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Constructive methods in probabilistic metric spaces

by
Eizo Nishiura (Detroit)

0, Introduction. This paper initintes a development of the theory
of probabilistic metric spaces in which the role of the ¢-norm is ancillary;
indeed, the t-norms are considered only insofar ag we wish to clarify the
relationship between this and previous work in probabilistic metric spaces.
Moreover, our principal interest here will be not in #-norms as defined
in [1], but with f-norms satisfying s weaker set of conditions.

In section one of this paper we make some t.sic definitions along
with a Drief discussion of ¢-norms. The remaining sections will give con-
structive solutions of some problems in psendo-mefrically generated
spaces, metrization and completion of spaces.

1. Preliminaries. We shall be concerned here with a family
T = {Fpq: 7,48}

of one-dimensional probability distribution functions Fy, satistying the
toHowing conditions: for each pair p, g8,

(1) Fpy is left-continuous,

(2) Ty = Fyp,

(3) FM(O) =0, )

{4) Fyp, = H if, and only if, p = ¢;
where H is the function defined by

0o foru<o0,
Hio) = |
(@) 11 forw>0.

If the family § satisfies the additional condition

(3) Fpylw) = 1 and Fi(y) = 1=>Fp(oty) = 1
tor all p, g, r ¢ § and @, y > 0, then the pair (8, §) is a probabilistic metric
space in the senge of Schweizer and Sklar [1].

In his original paper {2], Menger required the members of the fam-
ity § to satisfy (instead of condition 5) the eondition:

(bm) Fp(w+y) = T(Fw(w)alﬂqr(y))

8%
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for all p,q,re8 and #,y >0, for some fanction

T: [0; 1] X [0; 1]%[07 1]

satisfying:

) Tla, by < Te,d) for a<< e and b < 4,

(ts) T{a, by =T(b,a),

) T, ) =1,

(ty T{a,1)>0 for &> 0;
and called a statistical metric a pair (8, §) satisfying (1)~(4) and (5m).

Schweizer and Sklar, in [1], replaced these condifions by the re-
quirements: )

(t) Tia, b) T{e, d) for a

() T{a,b) = T(b, a},

) Ta, 1)—a and T(0,0) = 0,

{t) T{Ta,b},¢} = T(a, T}, 0c)
anfl called a Menger Space a probabilistic metric space for which thers
exists & ¢-norm satisfying (3m), a f-norm being a function with prop-
ertiies (61)—{(td). '

For any probabilistic metric space (9, §), there is a natural function

Tg: [0,11% 0, 17+{0, 1] which has most of the properties of a f-norm.
Namely,

< ¢ and b <

Tsla, b) = inf {Fpra-y): Fpfa) > a, Fyly) = b} .

It is easy to verify that (t)-(t,) and (5m) are satisfied.

Since (%) is not. necessarily satisfied by Te, it is not necessarily
& {-norm; however, if there is a f-norm 7 for (§,%), then T < Ty in
the sense of [1] since Ty is clearly the strongest function having prop-
erties (t;)-(t;) and {(bm). It is this “quasi {-norm® with whieh we shall be
mainly concerned.

We shall also have oceasion to wake use of the family D = {du:
0 a< 1} of functions from §x & to [0, co) defined Dy

ts] ' do(py @) = Inf{m: Fpplx) > a}.

In view of the fact that each F,, is increaging and left-continuous,
we have

() . (P, §) < s Fp(w) > o

Furthermore, f?he Fpy(®) can be recovered from the dup, ¢); namely,

(IH) —Fpg(w) sup {(l/ p’ q) < 7}

icm
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The family D has the following properties: for each a.

() da(fp: q) >0,

(b) do(p,p) = 0.

(¢) dalp, ) = dalg, D)-

If, moreover, we assume the family & to satisfy the condition: for
each a(0 < a1,

(IV} Foda) > o

for all p,q,7efS and «,y > 0, then the du(p, ¢) have the additional
property: for each a,

(@) delp, 1) < da(p, )+ dalg,y )
for all p,q,7 8, Le. each de is a psendo-metric for S. Conversely,
(d) also implies (IV) so that we have

LemmA 1. D is @ family of pseéudo-metrics if, and only if, the family §
satisfies (IV). For 0< a<1, dy is a metric if, and only if each Foq i
continuwous at 0.

Proof. Tt only remains to prove the last assertion, for which we
need only note that du(p, g) = 0 if, and only if, Fpe(®) > o for all > 0.

