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CONSTRUCTIVE POLYNOMIAL APPROXIMATION
ON SPHERES AND PROJECTIVE SPACES

BY
DAVID L. RAGOZINO

Abstract. This paper contains constructive generalizations to functions defined
on spheres and projective spaces of the Jackson theorems on polynomial approxima-
tion. These results, (3.3) and (4.6), give explicit methods of constructing uniform
approximations to smooth functions on these spaces by polynomials, together with
error estimates based on the smoothness of the function and the degree of the poly-
nomial. The general method used exploits the fact that each space considered is the
orbit of some compact subgroup, G, of an orthogonal group acting on a Euclidean
space. For such homogeneous spaces a general result (2.1) is proved which shows that
a G-invariant linear method of polynomial approximation to continuous functions
can be modified to yield a linear method which produces better approximations to
^-times differentiable functions. Jackson type theorems (3.4) are also proved for
functions on the unit ball (which is not homogeneous) in a Euclidean space.

Introduction. We previously extended the Jackson theorems to any smooth
compact submanifold M of a Euclidean space E (see [12]). The proofs of these
theorems were not really constructive and made use of a rather ad hoc extension
of a function from M to some ball in E. In the present paper we show how, in case
M is a sphere or projective space, constructive versions of these theorems can be
proved which do not require us to extend functions of M.

We begin in §1 by defining differentiability and other smoothness properties for
functions on a homogeneous manifold M in terms of the homogeneous structure
of M. Then in §2 we show how the homogeneity of M together with the Jackson
theorems for C(M) can be combined to prove the Jackson estimates for Ck(M).
These general results are applied to prove the Jackson estimates for spheres and
balls in §3 and for projective spaces over the reals, complexes and quaternions
in §4.

A general reference for the differential geometry of homogeneous spaces of
compact Lie groups which we use is Helgason [4]. However we have tried in §§3
and 4 to be reasonably explicit so that the reader without a background in Lie
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158 D. L. RAGOZIN [December

theory should be able to follow the results of §§1 and 2, at least for the most
important special cases of the spheres.

1. Smooth functions on homogeneous spaces. In this section we shall define
various measures of smoothness for functions defined on a compact homogeneous
submanifold M of a Euclidean space E. By homogeneous submanifold we mean
that M is the orbit of some compact subgroup G of the orthogonal group of E.
An important example which the reader may keep in mind is M=Sm, the unit
sphere in (m+ l)-space, which is the orbit of any unit vector under the action of
SO(m + 1), the group of (m + l)-dimensional orthogonal matrices of determinant 1.
This example is considered in more detail in §3.

We exploit the homogeneity of M to define differentiability and other smoothness
properties of functions. Specifically, let a, the Lie algebra of G, be the set of all
skew-symmetric operators D on E (i.e. D*= —D where D* is the adjoint of D),
such that exp tD is in G for all t in 7c. Now in terms of the action of G on C(M),
given by g-f(m)=f(g~1m), the space C1(M) of continuously differentiable func-
tions on M consists of those/in C(M) such that for each D in g there exists Df in
C(M) with

lim||r1(exp;7)./-/)-7)/||0O =0.
f->0

We shall use the fact that the mapping D \-> Df is linear from g to C(M). The Ar-
rimes differentiable functions on M, Ck(M), are defined similarly.

Moduli of smoothness for functions in C(M) can be defined once we have a
metric on M which is connected with G. Such a metric arises from the choice of an
inner product on g, which is invariant under the maps Dh^gDg'1, g in G. One
such inner product and its associated norm is given by

(Dy, D2) = h Tr (DyD*),        \D\ = (D, D)1'2,

where Tr (D) is the trace of the operator D. We choose one invariant inner product
and use it to define a G-invariant Riemannian metric on M as follows. Pick a v0
in M and set H={g in G : gv0 = v0}. Let h be the Lie algebra of 77 and let m = hi
be the orthogonal complement of h in g with respect to the inner product. Then
m is (isomorphic to) the tangent space to M at v0 and the restriction of the inner
product to m x m gives rise to an inner product on this tangent space. The action
of G on M translates this inner product to the tangent spaces at each point of M
and in this way a Riemannian metric is defined. We shall measure distances on M
via the arclength metric, p, induced by this Riemannian metric. It can be shown,
although we shall not need it, that any two such metrics, arising from different
invariant inner products, are boundedly equivalent.

