mathematical object in question is a strategy forB which guarantees
achievingψ. The semantic role ofconstructive knowledge operatorsis to produce sets
of states that will appear on the left hand side of the satisfaction relation. In a way,
these modalities “aggregate” states into sets, and sets into bigger sets. On the other
hand, most of the other operators “split” (or “destroy”) sets in the sense that, for eval-
uatingM,Q |= ϕ, they require evaluation of subformulae ofϕ in single states rather
than sets of states. Standard epistemic operators (CA, EA, DA) are the most straight-
forward examples (e.g., evaluatingCAψ in M,Q “splits” into evaluatingψ in each
state fromimg(Q,∼CA) separately). Cooperation modalities (combined with temporal
operators) are “splitting” in a similar way. Besides the “aggregating” and “splitting”
operators, there are also “neutral” ones that do not change the set of reference: namely,
conjunction (∧) and negation (¬). In what follows, we study important properties of
these operators inCSL.

6.1. Properties of constructive knowledge

In the following proposition we list some properties of constructive knowledge
(keep in mind that strong validity implies validity).

PROPOSITION36. — The following are strongly valid for anŷK ∈ {C,D,E}:

1) K̂A(ϕ1 ∨ ϕ2) ↔ (K̂Aϕ1 ∨ K̂Aϕ2)
2) K̂A¬ϕ↔ ¬K̂Aϕ
3) K̂A(ϕ1 ∧ ϕ2) ↔ (K̂Aϕ1 ∧ K̂Aϕ2)
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4) K̂A(ϕ1 → ϕ2) ↔ (K̂Aϕ1 → K̂Aϕ2)

PROOF. —

1) M,Q |= K̂A(ϕ1∨ϕ2) iff M, img(Q,∼K̂
A) |= ϕ1∨ϕ2 iff M, img(Q,∼K̂

A) |= ϕ1

orM, img(Q,∼K̂
A) |= ϕ2 iff M,Q |= K̂Aϕ1 orM,Q |= K̂Aϕ2 iff M,Q |= K̂Aϕ1 ∨

K̂Aϕ2.
2) M,Q |= K̂A¬ϕ iff M, img(Q,∼K̂

A) |= ¬ϕ iff M, img(Q,∼K̂
A) 6|= ϕ iff

M,Q 6|= K̂Aϕ iff M,Q |= ¬K̂Aϕ.
3) M,Q |= K̂A(ϕ1∧ϕ2) iff M, img(Q,∼K̂

A) |= ϕ1∧ϕ2 iff M, img(Q,∼K̂
A) |= ϕ1

andM, img(Q,∼K̂
A) |= ϕ2 iff M,Q |= K̂Aϕ1 andM,Q |= K̂Aϕ2 iff M,Q |=

K̂Aϕ1 ∧ K̂Aϕ2.
4) M,Q |= K̂A(¬ϕ1∨ϕ2) iff M,Q |= (K̂A¬ϕ1)∨K̂Aϕ2 iff M,Q |= (¬K̂Aϕ1)∨

K̂Aϕ2 iff M,Q |= K̂Aϕ1 → K̂Aϕ2. �

6.2. Is Ka an epistemic operator?

We believe that operatorsCA, EA, DA andKa do capture a special kind of knowl-
edge of agents. An interesting question is: do this notion ofknowledge have the prop-
erties usually associated with knowledge? In particular, do postulatesK,D,T,4,5
of epistemic logic hold for constructive knowledge? In general, the answer isno;
particularly, the truth axiom does not hold.

THEOREM 37. — Below, we list the constructive knowledge versions of some of the
S5 properties for individual agents. “Yes” means that the schema is strongly valid;
“No” means that it is not even weakly valid (incidentally, none of the properties turns
out to be weakly but not strongly valid).

K Ka(ϕ→ ψ) → (Kaϕ→ Kaψ) Yes
D ¬Ka⊥ Yes
T Kaϕ→ ϕ No
4 Kaϕ→ KaKaϕ Yes
4

+ Kaϕ↔ KaKaϕ Yes
5 ¬Kaϕ→ Ka¬Kaϕ Yes
5

+ ¬Kaϕ↔ Ka¬Kaϕ Yes
B ϕ→ Ka¬Ka¬ϕ No

Before proving Theorem 37, we take a closer look at the relationship between
satisfaction by a set of states (M,Q |= ϕ), and satisfaction in each of the states
(∀q∈QM, q |= ϕ). The following Lemma shows that the former does not necessar-
ily imply the latter, and that the latter does not necessarily imply the former.

LEMMA 38. —

1) There is a modelM , stateq, agenta and formulaϕ such thatM, img(q,∼a) 6|=
ϕ and for everyq ∈ img(q,∼a),M, q |= ϕ.
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2) There areM, q, a, ϕ such thatM, img(q,∼a) |= ϕ andM, q 6|= ϕ.

a
p ¬p

q q′(α1, β) (α1, β)

(α2, β)

(α2, β)

Figure 5. ModelM6 with two agentsa, b, and two statesq, q′ such thatq ∼a q′

PROOF. — Consider modelM6 from Figure 5.

1) Letϕ = 〈〈a〉〉 gp. NowM6, q |= ϕ (a can choose actionα1), andM6, q
′ |= ϕ (a

can choose actionα2). However,M6, img(q,∼a) 6|= ϕ, because no uniform strategy
for a leads toq (in one step) from bothq, q′.

2) Letϕ = ¬p. Nowp 6∈ π(q)∩π(q′), soM6, {q, q′} 6|= p, andM6, img(q,∼a) |=
ϕ. But p ∈ π(q), soM6, q |= p, andM6, q 6|= ϕ. �

PROOF (OF THEOREM 37). —

K: Immediate by Proposition 36.

D: Suppose thatM,Q |= Ka⊥ for any Q 6= ∅. ThenM, img(Q,∼a)) |= ⊥.
By reflexivity of ∼a, set img(Q,∼a) is nonempty, which contradicts Propo-
sition 16.1.

T: Let M, q, a, ϕ be as in Lemma 38.2.M, q |= Kaϕ, butM, q 6|= ϕ, soT is not
weakly (and hence not strongly) valid.

4
+/4: M,Q |= KaKaϕ iff M, img(Q,∼a) |= Kaϕ iff M, img(img(Q,∼a),∼a) |=

ϕ iff M, img(Q,∼a) |= ϕ (since img(img(Q,∼a),∼a) = img(Q,∼a)) iff
M,Q |= Kaϕ.

5
+/5: M,Q |= ¬Kaϕ iff M,Q 6|= Kaϕ iff, by 4

+,M,Q 6|= KaKaϕ iff, by Proposi-
tion 36,M,Q |= Ka¬Kaϕ.

B: LetM, q, a, ϕ be as in Lemma 38.1.M, img(q,∼a) 6|= ϕ, soM, q |= Ka¬ϕ. By
4

+, M, q |= KaKa¬ϕ, soM, q 6|= ¬KaKa¬ϕ, and by Proposition 36M, q 6|=
Ka¬Ka¬ϕ. ButM, q |= ϕ. Thus,B is not weakly (nor strongly) valid. �
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6.3. In quest for the truth axiom

We have just showed that, out of the S5 properties, axiomsK,D,4,5 (but not
T!) hold. However, it also turns out that if we slightly restrict the language, then the
correspondingT axiom becomes strongly valid. LetCSL− be the subset ofCSL in
which, between every occurrence of constructive knowledge(CA,EA,DA) and nega-
tion, there is always at least one operator other than conjunction.9 Formally,CSL− for-
mulae are defined by the following grammar (whereK = C,E,D andK̂ = C,E,D):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | KAϕ | K̂Aψ,

ψ ::= p | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | KAϕ | ψ ∧ ψ | K̂Aψ.

THEOREM 39. — EveryCSL− instance ofT (i.e., Kaψ → ψ) is strongly valid.