In subsequent parts of this paper, we shall make use of conditions
similar to (IV). In order to emphagize the geometrie and uniform character
of these conditions, we make the following definitions for later use:

Uz, a) = {(p, 9 J: Fpele) > a)

and  Foly) > o =Fp(et9) > e

Uy, a) = {g: Fpo(®) > a};
and pub
U= {T(w, a): > 0,0 a<1},
Ug= {TUplz, a): pely6>0,0<a<1}.
Then condition (I'V) becomes
{A) Uz, a) Uiz, a) C Ulw+y, a)

for all w, 7> 0 and 0 Ko< 1.

2. Pseudo-metrically generated spaces. A probabilistic metric space is
said to be pseudometrically generated if there is & probability space (D, B, )
satisfying:

(1) D is a collection of pseudo- -metrics for S;

(2) for every real number & and every palr p,ge 8, the seb {de:
d(p, gy < x} is B-Measurable;

(3) Fygltr) = pe{d e D d(p, @) < @}

The space is metrically generated if the pseudo-metrics are metrics.
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Tn [3], Stevens showed that if (§,{) is a Menger space under the
t-norm T = min and if each Fiuy(p = ¢) is continuous, then (9,5 ig
metrieally generated.

The eontinuity of the Fy, is not necessary for (8, %) to be metrically
generated, i.e.

TueoreM 1. If (8,F) ts a Menger space under the t-novm T = min
then (8,F) is pseudo-metrically gonerated. If, furthermore, the Fplp + q)
are continuous af 0, then (8,%) is melrically generated,

Proof. This follows easily from Lemma 1 and the following

Leyma 20 JIf (8,F) @ a probabilistic metric space, Ty = min if, and
only -if, (A) holds.

Proof. If Fpy@) > a and Fyly) > b, then from (A) it follows that
Fpl®+-y) > min(a, b) and hence Tg(a,b) > min{a, d). On the other
hand, if Fug(#) > o and Fg(y) > ¢, then, for some b> a, Fyle)> b
and Fply) > &, 5o that Fylo-+y) = T, 0) = b> a.

Since Lemmas 1 and 2 imply that the family O = {d,: 0 < ¢ < 1},
where d, is defined by (I), is a family of pseudo-metrics if 7 = min, the
thecrem follows if we put

widy: do(p, @) <a} = Pla: do(p, 9) < &},

where F is T.ebesgne measure on (0, 1),

3. Metrization. Thorpe, in [4], has shown that (8, Ubg) is a gener-
alized topological spaece in the sense of Appert and Fan; and he showed
that if (8, %) is & probabilistic metric space and 7' is a fonction satigfying
(t,) and (5m) for which

v sup{Tia,a): 0sa<1}=1,
then the generalized topological space (8§, 9Abs) is metrizable.
We have the following

THEEOREM 2. Let (8,F) be o probabilistic metric space. In ovder that
a funciion T satisfying (%), {(Bm), and (V) exist, itis necessary and sufficient
thet: for each a, there is an o such that

(B) Un, ). Uly, a') C Ulw-ty, a)
for all m,y > 0.

Proof. Given ¢ < 1, choose ¢’ < 1 so that Ta'y o) > a, and sup-
pose Fo(@) > and Fe(y)>a’. Then Fyloty) > D pyl@), Forly))
= Tla', a') > a.

On the other hand, foi a < 1, ehoose ' < 1 aceording to (B). Then,

H1>b> 4, we have, for Fio(s) > b and Fyly) = b that Fole +-y) > a.
Thus Ts(b, b) = a.
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The following theorem is also clear.

TasoREM 3. If (8, %) is a probabilistic metric space, the family U is
o basis for a separated uniformity for 8 if, and ondy if, for each pair (2, a),
there is a pair {x', a') such that

(©) U, a) Uw,e)C U, a).

Since the uniformity generated by 9 has & counfable basig, this
yields the

COROLLARY. (8§, g} is meiricable if, and only if, (C) holds.

Now, (0) is formally weaker than (B) so that Thorpe’s theorem is
a consequence of Theorems 2 and 3. We exhibit an example of & proba-
Dbilistic metrie space satistying (C) but not (B).

Exawpre. Let M(t, a) be a continuous, real-valued funetion defined
for all 0<<a<1,?>0 with the following properties: For each 1> 0,
M (t, a) -+ oo as a1 For each a, M0, a)=0and M(l, f‘): 1, M{t, l?
is linear for 0 < t < 1 and strictly decreaging for# > 1 with ]tilz M{t,ay=4%.