The first modulus of smoothness (the modulus of continuity) for / in C(M) is
defined by

ooy(f;h) = sup {\f(x)-f(y)\ : P(x,y) fi h}.
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1971] POLYNOMIAL APPROXIMATION ON SPHERES 159

If we introduce the notation x+, x, x_ for any ordered triple of equally spaced
points along a geodesic in M, then the second modulus of smoothness for/in C(M)
is defined by

o)2(f;h) = sup{\f(x+)-2f(x)+f(x_)\ : P(x+,x) ï «}.

To measure the moduli of smoothness for derivatives we first fix some orthonormal
basis Du..., Dj for fl. Then by induction on k we introduce the following notation
for fin Ck+1(M):

(1.1) o)T(fk+1); h) - Í o>r((A/)<w; h),       r=\,2.
i

(Of course /<0) =/.) Thus (»r(fw ; h) is the sum of the rth modulus of smoothness
of Dkf as Dk ranges over all A>fold products of A, ..., D¡.

We shall need two properties of the moduli of smoothness.

Proposition 1.2. (i) Iffe C(M), then ojr(f; dh)^(\+d)rwr(f; «), r= 1, 2.
(ii) Iffe C\M), then œr(f; h)ír(Z{ || A/I»)«, r= 1, 2.

Remark. 1.2(h) is closely related to, and will be referred to as, the mean value
theorem.

Proof. Both of these follow from the fact that any geodesic from x in M, with
arclength parameter s, has the form exp —sDx for some D in g with |D| = 1
[10, p. 52]. Then the usual facts about moduli of smoothness for the function of one
variable, g(s)=f(exp —sD-x), yield (i) [8, p. 47-48]. For (ii) we note that, since
g'(s) = Df(exp —sDx), the mean value theorem applied to g shows that

|/(exp -sD-x)-f(x)\ S k'IU ^ II¿>/lL*.
However D = J,{ bxDx with 2 |¿>¡|2= 1- So |6,| ̂  1 and

\\Df\u ± i |ô,| Il A/IL ̂  i I A/IL-i i
Combining these two estimates yields

o)i(fi,h)ú (I || a/il)«-
But co2(f; h) ̂  2^^/; «) so (ii) is proved for r = 1 and 2.    □

2. Invariant linear approximation operators. In this section we shall show how
the homogeneity of M allows us to derive Jackson type approximation theorems
for functions in Ck(M) from corresponding theorems for functions in C(M). The
chief tool in this derivation is a continuous linear map T: C(M) -*■ C(M) which
is G-invariant, i.e. such that g-Tf=T(gf) for all g in G. For such maps we have
the following
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160 D. L. RAGOZIN [December

Theorem 2.1. Let F: C(M) -> C(M) be a continuous G-invariant linear map.
Suppose that for some A, h>0, T satisfies

(io) for allfe C(M), ||/-7fl|. =Aa>r(f; h),r = \ or 2.
Then kT=I-(I-T)k + 1 satisfies
(ik) for allfe Ck(M), ¡f-JfU fi A(Ar)khkwr(f™ ; h).
Moreover the range of kT is included in the range of T.

Before the proof we need the

Lemma 2.2, If T: C(M) -»■ C(M) is a continuous G-invariant linear map then
TDf= DTffor all f in C\M) and all D in g.