Proof in the Appendix.

Thus, theT axiom holds forCSL−. Note that, by Proposition 36, the meaning of
negation or conjunction in the immediate scope of a constructive knowledge operator
is the same as if the operator were immediately outside the constructive knowledge op-
erator.10 In consequence, every formula of the fullCSL is equivalent to one inCSL−.
Thus, we can restrict our logical language toCSL− without losing expressive power,
and we automatically “get” axiomT. We also observe that, from a more philosoph-
ical perspective, it is hard to pinpoint the intuitive meaning of negation immediately
following constructive knowledge. Note that, e.g.,Ka¬〈〈a〉〉ϕ should be read as “a
hasconstructiveknowledge about beingunableto achieveϕ”.11 It seems thus, first,
that the weaker version of the truth axiom in Theorem 39 mightbe more appropriate
for constructive knowledge, and second, that it might be a good idea to consider the
logical language of constructive knowledge to be limited toCSL−. In this case, con-
structive knowledge has theT property, we do not lose any expressive power, and we
leave out only formulae with philosophically unclear reading.

Is then the constructive knowledge inCSL− S5? First, it must be noted that – even
thoughCSL andCSL− are expressively equivalent – the extension of the schemaT is
differentin CSL− (for example,Ka¬p → ¬p is aCSL instance ofT, but even though
it is equivalent to theCSL− formula¬Kap → ¬p, the latter isnot a CSL− instance
of T). More importantly, inCSL− the axiom schemataK and5, at least written as
in Theorem 37, are not valid, but they are not invalid either –they are simply not
formulae at all. It does not seem correct to say that an operator has the S5 properties
when it cannot evenexpresstheK principle or negative introspection. Furthermore,
CSL− lacks the S5 principle ofuniform substitution.

9. In particular, the requirement is met when operatorsCA, EA, DA are never immediately fol-
lowed by either¬ or∧.
10. Which is very muchunlikethe semantics of negation following a standard knowledge oper-
ator!
11.Ka〈〈a〉〉¬ϕ, on the other hand, makes perfect sense: it refers toa’s constructiveability to
preventϕ.
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6.4. Properties of collective constructive knowledge

We briefly consider the properties of collective knowledge operators. Theorem 40
should come as no surprise: note that, analogously to standard knowledge, construc-
tive common and distributed knowledge have the same properties as individual knowl-
edge, while mutual knowledge (“everybody knows”) differs in that it does not satisfy
the introspection axioms4 and5.

THEOREM 40. — Below, we list some of the S5 properties for collective constructive
knowledge operators. We don’t state the properties explicitly, but refer to Theorem 37
– axiomK for CA becomesCA(ϕ → ψ) → (CAϕ → CAψ), and so on. “Yes”
means that the schema is strongly valid; “No” means that it isnot even weakly valid
(the proof is left for the reader).

CA EA DA
K Yes Yes Yes
D Yes Yes Yes
T No No No
4 Yes No Yes
4

+ Yes No Yes
5 Yes No Yes
5

+ Yes No Yes
B No No No

Note that the proof of Theorem 39 required only that the epistemic relation in
question was reflexive. Thus, it can be easily extended to handle collective construc-
tive knowledge.

COROLLARY 41. — Every CSL− instance of schemaT for collective constructive
knowledge operatorsCA,EA,DA is strongly valid.

7. Negation, localization, and definability of knowledge

The semantics of negation presented in Section 3.1 (we call it weaknegation from
now on) yields a very strong notion of disjunction, as Proposition 16 states. Such a
strong notion of disjunction makes sense when we talk about agents’ abilities,i.e.,
when used inside aKa operator. For example:M, q |= Ka(〈〈a〉〉ϕ ∨ 〈〈a〉〉ψ) means in
fact thata in q can either identify a plan to achieveϕ or to achieveψ. On the other
hand, for a disjunction of simpler formulae, e.g., primitive propositionsp and r, a
weaker notion seems more intuitive: the disjunctionp∨ r should hold inM,Q iff, for
any stateq ∈ Q, at least one of the disjunctsp andr holds inq (but different disjuncts
may hold in different states ofQ). This intuition can be captured with a different
negation operator∼, which we call “strong” negation. The idea of strong negation
can be summarized as:M,Q |=∼ϕ iff M, q 6|= ϕ for everyq ∈ Q. However, we will
define it in terms of another, more primitive operator that wecall localization.
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As it turns out, the significance of localization goes beyondour discussion on var-
ious kinds of negation. Most importantly, localization canbe used to define standard
knowledge operators from constructive knowledge operators. On the other hand, local-
ization itself proves definable from strategic and temporaloperators. In consequence,
standard knowledge can be defined inCSL without standard knowledge operators.

7.1. Local evaluation of formulae

In the semantics ofCSL, formulae are interpreted in sets of states; in order forϕ
to hold inM,Q, the formula must be “globally” satisfied in all states fromQ at once
(i.e., with single evidence). Another option is to evaluateϕ locally in particular states
fromQ. To this end, we introduce a modality that specifies explicitly that the formula
must be evaluated for every relevant state separately:

M,Q |= loc ϕ iff M, q |= ϕ for everyq ∈ Q.

PROPOSITION42. — Below, we investigate some typical axioms with respect to the
localization modality. “Yes” means that the scheme is strongly valid, “No” means
that the scheme is not strongly valid. Note that all the schemes below are weakly
valid, becauseM, q |= loc ϕ↔ ϕ for every individual stateq.

K loc (ϕ→ ψ) → (loc ϕ→ loc ψ) Yes
D ¬loc ⊥ Yes
T loc ϕ→ ϕ No
4 loc ϕ→ loc loc ϕ Yes
4

+
loc ϕ↔ loc loc ϕ Yes

5 ¬loc ϕ→ loc ¬loc ϕ No
5

+ ¬loc ϕ↔ loc ¬loc ϕ No
B ϕ→ loc ¬loc ¬ϕ Yes

Proof in the Appendix.

Thus, localization is weak, but not strong, S5. In particular, S5 propertiesT and
5 do not necessarily hold in some contexts, for example in the immediate scope of a
constructive knowledge operator.

PROPOSITION43. —Some other localization properties are the following, all
strongly valid (proof is left for the reader).

loc p↔ p, p ∈ Π loc (ϕ ∧ ψ) ↔ (loc ϕ ∧ loc ψ)
〈〈A〉〉 gϕ↔ 〈〈A〉〉 gloc ϕ 〈〈A〉〉�ϕ ↔ 〈〈A〉〉�loc ϕ
〈〈A〉〉ϕU ψ ↔ 〈〈A〉〉loc ϕU ψ ↔ 〈〈A〉〉ϕU loc ψ
loc KAϕ↔ KAϕ KAϕ↔ KAloc ϕ, K ∈ {C,E,D}
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We will show in the following sections how theloc operator can be used to define
standard knowledge and alternative negation operators. This makes the following re-
sult very important: it says that localization is definable in theCSL language, from the
〈〈∅〉〉 andU operators.

PROPOSITION44. — The following formula is strongly valid:

loc ϕ↔ 〈〈∅〉〉ϕU ϕ

PROOF. — M,Q |= 〈〈∅〉〉ϕU ϕ iff ∀λ∈out(Q,∅) there is ani ≥ 0 such thatM,λ[i] |=
ϕ and for anyj such that0 ≤ j < i, M,λ[j] |= ϕ. Since for eachq ∈ Q there
is a λ ∈ out(Q, ∅) with λ[0] = q, this implies that∀q∈QM, q |= ϕ which is the
same asM,Q |= loc ϕ. To see that the other direction holds as well, assume that
M,Q |= loc ϕ and letλ ∈ out(Q, ∅). We must provide a witness fori; takei = 0.
Now,M,λ[i] |= ϕ and there is noj such that0 ≤ j < i, soM,Q |= 〈〈∅〉〉ϕU ϕ. �

7.2. Defining standard knowledge from constructive knowledge

Standard knowledge operators are definable from constructive knowledge and lo-
calization:

PROPOSITION45. — KAϕ ↔ K̂Aloc ϕ is strongly valid for anyK ∈ {C,E,D},
Ĉ = C, Ê = E, D̂ = D.

