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ABSTRACT.We propose a non-standard interpretation of Alternatimyet Temporal Logic with
imperfect information, for which no commonly accepted s@ios has been proposed yet.
Rather than changing the semantic structures, we generdiie usual interpretation of for-
mulae insinglestates tosetsof states. We also propose a new epistemic operator for ‘prac
cal” or “constructive” knowledge, and we show that the newjilo(which we call Constructive
Strategic Logic) is strictly more expressive than mostigdsolutions, while it retains the same
model checking complexity. Finally, we study propertiesmfstructive knowledge and other
operators in this non-standard semantics.

KEYWORDSAIlternating-time Temporal Logic, strategic ability, inrfect information, epistemic
logic.

1. Introduction

Modal logics of strategic ability (Alur, Henzinger et Kupfiean 1997, Alur, Hen-
zinger et Kupferman 2002, Pauly 2000, Pauly 2002) form ortkefields where logic
and game theory can successfully meet. The logics havemdsaible worlds seman-
tics, are axiomatizable, and have some interesting cortipogd properties. More-
over, they are underpinned by a clear and intuitively appgalonceptual machinery
for modeling and reasoning about systems that involve pialiutonomous agents.
The basic notions, used here, originate from temporal I¢igec the logic of time
and computation) (Prior 1967, Emerson 1990, Fisher 200®) céassical game the-
ory (von Neumann et Morgenstern 1944, Nash 1950, Osborneilgin&ein 1994)
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which emerged in an attempt to give precise meaning to cormseaore notions like
choices, strategies, or rationality — and to provide formalels of interaction be-
tween autonomous entities. Modal logics that embody beeicegtheory notions —
and at the same time build upon branching-time temporat#giell known and
studied in the context of computational systems — seem a gtaoting point for in-

vestigating multi-agent systems.

Alternating-time Temporal LogicATL ), proposed in (Aluet al. 1997) and further
developed in (Alur, Henzinger et Kupferman 1998, Adtral. 2002), is probably the
most important logic of strategic ability that has emergeddcent years. The key
elements ofATL are so calledtooperation modalitieg A)), one for each possible set
of agentsA. Informally, the meaning of A))¢ is that the groupd has a joint strategy
to ensure that, no matter what the other agentsdwill become true. However,
ATL considers only agents that possess perfect informationtahe current state
of the world, and such agents seldom exist in reality. On therohand, imperfect
information and knowledge are addressed in epistemic iagimatural way (Halpern
1995). A combination oATL and epistemic logic, calledlternating-time Temporal
Epistemic Logi¢ATEL), was introduced in (van der Hoek et Wooldridge 2002, van der
Hoek et Wooldridge 2003) to enable reasoning about agetitsyaender imperfect
information. Still, it has been pointed out in several pagamroga 2003, Jamroga et
van der Hoek 2004, Jonker 2003, Agotnes 2004) that the mgarinTEL formulae
can be counterintuitive. Most importantly, an agent’s iabtio achieve propertyy
should imply that the agent has enough control and knowl&algkentifyandexecute
a strategy that enforces

EXAMPLE 1. — Let us consider a variant of the example from (Schobb&gg R

There is a bankér (who knows the code that opens the safe), and a rabyéio does
not know the code. The banker can also change the code, amiekesd from time
to time. If a person is in the vault, and types the code cdyeitte safe opens. If
incorrect code is typed, the vault door closes, jailing teespn inside.

Intuitively, there is no feasible plan for to quickly open the safe whenever he
wants to (unless he threatens or corrupts the banker tolieeode). Reason: what-
ever the current code is, the vault looks the same, tand a sensible plan should
specify the same choices in indistinguishable situatiottsefwise the plan cannot be
executed). On the other hand, thése behavior specification (formally: a function
from states to actions) that allowso rob the bank, and it reads as follows: “if you are
outside then enter the vault; if you are inside and the co@6(80 then type00000;
if the code is00001 then type00001 etc.”. Clearly, not every specification like this
makes up a strategy that can be executed by the player. Thatséd are sometimes
calleduniform strategiesand are required to prescribe the same choices in indistin-
guishable state’s.Unfortunately ATEL accepts all functions from states to actions as

1. This very much in agreement with game-theoretical treatrof games with imperfect infor-
mation. A strategy in such games is a function friofiormation setgi.e., sets of indistinguish-
able states) to actions.
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a strategies, which does not blend well with the assumpliaha@gents’ knowledge is
limited.

It should be noted that it is not always enough to restriettetries to uniform ones.
Consider a situation whenhas set the code 28087 and gone for lunch (so he will
not change it again for a while), amds now standing in front of the safe. Obviously,
there is a uniform strategy forthat leads to opening the safe, namely: “ty23687,
regardless of anything”. The robber even knows that suclteessful strategy exists.
On the other hand, he does not know which strategy it is (lexhe does not know
what the current state is), and thus he does not have the¢yabilopen the safe for
sure. O

Reasoning about the collective abilities of teams requéves more sophisticated
concepts.

EXAMPLE 2. — Suppose that, instead of a single robbera gang of robbers
r1, ..., Ty IS Operating. If they can discuss their plans before acthrey, can share their
individual information about the current state of affamsrder to determine the best
strategy (which seems to somehow be related to the notialistrfbuted knowledge
from epistemic logic). If they have to coordinate on the flyth@ut communicating,
then it is desirable that they all can separately identieygame winning strategy, and
they all know that the others can identify this strategy, #ral/ all know that they
all know etc. (which looks very much likeommon knowledge Thus, there seems
to be no single notion of collective knowledge that sufficesdll possible scenarios
involving collective strategic ability. O

ExamMPLE 3. — Let us also consider an industrial company that wantsatid gro-
duction, and looks for a good strategy when and how it shoald.dSuch a strategy
is feasible if it can be carried out by the compang.( by its management and em-
ployees). However, it does not have to peparedby members of the company
themselves. In many cases, a consulting firm is hired to wotkle best plan. Then,
it is enough that members of the consulting firm can work oub@dgstrategy which
can be executed by the management and employees of theriabosipany. [

A number of logics were proposed to capture these, and sjrpilaperties (Jam-
roga 2003, Jamrogat al. 2004, Schobbens 2004, Jonker 2003, van Otterloo et Jonker
2004, Herzig et Troquard 2006), yet none of them seems tivaatk definitive so-
lution. Most of the solutions agree that only uniform stgigs should be taken into
account ¢f. Example 1). However, in order to identify a successful etygtthe agents
must consider not only the possible courses of action staftom the current (actual)
state of the system, but also from states that the agent®tdistinguish from the
current one. There are many variants here, especially wiempgpistemics is con-
cerned, as Examples 2 and 3 demonstrate. The agents maydraweoa, mutual,
or distributed knowledgeabout a strategy being successful, or they may be hinted
the right strategy by a distinguished member (the “boss8ytagroup (“headquarters

2. See Section 2.2 for precise definitions.
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committee”) or even another group of agents (“consultingngany”) etc. In other
words, there are many subtle cases in which the (subjegtpadsible) initial situa-
tions should be represented with different sets of statesieSexisting solutions treat
only some of the cases (albeit often in an elegant way), wthdeothers offer a very
general treatment of the problem at the expense of an owenbllagical language
(which is by no means elegantQur aim is to come up with a logic of ability under
imperfect information, which is both general and eleg®t.“general”’, we mean that
it allows to characterize as many meaningful levels of sgiatability as possible (and
at least as many asroL (Jamrogeet al. 2004)). In particular, it should enable the
distinction between various readings of knowing a strateigyre” and “de dicto” for
individual as well as collective players. By “elegant”, weeam that it allows us to
express various levels of ability lgompositiorof epistemic operators with strategic
operators, instead of assigning a specialized modalitye@oyeconceivable combina-
tion.

To achieve this, we build our proposal around new episterperators for what
we call “practical” or “constructive” knowledge. The ideashbeen inspired by the
tradition of constructivismwhich argues that one must find (or “construct”) a math-
ematical object to prove that it exists (Troelstra 1991)tHa same spirit, agent$
constructively knowhat (( B)) ¢ if they can present a strategy fé that guarantees
achievingy. The logic which we propose in this paper has a fairly nomesad se-
mantic interpretation. We use the same semantic structiiaésvere used before for
ATEL, ATOL, ATL . etc.; however, in our semantics formulae are interpreted sets
of statesrather than single states. This reflects the intuition that“tonstructive”
ability to enforcep means that the agents in question have a single stratedyrthgs
abouty for all subjectively possible initial situations — and not merélgtta success-
ful strategy exists foeachinitial situation (because those could be different sgizte
for different situations). To do it in a flexible and generayythe type of satisfac-
tion relation in our proposal forces one to specify the senitial states explicitly. In
consequence, we write/, ) = (A) ¢ to express the fact that must have a strategy
which is successful for all states in a set of stdpes

Semantically, the constructive knowledge operators yseld of states for which
a single evidencd.€., a successful strategy) should be presented (instead ciiclge
if the required property holds in each of the states sepgréitee standard epistemic
operators do). For exampl/, ¢ = K, ((a)¢ holds iff (a))¢ is satisfied byM, Q,
where( is the set of states which agentannot distinguish frong. We point out
that the new operators capture the notion of knowing “dewsille the standard epis-
temic operators refer to knowing “de dicto”. We call the féag logic Constructive
Strategic LogiqcsL) to emphasize that, in order to pro¥é, Q = ¢ true, one must
produce “constructive” evidence for all possible case® jmather than “circumstan-
tial” evidence that deals with every cage () separately.

We begin with a short presentation of Alternating-time Temah Logic and the
attempts that have been made to extend to scenarios with imperfect information
(Section 2). In Section 3 we present the main contributiothisf paper: a new, non-
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standard semantics for the logic of strategic ability, infipet information and knowl-
edge. We show that it is strictly more expressive than thetiexg solutions, with
the possible exception &TsL (Section 4), while it retains the same model checking
complexity (Section 5). Then, in Section 6, we study the prtps of constructive
knowledge itself. It turns out that, when “standard” knodgde is assumed to be S5,
constructive knowledge is KD45. Moreover, a simple syrni¢attestriction is suffi-
cient to guarantee validity of axiom T for constructive kriedge. In Section 7 we
show that standard knowledge is definable from construgt@vledge. We also
observe that, when we allow a formula to be interpreted inteokstates, several
definitions of negation (corresponding to different waysjo&ntifying over the set)
are possible. We introduce and discuss such alternativatineg and related opera-
tors. Finally, in Section 8 we investigate the relative egsiveness of some of these
operators in detail, and we define a normal form for formule@un language.

Some preliminary results of this research have been rapantgJamroga et
Agotnes 2005b, Jamroga et Agotnes 2006b).

2. What agents can achieve

Alternating-time Temporal LogieTL (Alur et al. 1997, Aluret al. 1998, Aluret
al. 2002) was introduced by Alur, Henzinger and Kupferman ireotd capture prop-
erties ofopen computational systenfsuch as computer networks), where different
components can act autonomously. Computations in suctregsire effected by the
components’ combined actions. AlternativelyL can be seen as a logic for systems
involving multiple agents, that allows one to reason abduwtagents can achieve in
game-like scenarios. AsrL does not include imperfectinformation in its scope, it can
be seen as a logic for reasoning about agents who always bavaglete knowledge
about the current state of affairs.

2.1. ATL: ability in perfect information games

ATL can be understood as a generalization of the branching émedral logic
cTL (Clarke et Emerson 1981, Emerson 1990), in which path diienstare replaced
with so calledcooperation modalities The formula{(A)y, where A is a coalition
of agents, expresses thathave a collective strategy to enforge ATL formulae
include temporal operatorsC)” (“in the next state”) ] (“always from now on”) and
U (“until”). Operator$ (“now or sometime in the future”) can be defined{@s =
TU p. Similarly to cTL, every occurrence of a temporal operator is immediately
preceded by exactly one cooperation moddlitfhe broader language ofrL*, in
which no such restriction is imposed, is not discussed mhper.

3. The logic to which such a syntactic restriction appliesasetimes calledvanilla” ATL
(resp. “vanilla”cTL etc.).
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Formally, the recursive definition efrL formulae is:

pu=pl-p|ene| (A)O¢ | (ANOe | (Aol ¢
whereA is a set of agents.

ExampleATL properties are:((jamesbond))Owin (James Bond has an infallible
plan to eventually win), andjamesbond, bondsgirl)funl{ shot-at (Bond and his
current girlfriend have a collective way of having fun ustimeone shoots at them).

A number of semantics have been defined far, most of them equiva-
lent (Goranko 2001, Goranko et Jamroga 2004). In this paperuse a vari-
ant of concurrent game structure@CGss) as models. AcGs is a tupleM =
(Agt, St, 11, w, Act, d, o) which includes a nonempty finite set of all agesist =
{1,...,k}, a nonempty set of stateSt, a set of atomic propositiond, a valua-
tion of propositionsr : St — P(II), and a set of (atomic) actionéct. Function
d : Agt x St — (P(Act) \ 0) defines nonempty sets of actions available to agents
at each state, andis a (deterministic) transition function that assigns thiicome
stateq’ = o(q, a1, . . ., o) to stateg and a tuple of action8vy, . . ., ax), a; € d(i, q),
that can be executed bygt in ¢q. A strategys, of agenta is a conditional plan that
specifies what: is going to do for every possible situation; : St — Act such
thats,(¢) € d(a,q). A collective strategy54 for a group of agents! is a tuple of
strategies, one per agent frafn

REMARK 4. — This is a deviation from the original semantics/af. (Alur et al.
1997, Aluret al. 1998, Aluret al.2002), where strategies assign agents’ choiceso
gquence®f states, which suggests that agents can by definitionl tealvhole history
of each game. Both types of strategies yield equivalent sgasafor “vanilla” ATL,
but the choice of one or the other notion of strategy doestitie semantics of the full
ATL* and mostaTL variants for games with imperfect information (SchobbedE4).
The main reason why we use “memoryless” strategies hereatsntlodel checking
strategic abilities of agents with perfect recall and infpetrinformation is believed to
be undecidablecf. Section 2.10). O

A pathA in modelM is an infinite sequence of states that can be effected by subse
quent transitions, and refers to a possible course of agioa possible computation)
that may occur in the system; byfi|, we denote théth position on path\. Function
out(q, Sa) returns the set of all paths that may result from agenésecuting strategy
S 4 from stateg onward:

out(q,Sa) = {\ = qoq1q2..- | g0 = ¢ and for everyi = 1,2, ... there exists a tuple
of agents’ decisionéay, ..., ay) such thatv, = Sa(a)(g;—1) for eacha € A,
anda, € d(a,q;—1) foreacha ¢ A, ando(q;—1, a1, ..., ) = ¢; }.