Proof. The continuity and invariance of F justify the second and third equalities
in the following chain :

TDf = F(lim r Hexp tD-f-f))

= limr1(F(expí7)/)-F/)
Í-.0

= litó r Hexp tDTf-Tf) = DTf    D
i->0

Proof of theorem. Our proof is by induction on k; the case k = 0 is assumed in
the theorem. For the induction step we assume (ifc) and prove that (ik + 1) follows.
Now for/in Ck + 1(M), (i0) and the mean value theorem, (1.2(a)), yield

||/-te+iF/IU = ||(7-F)(7-F)fc + 1/||0O
fiAcor((I-T)k+if;h)

fi Ar-h^ |A(7-F)fc + 1/|U.
i

Hence by the previous lemma, the induction hypothesis and the definition, (1.1),
ofa,r(/<'c+1);n), we have

||/- fc + i77l- úArh% ||(7-F)* + 1A/|Ui

^ Ar-h 2 A(Ar)khkwr((Dif)m; h)
i

= A(Ar)k+1hk + 1cor(fk+1);h).

Since kT is a polynomial in F without constant term the statement about ranges is
clear.    □

The most important applications of this theorem are to problems of polynomial
approximation on M. A polynomial of degree at most n on M is any member of the
set 0>n={pe C(M) : p=pn\M for some polynomial pn e C(E) of (total) degree at
most n}. By the kth order Jackson estimates for M we mean the statement:

There exist constants Ak(r), r=\, 2, such that for all f in Ck(M) and all n there
existpn in@n with \\f-pn\\œuAk(r)n-kwr(fm; 1/n).
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1971] POLYNOMIAL APPROXIMATION ON SPHERES 161

One of the main results of the quantitative theory of polynomial approximation
theory is the proof of the Jackson estimates for all k. The case A;=0 is crucial for
the constructive proof of these estimates on a homogeneous space M as we see in

Corollary 2.3. The kth order Jackson estimates for a compact homogeneous
space M are true for all k provided there exist constants A(r), r=\,2, and for each n
a continuous G-invariant linear map Tn: C(M)^~0>n such that for all f in C(M)

(2.3.1) II/-7V/1L ̂  A(r)wr(f; l/ri),       r = 1, 2.
Proof. For/in Ck(M), let pn = kTJ where kTn=I-(I-Tn)k + 1 and apply the

previous theorem. The kth order Jackson estimates result with Ak(r)
= A(r)(rA(r))k.    D

3. Polynomial approximation on spheres and balls. Now we consider specific
examples of homogeneous manifolds for which we are able to construct G-invariant
polynomial valued maps satisfying (2.3.1). Thus for these spaces constructive
versions of the Jackson estimates will be true. In this section we study the unit
sphere and, although it is not homogeneous, the unit ball in Euclidean space. In
the next section we take up the projective spaces over the reals, complexes, and
quaternions.

Let M=Sm be the unit sphere in Rm + 1 with the inner product <x, v> and norm
\x\ = \/(x, x>. We think of Äm + 1 as given by column vectors with respect to the
standard orthonormal basis {e¡}. Then Sm = Ge1 where G = SO(m+1) is the group
of orthogonal matrices of determinant 1. The isotropy group, H={g inG : g-e1=e1}
consists of the orthogonal matrices of the form [J °] where « is an element in
SO(m). The Lie algebra, g, consists of all skew-symmetric maps of Äm + 1 and we
choose the inner product on g given by (A. A)= -(1/2) Tr (AA)- If i>£0 is
the Lie algebra of H then m = I)1 consists of those maps given by matrices of the
form A=[-2 o'] with v in Rm and ||A|| = M- The geodesies through ex in the
Riemannian metric determined by the inner product on g are given by the curves
exp —sDve1 = (coss)e1 + (sins)v where \v\ = \ and s is the arclength. Such a
curve is just a great circle on the sphere, so by use of the G-action we see that the
metric p on Sm is just the usual arclength metric on a sphere

p(x, y) = arc cos <x, y},       x,y in Sm.

In [9] D. J. Newman and H. Shapiro have shown how to construct operators
Tn: C(Sm) ->¿?n satisfying the hypothesis of Corollary 2.3 in case r= 1. We recall
their construction and show that it can be extended to the case r = 2. Later we
shall see that the same techniques work on all projective spaces.

First we give a simple method for producing G-invariant linear maps on C(Sm).
Let p. be normalized Lebesgue "surface" measure on Sm. This is just the natural
normalized measure on Sm associated to the G-invariant metric we have on Sm.
Then we have the construction of
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162 D. L. RAGOZIN [December

Proposition 3.1. Let p(t) be a continuous function on [—1,1] and define the
operator T: C(Sm) -> C(Sm) by

(3.1.1) Tf(x) = \f(y)p«x, y}) dp(y),       x in Sm.