PROOF. — M,Q |= K̂Aloc ϕ iff M, img(Q,∼K
A) |= loc ϕ iff ∀q∈img(Q,∼K

A
)M, q |=

ϕ iff M,Q |= KAϕ. �

In particular, knowledge of a formula is the same as constructive knowledge of
the localization of the formula,i.e. Kaϕ ↔ Kaloc ϕ. An important corollary of
Propositions 45 and 44 is the following.

THEOREM 46. — The following is strongly valid:

KAϕ↔ K̂A〈〈∅〉〉ϕU ϕ.

Theorem 46 shows thatstandard knowledge can be seen as a special case of con-
structive knowledge. It follows that the standard knowledge operators are strictly
speaking redundant in theCSL language.

7.3. Non-standard definitions of negation

Negation, as defined in Section 3.1, is “weak” in the sense that it is sufficient for
the negation of, e.g., an atomic formulap to hold in a set of statesQ thatp is false in
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at least one state fromQ. Several other interpretations of negation in a set of states
are possible, corresponding to different ways of quantifying over the set. We define
strong negationas:

∼ϕ ≡ loc ¬ϕ

Note that, by Proposition 44, strong negation is definable from weak negation:∼ ϕ
can be equivalently defined as〈〈∅〉〉(¬ϕ)U (¬ϕ).

PROPOSITION47. — M,Q |=∼ϕ iff, for everyq ∈ Q, we have thatM, q 6|= ϕ.

PROOF. — M,Q |=∼ϕ iff M,Q |= loc ¬ϕ iff for every q ∈ Q we have thatM, q 6|=
ϕ. �

Strong negation doesnot behave as classical negation: it does not obey the law
of double negation, the law of excluded middle, or the consistency requirement under
strongvalidity. Nevertheless, it preserves these laws under weakvalidity.

PROPOSITION48. —

1) ∼∼ϕ→ ϕ is weakly valid, but not strongly valid.
2) ϕ→∼∼ϕ is weakly valid, but not strongly valid.
3) ϕ∨ ∼ϕ is weakly valid, but not strongly valid.
4) ¬(ϕ∧ ∼ϕ) is weakly valid, but not strongly valid.

PROOF. —

1), 2) Weak validity is immediate.M,Q |=∼∼ϕ iff M,Q |= loc ¬ ∼ϕ iff M,Q |=
loc ¬loc ¬ϕ iff for every q ∈ Q we have thatM, q |= ϕ. Counter-examples for
the two implications are found in the two parts of Lemma 38, respectively, by taking
Q = img(q,∼a).

3) Weak validity is immediate. As a counter-example to strong validity, takeM
andϕ from Lemma 38.1, and letQ = img(q,∼a). M,Q 6|= ϕ, and it is not the case
thatM, q′ 6|= ϕ for everyq′ ∈ Q.

4) Weak validity: immediate. Strong validity: takeM = M6 from Lemma 38,
and letQ = {q, q′}, ϕ ≡ ¬〈〈a〉〉 gp. �

REMARK 49. — Alternatively, strong negation can be taken as a primary notion:
localization is definable from strong negation, and standard knowledge is thus defin-
able from constructive knowledge and strong negation. Formally, the following are
strongly valid:

1) loc ϕ↔∼∼ϕ
2) KAϕ↔ K̂A ∼∼ϕ. �

7.3.1. Boolean operators based on strong negation

Recall that connectives like∨ and→ are defined in terms of weak negation (¬).
Similar connectives can be defined for strong negation:

– ϕ1 ‖ ϕ2 ≡∼(∼ϕ1∧ ∼ϕ2),
– ϕ1  ϕ2 ≡∼ϕ1 ‖ ϕ2, and
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– ϕ1 ! ϕ2 ≡ (ϕ1  ϕ2) ∧ ϕ2  ϕ1.

These versions of disjunction, material implication, and material biconditional
have the following semantic characterizations:

PROPOSITION50. —

1) M,Q |= ϕ1 ‖ ϕ2 iff, for everyq ∈ Q, we haveM, q |= ϕ1 or M, q |= ϕ2;
2) M,Q |= ϕ1  ϕ2 iff, for everyq ∈ Q, we have thatM, q |= ϕ1 implies

M, q |= ϕ2;
3) M,Q |= ϕ1 ! ϕ2 iff, for everyq ∈ Q, we have thatM, q |= ϕ1 iff M, q |=

ϕ2.

PROOF. —

1) M,Q |=∼ (∼ϕ1∧ ∼ϕ2) iff ∀q∈QM, q 6|=∼ϕ1∧ ∼ϕ2 iff ∀q∈QM, q 6|=∼ϕ1

orM, q 6|=∼ϕ2 iff ∀q∈QM, q |= ϕ1 orM, q |= ϕ2.
2) M,Q |= ϕ1  ϕ2 iff M,Q |=∼ϕ1 ‖ ϕ2 iff ∀q∈Q(M, q |=∼ϕ1 or M, q |=

ϕ2) iff ∀q∈Q(M, q 6|= ϕ1 orM, q |= ϕ2) iff ∀q∈QM, q |= ϕ1 → ϕ2.
3) Straightforward. �

We can also define the strong negation-based versions of Boolean constants “true”
and “false”, but they coincide with the ones already proposed in Section 3.2.

PROPOSITION51. — Let
−−−
≀ ≡ p∧ ∼p, and−−≀ ≡∼

−−−
≀ . Then:

1) M,Q 6|=
−−−
≀ for all Q ⊆ St,Q 6= ∅.

2) M,Q |= −−≀ for all Q ⊆ St,Q 6= ∅.

PROOF. — Straightforward. �

7.3.2. Some connections between the weak and the strong

It is immediate from Proposition 50 that, just as strong negation is the localization
of weak negation, the operators‖,  and! defined by strong negation, are the
localizations of their counterparts∨, →, ↔ defined by weak negation:

PROPOSITION52. — The following are strongly valid:

(ϕ1 ‖ ϕ2) ↔ loc (ϕ1 ∨ ϕ2)
(ϕ1  ϕ2) ↔ loc (ϕ1 → ϕ2)
(ϕ1 ! ϕ2) ↔ loc (ϕ1 ↔ ϕ2)

Moreover, for validity (not strong validity), the two negations, the two disjunctions
and the two implications coincide:

PROPOSITION53. — The following formulae are valid (but not strongly valid):

1) ¬ϕ↔∼ϕ
2) (ϕ1 ∨ ϕ2) ↔ (ϕ1 ‖ ϕ2)
3) (ϕ1 → ϕ2) ↔ (ϕ1  ϕ2)
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PROOF. — Immediate from Proposition 52, sinceM, q |= ψ iff M, q |= loc ψ, for
any (single) stateq. �

The following proposition shows that the notions of strong and weak validity can
be seen as dual with respect to the strong and weak versions ofthe connectives.

PROPOSITION54. —

1) ∼ϕ is strongly valid iff¬ϕ is weakly valid.
2) ϕ1 ‖ ϕ2 is strongly valid iffϕ1 ∨ ϕ2 is weakly valid.
3) ϕ1  ϕ2 is strongly valid iffϕ1 → ϕ2 is weakly valid.
4) ϕ1 ! ϕ2 is strongly valid iffϕ1 ↔ ϕ2 is weakly valid.

The laws of negation were stated in Proposition 48 using connectives∨, etc., de-
fined from weak negation. We can now show, however, that the laws of negation do
in fact hold for strong negation if we state these laws using the operators defined from
strong negation.