Informally speaking, ¢ = ((A)) ¢ iff there is a collective strateg§ 4 such that
» holds for everyA € out(q, S4). Formally, the semantics @ffL formulae can be
given via the following clauses:
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M,qEp iff pemn(q) (for p € 1I);
M,q =~y iff M, ql~ @
M,qlE=ony iff M,qF=pandM,q k=,

M,q E (A >> ¢ iff there is a collective strategy4 such that, for evenA €
out(q,Sa), we haveM, A[1] = ¢;
{

M,q |: (A)Oyp  iff there existsS4 such that, for ever\ € out(q, S4), we have

M, Afi] for everyi > 0;

M,q = (A)eU 1 iff there existsS4 such that for ever\\ € out(q, Sa) there is
ani > 0, for which M, A[i] =+, andM, A[j] |= ¢ for every0 < j < i.

nopftypel

nopftypel

open aiI ope ail
nop,nop nop,nop nop,nop nop,nop

Figure 1. The banker and the robber: (A) concurrent game structufefor the per-
fect information case; (B) concurrent epistemic game s$tmec)M, for the imperfect
information case

ExamMPLE 5. — Consider a simple formalization of the scenario from gk 1,
presented in Figure 1A. First, the banker sets the code herditor 1, and walks
away. Then, the robber tries to open the safe by typing a numibéhe number
is correct, the safe opens; otherwise the robber is jailethénvault. Nodes in the
graph represent global states of the system. Transitiankbeled by combinations
of actions fromb, r, andnop stands for “no operation” or “do nothing” (formallypp

is just another action).

ATL addresses agents with perfect information, so the follgwiaturally holds:
Mji,qo = {r)Oopen. The right strategy for the robber is to wait first to see which
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code is set, and then to type the appropriate numf€g,) = nop, s.(q1) = type0,
ands,.(gq2) = typel. O

REMARK 6. — Concurrent game structures model actions as abst@tiaenti-
ties, with no underlying structure. This is not necessasdyisfying for everyone’s
purposes. One may, e.g., want to define actions as statéotnauagions that can occur
in the system, like in models of dynamic logic (Harel, Koz&mieiryn 2000);STIT
models assign actions/choices with even more complicatedeptual structure (Bel-
nap et Perloff 1988). We choose, after (Aktral. 2002, Schobbens 2004, Jamraga
al. 2004, Agotnes 2006), to avoid the discussion on the natuaetans, and make the
simplifying assumption that actions are identified by ueigames. Note that this ap-
proach follows closely the tradition of game theory, anddhiénition of an extensive
game form in particular (Osborret al. 1994). O

One of the most appreciated featuresaot is its model checking complexity —
linear in the number of transitions in the model and the leraftthe formula. The
model checking problem is, given a formyland a model with a statey, to decide
whether)M, ¢ = ¢ or not.

PROPOSITION7 (ALUR etal.2002). — TheATL model checking problem msTIME-
complete, and can be done in til®&ml), wherem is the number of transitions in the
model and is the length of the formula.

Note that the complexity is measured, as usual, as a funofidine size of the
input. Thus, while infinite concurrent game structures madedect sense in general,
they cannot be subjects of model checking unless reprasenéfinite way.

REMARK 8. — The result in Proposition 7 does not seem so unambigy @yi-
mistic after a closer inspectione., when we measure the size of models in the number
of states, actions and agents (Jamroga et Dix 2005a, Lanajsslarkey et Oreiby
2006, Jamroga et Dix 2007), or when we represent systemsswitlalled concurrent
programs (van der Hoek, Lomuscio et Wooldridge 2006). Téisark is only meant
as a note of warning; such a detailed complexity analysithitogics of ability under
imperfect information (that are the main topic here) is baythe scope of this paper.

]

2.2. ATL with epistemic logic

ATL is unrealistic in a sense: real-life agents seldom possesplete information
about the current state of the world. On the other hand, ifapeinformation and
knowledge are handled in epistemic logic in a natural way. oAlination ofATL
and epistemic logic, calledlternating-time Temporal Epistemic LoglaTEL), was
introduced by van der Hoek and Wooldridge in (van der Hetkl. 2002, van der
Hoeket al.2003) to enable reasoning about agents acting under ingperfermation.

ATEL enriches the picture with an epistemic component, addingtooperators
for representing agents’ knowledgl;, o reads as “agentknows thatp”. Additional
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operatorstis ¢, Cap, andD 4, whereA is a set of agents, refer mutual knowl-
edge(“everybody knows”)common knowledgeanddistributed knowledgamong the
agents fromA. Thus, F 4 means that every agent ih knows thaty holds, while

C 4 means not only that the agents frofrknow thaty, but they also know that they
know it, and that they know that they know that they know it. eThe distributed
knowledge modalityD 4 expresses that if the agents could share their individual
information they would be able to recognize that

Models forATEL extend concurrent game structures with epistemic acdkiysib
relations~1, ...,~.C Q x @Q (one per agent) for modeling agents’ uncertafhije
will call such modelsoncurrent epistemic game structu@ec9 in the rest of the
paper. Agentz’s epistemic relation is meant to encods inability to distinguish
between the (global) system statess, ¢’ means that, while the system is in state
agentz cannot determine whether itis gnor ¢’. Then, the semantics @, is defined
as:

M,q = K.p iff M,q |= ¢ foreveryq’ such thay ~, ¢'.

EXAMPLE 9. — Consider model, from Figure 1B, with the epistemic link be-
tween stateg; andg. (we omit the reflexive indistinguishability links fromg to ¢o,

q1 1o ¢; etc. to make the figure easier to read). This time, the sae@isamore real-
istic: the robber does not know the correct code. Thus, onaateexpect him to be
able to open the safe. Still, inTEL, we have that\ls, qo = ((r))Oopen; the same
(non-uniform) strategy as in Example 5 can be used to demaiaghis. Moreover,
we have even thatls, qo = K, ((r))Oopen: using knowledge operators does not help,
because cooperation modalities are still underpinned toptiamof strategy that does
not agree with imperfect information of agents. This is adamental problem with
ATEL, which we discuss briefly in Section 2.3. O

Relations~%, ~§ and~%, used to model group epistemics, are derived from the
individual relations of agents fror. First,wﬁ is the union of relations-,, a € A.
Next,~ is defined as the transitive closure-of. Finally, ~% is the intersection of
all the ~,, a € A. The semantics of group knowledge can be defined as below (for
K=C,E,D):

M,q = Kap iff M,q = o foreveryq’ such thay ~% ¢

Note thatK, = C(,y = E(q) = Dy, S0 individual knowledge operator§, are
actually redundant.

In order to explore the subtleties of collective play, wesext the model from Fig-
ure 1B slightly: the pattern is the same, but more complep@rties can be demon-
strated.

4. The relations are assumed to be equivalences.
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T kebp,no
op ex lg,ché7
Q0P exth,nop

exch,chg
excii,nop
nop,

Figure 2. Gambling Robots game. Nodes represent global states ofsters; arrows
denote transitions, labeled with combinations of actioosfall the agents. Dashed
lines indicate states that are indistinguishable for ragpe agents. Actions of the
environment agent are omitted from the picture to make iee&s read. As epistemic
relations are by definition reflexive, we omit reflexive epist links too

EXAMPLE 10 (GAMBLING ROBOTS). — Two robots ¢ andb) play a simple card
game. The deck consists of Ace, King and Queén/(, Q). Normally, it is assumed
that A is the best cardil the second best, ard the worst; soA beatsK and@, K
beats), and@ beats no card. At the beginning of the game, the “environteggent
deals a random card to both robots (actidasl sk, deal aq, . . ., dealg k), SO that
each player can see his own card, but he does not know the ttrd other player.
Then robot can choose to exchange his card for the one remaining in the(detion
exch), or he can keep the current orie¢p). At the same time, robétcan change the
priorities of the cards to a Rochambeau-like game (that &jll beatsK and K beats
Q, but@ becomes better thas), or he can do nothingpp), i.e. leave the priorities
unchanged. It has a better card thanafter that, then a win is scored, otherwise the
game ends in a “losing” state.

A cecsfor the game is shown in Figure 2; we will refer to the modelldsg
throughout the rest of the paper. Staterepresents the situation before, and states
qAK, - - -, qoK after the cards have been dealt (eagh, stands for the situation when
a has got card;, andb has got card,). Actions of the environment are omitted from
the figure for the sake of readability. Similarly to the poaws exampleMs, g0
{{a, b)) Owin (and evenMs, o |= Cy, 5y (a, b)) Owin), but there is nainiformstrategy
to achieve this: in order to wiry mustexchangeéhis card in stategx, so he must
exchangehis card ingg4 too (if we require uniformity), and playingzch in qga
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leads to the losing state. So, again, we hdueb) Owin, although intuitively{a, b}
have no feasible way of ensuring a win. O

2.3. Problems with ATEL

It has been pointed out in several places that the meaningef formulae can be
counterintuitive (Jamroga 2003, Jamragal. 2004, Jonker 2003). Most importantly,
one would expect that an agent’s ability to achieve propershould imply that the
agent has enough control and knowledgedentify and executea strategy that en-
forcesyp (cf. also (Schobbens 2004)).TAL adds toaTL the vocabulary of epistemic
logic; still, in ATEL the strategic and epistemic layers are combined as if they ine
dependent. They should be — if we do not ask whether the ageqtestion are able
to identify and execute their strategies. They should nakifvant to interpret strate-
gies asexecutable plansabout which the agentshowthat they guarantee achieving
the goal.

First of all, executable plans should not specify differactions in indistinguish-
able states. Most (if not all) current approaches to stratakility under imperfect
information (Jamrogat al. 2004, Schobbens 2004, Jonker 2003, van Ottestoal.
2004, Herziget al. 2006), agree with the postulate from (Jamroga 2003) thgtwmit
form strategies should be considered in the semanti¢siof. Formally, strategy,, is
uniformiff ¢ ~, ¢’ implies thats, (q) = s.(¢’); a collective strategy 4 is uniform iff
it consists of only uniform individual strategies. In otlverrds, agents make choices
with respect to theitocal (epistemic) states rather than global states of the system.
Agents are assumed to know their available actiaes the choices open to them), so
they must have the same choices in indistinguishable states is, from now on we
consider only models in which ~,, ¢’ impliesd(a, ¢) = d(a,q’).

Second, it was suggested in (Jamregal. 2004) that, when reasoning about what
an agent caenforce it seems more appropriate to require the agekhtmwv his win-
ning strategyrather than to know onlyhat such a strategy existsThis problem is
closely related to the distinction between knowledigere and knowledgeale dictq
well known in the philosophy of language (Quine 1956), ad a&lesearch on the in-
teraction between knowledge and action (Moore 1985, Matgen 1991, Wooldridge
2000). One can naturally distinguish at least four diffétenels of strategic ability
(cf. (Jamrogaet al.2004)):

1) Agenta has a strateg§de re” to enforcep, i.e., he has an executable winning
strategy and knows the strategy (he “knows how to play”);

2) Agenta has a strategyde dicto” to enforcey (i.e., he knows only thasome
executable winning strategy is available);

3) Agenta has an executable strategy to enfopdgut not necessarily even knows
about it);
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4) Agenta mayhapperto behave in such a way thatis enforced. However, the
behavior can have no executable specificati@n ¢(here might be no uniform strategy
that describes it).

Obviously, (1)= (2) = (3) = (4), but not the other way around. We do think
that all of these concepts can be useful for reasoning about sttadégity under
imperfect information. However, we believe that (1) is paarly important and
natural. UnfortunatehATEL enables to express only ability of type (4), as Example 9
showed. Several variations oaTL with imperfect information” have been proposed
as alternatives, yet none of them seems the ultimate deéisitilution. We summarize
the most important proposals in the following sections.

2.4. First try: ATEL with uniform strategies

The first attempt to cope with these problems was presentéthinroga 2003),
where it was proposed that only uniform strategies shoulddes in the semantics
of cooperation modalities. “UniformTEL” (U-ATEL) captures ability of type (2) and
(3): (@) says thata has a uniform strategy to achieye and K, ((a))¢ denotes
having a strategy “de dicto”. Howevémowing how to plagtill cannot be expressed.

ExAmMPLE 11. — Consider modeM, from Figure 1B, and assume that is the
current state. The robber does have a uniform strategy to thesafe in one step
(play typeOat ¢; andg., andnopelsewhere), and indeeds, ¢; = {(r)) Oopen. He
also knows that such a strategy is available, and we héaxe; = K, (r) Oopen (in
every statey such that; ~,. g, M, q = {(r)) Oopen). Still, the robber does not know
how to play ing; to achieveopen, and this property has no-ATEL counterpart. Note
also thatMs, go |= —((r)) Gopen A (0) O () Gopen, andMa, gy = — K, ((r))Oopen A
K, (0)O K, {(r)Oopen (the robber has no strategy to open the safgjrbut he can
simply wait a moment, and he will magically get one), whicggests that one should
be careful when talking about abilities of type (2) and (3).

Likewise, for the gambling robots we havds, ¢y = —(a))Owin, and even
Ms, qo = —{a, b)) Owin (see Section 2.2). On the other haid, gax = (@) Owin A
Ko {a)Owin. O

2.5. Aggregating initial states: “feasible ATEL"

“FeasibleAaTEL” (Jonker 2003), which we will sometimes calATEL, is an up-
date ofATEL, in which the “perfect information” cooperation modalgiare kept, but
the language is extended with new modalitigst)’, (A)%, (ANL, (A)%. and

<<A>>{V[u, that represent agents’ ability to find a suitable unifornatsgy, with the
semantics summarized below:
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M,q = (A) Oy iff there is a uniform collective strategy, such that, for every
A € out(q,S4), we haveM, A[l] = ¢.
For ({ A\ Oy and{{A)/ U +: analogously;

M,q E ((A))é@ap iff there is a uniform collective strategy, such that, for every
¢’ such thay ~% ¢/, and for every\ € out(q’, S4), we haveM, A[1] = .
For (A)%.0¢ and((A) L U : analogously;

M, q = <<A>>é©<p iff there is a uniform collective strategy, such that, for every
q' such thay ~§ ¢, and for every\ € out(q', S4), we haveM, A[1] = .
For (A)L0p and(A)LpU ¢: analogously;

M,q E ((A))f(a0¢ iff there is a uniform collective strateg§4 such that, for
everyq’ such thay ~, ¢/, and everyA € out(q’,S4), we haveM, A[1] = .

For (A), Op and(A)}, ¢U: analogously;

M,q E <<A>>§\c4a Oy iff there is a uniform collective strategy, and state;’ with
q ~q ¢, such that, for ever\ € out(q’, S4), we haveM, A[1] | ¢.
For (A)4, Dy and((A)], oU v: analogously.

The idea of cooperation modalities with subscripts thaiciaie the epistemic “mode”,
in which coalitionA can identify their winning strategy, was further developethe
logic of ATOL, which we present in Section 2.6.

We note that “UniformATEL” can be seen as a subset of “FeasiieL”, as the
meaning of((A)y proposed in (Jamroga 2003) is, for agents playing memayles
strategies, equivalent tA))/ o from (Jonker 2003).