Then T is G-invariant. In fact T commutes with the full orthogonal group.

Proof. This is a simple consequence of the orthogonal invariance of the measure
p. Thus if g is any orthogonal map

g-Tf(x) = Tf(g-'-x) = jf(y)p«g-1-x,yy)dp(y)

= jñg-1-yM<g-1-x,g-1-y»dp(y)

= ¡g-f(y)P«x, y» dp(y) = T(g-f)(x).    D

We remark that if p(t) is a polynomial of degree at most n, then the range of F
is in !?n since p((x, y}) is, as a function of x, a polynomial of degree at most n. Now
in [9] it is shown that there exist polynomials pn(t) of degree at most n such that

(i)   Pn(t)^0, -lí/ál,

(3.2)    (ii)   §Pn«x,y})dp(y)= 1,       x in Sm,

j" 0 - <*, y»pn«x, y» dp,(y) ^ B(m)/n2,

where the constant B(m) depends only on m.

When restated in terms of the polynomial-valued map Fn associated to pn as in
(3.1.1) these properties become

(i')   Fn is positive,

(3.2.1) (ii')   Fnl = 1,
(iii')   Fn(l -Cx, •» ^ B(m)/n2,       x in Sm.

We apply these to prove the main constructive polynomial approximation theorem
for Sm.

Theorem 3.3. (The Jackson estimates for Sm.) Let Tn: C(Sm) -+ 0>n be the
operator constructed from pn as in (3.2.1), and let kTn = I—(I—Tn)k + 1. Then there
exist constants Ak(r), r=\,2, such that for all f in Ck(Sm) the polynomial kTnf
satisfies

(3.3.1) H/-.F/IU ^ Ak(r)n-kcor(f^; 1/n).
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Proof. Since Tn is G-invariant it suffices by Corollary 2.3 to show that (3.3.1)
holds when k = 0. In [9] this is done for r = l. We give the simple adaptation of
this Korovkin type proof to the case r = 2.

For fixed x in Sm let gx be the orthogonal map given by reflection in the axis
through x and — x. Then for any y in Sm y, x,gx-y are always equally spaced along a
geodesic (great circle). Thus

(3.3.2) \f(y)+f(gx-y)~2f(x)\ Ú a)2(f; P(x, y)).
To estimate f(x) — Tnf(x) we note that since gx-x=x we have

TJ(x) = g^-TJW = Ug^-fXx).
So by (3.2. l(i'))

\f(x)-TJ(x)\ = \f(x)Tnl-^Tn(f+g^fKX)\
= \iTn(2f(x)l-(f+g-1-f))(x)\.

Now using (3.3.2) and the positivity of Tn we see that

\f(x)-TJ(x)\ ú ÍTn(o)2(f; p(x, -)))(x).

But the property (1.2(f)) of a>2(f; h) yields

o>2(f\p(x, ■)) â (l+nP(x, -))2o)2(f; m Ú 2(\+n2p2(x,   )K(/; l/n).
So

(3.3.3) \f(x)-TJ(x)\ Ú (1 +n2Tn(P2(x, -))(x))o)2(J; l/n).

If we use the estimate of the great circle metric p in terms of the Euclidean metric,

P2(x,y) Ú (?r2l4)\x-y\2 = (,r2/2)(l-<x, v»,

and apply (3.2.1(iii')) and the positivity of Tn we get

\f(x)-TJ(x)\ Ú (l+n2Tn((TT2/2)(l-(x,  »K^W/; 1/»)
ú(l+(B(m)TT2l2))o)2(f;\/ri).