PROPOSITION55. —

1) ∼∼ϕ! ϕ is strongly valid.
2) ϕ ‖∼ϕ is strongly valid.
3) ∼(ϕ∧ ∼ϕ) is strongly valid.

PROOF. — Immediate from Propositions 48 and 54. �

7.3.3. Properties of constructive knowledge with “strong” negation

In Section 6.2, we discussed the S5 properties of constructive knowledge. These
properties can also be stated using strong negation, and derived connectives, instead
of weak negation.

THEOREM 56. — Below, we list constructive knowledge versions of some S5 prop-
erties using strong negation. “Yes” means that the schema isstrongly valid; “No”
means that it is not even weakly valid (again, none of the properties turn out to be
weakly but not strongly valid).

K̃ Ka(ϕ ψ) (Kaϕ Kaψ) No
D̃ ∼Ka−−−

≀ Yes
T̃ Kaϕ ϕ No
4̃ Kaϕ KaKaϕ Yes
4̃

+ Kaϕ! KaKaϕ Yes
5̃ ∼Kaϕ Ka∼Kaϕ Yes
5̃

+ ∼Kaϕ! Ka∼Kaϕ Yes
B̃ ϕ Ka∼Ka∼ϕ Yes

Proof in the Appendix.

Finally, we point out that if we restrict the language toCSL−, as discussed in
Section 6.3, we get the truth axiom̃T, i.e., the following variant of Theorem 39.
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THEOREM 57. — EveryCSL− instance of schemãT (Kaϕ ϕ) is strongly valid.

PROOF. — Note that∀q∈QM, q |= Kaϕ → ϕ (by T), which implies thatM,Q |=
Kaϕ ϕ (by Proposition 50). �

7.3.4. Other negations

We have considered two operators for negation so far. Yet another alternative is:
∠ϕ ≡ ¬loc ϕ. The meaning of∠ is characterized with the following proposition.

PROPOSITION58. — M,Q |= ∠ϕ iff there existsq ∈ Q such thatM, q 6|= ϕ.

PROOF. — M,Q |= ∠ϕ iff M,Q |= ¬loc ϕ iff M,Q 6|= loc ϕ iff there is aq ∈ Q
such thatM, q 6|= ϕ. �

8. Normal forms and expressiveness

In this section, we investigate expressiveness further, with particular focus on the
relationship between localization, weak negation and strong negation. In order to
study expressiveness, we will study variants of the language defined in Section 3.1
with other (primary) operators. We have discussed the interpretation of the following
operators in sets of states:

¬ ∧ 〈〈A〉〉T CA EA DA CA EA DA loc ∼

whereT is an ATL temporal connective andA is a set of agents. We use the ex-
pressionL(¬,∧, 〈〈A〉〉T,KA, K̂A, loc , ∼) to denote the language with all the men-
tioned operators,L(¬,∧, 〈〈A〉〉T,KA, K̂A, loc ) to denote the language with all oper-
ators except strong negation, and so on. TheCSL language introduced in Section 3.1
is L = L(¬,∧, 〈〈A〉〉T,KA, K̂A). For simplicity, we sometimes useL∗ for the most
extensive languageL(¬,∧, 〈〈A〉〉T,KA , K̂A, loc , ∼).

We say that two formulaeϕ andψ areequivalent, if ϕ↔ ψ is valid, and that they
arestrongly equivalentif ϕ ↔ ψ is strongly valid. We say that a languageL2 is at
least as expressiveas a languageL1, if for everyϕ1 ∈ L1 there exist an equivalent
ϕ2 ∈ L2. We say thatL2 andL1 areexpressively equivalent, if L2 is at least as
expressive asL1 andL1 is at least as expressive asL2.

We will make use of the following definition:

Atoms = Θ ∪ {〈〈A〉〉Tγ : γ ∈ L∗} ∪ {∼γ : γ ∈ L∗}.

We begin with defining anormal formof our formulae.

8.1. Constructive normal form

A formula, possibly containing strong negation, is ofconstructive normal formif
every subformula starting with âKA operator is of the form̂K1 · · · K̂kψ whereψ is
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either a primitive proposition, starts with a cooperation modality, or starts with strong
negation. We now show that everyL∗ formula is equivalent to one of constructive nor-
mal form, and also to a formula of constructive normal form without strong negation.

DEFINITION 59 (CONSTRUCTIVE NORMAL FORM(CSNF)). — The set ofL∗ for-
mulae ofconstructive normal form (CSNF)is defined inductively as follows.

– p is of CSNF whenp ∈ Θ,
– K̂γ is of CSNF iffγ is of CSNF and eitherγ ∈ Atoms or γ = K̂′χ,
– 〈〈G〉〉Tγ is of CSNF iffγ is of CSNF,
– ¬γ is of CSNF iffγ is of CSNF,
– γ1 ∧ γ2 is of CSNF iff bothγ1 andγ2 are of CSNF,
– ∼γ is of CSNF iffγ is of CSNF.

THEOREM 60. — Every formula inL∗ is strongly equivalent to a formula of con-
structive normal form.

Proof in the Appendix.

Thus, any formula of the most general kind we have consideredis equivalent to a
formula of CSNF. Note that a CSNF formula might contain strong negation. However,
we can also get rid of strong negation, as the following result states.

COROLLARY 61. — Every formula inL∗ is strongly equivalent to a formula of con-
structive normal form without strong negation.

Proof in the Appendix.

8.2. Expressiveness of strong negation

We have shown in Section 7 that standard knowledge, localization and strong nega-
tion can be defined with use of weak negation (together with conjunction, constructive
knowledge andATL operators). Thus,L(¬,∧, 〈〈A〉〉T, K̂) is already as expressive as
the full L∗. Now we will investigate the other direction: doesweaknegation add
expressiveness if we already have strong negation? We show in the following theo-
rem that, in the languageL extended with strong negation, every formula is actually
equivalent to one without weak negation.

THEOREM 62. — Every formula inL(¬,∧, 〈〈A〉〉T, K̂, ∼) is equivalent to a formula
ofL(∧, 〈〈A〉〉T, K̂, ∼).

Proof in the Appendix.

Thus, in particular, the following four languages are expressively equivalent:

L(¬,∧, 〈〈A〉〉T, K̂) L(∧, 〈〈A〉〉T, K̂, ∼) L L∗

In consequence, bothL(¬,∧, 〈〈A〉〉T, K̂) and L(∧, 〈〈A〉〉T, K̂, ∼) are expressively
complete with respect to the other operators we have considered. An important dif-
ference betweenL(¬,∧, 〈〈A〉〉T, K̂) andL(∧, 〈〈A〉〉T, K̂, ∼) is that strong negation is



464 Journal of Applied Non-Classical Logics. Volume 17 – No.4/2007

definable from weak negation and ATL operators by a simple schema (〈〈∅〉〉¬ϕU ¬ϕ),
while this is not the case when we reverse the roles of the negations.

9. Conclusions

In this paper, we propose a non-standard semantics for the modal logic of strate-
gic ability under imperfect information, in which formulaeare interpreted oversets of
statesrather than in single states.12 Moreover, we introduce new epistemic operators
for “constructive” knowledge. It turns out that, in this newsemantics, simple cooper-
ation modalities〈〈A〉〉 can be combined with “constructive” epistemic operators into
sufficiently expressive formulae. Indeed, the new logicis strictly more expressive than
most existingATL versions for imperfect information, while it retains the same model
checking complexity as the least costly of them. The philosophical dimension of con-
structive knowledge is also natural: the constructive knowledge operators capture the
notion of knowing “de re”, while the standard epistemic operators refer toknowing
“de dicto” . Moreover, it turns out that standard (traditional) knowledge is a special
case of constructive knowledge. Also, the language ofCSL is expressive enough to
enable expressing several other interesting operators in asimple way.