2.6. Going for expressive power: ATOL

Alternating-time Temporal Observational LogietOL), proposed in (Jamrogeat
al. 2004), follows the same perspective, but it offers a riclamgliage of strategic
operators to express subtle differences between variods kif collective abilities of
teams. In this paper, we use the notation proposed in (Janetagn der Hoek 2005c).
The informal meaning of A)) ) is: “groupA has a (memoryless uniform) strategy
to enforcep, and agent§' can identify the strategy as successfulfoin the epistemic
senseC”. Forinstance)M, q = (A)) p(r) iff there is S such that, for every’ with
q~EF ¢, and every\ € out(q’, S4), we have thap is true forA.

Formally, letlC = E, C, D. The semantics of the enhanced cooperation modalities
can be defined as follows:

M,q E (A)xmOyp iff there is a collective memoryless uniform strate§y
such that, for every’ with ¢ ~F ¢/, and every\ € out(q’, S4), we have that
M E ¢
For ((A)) icry Oy and ({(A)) ()¢ U 1 analogously.
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EXAMPLE 12. — Coming back to our gambling robots, it is easy to see that
Ms3,q0 F —(a)) k) Owin, because, for every’s (uniform) strategy, if it guaran-
tees a win in e.g. statesx then it fails ingaq (and similarly for other pairs of
indistinguishable states). Let us also observe tatqy = —((a, b)) g({a,p})OWin:

in order to win, a must exchangehis card in statejox, so he mustexchange
his card ingga too (by uniformity), and playingeazch in goa leads to the los-
ing state. On the other hand/s, g4q = ((a,b)) g({a,}) Owin (& winning strategy:
sa(qar) = 54(qaq) = salqxq) = keep, 5p(qaq) = sv(axq) = sv(qar) = nop;
4AK,qAQ, oK are the states that must be consideredubgndb in gap). Still,

M3, qax = —(a, b)) B({a,py) Owin.

AToL allows us to express other ways of identifying a winningtegg too: we
have thatV/s, gax = (@, b)) p(1a.py) OWINA ((a, b)) k(o) Owin (the robots can identify
the strategy if they share their views of the world; atsoan be the “boss” who points
out the strategy), and/s, gaq = —{(a,b)c({a,p}) Owin (despite bothu, b knowing
the winning strategy, they do not have common knowledge &ibou d

ATOL is quite expressive. However, it does not allow for comhoraof strategic
ability andarbitrary epistemic modes — the operatdfd)) «(r are fixed by taking
K € {C,E,D}. For example{(A) g, .y is nota well formedatoL formula —
although it is easy to give an interpretation of such a foamia similar manner to the
otherATOL operators. Furthermore, the trebly parameterized cotiparaodalities
are rather baroque.

2.7. Elegance and simplicity: ATL,

Schobbens (Schobbens 2004) approached the problem of mioglstrategies
with uncertainty on a more abstract level. He suggesteditimaakes sense to talk
about agents with perfect as well as imperfect informatiorone hand, and perfect
vs. imperfect recall on the other — and that these two fundémhsemantic choices
are orthogonal. This gives rise to four different logics wéategic ability:ATL ;z (for
perfectlnformation and perfedRecall, i.e. the originalATL), ATL;r (for imperfect
information and perfed®ecall), etc. As we focus on imperfect information and mem-
oryless strategies in this paper, the logiowot ;.. is most interesting for us.

Informally, {(A)):- holds in}M, q iff there is a uniform collective strategys such
that, for every agent € A, stateq’ with ¢ ~,, ¢/, and pathA € out(q’, Sa), we have
thaty is true forA. In other words, there is a strategy such #arybody inA knows
that executing this strategy will bring abapt Formally:

M, q = (A):-Oe iff there is a uniform collective strategy such that, for every
a € A, ¢ suchthay ~f ¢/, and path\ € out(Sa,q"), we haveM, \[1] = .
For (A)):-Op and((A));p U 1: analogously.
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ExamMPLE 13. — For our gambling robots, we get e.g. thaiti/s,qy E
={(a))irOwin, M3, g0 = ={(a, b)) i Owin, M3, qaq = (a,b))i Owin, andMs3, gax =
={(a, b)) ir Owin. O

Note that((A));,® is equivalent to the “FeasiblereL” formula ((A)4,®, and the
ATOL formula((A)) g(4)®. Moreover, itis not possible to expressamL ;.. thatA have
common knowledge about the successful strategy, or thataiteeable to identify it
if they share their information etc. On the other hant, ;. stands out among the
existing proposals for its simplicity and conceptual digrand can be treated as the
“core”, minimal ATL-based language for ability under imperfect information.

The following proposition sums up some of the results preestm (Schobbens
2004, Jamroga et Dix 2006a, Jamragal. 2004):

PROPOSITION14. —Model checking “FeasibleTEL”, ATL;. and ATOL is AF-
complete in the number of transitions (and epistemic link#)e model, and the length
of the formula.

In Section 3, we will propose Constructive Strategic LogisL) which strictly
subsumesToL, while sharing (in our opinion) the elegance aifL;., and model
checking complexity of all of the approaches discussed abdlie main idea behind
csL is that we would like to express various levels of ability wdombinations of
somekind of epistemic operators witbomekind of cooperation modalities. Before
we present our proposal, we want to mention two logics tbad,limited extent, have
achieved a similar trait. The logics are briefly presenteS8entions 2.8 and 2.9.

2.8. Abilities of rational players: ETSL

Epistemic Temporal Strategic Logic (van Otterleal. 2004) digs deeper in the
repository of game theory, and focuses on the concephdbminated strategiests
variant of the cooperation modalities has a different flaban the ones fromTL,
ATEL, ATOL etc. In a way{(A) in ETSL can be summarized as: ‘i play rationally
to achievep (meaning: they never play a dominated strategy), they wilievey”.

ETsL is underpinned by several interesting concepts. Unfotalyats original
semantics from (van Otterlat al. 2004) comes with a plethora of auxiliary functions
and definitions (and a couple of omissions), which make lite@ahard to read. More-
over, the semantics is defined only fonite turn-based acycligame models, and the
satisfaction relation refers not only to models and statespectively paths), but also
to a fixed strategys s, (assumed to represent the current strategies of all agdtts)
has been shown in (Jamroga 2006), that the semantics candrgled to concurrent
epistemic game structures, and given in a more compact wasedter, for “vanilla”
ETsL formulae® it can be given via standard semantic clauses for state faemu

5. 1.e, formulae in which every temporal operator is preceded lagtyx one cooperation modal-
ity.
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Let M be a cegs First, we define the notion of domination as fol-
lows. Let® = O, i, or ¢y Ups, where,iy,1p, are “vanilla” ETSL
formulae. Moreover, let®| denote the set of paths for which holds; for-
mally, |Ov| = {A | M, A[1] = v}, [3¢] = {A | VM, Ali] |= ¢}, and | U o] =
{A ] 3;(M, Ali] = 2 AVo<j<iM, A[j] = ¢1}. Then,strategyS4 dominates strat-
egyT'a wrt. M, q, and® iff both of the following conditions hold:

1) for everyq’ with ¢ ~% ¢': if out(q', T4) C |®| then alsout(q’, Sa) C |®|;
2) thereisg’ such thay ~% ¢/, andout(q’, S4) C |®|, andout(q’, Ta) Z |®|.

StrategyS4 is undominatedvrt. M, g, @ iff there is no strategy that dominatés,
wrt M, q, .

Now the semantics of A)) in ETSL can be expressed entirely in terms of models
and their states:

M,q E (A) Oy iff for every strategyS4, undominated wrii/, ¢, O ¢, and every
A € out(q,Sa), we have thal\l, A[1] = ¢.
For (A)Oy and{(A) @ U ¢: analogously.

The relationship betweeBTsL and Constructive Strategic Logic is briefly dis-
cussed in Section 4.4. We conjecture that neither of thersusubs the other, but
there are several interesting associations. The mosestteg feature oETSL is per-
haps the fact that, by combining standard epistemic operatod its non-standard
cooperation modalities, we can capture “knowing how to pfay individual agents
(although this does not extend to collective agents), sear@dga 2006) or Section 4.4
for more details.

2.9. Explicit actions: ATEL-A

In AT(E)L, it is not possible to refer directly to particular actionglie logical lan-
guage. For example, it is not possible to express the factiflaent: chooses action
a, then formulay will necessarily be true in the next moment” T&L-A (Agotnes
2006) allows such expressions by introducing names of @gtio addition to names
of agents, inside cooperation modalities. For instanae atbove expression can be
written as{(«;)) O ¢. This makes it possible to capture the levels of abilitycdssed
in Section 2.3, in the limited case of properties that candigesed in one step:

(4), (3) (i) O¢: agenti may behave in such a way thais enforced next. Note that
there is no difference between (4) and (3) when we only tatluathe next state
— then uniformity does not play any role;

(2) K;{(i)) O¢: agenti has a strategy “de dicto” to enforgenext;

(1) Vacae Kil{ai) Op: agenti has a strategy “de re” to enforgenext.
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Because of explicit action&TEL-A is not directly comparable to the logics con-
sidered in this paper, and we will not discusEL-A further.

2.10. Other possibilities

In the original formulation oTL, agents were assumed to have perfect recall of
the game, in the sense that they could base their decisicsequencesf states rather
than on single states. VariantsaifL for perfect recall and imperfect information have
also been considerecf,ATL ; z (Schobbens 2004) amd EL-R* (Jamrogeet al.2004).
However, as agents seldom have unlimited memory, and laffistrategic ability
with imperfect information and perfect recall are believedhave undecidable model
checking (Aluret al. 2002, Schobbens 2004), we do not investigate this variant of
ability here.

Yet another, very recent, proposal (Heragal. 2006) approaches the problem
of strategic abilities under imperfect information witttime framework ofsTIT (the
logic of seeing to it that STIT shares many similarities withrL, but it comes from
a different tradition, and its technical formulation is rkedly different from that of
ATL. Thus, in order to analyzeTiT-based proposals in our new framework, one must
first establish the precise relationship between both freones,i.e., compare models,
semantics, expressive power, pragmatics (e.g., vericégsues) etc. Several impor-
tant results in this respect have already been reportedf(@@i4, Broersen, Herzig
et Troquard 2006), but there is still much to be done.

3. Constructive strategic logic: a new semantics for abili and knowledge

ATOL covers more cases thamL ;. and “FeasibleaTEL”, and it is not committed
to any notion of rationality (unlikeTsL). One major drawback @froL is that it vastly
increases the number of modal operators necessary to expogserties of agents. For
teamA, a whole family of cooperation modalitigsi)) ) is used (instead of a single
modality ((A)) in ATL) to specify who should identify the right strategy férin what
way etc. It would be much more elegant to modify the semaufi¢simple” cooper-
ation modalities(A)) and/or epistemic operators, so that they can be composed int
sufficiently expressive formulae. The problem with stratedpility under uncertainty
is that, when analyzing consequences of their strategiesita must consider also the
outcome paths starting from states other than the curratiet-sthamely, from all states
thatlook the samas the current state. Thus, a property of a strategy beirgpsse
ful with respect to goab is not local to the current statéhe samestrategy must be
successful in all “opening” states being considered. Ireotd capture this feature of
strategic ability under imperfect information, we chane type of the satisfaction
relation}=, and define what it means for a formyleto be satisfied in a set of states
Q C St of model M. To our best knowledge, nobody has used this kind of sensantic
yet.
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Moreover, we extend the languageafeL with unary “constructive knowledge”
operatordk,, one for each agent, that yield the set of states, indistinguishable from
the current state froma's perspective. Constructive common, mutual, and disteithu
knowledge are formalized via operatdig, E 4, andD 4.

3.1. Language and semantics

The language of Constructive Strategic Logis() includes atomic propositions,
Boolean connectives, strategic formulae, standard episteperators, andonstruc-
tive knowledge operatorff®@r groups of agents (individual knowledge can be defined
as a special case of collective knowledge — see below):

pu=plopleAe| (A)Op | (A)De | (A)pU | Cap | Eap | Dayp |
Cap | Eap | Dag.

whereA is a set of agents.

REMARK 15. — As we will show in Section 7.2, standard knowledge caddfaed

as a special kind of constructive knowledge, and therefeestandard knowledge op-
erators danot have to be included in the language. However, rather thareidmately
derivingCa, Ea, D4 from C4,E4,D 4, we choose to give the semantic clauses for
all of them, and only later prove the relationship formally. O

Models are concurrent epistemic game structures agaihjghae interpret the
formulae ofcsL over exactly the same class of models which was usedifat,
ATL;-, ATOL etc. To recapitulate, @eGscan be defined as a tuple

M = <Agt7 Sta Hv T ACtv dv (2 Rd PRI Nk>a
where:

— Agt = {1, ..., k} is afinite nonempty set of all agents,

— St is a nonempty set of states,

— ITis a set of atomic propositions,

— 7w : St — P(II) is a valuation of propositions,

— Act is a nonempty set of (atomic) actions;

— functiond : Agt x St — P(Act) defines actions available to an agentin a state;
d(a,q) # 0 foralla € Agt,q € St,

— o is a (deterministic) transition function that assigns atcome state to each
combination of a state and a vector of actions (one actionagent). That is,
o(g,aq,...,ax) € Stforeveryq € St and{ay,...,ax) € d(1,q) x --- x d(k,q);

- ~1,...,~:C St x St are epistemic accessibility relations, one per agent. It is
assumed that each, is an equivalence relation, and that-, ¢’ impliesd(a,q) =
d(a,q').

Again, a (memoryless) strategy, of agenta is a conditional plan represented
by functions, : St — Act such thats,(q) € d(a,q) for everyq. A collective
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strategyS4 is a tuple of strategies, one per agent frein Strategys, is uniform

iff ¢ ~o ¢ iImpliess,(¢) = s.(¢’); a collective strategy is uniform iff it consists
of only uniform individual strategies. A path is an infinite sequence of states that
can be effected by subsequent transitionsAhy, we denote théth position on path
A. Functionout(q, S4) returns the set of all paths that may result from agehts
executing strategy 4 from statey onward (see Section 2.1 for the precise definition).
Collective epistemic relations are defined ag;= (,c 4 ~a, ~5= U,ca ~a; ~§

is defined as the transitive closure-of;.

Now we define the notion of a formula being satisfied by a (non-empty) set
of states@ in a modelM, written M, Q = ». We will also write M, q = ¢ as a
shorthand forM/, {¢} = . Note that it is the latter notion of satisfaction (in single
states) that we will ultimately be interested in — but thaiamwis defined in terms of
the (more general) satisfaction in sets of states.iine{q, R) be the image of statg
with respect to binary relatioR, i.e., the set of all stateg such thagRq’. Moreover,
we useout(Q, Sa) as a shorthand fdi, ., out(q, S4), andimg(Q, R) as a short-
hand foqueQ img(q, R). The new semantics is given through the following clauses.
In the semantics of cooperation modalities, only memosylasform strategies are
considered.