Let § De the reals and put duo(p,q) = M(I}J~g.1, a), then for each
pair (p, q), do(p, ¢) is & continuous, increasing function of a (0 << a-<1)

so that the family § defined by (III) ig o family of probability distrib-

wtion functions satisfying conditions {(1)-(4}. (8,T) is 2 probabilistic
metric space, for: . |

1. § also satisfies (8). Fple)=1 I, and oply if, M{|p—ql, () <~w
for all 0« a < 1, by (XII). Bub this is true precisely when p = g, 80 (B)
holds. , ‘

9. % does not satisfy (B). Given any pair 0 <a, &' < 1, we find p, ¢,
#ef and @,y > 0 so that (B) is violated. Pick p, so that lpw'r;l =1
and # $0 that 1 < 2z < M (1, a). Choose ¢ so that boﬂl Mp—1l, w’) <&
and M(jg—7], ¢} <. Then we have Fol20) < o with Fpw) > a and
Folw) > a'. )

3. ¥ satisfies (C). It is sufficient to note that, for each 0 <a<<l,

. for
we have Ml(uw, o) < 2M (1, a)[ M (s, )M (t, a)] whenever u < s—[—/t. Tox
suppose 0 <a <1 and @ > 0 given, then i M(p—q|, e < oe[4M(1,aq)

cand M(lg—1], 6) < af+M (1, &), we have M{lp—r|,a) <2

Tt is easy to show that Tw(a, b) = 0, for 0 < a, b<1, and T.?-(a, ng
=a, for 0 < a<1, using the fact that Fpw)=1 for some # if, @
only if, p = ¢. Tn other words, To is the smallest t-norm T,.

4. Completion. We begin this section with some (:{efinit;iona.‘ Let
(8, F) be a probabilistic metric space. A sequence (_pn) in ST is Szm:ht(;
be Cauchy i, for each paiv (2, a), there is a positive integer ¥ such thab
A D, pu) € Uz, a) for all m,n>N.
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e say that the probabilistic mefric spaces (8, F) and (8, 7'y are
isometric if there is a mapping ¢: 88, one-one and onto, such that
Fup = Fupey for every pair p, ¢ 8. The mapping ¢ is called an isom-
ey,

Y The space (8,5) is complele if every Canchy seguence converges.
The space (8%, 5*) is said to De a completion of (S, F) if (8%, F*) is com-
plete and (S, ¥) is isometric fo a dense subspace of (8%, 7*). The Menger
space (8%, F*, T%) is a completion of (8, F, TV if (8, F*)is a completion
of (§,F) and T* =T,

Ii is known (see [5]) that if (8, &, T) is & Menger space with T & con-
tinuous #-norm, then there iz a completion unigue to within isometry.

. For spaces (9, F) in general, we can prove the following

ToroREM 4. The space (8, F) has a eompletion if

(1) for each triple (@, y; a), there exisis an a' such that
Ulw, a’)- Uly, o) C U(n-y; a);

(ii) 1whenever (p, ¢) e Uz, a), there is a pair (@, ') such that
Up(s’y 6"y X Uylar’y &) C U, a) .

The first condition is & uniformity eondition intermediate to conditions

(B) and (0), and the second says the U(w, a) are open in the producs
topology.

Proof of theorem. Consider the set of all Cauchy sequences in 8.
We define an equivalence relation among such sequences by (pa) ~(gn) if,
for each pair (@, a), there is a positive integer N such that (pu, gn) € Uz, a)
for n > . The relation iy clearly reflexive and symmetrie. Transitivigy
follows easily from {i). _

Let 8% = {m, ¢, 9 ..} be the collection of all equivalence classes of
Cauchy sequences in S, and for each pair {m, a} define

Uz, a) =
(s )z for each (pa) e and (qu) €, AN ¢ (pu, ga) € Uz, a)

for m, n> N}.
For each pair «, ¢ < 8% dofine 7, by

ﬁw(m) = sup{e: (=, ¢} « ﬁ(m: a)},

then the 7., ave increasing functions, 0 < F,<1, satisfying conditions
(2)~(4) of Section 0. Condition (5)is also satisfied. For suppose B, (z) = 1
and Foly)=1. Tet a <1 be fied and choose o according to (i), If
{(Ps) €7, (gn) e @ and (£a) e, choose N so large that (pm, g.) € Uz, a')
and (g, 7)€ Uly, @) for m,n,1> ¥. Then (Pmy ) € Ulw—+y, a) for
m,l> N, ie. (7, ) Ulw+y, a) for every a < 1.