Most of the usual S5 properties (with the notable exception of the truth axiom T)
hold for constructive knowledge. Furthermore, if we slightly restrict the syntax of
CSL, we do not lose expressive power and the schema T becomes a validity.

CSL has novel, meaningful epistemic operators that can be used to capture im-
portant properties of the interaction between knowledge, action and ability. In future
work, we plan to investigate further the expressivity ofCSL, and its relationship with
logics likeETSL, ATL iR, ATEL-R*, ATEL-A, and “UniformSTIT”. A good case study
(together with a more detailed analysis of verification complexity) is essential to de-
termine the applicability of the logic. Also, the (relative) expressive power of various
operators in our semantics seems to be worth further study.

We thank anonymous reviewers of JANCL and AAMAS-06 for theirhelpful re-
marks. Thomas Ågotnes’ work has been supported by the Research Council of Nor-
way under grant 166525/V30. Wojtek Jamroga would also like to thank Jan Broersen,
John-Jules Meyer and Wiebe van der Hoek.
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Appendix: some proofs

Theorem 23

PROOF (STRUCTURAL INDUCTION WITH RESPECT TO THE STRUCTURE OFϕ). —

– M, q |=
CSL
tr(p) iff M, q |=

CSL
p iff p ∈ π(q) iff M, q |=

L
p.

– M, q |=
CSL

tr(¬ϕ) iff M, q 6|=
CSL

tr(ϕ) iff (by induction) M, q 6|=
L
ϕ iff

M, q |=
L
¬ϕ.

– M, q |=
CSL
tr(ϕ∧ψ) iff M, q |=

CSL
tr(ϕ) andM, q |=

CSL
tr(ψ) iff (by induction)

M, q |=
L
ϕ andM, q |=

L
ψ iff M, q |=

L
ϕ ∧ ψ.

– M, q |=
CSL
tr(〈〈A〉〉K(Γ)

gϕ) iff M, q |=
CSL

K̂Γ〈〈A〉〉 gtr(ϕ) iff
M, img(q,∼K

Γ ) |=
CSL

〈〈A〉〉 gtr(ϕ) iff ∃SA
∀Λ∈out(img(q,∼K

Γ
),SA)M,Λ[1] |=

CSL
tr(ϕ)

iff (by induction) ∃SA
∀Λ∈out(img(q,∼K

Γ
),SA)M,Λ[1] |=

ATOL
ϕ iff M, q |=

ATOL

〈〈A〉〉K(Γ)
gϕ.

– For 〈〈A〉〉K(Γ)�ϕ and 〈〈A〉〉K(Γ)(ϕU ψ): analogously. The same for〈〈A〉〉irϕ,

〈〈A〉〉fKϕ, and〈〈A〉〉fKb
ϕ.

– M, q |=
CSL
tr(〈〈A〉〉f gϕ) iff M, q |=

CSL
〈〈A〉〉 gtr(ϕ) iff

∃SA
∀Λ∈out(q,SA)M,Λ[1] |=

CSL
tr(ϕ) iff (by induction) ∃SA

∀Λ∈out(q,SA)

M,Λ[1] |=
F-ATEL

ϕ iff M, q |=
F-ATEL

〈〈A〉〉f gϕ.
– M, q |=

CSL
tr(〈〈A〉〉fMb

gϕ) iff M, q |=
CSL

¬Kb¬〈〈A〉〉 gtr(ϕ) iff
¬∀q′∈img(q,∼b)¬M, q′ |=

CSL
〈〈A〉〉 gtr(ϕ) iff ∃q′∈img(q,∼b)∃SA

∀Λ∈out(q′,SA)M,Λ[1]
|=

CSL
tr(ϕ) iff (by induction) ∃SA

∃q′∈img(q,∼b)∀Λ∈out(q′,SA)M,Λ[1] |=
F-ATEL

ϕ iff

M, q |=
F-ATEL

〈〈A〉〉fMb

gϕ.

– For〈〈A〉〉fMb
�ϕ and〈〈A〉〉fMb

(ϕU ψ): analogously.
– M, q |=

CSL
tr(KAϕ) iff M, q |=

CSL
KAtr(ϕ) iff ∀q′∈img(q,∼K

A
)M, q′ |=

CSL
tr(ϕ)

iff (by induction)∀q′∈img(q,∼K

A
)M, q′ |=

L
ϕ iff M, q |=

L
KAϕ. �
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Theorem 39

PROOF (STRUCTURAL INDUCTION ON THE STRUCTURE OFϕ). — In each case,
we will prove thatM,Q |= Kaϕ impliesM,Q |= ϕ for an arbitraryQ. By Proposi-
tion 16, we can then conclude thatM,Q |= Kaϕ→ ϕ.

To simplify the proof, we assume that eachϕ has been transformed so that no
constructive knowledge operator is followed by conjunction (by Proposition 36.3, each
subformulaK̂A(ψ1 ∧ ψ2) can be equivalently transformed tôKAϕ1 ∧ K̂Aϕ2, and we
can apply this transformation recursively). Thus, everyK̂ in ϕ is now followed either
by some other̂K′, or by 〈〈A〉〉, or by a standard knowledge operatorK′′, or by an
atomic propositionp.

Additionally, givenQ, we defineQ′ = img(Q,∼a). Note thatQ ⊆ Q′ by reflex-
ivity of ∼a. Also,out(Q,SA) ⊆ out(Q′, SA) by monotonicity of functionout wrtQ,
andimg(Q,∼K

A) ⊆ img(Q′,∼K
A) by reflexivity of all∼K

A.

Caseϕ ≡ p: Let M,Q |= Kap. ThenM,Q′ |= p, i.e. ∀q∈Q′M, q |= p. So,
∀q∈QM, q |= p, andM,Q |= p.

Caseϕ ≡ ψ1 ∧ ψ2: LetM,Q |= Ka(ψ1∧ψ2). ThenM,Q′ |= ψ1∧ψ2, i.e.M,Q′ |=
ψ1 andM,Q′ |= ψ2. So,M,Q |= Kaψ1 andM,Q |= Kaψ2. By the induction
hypothesis,M,Q |= ψ1 andM,Q |= ψ2, and henceM,Q |= ψ1 ∧ ψ2.

Caseϕ ≡ 〈〈A〉〉 gψ: Let M,Q |= Ka〈〈A〉〉 gψ. ThenM,Q′ |= 〈〈A〉〉 gψ, and so
∃SA

∀Λ∈out(Q′,SA)M,Λ[1] |= ψ. Thus, ∃SA
∀Λ∈out(Q,SA)M,Λ[1] |= ψ, and

M,Q |= 〈〈A〉〉 gψ.

Casesϕ ≡ 〈〈A〉〉�ψ andϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.

Caseϕ ≡ KAψ: Let M,Q |= KaKAψ. ThenM,Q′ |= KAψ, and∀q∈img(Q′,∼K

A
)

M, q |= ψ. But then also∀q∈img(Q,∼K

A
)M, q |= ψ, andM,Q |= KAψ. �

Before we consider the remaining cases, we define a couple of additional symbols.
LetQi = img(Qi−1,∼Ki

Ai
),Q0 = Q. That is,Qi = img(...(img(Q,∼K1

A1
), ...),∼Ki

Ai
).

Also, letQ′′ = img(Qn,∼a). Note thatQn ⊆ Q′′, andout(Qn, SB) ⊆ out(Q′′, SB)
for anySB.

Caseϕ ≡ K̂nAn
...K̂1

A1
p: (i.e., ϕ is a sequence ofn possibly differentK̂ operators for

possibly different coalitions). LetM,Q |= KaK̂nAn
...K̂1

A1
p. ThenM,Q′′ |= p,

and hence∀q∈Q′′M, q |= p. Thus,∀q∈QnM, q |= p, soM,Qn |= p, and
M,Q |= K̂nAn

...K̂1
A1
p.