M,Q Ep iff pen(q) foreveryq € Q;
M,Q E—p iff M,Q

M, QEeAy iff M,Q | pandM, Q = ¢;

M.Q E (A)O¢ iff there existsS4 such that, for ever\ € out(Q, S4), we
have thatV/, {A[1]} = ¢;

M.Q = (A)Op iff there existsS4 such that, for evenA € out(Q,S4) and
i > 0, we haveM, {A[i]} = ¢;

M. Q = (A)eU iff there existsS 4 such that, for everp € out(Q, Sa), there
is ani > 0 for which M, {A[i]} = ¢ andM, {A[j]} = ¢ forevery0 < j <.

M,Q = Kap iff M, q = ¢ foreveryq € img(Q, ~%) (wherek = C, E, D).

M,Q = Kap iff M,img(Q,~%) = ¢ (whereK = C,E,D andK = C, E, D,
respectively).

The satisfaction relatios= gives us both the traditional notion of satisfaction in
a state, and the more general notion of satisfaction in afsgates. As mentioned
above, we are usually interested in the former, but in ordenterpret, e.g., an ex-
pression such a€ 4 ((A) Op in a single state, we must interpret the subexpression
{(A)Op in a set of states.
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Formally, the language includes only operators for reprisg knowledge of
teams. However, individual knowledge operators can be ee@fin the usual man-
ner as:

K.,p = C{a}ga, and
Ka(p = (C{a}go.

As a brief example, take the formula = K,{(a))Ov wherea is an agent.
We have thatM,q | ¢ iff there is a strategys, for a such that for even\ €
out(img(q, ~q), Sa), M, A[1] = 4; in other words iff there is an (executable) strat-
egy fora which is successfull (achieves in the next state) in all the states that
considers to be possible. Or, in the terminology of Sectid @ knows a winning
strategy -« has a strategge re(for achievingy). We will discuss how the logic cap-
tures many subtly different properties of ability under erfiect information in more
detail in Section 4, after we have clarified a few addition@damental issues.

We employ the usual definition of the “sometime” operator:
Qo = TUyp

We will also use derived propositional connectives. Howgtlee exact meaning of
these in the non-standard semantics must be carefullyestudind we will do that in
Section 3.2. ThesL concept of validity is discussed in Section 3.3.

A note on notation: as above, we will henceforth iS¢ to denote an arbitrary
standard knowledge operator for agedtgi.e, Cx, E4 or D4), and we use 4 to
denote the constructive knowledge operator corresponair@,, i.e., Cy = Ca,
Fs =E4andDy = Dy, We usek, K/, K1, K- etc. to denote arbitrary standard
knowledge operators for arbitrary sets of agents, andnadgaik’, K1, K- etc. to
denote the corresponding constructive modalities.

3.2. Additional operators

In addition to the derived operators introduced in Sectidh @e use a slightly
unusual definition of the Boolean “false” and “true” congtan

L
T

{O)(p A=p)U (p A —p), wherep is an arbitrary primitive propositign
()y=Hu(-L1)
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and the usual definition of Boolean connectfzes

P11V = (e Aps),
Y1 — @2 = =1 Vs, and
o102 = (1 — v2) A(p2 — p2).

The above Boolean operators have the following semantiacterizations:
PROPOSITION16. —

1) M,Q W~ Lforall Q C St,Q # 0.

2) M,Q = Tforall Q C St,Q # 0.

3) M,QFE @1V iff M,Q = @1 0r M,Q = s.

4) M,Q [ o1 — w2 iff M,Q = @1 impliesM, Q [= 2.

5) M,Q E p1 < o2 iff we have that\l, Q = ¢ iff M, Q | ¢o.

PROOF —

1) Suppose that/, Q = L for someQ # (. ThenM,Q E (D) (p A —p)U (p A
—p), so for all paths\ starting from the states i@ we haveM, A[0] = p A —p. That
is, forallg € Q: M,q = p A —p. As @ is nonempty, there is at least one syclBut
that means that € w(q) andp ¢ m(q), which cannot be the case.

2) Analogous.

3) M,Q = ¢1 Vo iff M,Q | (=1 A —p2) iff M,Q E —p1 A —ps iff
M,Q [~ —p10r M,Q =~y iff M,Q = @1 0rM,Q = ¢o.

4), 5) Straightforward from the above. [ |

To conclude the analysis of standard connectives in thikgranon-standard) set-
ting, we observe that the operator behaves like classical negation: it obeys the law
of double negation, the law of excluded middle, and the ctescy requirement in
every possible context:

PrROPOSITION17. — We have the following for evefd and(@ C St:

1) M,Q =~y < o,
2) M,Q ¢V g,
3) M,Q = —(¢ A—p).

PROOF — Straightforward from Proposition 16 and the semantiaidin of —. W

It should be noted that there are other possibilities fomiledi negation, disjunc-
tion and implication, corresponding to the different waygjoantifying over the set
Q. We discuss the issue in more detail in Section 7.

6. The reason why we use the above definitions @nd_L instead of the more common ones:
L =pA-p, T =-L isthatin the restricted languagesL™, discussed in Section 6.3,
certain formulae are disallowed, namely the ones in whigatien (or a sequence of conjunc-
tions, followed by negation) follows a constructive knodde operator. Defining the Boolean
constants the way we do, we make sure that no unraveling @f L will ever lead to such a
formula.



444 Journal of Applied Non-Classical Logics. Volume 17 — Ki(2007

3.3. Validity

We say that a formula iweakly valid(or simplyvalid) if it is satisfied individually
by each statén every modelj.e., if M, q |= ¢ for all modelsM and stateg in M. It
is strongly validif it is satisfied by all non-emptgetsin all models;j.e., if for eachM
and every non-empty set of stat@st is the case thad/, Q = ». We are ultimately
interested in the former (see Remark 19 below). The impogaf strong validity, on
the other hand, lies in the fact that strong validity,of- 1) makesp andy completely
interchangeablef. Proposition 20.2). It is not difficult to see that the sameadstrue
for weak validity.

PROPOSITION18. —

1) Strong validity implies validity.
2) Validity does not imply strong validity.

PROOF — (1) Straightforward. (2) We here take the liberty to rééeward to some
simple results we haven't proven yet, because it is ingtreitd point out the distinc-
tion between weak and strong validity at this point. By Pipions 16.5 and 44, we
have that for any\/ and set of state®, M, Q = (D)ol p — ¢iff (VoeoM,q = ¢
iff M,Q [ ¢). It follows immediately that(()) o U ¢ < ¢ is (weakly) valid, for any
v. It follows from Lemma 38.1 that there is/ and a set of state9 and a formula
¢ such thatM, @ F~ ¢ butV,coM, q = ¢; thus(0)oU ¢ < ¢ is not strongly valid.
|

REMARK 19. — The ternthe logicis sometimes understood as the set of all valid
formulae in the logic. In this sense, we defthe logic ofcsL as the set of all weakly
valid formulae ofcsL. In a similar way, we say that a formulais csL-satisfiablgf it
is weakly satisfiable icsL, i.e., there is a model/ and a state such thatM, ¢ = ¢.

]

Propositions 16.4 and 16.5 from Section 3.2 have two impbrtansequences.
First, the rule of Modus Ponens is correct with respect te seimantics. Second, if
w1 <> o Is strongly valid, then formulag; andy; are completely interchangeable
under strong (and hence also weak) validity.

PROPOSITION20. —

1) If p1 — o is strongly (resp. weakly) valid, ang, is strongly (resp. weakly)
valid, thenys is strongly (resp. weakly) valid.

2) If 1 < o is strongly valid, and)’ is obtained fromy through replacing an
occurrence ofp; by ¢, thenM, Q = ¢ iff M,Q = 4.

PROOF — Straightforward. |

4. Expressing agents’ strategic abilities

In the language of Constructive Strategic Logic, strat@gaperties of coalitions
can be expressed in a flexible and elegant way. To suppodi#iis, we first show that
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the philosophical discourse on various levels of knowlealge ability, mentioned in
Section 2.3, has its formal counterpartiaL formulae. Then, we present a translation
of ATL ., ATOL and “Feasible&TEL" to csL, and thus prove that the latter embeds the
former ones. We also discuss the relationship betwers1L andcsL.  To avoid
confusion, we will use the satisfaction sign with subserifpt, ., , =..., E... etc.),
indicating which semantics is currently referred to.

4.1. Capturing levels of strategic power

The reason why we need to interpret formulae over sets adsstatthat we need
non-standard epistemic operator¥., ¢ = K,{(a))¢ expresses the fact thathas a
single strategy that enforcesfrom all states indiscernible from, instead of stating
thatp can be achieved fromverysuch stateseparately Note that the latter property
is very much in the spirit of standard epistemic logic, ardeied can be captured with
the standard knowledge operator (Wa ((a))¢). Speaking in more abstract terms:

1) K, {a))¢ refers to agent having a strategyde re” to enforcep (i.e.having a
successful strategy and knowing the strategy);

2) K,{a))¢ refersto ageni having a strategyde dicto” to enforcep (i.e. know-
ing only thatsomesuccessful strategy is available);

3) (a)p expresses that agemhas a strategy to enforgefrom the current state
(but not necessarily even knows about it).

Above, each of the three formulae are informally interptétean assumed (single)
stateq of a model)M, i.e., we discuss the meaning of, .84, ¢ = K, (a))y. The
meaning of this formula in this single state is again defingdnterpreting a sub-
formula in a certain set of states. Byrategieshere, we only mean executablee(,
uniform) strategies. Capturing different ability levefsomalitions is analogous, with
various “epistemic modes” of collective recognizing thghtistrategy.

ExXAMPLE 21. — Robota has no winning strategy in the starting state of the game:
M3, q0 = —{(a)Owin, which implies that it has neither a strategy “de re” nor “de
dicto” Ms,q0 = —Ky{(a)Owin A =K, {a)Owin. On the other hand, he has a
successful strategy inax (just play keep) and it knows it has one (because an-
other action,exch, is bound to win ing4¢); still, the knowledge is not construc-
tive, sincea does not know which strategy is the right one in the curremiasion:
Ms, qax = {a) Owin A K, {a) Owin A =K, {a) Owin.

Other properties of the gambling robots, that we discussetxamples 13
and 12, can be easily expressed in the new logic by combinimgstouc-
tive knowledge with cooperation modalitiesMs,q0 | —Eqqy(a, b)) Owin,
Ms,qax = D{a,b} {a, b)) OwinAK, (a, b>>OWin/\—‘E{a7b} {a, b)) Owin, M3, qaQ =
Eqa,py (@, b)) Owin A =Cy, 5y {(a, b)) Owin etc. In fact, it turns out that the new logic
is expressive enough to embed most approaches we havesdidcud/e present an
appropriate translation in the next section. O
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bad-market

wait

Success

oligopoly

Figure 3. Simple market example: model,

EXAMPLE 22. — Consider a market model, depicted in Figure 3, whicmtdizes

in a very simple way the scenario from Example 3. The econsmgsumed to runin
simple cycles: after the moment of bad econobmdfmarket), there is always a good
time for small and medium enterprisegn), after which the market tightens and an
oligopoly emerges. At the end, the market gets stale, andawe $tagnation and bad
economy again.

The company: is the only agent whose actions are represented in the mbldel.
company can wait (actiowait) or decide to start production: either on its ovawf-
productior), or as a subcontractor of a major compasylproductioh Both deci-
sions can lead to either loss or success, depending on thentunarket conditions.
However, the company management cannot recognize the teariditions: bad mar-
ket, time for small and medium enterprises, and oligopolykelook the same to
them, as the epistemic links foiindicate.

The company can call the services of two marketing expexgef 1 is a special-
ist on oligopoly, and can recognize oligopoly conditionish@ugh she cannot distin-
guish between bad economy and s&m market). Expert 2 canmémbad economy,
but he cannot distinguish between other types of market. ekperts’ actions have
no influence on the actual transitions of the model, and ari&exhfrom the graph
in Figure 3. It is easy to see that the company cannot ideatifpccessful strat-
egy on its own: for instance, for the small and medium enteegrperiod, we have
that My, 1 = —K.{c)Osuccess. Itis not even enough to call the help of a single
expert: My, q1 = —Ki{c)Osuccess A —Ka((c) Osuccess, or to ask the experts to
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independently work out a common strategyy, 1 = —Ey; 2y (c)) Osuccess. Still,
the experts can propose the right strategy if they join foered cooperate to find the
solution: My, g1 = Dy 23 {(c) Osuccess.

Note that this is not true any more for bad markete, My,q0 E
—Dy1 23 (c)) Osuccess, because is a memoryless agent, and it has no uniform strat-
egy to enforcesuccess from ¢y at all. However, the experts can suggest a more
complex scheme that involves consulting them once agaiharfuture: My, g =
Dy1,21 () ODyy 23 () Osuccess. O

For strategic abilities, standard knowledge correspondenbwing “de dicto”,
while constructive knowledge captures “knowing how to plaie observe that both
kinds of epistemic operators can be combined in a meanivgdyl For example,
KKy ((b)Owin says that agentknows that playeb knows how to win. Note that this
is substantially different fronK, K (b)) Owin, which says that agentcan identify a
strategy whichh knows to be winning. Also, when interleaving epistemic epers
with strategic operators, we can, e.g., describe an abiliacquire, distribute or main-
tain ability. For instancekK, ((a) Ky (b)) Owin means that knows how to maintain
b's (constructive) ability to win, whilei(, ((a))JK, (b)) Owin says only that: knows
that this is in principle possible, arid, (a)) 0K, (b)) Owin says that knows how to
keepb aware that a winning strategy exists.

4.2. Expressivity of CSL

Let £ be the |OgiCAOfATL,L-7-, ATOL Or F-ATEL, and letp, ¢ be formulae ofZ. Also,
let X = C,F,D andK = C, E, D, respectively. Then, let the translation function
be defined as follows:

tr(p) =p tr(=p) = =tr(p)
tr(p AY) = tr(p) Atr(y) tr(Op) = Otr(p)
tr(Oyp) = Otr(p) tr(cpuw)—tr( YU tr (1))
tr((A)irp) = Ea(A)tr(p) tr((A K}F)‘P Kr{A)tr(e)
t?“(<<A>> ®) = << W) tr((A Ka(A)tr(e)
tr((AVk, ) = Kp(Atr(p) tr(«A))’A}h )—ﬁKzﬁ« Ntr(e)

tr(lCAga) Katr(p)
The following result justifies the translation.

THEOREM23. — M, q =, ¢ iff M,q =, tr(p).
Proof in the Appendix.