Thus (3.3.1) holds for Jfc = 0 with A0(2) = (l+B(m)TT2/2).    D
It is a simple matter to prove a Jackson-type theorem for differentiable functions

on the closed unit ball, Bm, in Rm given the Jackson estimates for the sphere, Sm.
However, since Bm is not a homogeneous submanifold, we need certain new nota-
tions to state our results precisely. If/is in Ck(Bm) we shall write 8¡/for df/dXi and if
ß is an «z-dimensional multi-index we write 8ef for 8Bf/dxe. Then we set

1/1*- I IWIL,
IÍÍS*

œ(f;h) = sup{\f(x)-f(y)\ : \x-y\ g «},
^(/<fc>;«)=   2  o)(^f;h).

\B\=k
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Theorem 3.4. (Jackson theorem for Bm.) Given f in Ck(Bm) there exist poly-
nomials, pn, with pn of degree at most n, such that

Wf-PnU â D(k,m)n-k(n^\\f\\k + u>(f^;\/n))

where D(k, m) is a constant which depends only on k and m.

Proof. We follow the idea used in [9] (for the case k = 0 of this theorem) of
lifting functions on Bm to functions on Sm and then approximating the lifted
function. So we let 77: Sm -*■ Bm be the projection on the first m coordinates. Pick
/in Ck(Bm). Then since 77 is a C°°-map,/°77 is in Ck(Sm). Now by the Jackson
estimates for Sm there exist polynomials qn(xy,..., xm + 1) of degree at most n such
that

||/»*-?»lks- = Ay(k,m)n-kooy((f°Try»; 1/n).

Since/° 77 is an even function of xm + 1 we may assume <?„ is an even function of xm+1.
(If not

an(xy, ■ ■ -, Xm + y) =  2Wn(^l> • • •> Xm + y)+qn(Xy, . . ., Xm, — *m + i))

is a polynomial, even in xm + 1, satisfying the same inequality as qn.) Thus xm + 1
occurs only to even powers in qn, so the function

pn(xy, ...,xm) = qn(xy, ..., xm, (1-(*?+•• • + xg))112)

is a polynomial of degree at most n on Bm. Now on Sm, x^ + y = 1 — (x2+ ■ ■ ■ +x%),
so ll/—T'n||a>,Bm = ||/°77—9n||oo,sm. As a consequence of Lemma 3.5 (see below) we
have

Wf-PnU.B" = Ay(k,m)n-koJy((fo7T)^; 1/n)
^ Ay(k, m)C(k, m)n~k{n-11|/||k + co(fm; 1/n)}.    D

Lemma 3.5. There exists a constant C(k, m) such that

COy((foTT)^;h)   ̂    C(k,m){h u/11 k + C0(f™;h)}
for all f in Ck(Bm).

Proof. In order to define coy((f° tt)1"''; h) we had to choose an orthonormal basis
for the Lie algebra of SO(m+ 1). We assume the basis chosen consisted of those
skew-symmetric maps Du, lfii<jfim+l, given, respectively, by matrices with 1
in the z'th row, y'th column, — 1 in the yth row, z'th column and zeros elsewhere.
Then an explicit calculation shows that

exp tDij-(f° TT)(Xy, ..., Xm + y)   = f° 77^, . . ., Jm + 1)

where
y i = xh l =£ i,j,

= xt cos t—Xj sin t, I = i,

= x¡ sin t+Xj cos t, I = j.
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Hence

A,(/° ¿%x) - (d/dt)(exp tDir(fo Tr))(x)\t=0

= X, S¿/Mx))-X, S¡/(7r(x))

where 3m + 1/=0. Iteration of this calculation shows that if Dk is any product of A:
of the A? then Dk(f° n)(x) is a sum of terms of the form p(x) dßf(Tr(x)), \ß\^k,
where p(x) is a polynomial. For each such term the mean value theorem in Rm+1
yields

\p(x) d^f(TT(x))-p(y) dOf(TT(y))\

i [P(x)-P(y)\ \8sf(Ax))\ + \p(x)\ W(TT(x))-d*f(TT(y))\

í ¡P\\i\x-y\ \\dßf\U + \\p\\«\W\\Mx)-<y)\    if \ß\ < k,
^ y¡i\x-y\ I^/|L + blL^"/; Hx)-TT(y)\)  if \ß\ = k.