g . f)'
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However, the ﬁ;q, are not necessarily left-contin'uous, nor is it .neeef;
garily true that lim F %) = 1. We therefore define a new family 7

Xertr -
from the cld F={F.; 7,08} as follows. Let Fs, be T, changed at
- 3 r
the discontinuity points to be left-continuous., If 31113; F(w) < 1.
Pz, «<1,

oyl = {G,,,F(m) , e>1,

where @, = Gy is Increasing, left-continuons, G1) > Full), Guple) <1

and lm 6..{#) = 1. Otherwise, F3, = ¥y, Then (8, F%) iz a proba-
~r 00
bilistsicz metric space. )

r p e, let P denote the elass of all sequences in 8, con-
vergiig‘; fg’l, 313 ) ‘ro’p‘, L»‘ul‘.tfl denote by & the collection of these equivalence
dass‘?l;.e mapping p P is an isometry. Ehis will follow if we prove that
(p,2q) e Ulw,a) if, and only if, (F,7) e Ulw, o). Suppose (!p, g) € U(W&Ii)g
Let (py) €D and (gn) € 7. Then pa—+p apd ¢n—>¢. Choose I(.D ,,a? a‘(;cm ,3
to (ii), then there exists ¥ for which (pw,p)e Ula" a’) (mN (g, 0
e Ule', a’) for m,n> N. Thus, (pm, Px) € Uiz, 2) 'for m, > N. 5

On the other hand, suppose (P, §) e LT(m, a). Since (pn = p) e P and
{gn = q) ¢, we have (p,q)e Ul2, a).FFlnallgf, Fpifie) = supfa: (p,q)
¢ Ule, )} = supfe: (7, 7) e U (e, )} = Fyi(a).

Let T*ax, o) = {(7; @)1 Fi() > a} and pub

W= (U@, a) 3>0,0<a<1}, U={U{a6:2>0,0<0<1}.

Since D(y, o) C UNe, a)C T(z,0) for 0<y< w <1, it follows that %
and U* are eguivalent bases for a mnniform struct-m’f (p:operty (1) is
inherited by ‘TL, from b); and hence to show that (8%, 57) Is comple_te
and that S;Jis dense in (8%, %), we need only show these to be true for
g%, F).
( .’ﬁ)is dense in (8%, §). For suppose = ¢ 8 and let (pa) ¢ 7w Let (@, a)
be given and choose &’ according to (i) for the triple (m,".).,’ xf2 1 a). T;;fre
is ¥ such that (pm,pa) € U (@2, &') for m, n> N. Leb (pn) e pava, e’n
there is M such that (pn, Pw+i) € U(®/2, &) for n> %I. Thus, (Pm; Pr)
e U{z, &) for m, n > max{M, N). In other words, (7, Pas) € Ulw, a).

(8*, F) is complete. To see this, we first _s’mte two lemmas.

Lemma 3. If property {i) holds,

T(xf3,a')-Ulz/3, a)-Ulw3, a") C Uls, a) for some o'.
Lowaa 4. If (pu) e m, then Po—sm in (8, 5).

Proof. Let (%, o) be given. Pick o' according to LemmaN& 51;1611;
there exigts a N such that (pm,pa) € U(wf3,d") for m,n> N, Cl
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that (Ju, @) e Uz, a) for n> N. For let (gu)ePn and (ph) em. Then
there is a M such thab (gm,ps) ¢ Ul@/3,a’) for m> M and a X such
that (px, pi) € U(z)3,a') for k> K. Then (gm, i) e Uz, 0) for m,
> max (M, N, K).

To conclude the proof of the theorem, let () be Cauchy in (§*, §)
and (2, a) be given. Let @0 and a, 1. For each pair (2, a.) there
is & Py € 8 such that (fu, ma) € U, ax). ghoose a" according to Liemma 3,
then there exist a N such that (m,, ma) € U(2/3, o'y for m, n > N and o
such that (fr, mu) € U (@, ) C T(#j3,a’} for n> M. Thus Doy Pu)
e Uiz, a) for iy 0> max (M, N) yields (pm,pa) e Ulw, a) for m,n
> max (I, N). Sinee (p,) is Cauchy, (pa)ene 8% Therefore fy,-+x in
(8*,F) and =y > Q.E.D,

THEOREM 35, If (8, 7, I} is o Menger space with a continuous t-norm,
T, then (8, F) satisfies the hypotheses of Theorem 4,

Proof. If T is continuous, then sup{T{a, a): 0 < a < 1} =2, and
hence by Theorem 2 (i) iy satigfied.