COROLLARY 24. —The translation yields a reduction af L ;,., ATOL and “Feasible
ATEL” model checking problems tasL model checking. The time needed for the
reduction, and the resulting formula, are linear in the I&mgf the original formula.
We summarize the model checking complexity results$aiin Section 5.
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PrROPOSITION25. — Constructive Strategic Logic istrictly more expressivénan
ATL -, ATOL etc.

PrROOF — It is sufficient to prove that there is@sL formula ¢ that has noaToL
equivalent e, there is n,atoL formula which holds in exactly the same models and
states asp). Consider the formule = EAE 4 ({A)+. For most modelsX/; from
Figure 2 being an example) we havg C ~% C ~% o ~& C ~G| sop is equivalent

to neither(A)) p(ay¥, (A) g(a)¥, nor((A) cay?. Thisis of course possible, because
E 4 (similarly to E4) is not a KD45 modality (see Theorem 40 in Section 6.4). H

Note that the semantics afsL is based orexactly the samelass of models as
ATEL, ATOL, ATL,;, etc. (.e., ONCEGSS). Thus, the above translation can also be used
for reduction of validity (resp. satisfiability) problemarfaTL ;,., ATOL and “Feasible
ATEL” to weak validity (resp. satisfiability) o€EsL. By Theorem 23, we have the
following.

COROLLARY 26. — ATL;,, ATOL and “FeasibleATEL” can be embedded igsL.

4.3. Constructive strategic logigs. ATEL

As we already pointed out in Section 28 EL only enables expressing ability of
type (4): theaTeL formula{{A))y says that agentd mayhapperto behave in such a
way thatyp is enforced (but there might be no executable strategy twreaft). Thus,
ATEL is about a kind of ability different from the “constructivehe we study in this
paper. FormallyaTeL differs fromcsL in two main ways. First, it does not require
uniform strategies. Second, it does not have the constaiktiowledge operators.

First, consider non-uniformity. Note that uniform strategis not a new idea of
CsSL (see Section 2), and that the differences betweemitm operators and the
uniform variants used bgsL are also shared by all the previously studied logics using
uniform strategies. We nevertheless comment briefly on iffereince here. First, the
“nexttime” fragment ofATEL can be embedded iosL, as the following proposition
shows. It should be remembered thattiees ss used imTEL are slightly more general
than the ones used msL (and the other approaches we have discussed): they do not
require that the same actions are available in indistinguike states. Below we refer
to suchCcEGss asuniformceGss.

PROPOSITION27. — Let ¢ be anATEL formula that does not include operators
0, U and M be a uniformceGs Then, M, q =, ¢iff M,q =, ¢.

ProoOF — ltis sufficient to note thal/, ¢ |, (AYOgiff M,q =.. (A)Oe.
Thus, we have that the “nexttime” formulae have the same ggeosan both logics
when interpreted at single states, artéL formulae include no “constructive” opera-
tors for aggregating sets of states. |
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REMARK 28. — lItis well known that cooperation modalities for stes of perfect
information (e.g., the ones irL andATEL) have the following fixpoint characteriza-
tions:

(ANOe = @A (ANO(A)Te, ()
(AU — VoA {(AYO(A)pUp. (2)

For uniform information strategies, the above formulaetevalid any more (see
below). Still, it would be possible to embed the whelesL in csL if we included
fixpoint operators in the latter. In that case, the followiranslation could be used to
translateaTL/ATEL modalities to equivalentsL counterparts:

tr({(A)Dp) = vZp A (A)OZ,
r(A)pUv) = pZap VoA (A)OZ.
O

We note that due to the uniformity afsL strategies, the set ofTEL validities
is not contained ircsL validities. A counter-example is the formufa)) O—jail «
Sjail A () O ((r)O—jail. Itis valid in ATEL (it is an instance of the valid scheme that
gives a characterization of “always” in terms of “next” AmL andATEL). Still, the
formula is false in modelM; and statey, from Example 9: the left hand side of the
biconditional is false, but the right hand side is trué\ii, qo.

More importantly, we can show thatsL is more powerful thamTeL when we
want to characterize sets of situations in actual systerirst, given a finite model,
everyATEL formula has asL counterparti(e., acsL formula which holds in exactly
the same states). SecomdL allows for finer-grained specifications thaneL (in the
sense that there aosL formulae for which there are nareL formulae with the same
extension). The result is formalized in Propositions 29 2dd

PROPOSITION29. — Given a uniformceGs everyATEL formula has acsL coun-
terpart with the same extensioneg(, one which is satisfied in exactly the same states
of the model).

PROOF (SKETCH). — For finite models: letV be a model with|M| states, and
¢ be anaTeL formula. All subformulae(A))Cy can be equivalently rewritten as
(1 A (ANO)IMleyp, where|M]| is the number of states if/. This follows by the
property (1) above, and the fact that, aftéf| steps, the system is bound to come
back to one of the previously visited states, for which a essful action has already
been found. Similarly, subformula@A)); U - can be equivalently rewritten as
(o Vah1 A (AN O)Mlypy. This way, we get aaTEL formulay’ without[, ¢4 which
holds in exactly the same states@asBy Proposition 27,’ has the same extension in
ATEL andCsSL. |

PrROPOSITION30. — Given a uniformcEGS there can becsL formulae that have
No ATEL counterpart with the same extensia®( one which is satisfied in exactly the
same states of the model).
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Figure 4. A model with one agent. From each of the stajes)s, ¢3, ¢4, the same
outcomes can be achieved in one step, albeit through diffecions

PROOF — Consider modeM; from Figure 4. The formul&,, ((«)) Owin holds ings
andgqy, but not ing; norgs. There is nATEL formula which is true exactly igs, g4:
it is easy to see that axTeL formula is true ing; iff it is true in ¢ iff it is true in g3
iffitis true in g4. [ |

4.4. Constructive strategic logigs. ETSL

CsL andeTsLare underpinned by different notions of abilityr & can be treated
as a logic that describes the outcomeatfonal playunder imperfect informatiofjn
the same way assL can be seen as a logic that captures agents’ strategideshflie-
gardless of whether the agents play rationally or not). Ttinesfocus ofcsLandeTsL
is different, and we suspect that neither logic formallysuhes the other. However,
several interesting associations have been already pedpogJamroga 2006).

Let us consider only models with finite state spataad formulaeb = O, v,
or 1 U 1o where, 11,19 are “vanilla” ETsL formulae.

ProPOSITION31 (AMROGA 2006). — An agent has a strategy “de re” to enforce
& if, and only if, he knows that his rational play will bring abioP. Formally:

M, q oo Ko{a)® iff M, q =, Ka(a)®.

PROPOSITION32 (AMROGA 2006). — If a coalition has common knowledge about
how to play, then it has common knowledge that rational pléiyb& successful:

7. We emphasize that this is a specific notion of rationaligy, @gents are assumedglay only
undominated strategigsGame theory proposes several other rationality crisiavell, based
e.g. on Nash equilibrium, dominant strategies, or Pardicefcy. In fact, it is easy to imagine

ETSL-like logics based on these notions instead.
8. More generally, we can consider modaissuch that there exists at least one undominated

strategy wrtM, g, ®.
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it M,q k. Ca(A)® then Mgl CalA)o.

The same holds for neither mutual nor distributed knowledge

ETSL

PROPOSITION33 (AMROGA 2006). — If A have distributed knowledge that ratio-
nal play will bring about®, then they have distributed knowledge how to play to bring
aboutd. Formally:

it M,qE_., Da(A)® then M, ql=_ Da{(A)P.

The same holds for neither mutual nor common knowledge.

CsL

A more definitive study of this issue is beyond the scope af plaiper.

5. Verification of strategic abilities through model checking

The model checkingroblem asks whether a given formufaholds in a given
model M and state;. We define thegeneral model checkingroblem as the problem
that asks whether formula holds in modelM andset of states). Letmctl(p, M)
be acTL model checker that returns the set of all states which gatigh /. Below,
we sketch an algorithmcheck(p, M, Q) that returndrueif M, Q =, ¢ andfalse
otherwise, running in im¥, i.e, in deterministic polynomial time with adaptive
queries to alNP oracle.

Caseyp = p: returnfrue) if p € 7(q) forall ¢ € Q, else returrfalse);
Casep = —): returngrue) if mcheck(w, M, Q) = false else returrfglse);

Casep = 11 A q: returntrue) if mcheck(y1, M, Q) = trueand
mcheck(2, M, Q) = true, else returrf@lse);

Casep = Ka1: Compute’ := img(Q, ~%), and then returtue) if
mcheck(y, M, q) = truefor all ¢ € @', else returrf@alse);

Casep = K¢ returngncheck(yp, M, img(Q, ~X)));

Caseyp = (A)Oy: Runmcheck(y, M, q) for everyq € St, and label the states in
which the answer wasue with an additional propositioges (not used else-
where). Then, guess the strategytfand “trim” modelM by removing all the
transitions inconsistent with the strategy (yielding asspamodelM/’). Finally,
returngrue) if Q@ C mctl(AQyes, M’), else returrfalse).

NoTE: subformulay is checked in the original mod@&l/, and not in}/"!

Caseyp = (A)Ty: Runmcheck(y, M, q) for everyq € St, and label the states in
which the answer wasue with an additional propositioges (not used else-
where). Then, guess the strategytfand “trim” modelM by removing all the
transitions inconsistent with the strategy (yielding asspamodelM/’). Finally,
returngrue) if @ C mctl(AOyes, M), else returrfalse. Again, note that) is
checked in the original modal/.
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Caseyp = ((A)y1 Upo: analogous.

As model checkingcTL can be done in deterministic polynomial time (Clarke,
Emerson et Sistla 1986), we get the following.

PropPosITION34. — General model checking for Constructive Strategic Loginis
AY when the input size is measured with the number of transit{and epistemic
links) in the model, and the length of the formula.

For the lower bound, we observe thasL subsumeaTL ;,., and model checking
ATL;- is AF-complete (Schobbens 2004, Jamregal. 2006a). Thus, we pay no
price in terms of complexity for using the more expressivglzage ottsL:

THEOREM 35. — General model checking for Constructive Strategic LogiAs-
complete in the number of transitions (and epistemic link8)e model, and the length
of the formula.

6. Constructive knowledge

Philosophically, constructive knowledge draws inspaafirom mathematical con-
structivism: in order to “constructively know” that, agents4 must be able to find (or
“construct”) a mathematical object that suppastsThis is relevant whep = (B))v)
—inthat case, the mathematical object in question is aegtydbr B which guarantees
achievingy. The semantic role afonstructive knowledge operatdssto produce sets
of states that will appear on the left hand side of the satiisfia relation. In a way,
these modalities “aggregate” states into sets, and setdbigger sets. On the other
hand, most of the other operators “split” (or “destroy”)ssigt the sense that, for eval-
uatingM, @ E ¢, they require evaluation of subformulaein single states rather
than sets of states. Standard epistemic operatorsi 4, D 4) are the most straight-
forward examples (e.g., evaluatidgne in M, @ “splits” into evaluatingy in each
state fromimg(Q, ~9) separately). Cooperation modalities (combined with terapo
operators) are “splitting” in a similar way. Besides the Jagpating” and “splitting”
operators, there are also “neutral” ones that do not chdmegsett of reference: namely,
conjunction () and negation-(). In what follows, we study important properties of
these operators iosL.

6.1. Properties of constructive knowledge

In the following proposition we list some properties of castive knowledge
(keep in mind that strong validity implies validity).
PROPOSITION36. — The following are strongly valid for ank € {C,D,E}:

1) @A(SDI Vpa) < (Kagp1 V Kaps)
2) Ka—p < —Kap X
3) Kalp1 Aw2) = (Kapi AKagps)
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4) Ka(p1 — @2) < (Kapr — Kapo)
PROOFR —

1) M,Q k= /@A(%\/@z) iff M,img(Q, ~%) | o1V iff M,img(Q, ~%) E 1
or M,img(Q, ~%) = 2 iff M,Q = Kagp1 or M,Q l= Kaps iff M,Q = Kap1 V
’6,4902. . .

2) MvQ ': ’614_'90 iff Mvimg(Qng) ': "2 iff Mvimg(Qng) l# ® iff
M,Q W Kapiff M,Q = ~Kap. ) )

3) M, Q | KalpiAwa) iff M, img(Q,~%) | @1 /e iff M,img(Q, ~%5) |= ¢
and M,img(Q, ~%) |= w2 iff M,Q | Kapr andM,Q | Kagps iff M,Q |

’CAQOl /\ICAQDQ. R R ~ R
A M,Q EKa(-e1 V) it M,Q = (Kamp1)VKap: iff M,Q |= (mKap1)V
Kapzift M,Q = Kap1 — Kapo. [

6.2. Is K, an epistemic operator?

We believe that operatof3,, E4, D4 andKK, do capture a special kind of knowl-
edge of agents. An interesting question is: do this notidmofvledge have the prop-
erties usually associated with knowledge? In particularpdstulate, D, T, 4,5
of epistemic logic hold for constructive knowledge? In gahethe answer io;
particularly, the truth axiom does not hold.

THEOREM 37. — Below, we list the constructive knowledge versions of sdrtteeo
S5 properties for individual agents. “Yes” means that thbesoa is strongly valid;
“No” means that it is not even weakly valid (incidentally,meof the properties turns
out to be weakly but not strongly valid).

K Ka(p = 9¥) — (Ko — Katp)  Yes

D K, L Yes
T Kaop — No
4 Ko — KKy Yes
4+ Ko — KKy Yes
5 Ko — Ky Kg Yes
5+ Ky K=Ky Yes
B v — K=K, - No

Before proving Theorem 37, we take a closer look at the weiatiip between
satisfaction by a set of stated/(Q) = ), and satisfaction in each of the states
(VgeoM, q = ¢). The following Lemma shows that the former does not necessa
ily imply the latter, and that the latter does not necesgaribly the former.

LEMMA 38. —

1) Thereis a model/, stateg, agentz and formulay such thatV/, img(q, ~q)
v and for everyy € img(q, ~4), M, q | .
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2) There areM, q, a, ¢ such thatM,img(q, ~.) = p and M, q |~ .

(a2, )

(01, 9) C Q (01, 9)

05275)

Figure 5. Model Mg with two agents, b, and two stateg, ¢’ such thaty ~, ¢’

PROOF — Consider modelMg from Figure 5.

1) Letp = (a) Op. Now Mg, g = ¢ (a can choose action, ), andMs, ¢’ = ¢ (a
can choose action,). However,Mg, img(q, ~,) % ¢, because no uniform strategy
for a leads tog (in one step) from both, ¢'.

2) Lety = —p. Nowp ¢ m(q)N(q'), S0Ms, {q,q'} = p, andMs, img(g, ~a) =
v. Butp € 7(q), soMg, ¢ = p, andMsg, g - ». [ |

PROOF (OF THEOREM37). —

K: Immediate by Proposition 36.

D: Suppose thatl,Q = K,L forany@ # 0. ThenM,img(Q,~,)) = L.
By reflexivity of ~,, setimg(Q, ~,) is nonempty, which contradicts Propo-
sition 16.1.