Hence summing these terms and using the fact that \tt(x)—Tr(y)\ -¿ \x-y\ úp(x, y)
we get

a)1(Dk(foTT);p(x,y)) Ú C{P(x,y)\\f\\k + a)(f^;p(x,y))}

where C, through the polynomials p, depends only on k and m. Now we sum over
all such Dk to get the estimate of the lemma.    □

4. Polynomial approximation on projective spaces. To apply our basic tech-
niques we must realize each projective space as an orbit of some compact subgroup
of an orthogonal group acting on a Euclidean space. We follow Tai [14] in develop-
ing such a realization.

Let F be any one of the (skew) fields

Q = {xo + xJ+Xij+xJi : xteR],   the quaternions,

C = {x e Q : x2 = x3 = 0},   the complexes,
R = {x e Q : xx = x2 = x3 = 0},   the reals.

Then for x in F we set Re x = x0 and define the conjugate of x by x = x0 — x1i—x2j
— x3k. Fm + 1 is the right vector space of («2+1) by 1 matrices over F. We norm
pm + i by |x|2 = ;c*;c where * denotes the conjugate transpose. Any (m+1) by (m +1)
matrix over F acts as an F-linear map on Fm + 1 by multiplication on the left. We
shall use the fact that the trace of such a matrix, Tr A = 2 a¡¡, where A = [atj],
satisfies ReTr (AB) = ReTr (BA). This is easily verified by writing A = A0 + A1i
+A2j+A3k with A¡ a matrix over R.

The space of all square matrices of size m +1 isa Euclidean space with respect
to the inner product (A, B} = Re Tr (AB*). The unitary matrices ali={V' : U*U=I}
act as orthogonal maps via the adjoint action U(A)=UAU*, Ue%, and the
hermitian matrices E={A : A=A*} form an invariant subspace under this action.
If 3~ is the homomorphism of °U into the orthogonal group of E induced by the
adjoint action, we let G denote the identity component of\T(<%).
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Now we realize a projective space over F as an orbit of G acting on E. Specifically
we set A0 = [o   oj and let d=dimx F. Then we define the dm-dimensionalprojective
space over F by

Pim(F) = {U(A0):JT(U)eG}.

If x in Fm + 1 is the first column of U then U(A0)= UA0U* = xx*. Now any x in
fm + i w¡tjj i^i _ j can occur as the first column of a unitary map U with F(U) in
G, so Pdm(F) is the image of the unit sphere in Fm + 1 under the map x¡->xx*.
Since xx*=j>y* exactly when x=ya for some a in F with \a\ = 1, we see that our
definition of the projective spaces is equivalent to the more usual definition in terms
of factoring the unit sphere in Fm + 1. From this latter definition it is clear that the
real dimension of the homogeneous submanifold Pdm(F) is dm.

We identify the Lie algebra of G as follows. A skew-symmetric matrix D, i.e.
D*= —D, gives rise to a skew-symmetric operator on E according to the definition

D(A) = DA-AD,       AeE.

Via this action the Lie algebra of G is given by

g = {D : D* = - D and Tr D = 0}.

We endow g with the inner product induced by the restriction of the alf-, hence,
G-invariant inner product on all matrices. The orthogonal complement in g of the
Lie algebra of the isotropy subgroup of A0, H={3~(U) e G : UA0U* = A0}, is the
set

"0    -v*i
v      0

The inner product restricted to m induces a Riemannian metric p on Pdm(F). We
summarize certain properties of this metric in

Lemma 4.1. For A, B in Pim(F),
(i) ^2p(A, 77) = arc cos (2<[A, 77>- 1),

(ii) p(A, B)fi(Tr/2)\\A-B\\,
(iii) Max{P(A, 77)} = 77/V2.