Caseϕ ≡ K̂nAn
...K̂1

A1
KBψ: analogous.
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Caseϕ ≡ K̂nAn
...K̂1

A1
〈〈B〉〉 gψ: LetM,Q |= KaK̂nAn

...K̂1
A1

〈〈B〉〉 gψ.
ThenM,Q′′ |= 〈〈B〉〉 gψ, and hence∃SB

∀Λ∈out(Q′′,SB)M,Λ[1] |= ψ.
Thus,∃SB

∀Λ∈out(Qn,SB)M,Λ[1] |= ψ, soM,Qn |= 〈〈B〉〉 gψ, andM,Q |=

K̂nAn
...K̂1

A1
〈〈B〉〉 gψ.

Casesϕ ≡ K̂nAn
...K̂1

A1
〈〈B〉〉�ψ andϕ ≡ K̂nAn

...K̂1
A1

〈〈B〉〉ψ1 U ψ2: analogous. �

Proposition 42

PROOF. —

K Immediate.

D Suppose thatM,Q |= loc ⊥ for someQ 6= ∅. Then, there is someq for which
M, q |= ⊥, but this contradicts Proposition 16.1.

T To see thatT is not strongly valid, letϕ andM be as in Lemma 38.1, and take
Q = img(q,∼a). M,Q |= loc ϕ, butM,Q 6|= ϕ.

4/4+ M,Q |= loc ϕ iff for every q ∈ Q we have thatM, q |= ϕ iff for every q ∈ Q
we have thatM, q |= loc ϕ iff M,Q |= loc loc ϕ.

5/5+ To see that5 is not strongly valid, letM be as in Figure 5,ϕ = p and let
Q = {q, q′}. M,Q |= ¬loc ϕ becauseM, q′ |= ¬ϕ. However, if it were the
case thatM,Q |= loc ¬loc ϕ, thenM, q |= ¬loc ϕ and thus,M, q |= ¬ϕ, which
is not the case.

B M,Q |= ϕ iff for all q ∈ Q we have thatM, q |= ϕ iff for all q ∈ Q we have that
M, q |= ¬loc ¬ϕ iff M,Q |= loc ¬loc ¬ϕ. �

Theorem 56

PROOF. —

K̃: We construct a counterexample. LetM be a model with statesq1, q2 and agenta,
such thatq1 ∼a q2, π(q1) = {r} andπ(q2) = {p}. Letϕ = ¬p andψ = r. p 6∈
π(q1) ∩ π(q2), soM, img(q1,∼a) |= ϕ andM, q1 |= Kaϕ. r 6∈ π(q1) ∩ π(q2),
soM, img(q1,∼a) 6|= ψ andM, q1 6|= Kaψ. Thus,M, q1 6|= Kaϕ → Kaψ and
by Proposition 53:M, q1 6|= Kaϕ  Kaψ (*). Since bothM, q1 |= ϕ → ψ
andM, q2 |= ϕ → ψ, by Proposition 50,M, img(q1,∼a) |= ϕ  ψ and thus
M, q1 |= Ka(ϕ ψ). Together with (*), we get thatM, q1 6|= Ka(ϕ ψ) →
(Kaϕ  Kaψ) and, by Proposition 53,M, q1 6|= Ka(ϕ  ψ)  (Kaϕ  

Kaψ). Thus,K̃ is not weakly (and hence not strongly) valid.
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T̃: Let M, q, a, ϕ be as in Lemma 38.2.M, q |= Kaϕ andM, q 6|= ϕ, soM, q 6|=

Kaϕ  ϕ by Proposition 53. Thus,̃T is not weakly (and hence not strongly)
valid.

4̃
+/4̃: M,Q |= Kaϕ ! KaKaϕ iff, by Proposition 50,∀q∈Q(M, q |= Kaϕ ⇔

M, q |= KaKaϕ) iff, by 4
+, ∀q∈Q(M, q |= Kaϕ⇔M, q |= Kaϕ).

5̃
+/5̃: M,Q |=∼ Kaϕ ! Ka ∼ Kaϕ iff, by Proposition 50,∀q∈Q(M, q |=∼

Kaϕ ⇔ M, q |= Ka∼Kaϕ) iff ∀q∈Q(M, img(q,∼a) 6|= ϕ ⇔ M, img(q,∼a)
|=∼ Kaϕ) iff ∀q∈Q(M, img(q,∼a) 6|= ϕ ⇔ ∀q′∈img(q,∼a)M, img(q′,∼a) 6|=
ϕ) which is true, sinceimg(q′,∼a) = img(q,∼a) for anyq′ ∈ img(q,∼a).

D̃: M,Q |=∼Ka−−−
≀ iff ∀q∈QM, q 6|= Ka−−−

≀ iff ∀q∈QM, img(q,∼a) 6|= −−−
≀ , which is

true by Proposition 51.1.

B̃: M,Q |= ϕ Ka∼Ka∼ϕ iff ∀q∈Q(M, q |= ϕ⇒
M, img(q,∼a) |=∼ Ka ∼ ϕ) iff ∀q∈Q(M, q |= ϕ ⇒ ∀q′∈img(q,∼a)M, q′ 6|=
Ka ∼ ϕ) iff ∀q∈Q(M, q |= ϕ ⇒ ∀q′∈img(q,∼a) M, img(q′,∼a) 6|=∼ ϕ) iff
∀q∈Q(M, q |= ϕ ⇒ ∀q′∈img(q,∼a)∃q′′∈img(q′,∼a)M, q′′ |= ϕ) iff ∀q∈Q(M, q |=
ϕ⇒ ∃q′∈img(q,∼a)M, q′ |= ϕ). This always holds, by takingq′ = q. �

Theorem 60 and Corollary 61 (Constructive Normal Form) and Theorem 62
(Expressiveness of Strong Negation)

In the following we will very often work in the languageL(¬,∧, 〈〈A〉〉T, K̂A, ∼),
and we will henceforth use the shorthand notationL̂ to denote this language, for sim-
plicity.

We useSubf (ϕ) to denote the set of all subformulae ofϕ (includingϕ itself). For
simplicity, we assume that each subformula of a formula isunique, i.e. that there is a
unique member ofSubf (ϕ) for each occurrence of a subformula inϕ13.

We first present intermediate definitions and results leading up to the main result
in Theorem 60. Note that Lemma 65 below gives an alternative (equivalent) definition
of constructive normal form.

DEFINITION 63. —We define thedepthdϕ(ψ) of a subformulaψ ∈ Subf (ϕ) of a
formulaϕ ∈ L̂ in the usual way:

– dϕ(ϕ) = 0

– dϕ(K̂γ) = d⇒ dϕ(γ) = d+ 1
– dϕ(〈〈G〉〉Tγ) = d⇒ dϕ(γ) = d+ 1
– dϕ(γ1 ∧ γ2) = d⇒ dϕ(γ1) = dϕ(γ2) = d+ 1

13. This can be achieved by, e.g., adorning the subformulae with unique identifiers, or by taking
Subf (ϕ) to be a multiset instead of a set. The only reason for this assumption is to make proofs
simpler.
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– dϕ(¬γ) = d⇒ dϕ(γ) = d+ 1
– dϕ(∼γ) = d⇒ dϕ(γ) = d+ 1

LEMMA 64. — A formulaψ ∈ L̂ is of CSNF iff everyγ ∈ Subf (ψ) is of CSNF.

PROOF. — The implication to the left is trivial; we prove the one to theright. As-
sume thatψ is of CSNF. That eachγ ∈ Subf (ψ) is of CSNF follows immediately by
induction on the depth ofγ:

– dψ(γ) = 0: γ = ψ is of CSNF
– dψ(γ) = d+ 1 (d ≥ 0). We reason by the possible cases:

- dψ(K̂γ) = d: by the induction hypothesiŝKγ is of CSNF, and thusγ is of
CSNF.