T: Let M, q,a,p be as in Lemma 38.2M,q = K,p, but M, q |~ ¢, soT is not
weakly (and hence not strongly) valid.

4+/4: Mv Q ': KaKaSD iff Mv img(Qv Na) ': Ka@ iff Mv img(img(Qa Na)a Na) ':
@ iff M,img(Q,~.) F ¢ (sinceimg(img(Q, ~a), ~a) = img(Q, ~q)) iff
M, Q = Kqep.

5% /5. M,Q | —Kapiff M,Q W Kaupiff, by 4, M, Q £ KK, iff, by Proposi-
tion 36, M, Q |= K,—Kq .

B: Let M, q,a,p be asin Lemma 38.1M, img(q, ~,) & ¢, SOM,q = K,~¢. By
4, M, q = K, K,—p, SOM, q = —K,K,~p, and by Proposition 367, ¢ 1~
K,—K,—p. But M, q = ¢. Thus,B is not weakly (nor strongly) valid. [ |
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6.3. In quest for the truth axiom

We have just showed that, out of the S5 properties, axiBmB, 4, 5 (but not
T!) hold. However, it also turns out that if we slightly restrthe language, then the
correspondingl’ axiom becomes strongly valid. LetsL~ be the subset ofsL in
which, between every occurrence of constructive knowlé@ge E 4, 1D 4) and nega-
tion, there is always at least one operator other than cetipm® Formally,csL~ for-
mulae are defined by the following grammar (whgre= C, E, D andK = C, E, D):

pu=p|-p|lone| (AYOe| (A)De | (AU ¢ | Kap | Kat,
pu=p| (A)O¢ | (A)De | (A)eU e |Kap | ¥ AY | Kat.

THEOREM 39. — EverycsL™ instance ofT (i.e., K,y — ) is strongly valid.
Proof in the Appendix.

Thus, theT axiom holds forcsL™. Note that, by Proposition 36, the meaning of
negation or conjunction in the immediate scope of a consteiknowledge operator
is the same as if the operator were immediately outside thstaective knowledge op-
eratorl® In consequence, every formula of the fakL is equivalent to one icsL .
Thus, we can restrict our logical languaged®sL~ without losing expressive power,
and we automatically “get” axioriT’. We also observe that, from a more philosoph-
ical perspective, it is hard to pinpoint the intuitive meanbf negation immediately
following constructive knowledge. Note that, e.B,—{(a)¢ should be read as:"
hasconstructiveknowledge about beingnableto achievey”.'! It seems thus, first,
that the weaker version of the truth axiom in Theorem 39 mitghinore appropriate
for constructive knowledge, and second, that it might be @dgdea to consider the
logical language of constructive knowledge to be limiteeccg~. In this case, con-
structive knowledge has thE property, we do not lose any expressive power, and we
leave out only formulae with philosophically unclear reagi

Is then the constructive knowledgedsL— S57? First, it must be noted that — even
thoughcsL andcsL™ are expressively equivalent — the extension of the scHEnsa
differentin csL™ (for example K,—p — —pis acsL instance ofT’, but even though
it is equivalent to thecsL™ formula—K.,p — —p, the latter isnota csL™ instance
of T). More importantly, incsL™ the axiom schematK and5, at least written as
in Theorem 37, are not valid, but they are not invalid eitheghey are simply not
formulae at all. It does not seem correct to say that an opehats the S5 properties
when it cannot eveexpresghe K principle or negative introspection. Furthermore,
csL™ lacks the S5 principle afiniform substitution

9. In particular, the requirement is met when operatossE 4, D4 are never immediately fol-
lowed by either- or A.

10. Which is very muchlunlikethe semantics of negation following a standard knowledge-op
ator!

11.K,{(a))—, on the other hand, makes perfect sense: it refetssteonstructiveability to
preventy.
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6.4. Properties of collective constructive knowledge

We briefly consider the properties of collective knowledgemators. Theorem 40
should come as no surprise: note that, analogously to stikdawledge, construc-
tive common and distributed knowledge have the same piiepas individual knowl-
edge, while mutual knowledge (“everybody knows”) diffenghat it does not satisfy
the introspection axioms and5.

THEOREM40. — Below, we list some of the S5 properties for collective caoste
knowledge operators. We don't state the properties exjliciut refer to Theorem 37
— axiomK for C4 become< (¢ — 1) — (Cap — Cav), and so on. “Yes”
means that the schema is strongly valid; “No” means that itds even weakly valid
(the proof is left for the reader).

Cqa Eax Dy
Yes Yes Yes
Yes Yes Yes
No No No
Yes No Yes
Yes No Yes
Yes No Yes
5 Yes No Yes
No No No

O‘ﬁﬂkﬂuw

Note that the proof of Theorem 39 required only that the epigt relation in
question was reflexive. Thus, it can be easily extended tdlkamllective construc-
tive knowledge.

COROLLARY 41. — EverycsL™ instance of schem@ for collective constructive
knowledge operator€ 4, E 4, D 4 is strongly valid.

7. Negation, localization, and definability of knowledge

The semantics of negation presented in Section 3.1 (wet sedidknegation from
now on) yields a very strong notion of disjunction, as Pradipms 16 states. Such a
strong notion of disjunction makes sense when we talk abgemts’ abilities,i.e.,
when used inside ¥, operator. For example¥/, ¢ |= K,({a))¢ V {(a))1)) means in
fact thata in ¢ can either identify a plan to achieyeor to achieve). On the other
hand, for a disjunction of simpler formulae, e.g., pringtigropositiong andr, a
weaker notion seems more intuitive: the disjunctionr should hold inM, Q iff, for
any statey € @, at least one of the disjunctsandr holds ing (but different disjuncts
may hold in different states ap). This intuition can be captured with a different
negation operator, which we call “strong” negation. The idea of strong negatio
can be summarized a37, Q =~ iff M, q [~ ¢ for everyq € Q. However, we will
define it in terms of another, more primitive operator thatoatlocalization
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As it turns out, the significance of localization goes beyounddiscussion on var-
ious kinds of negation. Most importantly, localization daused to define standard
knowledge operators from constructive knowledge opesaton the other hand, local-
ization itself proves definable from strategic and tempoparators. In consequence,
standard knowledge can be definectisL without standard knowledge operators.

7.1. Local evaluation of formulae

In the semantics ofsL, formulae are interpreted in sets of states; in orderfor
to hold in M, @, the formula must be “globally” satisfied in all states fréyrat once
(i.e., with single evidence). Another option is to evaluatically in particular states
from @. To this end, we introduce a modality that specifies expfititat the formula
must be evaluated for every relevant state separately:

M,Q Elocgiff M,q = ¢ foreveryg € Q.

PrRoOPOSITION42. — Below, we investigate some typical axioms with respectdo th
localization modality. “Yes” means that the scheme is gifgrvalid, “No” means
that the scheme is not strongly valid. Note that all the sa@®below are weakly
valid, becausé/, ¢ |= loc ¢ < ¢ for every individual state.

K loc(p — 1) — (locp —locty) Yes

D —loc L Yes
T locp — ¢ No
4 loc ¢ — loc loc Yes
4" loc ¢ < loc loc Yes
5 =loc ¢ — loc —loc ¢ No
5+ =loc ¢ « loc —loc No
B @ — loc —loc —p Yes

Proof in the Appendix.

Thus, localization is weak, but not strong, S5. In particukb propertie§ and
5 do not necessarily hold in some contexts, for example inrtimaédiate scope of a
constructive knowledge operator.

PrROPOSITION43. —Some other localization properties are the following, all
strongly valid (proof is left for the reader).

locp—ppell loc (¢ A1p) < (loc @ Aloc )
(4)Op o (A)Oloc (A)Tp > (A)Tlloc ¢
(ANl & = (AYloc pU v = (AU loc v

loc Kap — Kap Kap < Kaloc QQ,ICE{C,E,D}
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We will show in the following sections how thec operator can be used to define
standard knowledge and alternative negation operatois.iiékes the following re-
sult very important: it says that localization is definallétiecsL language, from the
{0) andU operators.

ProPOSITION44. — The following formula is strongly valid:

loc p < (D)pU ¢

PROOFE — M, Q = (D) oU ¢ iff Vicour(q,0) thereis ani > 0 such thath, A[i] |=
¢ and for anyj such thatd < j < 4, M, \[j] = . Since for eacly € Q there
isaX € out(Q,0) with \[0] = ¢, this implies thatv,co M, q = ¢ which is the
same asV/, @ [ loc ¢. To see that the other direction holds as well, assume that
M, Q k= loc ¢ and letA € out(Q, ). We must provide a witness far takei = 0.
Now, M, A[i] = ¢ and there is ng such thad < j <i,s0M,Q E (M)pUp. N

7.2. Defining standard knowledge from constructive knowledge
Standard knowledge operators are definable from consteuitiowledge and lo-
calization:

PROPOSITION45. — Kap < K aloc v is strongly valid for anyC € {C, E, D},
C=C,E=E,D=D.

PROOF — M, Q = Kaloc ¢ iff M,img(Q,~X) k= loc ¢ iff Vocimg(Q.~5) M, q =
piff M, Q F Kap. L

In particular, knowledge of a formula is the same as constei&nowledge of
the localization of the formula,e. K,p < K,loc . An important corollary of
Propositions 45 and 44 is the following.

THEOREM46. — The following is strongly valid:

Kap — Ka(@)ol o.

Theorem 46 shows thatandard knowledge can be seen as a special case of con-
structive knowledge It follows that the standard knowledge operators arethtric
speaking redundant in thesL language.

7.3. Non-standard definitions of negation

Negation, as defined in Section 3.1, is “weak” in the senskitligsufficient for
the negation of, e.g., an atomic formuyl@o hold in a set of state@ thatp is false in



Constructive knowledge 459

at least one state froi). Several other interpretations of negation in a set of state
are possible, corresponding to different ways of quantgyover the set. We define
strong negatioras:

~p =loc—p

Note that, by Proposition 44, strong negation is definaldenfveak negation:~ ¢
can be equivalently defined §8)) (—¢) U (—¢).

PROPOSITION47. — M, Q =~ iff, for everyq € Q, we have thal/, ¢ |~ ¢.

PROOF — M, Q =~y iff M,Q = loc —y iff for every ¢ € Q we have thal/, ¢
©. |

Strong negation doesot behave as classical negation: it does not obey the law
of double negation, the law of excluded middle, or the cdarisy requirement under
strongvalidity. Nevertheless, it preserves these laws under wahdiity.

PROPOSITION48. —

1) ~~¢p — ¢ is weakly valid, but not strongly valid.
2) p — ~~is weakly valid, but not strongly valid.
3) ¢V ~is weakly valid, but not strongly valid.

4) —(pN ~¢) is weakly valid, but not strongly valid.

PROOF —

1), 2) Weak validity is immediatel/, Q = ~~piff M,Q = loc — ~piff M,Q =
loc —loc —g iff for every ¢ € @Q we have thatM, ¢ = ¢. Counter-examples for
the two implications are found in the two parts of Lemma 38pestively, by taking
Q = img(q, ~a)-

3) Weak validity is immediate. As a counter-example to gfrealidity, take M/
andy from Lemma 38.1, and l&) = img(q, ~,). M, Q F~ ¢, and it is not the case
thatM, ¢’ |~ ¢ for everyq’ € Q.

4) Weak validity: immediate. Strong validity: takdl = Mg from Lemma 38,
andletQ = {q,q'}, » = ~(a)Op. u

REMARK 49. — Alternatively, strong negation can be taken as a pgimation:
localization is definable from strong negation, and stash@aowledge is thus defin-
able from constructive knowledge and strong negation. Bdynthe following are
strongly valid:

1) locp & ~~op
2) Kap < Ka ~~o. O
7.3.1. Boolean operators based on strong negation

Recall that connectives like and— are defined in terms of weak negation) (
Similar connectives can be defined for strong negation:

=1 || w2 =~(~piA ~p2),
— 1~ 2 =~@1 || po, and
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— @1 e 2 = (1~ P2) A2 ~ 1.

These versions of disjunction, material implication, andtenial biconditional
have the following semantic characterizations:

PROPOSITIONS0. —

1) M,Q | ¢1 || w2 iff, for everyq € Q, we havel, q |= 1 or M, q |= ¢2;
2) M,Q E p1 ~ ¢ Iff, for everyq € Q, we have that\/,q = 1 implies

M, q | ¢2;
3) M,Q E @1 «~ o iff, for everyq € Q, we have thalll, q = o1 iff M, q =

©2.
PROOE —

1) M,QE~(~o1h ~pa) iff Voeq M, q [~ o1n ~ @2 iff VoM, q i~
or M, q =~ 3 iff VyeqM, q |= 1 0r M, g |= .

2) M,Q E @1~ @ iff M,Q =~ 1 || @2 iff Voeo(M,q E~p10rM,q =

p2) iff Voeq (M, q £ o1 0r M, q |= @2) iff Ve M, q | o1 — ¢2.
3) Straightforward. [ |

We can also define the strong negation-based versions oéBoabnstants “true”
and “false”, but they coincide with the ones already progddseSection 3.2.

PROPOSITIONS51. — Let! =pA ~p,andT =~ . Then:

1) M,Q W~ 2 forall Q C St,Q # 0.
2) M,Q =7 forall Q C St,Q # 0.

PrROOF — Straightforward. [ |

7.3.2. Some connections between the weak and the strong

It is immediate from Proposition 50 that, just as strong tiegds the localization
of weak negation, the operatofs ~~ and «~ defined by strong negation, are the
localizations of their counterparts —, < defined by weak negation:

PrROPOSITION52. — The following are strongly valid:
(01 || p2) < loc (1 V ¢2)

(1 ~ 2) < loc (o1 — ¢2)
(1 & @2) < loc (@1 < @2)

Moreover, for validity (not strong validity), the two negais, the two disjunctions
and the two implications coincide:

PrRoOPOSITION53. — The following formulae are valid (but not strongly valid):

1) ~p =g
2) (p1Vp2) < (o1 || 2)
3) (p1 = w2) < (p1 ~ p2)
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PROOF — Immediate from Proposition 52, sinéd, ¢ = v iff M,q = loc v, for
any (single) state. [ |

The following proposition shows that the notions of strong aveak validity can
be seen as dual with respect to the strong and weak versidhs obnnectives.

PROPOSITIONS4. —

1) ~gis strongly valid iff-¢ is weakly valid.

2) o1 || @2 is strongly valid iffpy V @9 is weakly valid.

3) 1 ~ g is strongly valid iffp; — 4 is weakly valid.
4) 1 «~ g Is strongly valid iffp; < 4 is weakly valid.

The laws of negation were stated in Proposition 48 using eotivesy, etc., de-
fined from weak negation. We can now show, however, that the &f negation do
in fact hold for strong negation if we state these laws udiregaperators defined from
strong negation.