Proof. By [10, p. 52] any geodesic from A0 has the form

sin 2t\v\

m = <D„ = veFm

fv(t) = exptDv-A0 =
COS'' it)

sin 2r|t;|~2M~
2\v\

sin" t\v\ w"

for some Dv in m. Now as v varies over |t;| <7r/2 the points/(l) are distinct. So for
\v\ fiTr/2,fv(t) is a minimal geodesic from A0 to/„(l). Thus

P2040,/(l)) = \\DV\\2 = 2\v\2 = (l/2)(arccos(2cos>|-l))2

= (l/2)(arc cos (2<^0,/(l)> -1))2,       |i>| á wß.
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Since the points/(l), |c| ^rr/2, cover Pdm(F) the homogeneity of the space and the
invariance of p and (A, By yield (i) and (iii). For (ii) we note that since ||^| = 1
= || 51| we have

\\A-B\\2 = 2-2<A, By = l-(2(A,B}-l)
= 1 -cos (V2p(A, B)) = 2 sin2 (l/y/2)p(A, B),       P(A, B) ^ (rr/^2).

Now (ii) follows by a standard estimate for sin t.    □
We remark that as a consequence of (4.1(i)) the metric p is invariant not only

under G but also under any orthogonal map of E which preserves Pdm(F).
Now we construct G-invariant linear operators on C(Pdm(F)) just as we did on

the spheres. Let p, be the normalized Riemann measure on Pdm(F) associated to the
Riemannian metric. This measure is invariant under all orthogonal maps of E
which leave Pdm(F) invariant. Hence the proof of the following proposition is the
same as that of Proposition 3.1.

Proposition 4.2. Let p(t) be a continuous function on [—1,1] and define the
operator T: C(Pdm(F)) -> C(Pdm(F)) by

(4.2.1) Tf(A) = jf(B)p(2(A, B> -1) dp(B).

Then T is G-invariant. In fact T is invariant under any orthogonal map of E which
leaves Pdm(F) invariant.

Proof. We need only to remark that Tf is well defined since — 1 ̂  2(A, By — 1 ̂  1
by the previous lemma.    □

As in the case of the spheres we remark that if p(t) is a polynomial of degree at
most « then the range of Tis included in 3Pn since p(2(A, B} — 1) is, as a function of
A, a polynomial on E of degree at most «. Hence to parallel our proof of the
Jackson estimates for Sm we must find polynomials pn of degree at most « satisfying

(i)   />„(/) £0,       -láíál,

(ii)   jPn(2(A, By -1) dp(B) = 1,       A in Pdm(F),
(4.3)

(iji)   j(2-2(A, B»pn(2(A, B}-I) dp(B) Ú B(m, d)/n2,
where the constant B(m, d) depends only on m and d.

To find such polynomials we first show how to compute integrals such as those
occurring above.

Lemma 4.4. Ifp(t) is any continuous function on [—1, 1], then

jp(2(A,By-i)dn(B) = cj^ P(t)(i -ty(i+tydt

where a = (dm-2)/2, ß = (d-2)/2 and l/c = J1_1 (1 -t)a(\ + tf dt.
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Proof. The fonction p(2(A, B}—l)=p(cos \/2p(A, B)) depends only on the
distance of 77 from A. For any such radial function f(B)=g(p(A, B)) if we choose
polar coordinates about A we have

jf(B)dp(B) = jo-    g(r)A(r)dr

where A(r) is the "area" of the sphere (in Pdm(F)) about A of radius r. Now
Helgason [4, p. 171] computes that A(r) = c' sin""*-" (r/\/2) sini_1 (\/2r) for some
constant c'. If we use this, set g(r)=p(cos \/2r) and make the change of variable
i = cos \/2r, then we get the desired result.    □

The measure (1 -t)a(\ +t)ß dt on [-1, 1] which arose in this lemma is closely
connected with the classical Jacobi polynomials. We follow Newman and Shapiro
[9] and exploit this connection to find polynomials satisfying (4.3).

Lemma 4.5. Let P(na,li)(t) be the Jacobi polynomial of degree n, where
a = (dm- 2)/2, ß = (d- 2)/2. Define pn by

P*n(t) =/»an + i(0 = a(p^{\t)/(t-X^))2

where A^' is the largest root ofP{"+By\t) and a is chosen to make

c^j2n(t)(\-ty(\+tfdt=\.

Then

cj\(l-<)/>a»(0(i -oa(i+ty dt = i - A&Ç.

Moreover, the polynomials pn satisfy (4.3).