Since 7' is uniformly continuons, given => 0 there iz 6 < 1 such
that T{a, b) > a—e, for b> §, uniformly in a. Using (5m) and (&) we
ean show

Loyl = T[Fzrq(a’*ﬂm’): T(Fﬂp’(m,):FqQ’y (5”,))] .

Let Ppelr) > @ be given. There is & #' such that Lpgle—22') > a by left-
continnity. - Choose & so that Flo—22')—e> a and, for this &, 6 as
above. Pick an @ so that T'(a’,s’) > §, then we have for Fppla'y > a'
and Fyla') > o',

Folw) = D(Fpylo—2a'), T{o', 0)) > Fpylw—~20")—e> a.

=

LevMa 8. For the fumily ¥ defined in the proof of Theorem. 4,

Fofe) = inf liminf B, . ().
{pn}ex mn—c0
{en)ep

- Remark: In the proof of Sherwood’s completion theovem [57, it
is ghown that if T is continuots, then lim Fpag, exists, and is independent
>0 .

of the f}hcice Of (pn} e and (ga) e p; and hence F* for the completion is
determined by defining F* = lim Fpua- The space 8* i3 the same in
PR .

Bherwood's resulf and Theorem 4. Hence, under the hypothesis T is

continuous, we have P (o) = lim Fpga(t) DY the above lemma, so that
MmN

the 73, of Theorem 4 and F3, of Sherwood's theorem are identical, and

the two completions are the same.

_TﬁEOREM 6. In general, the completion of o space (8, F)is not unique
unless it was complete originally. :

im Gonstructive methods fu probabilistie metric spaces
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i F) i ] e and (8%, ) is a completion

proof. Suppose (8§, F) is not complete and , :
of (,51‘) r_‘F ) Tlhen g* —~S,¢ @. Let 4 be the class of all left-continuous
probaj)ility distribution funetions F for which F(0) = 0. We make the

following definitions: .
L(F) {p,0)e 8 =8 —8x8: =TI},
LyF) = {ge8%:(p, q) e L{T)},
ATy = inf{w: F(3)= 1} < co.

il

Pick F e for whiech L(F) s @, and then F’ € 4 su*ch that Ij” 4: F bFult
(T = &(F). We now define F b.y 1‘epiae.1ng Fig=1F Dby ‘F'm—wé
for each pair (p,q) «L(F) and leaving _lf’,,g unchanged oth'emqs:.{ e
daim that the pair (8%, F') is a completion of (§, F), nob isometrie

e i i f re first see that

To verify that (§,5’) is & completion 0# (8, T?, we firs : oo ; tne
the injection (8, F) (8%, 57} is an isometry smcfa‘m?lther S_ ncil K] W;ﬁ:}r
changed by the above. (8%, F7) i still & probabﬂls,tm IIl.Ej}I‘l(} spgce:i 1«
condition (3) still holds by virtue of &(F) = d,(F'). T?:mdly, (‘ ,.(1;6) ar;
dense in (9%, F') for if p « 8" and Lp(F)": O, ﬂ.l(?n for an;\; 1;1&11-6 béeﬁ .
there is a ¢ € 8 for which ¢ € Up(w, o) = Uplw, a) since no l:i,lq : aﬁn:r(w) eon
changed. On the ofher hand, if L,(F) = 1, choose (x, a)r*so ab a_ U’-(q\b)
and F'(x) < . Then for any y < # and b > a’wg have Lp(@/,. f) = jf!,(_a/‘, o
and thus Uply, b) n 8 # G. Finally, (8%, 57) s compflete, 011 i b; ‘
are chosen as above, then U*y, by = Uy, ) for 0 *< fl,§ x zund > b= a
Hence the Cauchy sequences in (8% F%) a-nd‘(S 3 ) cmnﬁide. ]

" Now, suppose there is an isomefry g: (8%, & )—>(i*, Fy. EE: fl:;:g
assume @(8) = §. If (p, q) ¢ L(F), then p ¢ 8 01" g¢8. -;?mieF Whid;
Consider the pair (p(p), @{g)). We have B eprota) = Fra #ot ; e
implies o{p}, p(g) € 8. But ¢ maps § ento itself g}}d_hence s X whielll
" We conclude with an example of a probablhst}e‘ metric spac e
has no continnous f-norm bhut satisfies the conditions of Theore .