PrRoOPOSITIONSS. —

1) ~~ ¢ e @is strongly valid.
2) ¢ || ~pis strongly valid.
3) ~(pA ~)is strongly valid.

PROOF — Immediate from Propositions 48 and 54. |

7.3.3. Properties of constructive knowledge with “strong” negati

In Section 6.2, we discussed the S5 properties of constaiktiowledge. These
properties can also be stated using strong negation, anstdeonnectives, instead
of weak negation.

THEOREM56. — Below, we list constructive knowledge versions of some &% pr
erties using strong negation. “Yes” means that the schensrangly valid; “No”
means that it is not even weakly valid (again, none of the gmigs turn out to be
weakly but not strongly valid).

K Ka(p ~ 1) ~ (Ko ~ Ka1p) No

D ~Kod Yes
T Ko ~ @ No
4 Ko ~ KoKagp Yes
4+ Ko e KoKqg Yes
5 ~Kop - Ko~Kap  Yes
5+ ~Kop o Ko~Kep  Yes
B @~ Ko~ Ky~ Yes

Proof in the Appendix.

Finally, we point out that if we restrict the languagedsL™, as discussed in
Section 6.3, we get the truth axiol i.e., the following variant of Theorem 39.
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THEOREM57. — EverycsL™ instance of schem® (Kgp ~~ o) is strongly valid.
ProOOR — Note thatv,cqM, ¢ = K. — ¢ (by T), which implies thatM, Q =
Ky ~~ ¢ (by Proposition 50). |

7.3.4. Other negations

We have considered two operators for negation so far. Yethanalternative is:
Zp = —loc p. The meaning o is characterized with the following proposition.

PROPOSITIONS8. — M, Q = Zyp iff there existg € Q such thatM, ¢ t~ .

PROOF — M, Q = Zyiff M,Q | —loc ¢ iff M,Q £~ loc ¢ iff thereisaq € Q
such thatM, g = . [ ]

8. Normal forms and expressiveness

In this section, we investigate expressiveness furtheh particular focus on the
relationship between localization, weak negation andngtneegation. In order to
study expressiveness, we will study variants of the langudgfined in Section 3.1
with other (primary) operators. We have discussed thepné¢ation of the following
operators in sets of states:

= A <<A>>T Cy Ea Dy Cyq4 Egu Dy loc ~

whereT" is an ATL temporal connective and is a set of agents. We use the ex-
pression’(—, A, (ANT, K4, K4, loc , ~) to denote the language with all the men-
tioned operatorsy(—, A, (ANT, K a, K4, loc ) to denote the language with all oper-
ators except strong negation, and so on. €he language introduced in Section 3.1
is L = L(=,A, (A)T,K4,K4). For simplicity, we sometimes us&" for the most
extensive languagé(—, A, (ANT, K 4,K 4, loc , ~).

We say that two formulae andi areequivalentif ¢ < 1 is valid, and that they
arestrongly equivalenif ¢ < 1) is strongly valid. We say that a language is at
least as expressivas a languagé,, if for every ¢, € £, there exist an equivalent
w2 € Lo. We say thatC, and £, are expressively equivalenif £, is at least as
expressive ag; and/.; is at least as expressive 4g.

We will make use of the following definition:

Atoms = QO U{{(ANTy:ve L YU {~vy:ve L.

We begin with defining aormal formof our formulae.

8.1. Constructive normal form

A formula, possibly containing strong negation, iscohstructive normal fornf
every subformula starting with & 4 operator is of the fornkC; - - - 1) where is
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either a primitive proposition, starts with a cooperationdality, or starts with strong
negation. We now show that evefy formula is equivalent to one of constructive nor-
mal form, and also to a formula of constructive normal forntheut strong negation.

DEFINITION 59 (CONSTRUCTIVE NORMAL FORM(CSNF)). — The set of_* for-
mulae ofconstructive normal form (CSNHR3 defined inductively as follows.

— pis of CSNF whep € 0,

— K~ is of CSNF iffy is of CSNF and eithey € Atoms or v = K'y,
— ((G) T~ is of CSNF iffy is of CSNF,

— —y is of CSNF iffy is of CSNF,

— ~1 A 2 is of CSNF iff bothy; and~, are of CSNF,

— ~yis of CSNF iffy is of CSNF.

THEOREM60. — Every formula in£* is strongly equivalent to a formula of con-
structive normal form.

Proof in the Appendix.

Thus, any formula of the most general kind we have considiereduivalent to a
formula of CSNF. Note that a CSNF formula might contain straoegation. However,
we can also get rid of strong negation, as the following tesates.

COROLLARY 61. — Every formula inC* is strongly equivalent to a formula of con-
structive normal form without strong negation.

Proof in the Appendix.

8.2. Expressiveness of strong negation

We have shown in Section 7 that standard knowledge, lo¢alizand strong nega-
tion can be defined with use of weak negation (together witljiusaction, constructive
knowledge anchTL operators). Thusi(—, A, (A)T, K) is already as expressive as
the full £*. Now we will investigate the other direction: doegaknegation add
expressiveness if we already have strong negation? We shtve ifollowing theo-
rem that, in the languagé extended with strong negation, every formula is actually
equivalent to one without weak negation.

THEOREM62. — Every formulainl(—, A, (A)T, K, ~) is equivalent to a formula
of L(A, (AT, K, ~).
Proof in the Appendix.

Thus, in particular, the following four languages are espieely equivalent:
‘C(_‘v A, <<A>>Ta ’6) ‘C(/\a <<A>>T7 I€7 N) L L*

In consequence, botli(—, A, (A)T,K) and L(A, (A)T, K, ~) are expressively
complete with respect to the other operators we have carsldé\n important dif-
ference betweel(—, A, (A)T, K) and L(A, {(A)T, K, ~) is that strong negation is
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definable from weak negation and ATL operators by a simplemseh((()) —o U —),
while this is not the case when we reverse the roles of thetioega

9. Conclusions

In this paper, we propose a non-standard semantics for tialnagic of strate-
gic ability under imperfect information, in which formulaee interpreted ovesets of
statesrather than in single staté$.Moreover, we introduce new epistemic operators
for “constructive” knowledge. It turns out that, in this ne@mantics, simple cooper-
ation modalities(A)) can be combined with “constructive” epistemic operatots in
sufficiently expressive formulae. Indeed, the new lagigtrictly more expressive than
most existinghTL versions for imperfect informatiomvhile it retains the same model
checking complexity as the least costly of them. The phipscal dimension of con-
structive knowledge is also natural: the constructive Kiedge operators capture the
notion ofknowing “de re”, while the standard epistemic operators refekriowing
“de dicto”. Moreover, it turns out that standard (traditional) knadge is a special
case of constructive knowledge. Also, the languagesif is expressive enough to
enable expressing several other interesting operatorsimgale way.

Most of the usual S5 properties (with the notable exceptiadh®truth axiom T)
hold for constructive knowledge. Furthermore, if we slighestrict the syntax of
csL, we do not lose expressive power and the schema T becomaddityval

csL has novel, meaningful epistemic operators that can be wsedgture im-
portant properties of the interaction between knowledgi&oma and ability. In future
work, we plan to investigate further the expressivityosiL, and its relationship with
logics like ETSL, ATL;z, ATEL-R*, ATEL-A, and “UniformsTIT". A good case study
(together with a more detailed analysis of verification ctenity) is essential to de-
termine the applicability of the logic. Also, the (relathexpressive power of various
operators in our semantics seems to be worth further study.

We thank anonymous reviewers of JANCL and AAMAS-06 for thetpful re-
marks. Thomas Agotnes’ work has been supported by the Riés€auncil of Nor-
way under grant 166525/V30. Wojtek Jamroga would also tkin&nk Jan Broersen,
John-Jules Meyer and Wiebe van der Hoek.
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Appendix: some proofs
Theorem 23

PROOF (STRUCTURAL INDUCTION WITH RESPECT TO THE STRUCTURE Of). —

= M,q =, tr(p) iff M,q = piff pen(q)iff M,q=, p.

- M,q . tr(-yp) iff M,q ., tr(p) iff (by induction) M,q F,. ¢ iff
M,q ':[, P

- M,q = tr(pny)iff M,q = tr(e) andM, q = tr(y) iff (by induction)
M,q . pandM,q =, ¢iff Mg, oA, X

= M,q g tr({A)ca)Ow) iff M, q e Kr{{A)Otr(p) iff
M,img(q,~F) Fo (ANOUr(p) iff 35, ¥acout(ime(a~i),s)M: A1) Feo ()
iff (by indUCtion) ElSAVAGout(img(q,~§),SA)‘Z\47A[l] |:AT0L P iff qu |:AT0L
(A k@ Oe.

— For ((A) xcr Oy and ({(A) ) (0U ). analogously. The same fgfA));, ¢,
(ANf e, and( AN, o

- M,q ., tr((A) Op) iff M, q e (A)Otr(e) iff
I54Yacout(q,5.0) M, A[1] FFoy tr(w) iff - (by induction)  3s,Vacout(q,54)
M, A1) =, @iff Mg =, (A)Op.

- M,q =, tr((A)];, Ovp) iff M, q o, K= {(A)Otr(p) iff
_'vq’EiIIIg(mNb)_‘Ma q/ IZCSL <<A>>Otr(50) iff EIq’EiIng(q,fvb)ElSAv/\Eout(q’,SA)-Z\47A[l]
Fe tr(p) iff (by induction) s, 3y cimg(g,~y) Vacout(q/,5.0) M, A[l] Fe ¢ iff
M, q e (A), O

— For (A}, Op and(A)},, (¢U v): analogously.

= M,q ., tr(Kay) ift M,q =, Katr(e) iff Vorcimgqo) Mo d' Fo tr(e)
iff (by induction)vq,eimg(qwﬁ)M, qd =, piff M,qE, Kap. |
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Theorem 39

PROOF (STRUCTURAL INDUCTION ON THE STRUCTURE OFp). —  In each case,
we will prove thatM, @ = K,y implies M, Q = ¢ for an arbitrary@. By Proposi-
tion 16, we can then conclude thiaf, Q = K, — .

To simplify the proof, we assume that eaghhas been transformed so that no
constructive knowledge operator is followed by conjunefiey Proposition 36.3, each
subformuIaICA(wl A 1) can be equivalently transformedifoA<p1 A ICAch, and we
can apply this transformation recursively). Thus, everin o is now followed either
by some othei’, or by ((A)), or by a standard knowledge operatd¥, or by an
atomic propositiomn.

Additionally, given@, we define)’ = img(Q, ~,). Note thatQ C Q’ by reflex-
ivity of ~,. Also,out(Q, Sa) C out(Q’, Sa) by monotonicity of functiorvut wrt @,
andimg(Q, ~%) C img(Q’, ~%) by reflexivity of all ~.

Casep =p: Let M,Q = Kyp. ThenM,Q’" = p, i.e.VoeqrM,q = p. So,
Vee@M, q = p,andM, Q = p.

Case<p = Npo: Let M, Q ): Ka(wl /\’(1}2). ThenM, Ql ': 1 Aa, i.e.M, Ql ':
1 andM, Q' = 2. So,M, Q E Kui andM, Q | K,12. By the induction

hypothesis)M, Q | ¢ andM, Q = 12, and hencél, Q | 1 A s

Casep = (A) Ov: Let M,Q = K,(A)Owy. ThenM, Q' = (A)O, and so
354 Vacout(qr s M, A[1] = 9. Thus, 35, Vrcout(@,5.)M, All] | ¢, and
M,Q E (A)0O

Casesp = ((A)y and p = (A)1 U, analogous.

Casep = Kay: Let M,Q | KoKayp. ThenM, Q" = Kavh, andV cimg (o~ K
M, q . Butthen alst cimg(@.~5) M, q E ¢, andM, Q = Ka. [ |

Before we consider the remaining cases, we define a coupldctwional symbols.
Let Q' = img(Q'~, ~4), Q° = Q. Thatis,Q" = img(...(img(Q, ~%,), ...), ~5)).
Also, letQ” = img(Q™, ~,). Note that™ C Q”, andout(Q™, Sg) C out(Q", Sp)
for any Sp.

Casep = I@j;”...l@hp: (i.e, ¢ is a sequence of possibly differentC operators for
possibly different coalitions). Let/, Q = K,K% ...KY p. ThenM, Q" = p,
and hence/,cqrM,q = p. Thus,VeegnM,q = p, SOM, Q™ E p, and
M,Q Ky, Ky, p

Casep = K% ...KYy Kpy: analogous.
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Casep = K4 ..KY (BYOv: LetM,Q = K.K% .KY (B)Ow.
ThenM, Q" = (B)) O, and henclls, Yacour(qr,s5) M, A[l] = 1.
-I:hus!EASBVAE(Jut(Q”,SB)MaA[l] ': w1 SOM) Qn ): <<B>>Ow1 andM}Q ':
K7, - Kh, (B)O.

Casesp = K7} ...KY (B)Oy andp =K% ..KY (B)v1 U analogous. M

Proposition 42

PROOF —

K Immediate.

D Suppose thad/, Q = loc L for some@ # @. Then, there is some for which
M, q | L, but this contradicts Proposition 16.1.

T To see thafl is not strongly valid, letp and M be as in Lemma 38.1, and take
Q = lmg(% Na)' M; Q ': loc s bUtMvQ l?& 2

4/47 M,Q E loc ¢ iff for every ¢ € Q we have that\/, q = ¢ iff for every g € Q
we have thai\/, ¢ = loc ¢ iff M, Q [ loc loc ¢.

5/5T To see thab is not strongly valid, letV be as in Figure 5p = p and let
Q ={q,¢}. M,Q E —loc ¢ because\l, ¢’ = —¢p. However, if it were the
case thall/, Q |= loc —loc ¢, thenM, ¢ = —loc p and thusM, ¢ = —p, which
is not the case.

B M,Q  piffforall ¢ € Q we have that\/, ¢ = ¢ iff for all ¢ € Q we have that
M, q | —loc —¢iff M,Q = loc —loc —¢. |

Theorem 56

PROOFR —

K: We construct a counterexample. Ldtbe a model with stateg , ¢o and agent,
such that, ~q g2, m(q1) = {r} andm(g2) = {p}. Leto = —pandy =r. p ¢
m(q1) Nm(gz), SOM,img(q1, ~a) = ¢ andM, q1 = Kap. r & w(q1) N7(g2),
SOMv img(‘]l; Na) l# l/} ande a1 b& Kaw- ThUS!Mv a1 b& Ka‘p - Kaw and
by Proposition 53:M, ¢1 (£ Ko ~ Keo (¥). Since bothM, ¢1 E ¢ — ¢
andM, g2 E ¢ — 1, by Proposition 50), img(¢1,~4) = ¢ ~ ¢ and thus
M, q1 = K, (¢ ~ ). Together with (*), we get thal/, ¢1 = K, (¢ ~ ¢) —
(Ko ~ Ka1b) and, by Proposition 53M, ¢1 £ Ka(p ~ ©) ~ (Kep ~
K,1). Thus K is not weakly (and hence not strongly) valid.
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T: Let M, q,a, ¢ be as in Lemma 38.2M,q = Kup and M, q [~ o, SOM, q [~

K.p ~~ ¢ by Proposition 53. ThudT is not weakly (and hence not strongly)
valid.