Proof. We use the Gaussian quadrature formula for j\yf(t)(l — t)a(l + t)B dt
based on the roots of P{n+By [13, p. 47]. This formula is exact for polynomials of
degree at most 2n+ 1, so in particular it is exact for both p2n and (1 — t)p2n(t). But
p2n vanishes at all but the largest root of P^By\ so the one nonzero term in the
quadrature formula shows

cC_íP2n(t)(\-ty(\+tydt = bpto&Kñ) = i
and

c J1 (i - t)p2n(t)(i - tya+ty dt = b(\ - A^ViWAfti') = i - Aft?.

To see that (4.3) is satisfied we note that pn^0 and the normalization constant a
has been chosen so as to make (4.3(h)) hold. For (4.3(iii)) we use the estimates for
the zeros of the Jacobi polynomials contained in Szegö [13, p. 236]

ASf-^cosin-HTr-f-OO)))

where 0(1) is uniformly bounded for all values of n. Thus (1—Aita;i1)) = 0(l/n2). So
the previous lemma shows (4.3(iii)) holds, since 2-2<^(, 77> = 1 -(2<[A, 77>-1).    □
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Now it is a simple matter to prove the main constructive polynomial approxima-
tion theorem for Pdm(F).

Theorem 4.6. (The Jackson estimates for projective spaces.) Let Tn:C(Pdm(F)) -*
!Pn be the operator constructed from pn as in (4.2.1) and let kTn = I—(I—Tn)k + 1. Then
there exist constants Ak(r), r=\,2, such that for all fin Ck(Pdm(F)) the polynomial
kTnf satisfies

(4.6.1) Wf-JJU ^ Ak(r)n-ko)T(f^; \/ri).

Proof. Since Tn is G-invariant it suffices to show that (4.6.1) holds when k = 0.
It also suffices to consider r = 2 since oj2(f; h)^2a>1(f; h). The proof now proceeds
exactly as in Theorem 3.3, up to (3.3.3), modulo the following observation. For any
point A in Pdm(F) there is an orthogonal map gA of E, leaving Pdm(F) invariant,
such that B, A, gAB are equally spaced along a geodesic for any B in Pdm(F). (If
A=A0 this is just the map given by

s    w*
w    X

i->
s

— w

s in R, w in Fm, and X an hermitian matrix of size m.)
From (3.3.3) the proof is completed by using the comparison of metrics contained

in (4.1(ü)).   D

5. Additional remarks, historical notes and open questions. The techniques used
for the projective spaces can be applied to give constructive versions of the Jackson
estimates for P16 (Cay). The necessary realizations in Euclidean space and formulae
for geodesies, metrics and measures can be derived (at some length) from Tai [14]
and Helgason [4], [5].

Previous work on the constructive versions of the Jackson estimates for spheres
can be found for S2, k = 0, in Gronwall [3], and for k arbitrary, in Kusnirenko [7]
and Dzafarov [2]; for Sm, k = 0, in Newman and Shapiro [9]; for S3, k arbitrary, in
Ragozin [11]. Such estimates for the multi-dimensional tori are well known (see
[8, pp. 89-90]), while Sun Kung [6] has similar results for the unitary groups for
A: = 0. Converse or Bernstein type theorems are proved for all compact homogeneous
spaces in [12].

We first used the method presented in §2 in [11] after analyzing the usual induc-
tive proof (e.g. [1, p. 146]) of the Jackson theorems on S1. It was only after that
work that we realized this method could be applied not only to compact groups
but also to homogeneous spaces of these groups as well.

We list several open problems. First, can constructive proofs of the Jackson
theorems be given for all homogeneous spaces of compact Lie groups ? We suspect
the answer is yes but know of no positive results other than those mentioned
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above(2). Another is whether for a particular space, say Sm, the constants Ak(r) can
be replaced by a single constant A(r) which is independent of k. That this is so for
S1 is the celebrated result of Favard and Ahiezer-Krein. Finally we mention the
problem of discovering exactly how, on the balls 77m, the error in the best poly-
nomial approximation depends on the distance to the boundary of 77m.
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