- dψ(〈〈G〉〉Tγ) = d: 〈〈G〉〉Tγ is of CSNF;γ is of CSNF.
- dψ(γ ∧ γ′) = d: γ ∧ γ′ is of CSNF;γ is of CSNF. Similarly when

dψ(γ′ ∧ γ) = d.
- dψ(¬γ) = d: ¬γ is of CSNF;γ is of CSNF.
- dψ(∼γ) = d: ∼γ is of CSNF;γ is of CSNF. �

LEMMA 65. — A formulaψ ∈ L̂ is of CSNF iff everŷKγ ∈ Subf (ψ) is of the form
K̂K̂0 · · · K̂kα whereα ∈ Atoms, for somek ≥ 0.

PROOF. — For the direction to the right, assume that there is aK̂γ ∈ Subf (ψ)
which is not of the form. There are two possibilities:γ = K̂0 · · · K̂m¬β or γ =
K̂0 · · · K̂mβ1 ∧ β2 for somem ≥ 0. In either case, it follows immediately that̂Kγ is
not of CSNF. By Lemma 64,ψ is not of CSNF.

For the direction to the left, assume that everyK̂γ ∈ Subf (ψ) is of the form. We
show that everyχ ∈ Subf (ψ) is of CSNF by structural induction:

– χ = p ∈ Θ: χ is of CSNF.
– χ = K̂γ: by the induction hypothesis,γ is of CSNF. By assumption,γ =

K̂0 · · · K̂kα for someα ∈ Atoms and somek ≥ 0. Thus,χ is of CSNF.
– χ = 〈〈A〉〉Tγ: by the induction hypothesis,γ is of CSNF, and thusχ is of CSNF.
– χ = γ1 ∧ γ2: by the induction hypothesis,γ1 andγ2 are of CSNF, and thusχ is

of CSNF.
– χ =∼γ: by the induction hypothesis,γ is of CSNF and thusχ is of CSNF.
– χ = ¬γ: by the induction hypothesis,γ is of CSNF and thusχ is of CSNF. �

Now that we have established some properties of formulae of CSNF, we go on to
define the mapping of a formula to one of CSNF.
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DEFINITION 66. —The valuef(K̂ψ) of the functionf : {K̂ψ : ψ ∈ L̂} → L̂ is
defined by structural induction overψ:

f(K̂ψ) = K̂ψ whenψ ∈ Atoms

f(K̂K̂′γ) = K̂K̂′γ

f(K̂¬γ) = ¬f(K̂γ)

f(K̂(γ1 ∧ γ2)) = f(K̂γ1) ∧ f(K̂γ2)

LEMMA 67. — Letβ ∈ L̂ be a formula.β is of CSNF ifff(K̂β) is of CSNF for any
arbitrary K̂ ∈ {CA,DA,EA : A ⊆ Σ}.

PROOF. — Let K̂ ∈ {CA,DA,EA : A ⊆ Σ}. The proof is by structural induction
overβ:

– β = p ∈ Θ: β is of CSNF ifff(K̂β) = K̂p is of CSNF.
– β = K̂′γ: β is of CSNF ifff(K̂β) = K̂K̂′γ is of CSNF.
– β = 〈〈A〉〉Tγ: β is of CSNF ifff(K̂β) = K̂〈〈A〉〉Tγ is of CSNF.
– β = γ1 ∧ γ2: β is of CSNF iff bothγ1 andγ2 are of CSNF iff, by the induction

hypothesis, bothf(K̂γ1) andf(K̂γ2) are of CSNF ifff(K̂β) is of CSNF.
– β =∼γ: β is of CSNF ifff(K̂β) = K̂β is of CSNF.
– β = ¬γ: β is of CSNF iffγ is of CSNF iff, by the induction hypothesis,f(K̂γ)

is of CSNF iff¬f(K̂γ) is of CSNF ifff(K̂¬γ) is of CSNF. �

LEMMA 68. — For anyψ ∈ L̂,

K̂ψ ↔ f(K̂ψ)

is strongly valid for anŷK ∈ {CA,DA,EA : A ⊆ Σ}.

PROOF. — The proof is by structural induction overψ. Whenψ ∈ Atoms or ψ =
K̂′γ, f(K̂ψ) = K̂ψ, and we are done. Whenψ = ¬γ,M,Q |= K̂ψ iff, by Proposition
36,M,Q |= ¬K̂γ iff M,Q 6|= K̂γ iff, by the induction hypothesis,M,Q 6|= f(K̂γ)
iff M,Q |= ¬f(K̂γ) iff M,Q |= f(K̂ψ). Whenψ = γ1 ∧ γ2, M,Q |= K̂ψ iff,
by Proposition 36,M,Q |= K̂γ1 andM,Q |= K̂γ2 iff, by the induction hypothesis,
M,Q |= f(K̂γ1) andM,Q |= f(K̂γ2) iff M,Q |= f(K̂ψ). �

DEFINITION 69 (ϕi, Xi, αi). — Letϕ ∈ L̂ be a formula. Defineϕi, i ≥ 0:

– i = 0: ϕ0 = ϕ
– i = j + 1 (j ≥ 0): LetXi = {K̂ψ : K̂ψ ∈ Subf (ϕj), K̂ψ is not of CSNF}. If

Xi is empty, letϕj+1 = ϕj . Otherwise, select anαi ∈ Xi such thatβ ∈ Xi implies
that dϕj

(β) ≤ dϕj
(αi) (several suchαi may exist; select one arbitrarily), and let

ϕj+1 beϕj with the subformulaαi replaced byf(αi).

LEMMA 70. — Letϕ ∈ L̂, and letαi be defined in Def. 69. For eachi ≥ 1, f(αi)
is of CSNF.
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PROOF. — Letαi = K̂ψ. We show that for everyγ ∈ Subf (ψ), f(K̂γ) is of CSNF
by structural induction overγ:

– γ = p ∈ Θ: f(K̂γ) = K̂p is of CSNF.
– γ = K̂′β: f(K̂γ) = K̂K̂′β is of CSNF iff K̂′β is of CSNF. Assume that̂K′β is

not of CSNF, thenγ ∈ Xi. Thendϕi−1
(γ) > dϕi−1

(αi), but this is a contradiction
since there are noγ ∈ Xi with greater depth thanαi. Thus,f(K̂γ) is of CSNF.

– γ = 〈〈G〉〉Tβ: By the induction hypothesis,f(K̂β) is of CSNF; by Lemma 67
β is of CSNF;〈〈G〉〉Tβ is of CSNF;K̂〈〈G〉〉Tβ = f(K̂γ) is of CSNF.

– γ = γ1 ∧ γ2: By the induction hypothesis,f(K̂γ1) andf(K̂γ2) are of CSNF;
f(K̂γ1) ∧ f(K̂γ2) is of CSNF;f(K̂γ) is of CSNF.

– γ = ¬β: By the induction hypothesis,f(K̂β) is of CSNF;¬f(K̂β) is of CSNF;
f(K̂γ) is of CSNF.

– γ =∼ β: By the induction hypothesis,f(K̂β) is of CSNF; by Lemma 67β is
of CSNF;γ is of CSNF;K̂γ = f(K̂γ) is of CSNF. �

LEMMA 71. — Letϕ ∈ L̂, and letϕi be defined in Def. 69. There is ap ≥ 1 such
thatϕp = ϕp−1 andXp = ∅. We writeϕ̂ = ϕp for an arbitrary suchp.

PROOF. — X1 is finite. We show thatXi+1 ⊂ Xi (proper inclusion) wheneverϕi 6=
ϕi−1, for anyi ≥ 1. The Lemma follows.