BExAnPLE. Lot f,, 0<a <1, De a family of non-negative, striczly
XA . Le < 1, 1 ne v
convex functions on [0, 1], satistying f.(0) = 0, foll) =1, fo < fo ¢
¢ < b, and lim f(#) = 1.

Define, ;(—)11 P, qel0,1), dlp,q) = Follp—gly; then Fy, according to
formula (ITT). - oy

1. (8, F) is a probabilistic metric space. To prove thls,.fweﬁr‘;eiﬂy B
verify (5). But this follows from the f'ac’s that Fm(a}.).> a _1 ,|a< . "
lp—gl < fa'(#) and hence Fy(z)=1 if, and only if, |p . g < . ]

9. (8, F) satigfies condition (i), For if (¢, y; a) are given, chooze «
50 thab fi(@) +fa(y) < fa (@ +)
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3. (8, 5) satisfies condition (il). Su -

) s . ppose |p-—g| < f .

@’ =a and ¢ so that 0 < 2f; (o) < f,{l(.'z:)—]_p—gﬁ U= Jeen Choose
4. Finally, T (a,8)=0 for 0<a,b<1. Suppose a, b, ¢ given

‘ 1 - - :

Choos‘e @ so that fy (Qfm)_l<fu Ha)-+fi (@) and then p, ¢, + such that

p—gi <fa'(), lg—r < (@) and [p—7] > 15 (2a).

o l“he author wishes to express his thanks to Professor T. Nishiurg,

or his help and encouragement during the preparation of thig paper

References

[11 B. Schweizer and A. Skl istic ; .
: (1960, Dy, iy Yhlar, Statistical metric spaces, Pacitic J. Math. 10
k3l

I;:;;ig;;l_mel' lbiatzstwal meirics, Proc. Nat. Acad. Sei. U.8.A. 28 (1942), pp:
{3] R. 8tevens, Metrically
(1968), pp. 259-269.

(4] E. 0. Thorp, Generalized &

- E;il S(il!362), pp. 9-21.
3 .Sherwood, £ g ilisti i
P ud();;ﬁi’;;czg)giﬁi{én gf(ji]g?é?d;g_wg;i?im spaces, Z. Wahrscheinlich-

generated prolebilistic metric spaces, Fund. Math. 81

upologies for slatfistical anelric spaces, Fund. Math.

WAYNE STATE UNIVERSITY
Regu par la Rédaction le I14. 10, 1968

Sequents in many valued logic IL*

by
‘G. Rousseau (Leicester)

The notions of validity in classical and intnitionistic logic may be
defined semantically by the methods of Tarwki [6] and Kripke [2]
respectively. If we replace the two truth-values oeeurring in these def-
initions by a system of I truth-values, we obtain what may be referred
to as clagsical M -valued logic and intuitionistic I -valued logic re-
spectively. Gentzen [1] gives sequent calenli LK and LJ for classical
and intuitionistic logic. The present work is concerned with the many
valued analogues of these calenli. We shall limit onr attention here to
propositional logie; some remarks about predicate logic will be made
ab the end of the paper. We show that for each choiee of M -valued truth-
funetions there exist corresponding sequent calemli LKy and Lear for
classieal M -valued logic and intuitionistic M -valued logic respectively.
The relation between these calenli is similar to that between LI and Ld.
We note that the calenlus LK, differs from the sequent calculus con-
strueted in [3] (§1) in that the notion of sequent is more restricted.

We take M = {0,1, .., M—1} (M = 2) as the seb of truth-values
and consider a fixed system of M -valued truth-functions fa: M” M
(k=1,..,%). We also choose a set % of atomie statements and con-
tectives Fi of degree me (k=1, .., %), thus determining the set © of
statements. We denote statements by the letters o, 8,7, .. and finite
sets of statements by I, 4, ...

A sequent is an expression of the form
@ Tl oo (Mag—ol s
where for each « « S the set {m: o e I} is the complement of an interval
of M. Thus if a el then either o ey for all m’ <m or aelmw for
all m’ > m. Sequents will be denoted by the letters I, %, ..., 2. Wa
observe that the notion of sequent as here defined coincides with thad
used in [3] only in the case M = 2. '

* This paper is a sequel to [3]. We note that p. 32 line 18 of [3] ghould read:
@, '™y = (JnaD p) D F™y). It is simpler however to make the correetion in the
way suggested in [4]. i
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