4at/a: M,Q = Kup «» KK,y iff, by Proposition 50Y,cq(M,q = Koo <
Maq ': KO«KG@) |ﬁ:, by 4+! quQ(Maq ': Ka(p ~ Maq ': Ka(p)'

5t/5: M,Q E~ Kup e K, ~ Ky iff, by Proposition 50,V,co(M,q =~
Kap & M, q = Ko~ Kap) iff Vyeq(M,img(q, ~a) = ¢ & M,img(q, ~a)
':N Ka@) iff quQ(Mv 1mg(q7Na) l?é Y = vq/EiIIlg(q,Na)Mv Hng(qla Na) l?&
) which is true, sincémg(q’, ~,) = img(q, ~,) foranyq’ € img(q, ~q).

D: M,Q =~K, 1 iff VyeoM, q Ko L iff VoM, img(q, ~a) % 2, which is
true by Proposition 51.1.

B: MvQ ': ® ~ KaNKaNSD iff quQ(qu ': p =
M, img(q, ~a) [~ Ko ~ ) iff Vyeo(M,q = ¢ = Yycimggnag M4
Kq ~ 90) iff quQ(M’q ': Y = vq/eirng(q,Na) M, img(qlv'\‘a) %N 90) iff
quQ(M7 q ): Y = vq’Gimg(q,Nu)Hq”eirng(q’,Na)]\47 q” ': ()0) iff VQEQ(M7 q ':
¢ = g cimg(q,~0) M, ¢ | ©). This always holds, by taking = q. [ |

Theorem 60 and Corollary 61 (Constructive Normal Form) anchéorem 62
(Expressiveness of Strong Negation)

In the following we will very often work in the languag®(—, A, (A)T, Ka, ~),
and we will henceforth use the shorthand notatfoto denote this language, for sim-

plicity.
We useSubf () to denote the set of all subformulaeg{including itself). For

simplicity, we assume that each subformula of a formulanigjue i.e. that there is a
unique member ofubf () for each occurrence of a subformulagt®.

We first present intermediate definitions and results lepdmto the main result
in Theorem 60. Note that Lemma 65 below gives an alternagigiaivalent) definition
of constructive normal form.

DEFINITION 63. —We define thelepthd,(¢) of a subformula) € Subf(y) of a
formulay € £ in the usual way:

- dw(%f) =0
—dy(Ky)=d=dy(y)=d+1
— dpo((G)T) =d = dp(y) =d+1
—do(m A7) =d=dy(11) =dy(y2) =d+1
13. This can be achieved by, e.qg., adorning the subformuitheunique identifiers, or by taking

Subf () to be a multiset instead of a set. The only reason for thisnagan is to make proofs
simpler.
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LEMMA 64. — A formulay € £ is of CSNF iff everyy € Subf (1)) is of CSNF.

PROOF — The implication to the left is trivial; we prove the one to thght. As-
sume that) is of CSNF. That each € Subf(v) is of CSNF follows immediately by
induction on the depth of:

— dy(y) = 0: v = is of CSNF
— dy(v) =d+1(d > 0). We reason by the possible cases:
- dy(Kv) = d: by the induction hypothesi§y is of CSNF, and thus is of

CSNF.

- dy((G)Tw) = d: (G)T~ is of CSNF;y is of CSNF.

- dy(y Av') = d: v A~ is of CSNF;~ is of CSNF. Similarly when
dy(y" A7) =d.

- dy(—y) = d: -y is of CSNF;y is of CSNF.

- dy(~v) =d: ~~isof CSNF;yis of CSNF. ]

LEMMA 65. — A formulay € £ is of CSNF iff everyCy € Subf (1) is of the form
KK -+ - Kra Wherea € Atoms, for somek > 0.

PROOF — For the direction to the right, assume that there i c Subf ()
which is not of the form. There are two possibilities = K- - - K,,—3 or v =
Ko -+ KmB1 A B2 for somem > 0. In either case, it follows immediately thkty is
not of CSNF. By Lemma 64} is not of CSNF.

For the direction to the left, assume that evkry € Subf (1)) is of the form. We
show that every € Subf () is of CSNF by structural induction:

— x =p € O: yis of CSNF.

— x = Kv: by the induction hypothesisy is of CSNF. By assumptiony =
Ko - - - Kra for somea € Atoms and some: > 0. Thus,y is of CSNF.

— x = {A)T~: by the induction hypothesis,is of CSNF, and thug is of CSNF.

— x = 71 A 72: by the induction hypothesis; andy, are of CSNF, and thug is
of CSNF.

— x = ~~: by the induction hypothesis,is of CSNF and thug is of CSNF.

— x = —: by the induction hypothesis,is of CSNF and thug is of CSNF. B

Now that we have established some properties of formulaesdfk; we go on to
define the mapping of a formula to one of CSNF.
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DEFINITION 66. —The valuef (K1) of the functionf : {K¢ : ¢ € L} — L is
defined by structural induction over.

f(Ky) =Ky wheny € Atoms
FIRK'y) = KK’y
F(K=) = ~f(Ky)
FIK( Av2)) = F(Ky1) A f(K2)

LEMMA 67. — Letg € £ be a formula3 is of CSNF ifff (K3) is of CSNF for any
arbitrary K € {C4,D4,E4 : A C 3}

PROOE — LetK ¢ {Ca,D4,E4 : A C X}. The proof is by structural induction
over:

— B =peO: fisof CSNFiff f(K3) = Kp is of CSNF.

— B=K'~: Bis of CSNF iff f(K3) = KK'~ is of CSNF.

— B=(A)T~: Bis of CSNF iff f(K3) = K{(A) T~ is of CSNF.

— (=1 A~ fis of CSNF iff bothvy; and~, are of CSNF iff, by the induction
hypothesis, botlf (K~,) and f(K~.) are of CSNF ifff (K3) is of CSNF.

— B =~n: Bis of CSNF iff f(K3) = K3 is of CSNF.

— 3 = —: (s of CSNF iff is of CSNF iff, by the induction hypothesig(K~)
is of CSNF iff~f (K~y) is of CSNF iff f(K—) is of CSNF. [ |

LEMMA 68. — Forany € L,
Kip = f(Ke)
is strongly valid for anyC € {C,,D4,E4: A C X}

PROOF — The proof is by structural induction over. Wheny € Atoms or ¢ =
K'v, f(K¢) = K1, and we are done. Wheh= —, M, Q = K1) iff, by Proposition
36, M,Q = ﬁIny iff M,Q W K~ iff, by the induction hypothesis/, @ f(lC’y)
iff M,Q f= ~f(Ky) iff M,Q = f(Ki). Wheny = 11 Ao, M,Q = Ky iff
by Proposition 36/, Q = Kv1 andM, Q = K. iff, by the induction hypothesis,
M,Q = f(Ky) andM, Q = f(Kve) iff M, Q = f(K). m

DEFINITION 69 (p;, X;, ;). — Lety € L be a formula. Define;, 7 > 0:

—i=01p=¢

—i=j+1( >0): LetX; = {K¢ : Kib € Subf(p;), K¢ is not of CSNF. If
X is empty, letp;11 = ;. Otherwise, select an; € X; such thatd € X; implies
thatd,,(3) < d,,(a;) (several suchy; may exist; select one arbitrarily), and let
w;+1 bep; with the subformulay; replaced byf («;).

LEMMA 70. — Lety € £, and leto; be defined in Def. 69. For eagh> 1, f(«;)
is of CSNF.
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PROOF — Leta; = K1. We show that for every € Subf (1)), f(K~) is of CSNF
by structural induction ovey:

-y =pe0O: f(Ky)=Kpis of CSNF.

- v =K' f(Kv) = KK'S is of CSNF iff K’ 3 is of CSNF. Assume that’ 3 is
not of CSNF, theny € X;. Thend,, ,(v) > dy, ,(a;), but this is a contradiction
since there are ng € X; with greater depth than;. Thus,f(l@w) is of CSNF.

— v = (G)Tp: By the induction hypothesig,(K(3) is of CSNF; by Lemma 67
Bis of CSNF;(G)T 3 is of CSNF;K(G)T 3 = f(K~) is of CSNF.

— 4 = 71 A 72: By the induction hypothesig;,(K~;) and f(K~2) are of CSNF;
F(K~1) A f(K72) is of CSNF; f(K~) is of CSNF.

— ~ = —43: By the induction hypothesig;(K3) is of CSNF;—f(K3) is of CSNF;
f(K~) is of CSNF.

— ~v =~ [: By the induction hypothesig{(l@ﬂ) is of CSNF; by Lemma 67 is
of CSNF;y is of CSNF;K~y = f(K~) is of CSNF. [

LEMMA 71. — Lety € £, and lety; be defined in Def. 69. There ispa> 1 such
thaty, = ¢,—1 and X, = 0. We writep = ¢,, for an arbitrary suchp.

PROOF — X} is finite. We show thak;,; C X; (proper inclusion) whenevet; #
w;—1, foranyi > 1. The Lemma follows.

Let v; # @;—1. Assume that there is an € X,;11, a ¢ X;. « is not of
CSNF, and sincex € Subf(y;) anda ¢ Subf(e,—1) the only possibility is that
a € Subf(f(a;)). But by Lemma 70f(c;) is of CSNF, and by Lemma 64 must
be of CSNF which is a contradiction. Thu¥;,; C X;. To see that the inclusion is
proper, observe that; € X; buta; & X;41. [ |

PROOF (OF THEOREM60). — Lety” € L£*, and lety’ be the result of replacing
every occurrence of in ¢ with the combinatiorkC ~~, for everyK. Let o be the
result of replacing every occurrencelot in ¢’ with the combination~~. ¢ andy
are strongly equivalent by Remark 49. Observe that £. Let p = vp be defined
from ¢ asin Lemma 71.

First, we argue thap is of CSNF. If not, there is &y € Subf(¢) where~ is
not of the formKy - - - K for a € Atoms (Lemma 65). ThenK~ is not of CSNF,
which contradicts the fact that,, = (. Second, we show thap — ¢ is strongly
valid. Leti > 1. By Lemma 68,M,Q = «; iff M,Q = f(«;) forany M, Q. It
follows immediately that\/, Q = ¢; iff M,Q E ¢ir1. Thus,M,Q E ¢ = ¢ iff
M.Q = ¢ = ¢p. Thus,p is of CSNF, and it is equivalent tp. |

PROOF (OF COROLLARY 61). — Lety € L*. By the theoremy is strongly equiv-
alent to a formula> which is of CSNF. Now, we recursively replace all subforneula
of ¢ of the form ~ v with {(0)) (=) U (=), yielding (by Proposition 44) a strongly
equivalent formula’ without strong negation. We observe that subformulae of ESN
are replaced with subformulae of CSNF,,sas of CSNF too. |

We now go on to present our proof of Theorem 62. Some moreiantathen
v € L, we usep to denote the result of replacing each occurrence of o with ~.
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Formally,p = p; Kath = Kath; (GYT0 = (GNT; r Aty = 1 A dho; b =~
We begin with defining the notion aonstructive deptlof a subformula — not to
be confused with the notion afepthin the proof of Theorem 60.

DEFINITION 72 (CONSTRUCTIVE DEPTH. — Lety € £. Theconstructive depth
or just c-depth,D, (%) in ¢ of a subformulay € Subf(y) is defined inductively as
follows:

If » has no occurrence of on c-depthD, i.e, if =¢» € Subf(y) implies that
D (—) # D, we say that is free of— on depthD.

LEMMA 73. — If aformulay € L(—, A, (A)T, K, ~) is free of— on all depths
> 0, then
peop
is valid.
PROOF — We show that
~. valid if D,(¢p) =0
Yeoyls { strongly valid if D, () > 0

for all ©» € Subf(¢) by structural induction.

¢ = p: immediate () = 1).

Y =Kay: Dy(y) > 0. M,Q k= 4 iff M,img(Q,~%) = ~ iff, by the induction
hypothesis), img(Q, ~X) = 7 iff M,Q = Ka7 iff M,Q = .

l/) = <<G>>|:|"}/ M, Q ': ’LZ) iff HSGVAeout(Q,Sc)ijOMa A[]] ': Y iff, bythe induction
hypothesis (fory, whereD(v) = 0), Is;Vacout(Q,5¢)Vj>0M, Alj] |= 7 iff
M, Q E (G)O75. Similar for the othenTL connectives.

1 = y1 Ayo: First, consider the case that,(¢) = 0, in which caseD,(v1) =
Dy (v2) = 0. We must show that « « is valid. M,q = ¢ iff M,q = n
and M, q = - iff, by the induction hypothesis)/, ¢ = 41 andM,q | 2
iff M,q = 71 A 2. Second, consider the case tiiat(y) > 0, in which case
D,(v1) > 0and D, (y2) > 0. We must show thap — 1 is strongly valid.
M,Q E ¢ iff M,Q = v andM,Q [ - iff, by the induction hypothesis,
M,Q EyrandM,Q = iff M,Q 71 A .
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1 = —y: By the assumption in the lemmd&), (/) = 0. Then alsoD,(y) = 0.
M, q | ¢ iff M, q [~ v iff, by the induction hypothesis\/, g £ 7 iff M,q =

Y =rn M,Q = ¢iff VoeqgM, g ~ v iff, by the induction hypothesis (foy, where

PROOF (OF THEOREM62). — Letp € L(—, A, (A)T,K, ~) be a formula, and let
¢ be a formula of CSNF equivalent ta Note thatp € £(—, A, (AT, K, ~). We
show that

Dg(¢) >0 =1 € Atoms ory = K~y 3)

for everyy € Subf () by induction over the depth (not the constructive depthy) of
for arbitraryy andK. For the base case, lgét= @ and (3) is vacuously true. In the
inductive case assume that (3) holds for the parerit dthere are three circumstances
in which D (¢) > 0. First, K¢ € Subf(). Then,y € Atoms or 1 is of the form
Ky, sinceg is of CSNF. Secondyy) € Subf(p) with Dys()) = Dy(—1). By the
induction hypothesis, it must be the case that(—) = 0, so (3) is vacuously true.
Third, ¢ A 9" € Subf(¢) with Dy () = Dg(¢') = Dg(¢p A¢'). By the induction
hypothesis, it must be the case tfiat(y)A¢y") = 0, so (3) is vacuously true. Similarly
for the case)’ A +. This shows thap is free for— on all depths> 0, and thusp is
equivalenttgp which is equivalent tgo by Lemma 73 which is without weak negation.
|