Let ϕi 6= ϕi−1. Assume that there is anα ∈ Xi+1, α 6∈ Xi. α is not of
CSNF, and sinceα ∈ Subf (ϕi) andα 6∈ Subf (ϕi−1) the only possibility is that
α ∈ Subf (f(αi)). But by Lemma 70,f(αi) is of CSNF, and by Lemma 64α must
be of CSNF which is a contradiction. Thus,Xi+1 ⊆ Xi. To see that the inclusion is
proper, observe thatαi ∈ Xi butαi 6∈ Xi+1. �

PROOF (OF THEOREM 60). — Letϕ′′ ∈ L∗, and letϕ′ be the result of replacing
every occurrence ofK in ϕ′′ with the combination̂K ∼∼, for everyK. Letϕ be the
result of replacing every occurrence ofloc in ϕ′ with the combination∼∼. ϕ′′ andϕ
are strongly equivalent by Remark 49. Observe thatϕ ∈ L̂. Let ϕ̂ = ϕp be defined
fromϕ as in Lemma 71.

First, we argue that̂ϕ is of CSNF. If not, there is âKγ ∈ Subf (ϕ̂) whereγ is
not of the formK̂0 · · · K̂kα for α ∈ Atoms (Lemma 65). Then,̂Kγ is not of CSNF,
which contradicts the fact thatXp = ∅. Second, we show that̂ϕ ↔ ϕ is strongly
valid. Let i ≥ 1. By Lemma 68,M,Q |= αi iff M,Q |= f(αi) for anyM,Q. It
follows immediately thatM,Q |= ϕi iff M,Q |= ϕi+1. Thus,M,Q |= ϕ = ϕ0 iff
M,Q |= ϕ̂ = ϕp. Thus,ϕ̂ is of CSNF, and it is equivalent toϕ. �

PROOF (OF COROLLARY 61). — Letϕ ∈ L∗. By the theorem,ϕ is strongly equiv-
alent to a formulâϕ which is of CSNF. Now, we recursively replace all subformulae
of ϕ̂ of the form ∼ψ with 〈〈∅〉〉(¬ψ)U (¬ψ), yielding (by Proposition 44) a strongly
equivalent formulaϕ′ without strong negation. We observe that subformulae of CSNF
are replaced with subformulae of CSNF, soϕ′ is of CSNF too. �

We now go on to present our proof of Theorem 62. Some more notation: when
ϕ ∈ L̂, we useϕ̃ to denote the result of replacing each occurrence of¬ in ϕ with ∼.
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Formally,p̃ = p; K̃aψ = Kaψ̃; ˜〈〈G〉〉Tψ = 〈〈G〉〉T ψ̃; ψ̃1 ∧ ψ2 = ψ̃1 ∧ ψ̃2; ¬̃ψ =∼ ψ̃;
∼̃ψ =∼ ψ̃.

We begin with defining the notion ofconstructive depthof a subformula – not to
be confused with the notion ofdepthin the proof of Theorem 60.

DEFINITION 72 (CONSTRUCTIVE DEPTH). — Letϕ ∈ L̂. Theconstructive depth,
or just c-depth,Dϕ(ψ) in ϕ of a subformulaψ ∈ Subf (ϕ) is defined inductively as
follows:

– Dϕ(ϕ) = 0

– Dϕ(K̂γ) = D ⇒ Dϕ(γ) = D + 1
– Dϕ(〈〈G〉〉Tγ) = D ⇒ Dϕ(γ) = 0
– Dϕ(γ1 ∧ γ2) = D ⇒ Dϕ(γ1) = Dϕ(γ2) = D
– Dϕ(¬γ) = D ⇒ Dϕ(γ) = D
– Dϕ(∼γ) = D ⇒ Dϕ(γ) = 0

If ϕ has no occurrence of¬ on c-depthD, i.e., if ¬ψ ∈ Subf(ϕ) implies that
Dϕ(¬ψ) 6= D, we say thatϕ is free of¬ on depthD.

LEMMA 73. — If a formulaϕ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼) is free of¬ on all depths
> 0, then

ϕ↔ ϕ̃

is valid.

PROOF. — We show that

ψ ↔ ψ̃ is

{
valid if Dϕ(ψ) = 0
strongly valid ifDϕ(ψ) > 0

for all ψ ∈ Subf (ϕ) by structural induction.

ψ = p: immediate (̃ψ = ψ).

ψ = K̂Aγ: Dϕ(γ) > 0. M,Q |= ψ iff M, img(Q,∼K
A) |= γ iff, by the induction

hypothesis,M, img(Q,∼K
A) |= γ̃ iff M,Q |= KAγ̃ iff M,Q |= ψ̃.

ψ = 〈〈G〉〉�γ: M,Q |= ψ iff ∃SG
∀Λ∈out(Q,SG)∀j≥0M,Λ[j] |= γ iff, by the induction

hypothesis (forγ, whereDϕ(γ) = 0), ∃SG
∀Λ∈out(Q,SG)∀j≥0M,Λ[j] |= γ̃ iff

M,Q |= 〈〈G〉〉�γ̃. Similar for the otherATL connectives.

ψ = γ1 ∧ γ2: First, consider the case thatDϕ(ψ) = 0, in which caseDϕ(γ1) =

Dϕ(γ2) = 0. We must show thatψ ↔ ψ̃ is valid. M, q |= ψ iff M, q |= γ1

andM, q |= γ2 iff, by the induction hypothesis,M, q |= γ̃1 andM, q |= γ̃2

iff M, q |= γ̃1 ∧ γ̃2. Second, consider the case thatDϕ(ψ) > 0, in which case
Dϕ(γ1) > 0 andDϕ(γ2) > 0. We must show thatψ ↔ ψ̃ is strongly valid.
M,Q |= ψ iff M,Q |= γ1 andM,Q |= γ2 iff, by the induction hypothesis,
M,Q |= γ̃1 andM,Q |= γ̃2 iff M,Q |= γ̃1 ∧ γ̃2.
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ψ = ¬γ: By the assumption in the lemma,Dϕ(ψ) = 0. Then alsoDϕ(γ) = 0.
M, q |= ψ iff M, q 6|= γ iff, by the induction hypothesis,M, q 6|= γ̃ iff M, q |=
∼ γ̃.

ψ =∼γ: M,Q |= ψ iff ∀q∈QM, q 6|= γ iff, by the induction hypothesis (forγ, where
Dϕ(γ) = 0), ∀q∈QM, q 6|= γ̃ iff M,Q |=∼ γ̃. �

PROOF (OF THEOREM 62). — Letϕ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼) be a formula, and let
ϕ̂ be a formula of CSNF equivalent toϕ. Note thatϕ̂ ∈ L(¬,∧, 〈〈A〉〉T, K̂, ∼). We
show that

Dϕ̂(ψ) > 0 ⇒ ψ ∈ Atoms orψ = K̂γ (3)

for everyψ ∈ Subf (ϕ̂) by induction over the depth (not the constructive depth) ofψ,
for arbitraryγ andK̂. For the base case, letψ = ϕ̂ and (3) is vacuously true. In the
inductive case assume that (3) holds for the parent ofψ. There are three circumstances
in whichDϕ̂(ψ) > 0. First, K̂ψ ∈ Subf (ϕ̂). Then,ψ ∈ Atoms or ψ is of the form
Kbγ, sinceϕ̂ is of CSNF. Second,¬ψ ∈ Subf (ϕ̂) with Dϕ̂(ψ) = Dϕ̂(¬ψ). By the
induction hypothesis, it must be the case thatDϕ̂(¬ψ) = 0, so (3) is vacuously true.
Third, ψ ∧ ψ′ ∈ Subf (ϕ̂) with Dϕ̂(ψ) = Dϕ̂(ψ′) = Dϕ̂(ψ ∧ ψ′). By the induction
hypothesis, it must be the case thatDϕ̂(ψ∧ψ′) = 0, so (3) is vacuously true. Similarly
for the caseψ′ ∧ ψ. This shows that̂ϕ is free for¬ on all depths> 0, and thusϕ is
equivalent toϕ̂which is equivalent tõ̂ϕ by Lemma 73 which is without weak negation.

�


