
Constructive Proofs of Concentration Bounds

Russell Impagliazzo∗ Valentine Kabanets†

April 8, 2010

Abstract

We give a simple combinatorial proof of the Chernoff-Hoeffding concentration bound [Che52,
Hoe63], which says that the sum of independent {0, 1}-valued random variables is highly con-
centrated around the expected value. Unlike the standard proofs, our proof does not use the
method of higher moments, but rather uses a simple and intuitive counting argument. In addi-
tion, our proof is constructive in the following sense: if the sum of the given random variables
is not concentrated around the expectation, then we can efficiently find (with high probability)
a subset of the random variables that are statistically dependent. As simple corollaries, we
also get the concentration bounds for [0, 1]-valued random variables and Azuma’s inequality for
martingales [Azu67].

We interpret the Chernoff-Hoeffding bound as a statement about Direct Product Theorems.
Informally, a Direct Product Theorem says that the complexity of solving all k instances of a
hard problem increases exponentially with k; a Threshold Direct Product Theorem says that
it is exponentially hard in k to solve even a significant fraction of the given k instances of a
hard problem. We show the equivalence between optimal Direct Product Theorems and optimal
Threshold Direct Product Theorems. As an application of this connection, we get the Chernoff
bound for expander walks [Gil98] from the (simpler to prove) hitting property [AKS87], as well
as an optimal (in a certain range of parameters) Threshold Direct Product Theorem for weakly
verifiable puzzles from the optimal Direct Product Theorem [CHS05]. We also get a simple
constructive proof of Unger’s result [Ung09] saying that XOR Lemmas imply Threshold Direct
Product Theorems.
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1 Introduction

Randomized algorithms and random constructions have become common objects of study in mod-
ern computer science. Equally ubiquitous are the basic tools of probability theory used for their
analysis. Some of the most widely used such tools are various concentration bounds. Informally,
these are statements saying that the outcome of a random experiment is likely to be close to what
is expected (concentrated near the expectation). The well-known Chernoff bound [Che52] is a
prime example, and is probably one of the most-often used such concentration bounds. Basically,
it says that repeating a random experiment many times independently and taking the average of
the outcomes results in a value that is extremely likely to be very close to the expected outcome of
the experiment, with the probability of deviation diminishing exponentially fast with the number
of repetitions.

A computational analogue of concentration bounds in complexity are Direct Product Theorems.
Informally, these are statements saying that solving a somewhat hard problem on many indepen-
dent random instances becomes extremely hard, with the hardness growing at an exponential rate
with the number of repetitions. The main application of direct product theorems is to hardness
amplification: taking a problem that is somewhat hard-on-average to solve, and turning it into a
problem that is extremely hard-on-average to solve. Such hardness amplification is important for
cryptography and complexity; for example, in cryptography, the increased hardness of a function
translates into the increased security of a cryptographic protocol.

In this paper, we show a close connection between probability-theoretic and complexity-theoretic
concentration bounds. We give a new, constructive proof of the Chernoff bound, and use this proof
to establish an equivalence between two versions of direct product theorems: the standard Direct
Product Theorem and the Threshold Direct Product. In the standard direct product, we want to
upperbound the probability of efficiently solving all given instances of a somewhat hard problem,
whereas in the threshold direct product, we want to upperbound the probability of solving more
than a certain fraction of the instances.

To motivate the need for Threshold Direct Product Theorems, we give an example of its typical
use in cryptography. CAPTCHAs [ABHL03] are now widely used to distinguish human users from
artificially intelligent “bots”. Here a user is issued a random puzzle, say distorted text, and is
asked to decipher the text. Say that a legitimate user succeeds with probability c 6 1, whereas an
attacker succeeds with probability at most s < c. To boost our confidence that we are dealing with
a legitimate user, we will issue k random puzzles in parallel, and see how many of them get answered
correctly. If c = 1, then we know that the legitimate user will answer all k instances correctly. A
standard Direct Product Theorem for CAPTCHAs [BIN97, CHS05] could then be used to argue that
it’s very unlikely that an attacker will answer all k instances. In reality, however, even a legitimate
user can make an occasional mistake, and so c < 1. Thus we can’t distinguish between legitimate
users and attackers by checking if all k instances are answered correctly. Intuitively, though, we
still expect that a legitimate user should answer almost all instances (close to c fraction), whereas
the attacker can’t answer significantly more than s fraction of them. This intuition is formalized
in the Threshold Direct Product Theorem for CAPTCHAs [IJK09b], which thus allows us to make
CAPTCHAs reliably easy for humans but reliably hard for “bots”.

The probability-theoretic analogue of a Direct Product Theorem is the statement that if a
random experiment succeeds with probability at most p, then the probability that it succeeds in
k independent trials is at most pk. The analogue of a Threshold Direct Product is the Chernoff
bound saying that the probability of getting significantly more than the expected pk successes
is exponentially small in k. We give a constructive proof of the equivalence between these two
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probability-theoretic statements. Namely, we show that if the probability of getting more than pk
successes is noticeably larger than it should be (by the Chernoff bound), then we can efficiently
find a subset S of the k trials such that the random experiment succeeds in all trials i ∈ S with
probability noticeably larger than p|S|.

Translated into the language of direct products, this means that there is an equivalence be-
tween standard direct product theorems and threshold direct product theorems. Moreover, the
constructive nature of the proof of this equivalence means that it applies to the uniform setting of
computation, where the hardness (security) is measured with respect to uniform algorithms (rather
than non-uniform circuits). In particular, we get that for a wide variety of classes of cryptographic
protocols, there is a Direct Product Theorem for the class iff there is a Threshold Direct Product
theorem.

The formalized equivalence between standard and threshold direct products also allows us to
quantify the information-theoretic limitations of simple reductions between the two. We then show
how this limitation may be circumvented if one allows slightly more complicated reductions (which
use conditioning).

We give a more detailed description of our contributions next.

1.1 Chernoff-Hoeffding bounds

The well-known Chernoff-Hoeffding bound [Che52, Hoe63] states that the sum of independent
{0, 1}-valued random variables is highly concentrated around the expected value. Numerous vari-
ants of this concentration bound have been proved, with Bernstein’s inequalities from 1920’s and
1930’s being probably the earliest [Ber64]. The known proofs of these bounds rely on the idea
of Bernstein to use the moment-generating function of the given sum of independent random
variables X1 + · · · + Xn; recall that the moment-generating function of a random variables X
is MX(t) = Exp[et·X ], where Exp[·] denotes the expectation.

More precisely, for any given parameter λ > 0, the probability of the event
∑n

i=1 Xi > λ is
equal to that of the event et·

P

n

i=1
Xi > et·λ, for any t > 0. Applying Markov’s inequality, one gets

Pr

[

et·
P

n

i=1
Xi > et·λ

]

6 Exp

[

et·
P

n

i=1
Xi

]

/et·λ. (1)

Using the independence of the random variables Xi’s, the numerator of the above expression can be
written as

∏n
i=1 Exp[et·Xi ]. Then the remainder of the proof consists in upperbounding Exp[et·Xi ],

and choosing the best value for t to minimize the right-hand side of Eq. (1).
While the proof argument sketched above is not difficult technically, we feel that it does not

provide an intuitive explanation why the sums of independent random variables are likely to be
concentrated around their expectations. One of the main results of our paper is a different proof of
the Chernoff bound, using a simple combinatorial argument (and, in particular, avoiding any use
of the moment-generating functions). We actually prove a generalization of the Chernoff bound,
originally due to Panconesi and Srinivasan [PS97] (who also used the standard method of moment-
generating functions in their proof). In this generalization, the assumption of independence of the
variables X1, . . . , Xn is replaced with the following weaker assumption: There exists some δ > 0
such that, for all subsets S ⊆ [n] of indices, Pr[∧i∈SXi = 1] 6 δ|S|. Observe that if the variables
Xi’s are independent, with each Exp[Xi] 6 δ, then, for all S ⊆ [n], Pr[∧i∈SXi = 1] 6 δ|S|.

Theorem 1.1 (Generalized Chernoff bound [PS97]). Let X1, . . . , Xn be Boolean random variables
such that, for some 0 6 δ 6 1, we have that, for every subset S ⊆ [n], Pr[∧i∈SXi = 1] 6 δ|S|.
Then, for any 0 6 δ 6 γ 6 1, Pr [

∑n
i=1 Xi > γn] 6 e−nD(γ‖δ), where D(· ‖ ·) is the relative entropy

function (defined in Section 2 below), satisfying D(γ ‖ δ) > 2(γ − δ)2.
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We now sketch our proof of Theorem 1.1. Imagine sampling a random subset S ⊆ [n] where
each index i ∈ [n] is put in S independently with some probability q (to be optimally chosen). We
compute, in two ways, Pr[∧i∈SXi = 1], where the probability is over S and X1, . . . , Xn.

On one hand, since Pr[∧i∈SXi = 1] 6 δ|S| for all S ⊆ [n], the probability of choosing S ⊆ [n]
with ∧i∈SXi = 1 is small. On the other hand, if p = Pr[

∑
n

i=1
Xi > γn] is relatively large, we are

likely to sample a n-tuple X1, . . . , Xn with very many (at least γn) 1’s. Given such a tuple, we are
then likely to sample a subset S ⊆ [n] with ∧i∈SXi = 1. Thus the overall probability of choosing
S ⊆ [n] with ∧i∈SXi = 1 is relatively large. The resulting contradiction shows that p must be
small. (The complete proof is given in Section 3.1 below.)

1.2 Hoeffding’s bound, Azuma’s inequality, and the Chernoff bound for ex-

panders

We get several other concentration bounds as simple corollaries of Theorem 1.1. First, we get a
version of Theorem 1.1 in the setting of real-valued random variables that take their values in the
interval [0, 1], the Hoeffding bound [Hoe63] (Theorem 3.3). Then we prove a concentration bound
for martingales, known as Azuma’s inequality [Azu67] (Theorem 3.4).

In another application of our Theorem 1.1, we obtain a Chernoff-type concentration bound for
random walks on expander graphs (Theorem 3.8). Here, for a given subset W of an expander graph
G, where W has density µ, we take a t-step random walk in G and see how many times we visited
the set W . The Chernoff bound for expanders [Gil98, Hea08] says that the number of visits to W

will be sharply concentrated around the expectation tµ. The hitting property for expanders says
that the probability that all t steps end up in the set W is at most about µt, and it is much easier
to prove [AKS87, AFWZ95]. We give a simple proof of the Chernoff property for expander walks,
from the hitting property, almost matching the best known parameters of [Gil98, Hea08].

1.3 Applications to Direct Product Theorems

We interpret Theorem 1.1 as giving an equivalence between certain versions of Direct Product
Theorems (DPTs), which are statements of the form “k-wise parallel repetition increases the com-
plexity of a problem at an exponential rate in the number of repetitions k”. Such theorems are
known for a variety of models: Boolean circuits [Yao82, GNW95], 2-prover games [Raz98], decision
trees [NRS94], communication complexity [PRW97], polynomials [VW08], puzzles [BIN97], and
quantum XOR games [CSUU07], just to mention a few. However, there are also examples where a
direct product statement is false (see, e.g., [BIN97, PW07, Sha03]).

More formally, for a function F : U → R, its k-wise direct product is the function F k : Uk → Rk,
where F k(x1, . . . , xk) = (F (x1), . . . , F (xk)). The main application of this construction is to hardness
amplification. Intuitively, if F (x) is easy to compute on at most p fraction of inputs x (by a certain
resource-bounded class of algorithms), then we expect F k(x1, . . . , xk) to be easy on at most (close
to) pk fraction of k-tuples (x1, . . . , xk) (for a related class of algorithms).

A DPT may be viewed as a computational analogue of the following (obvious) probabilistic
statement: Given k random independent Boolean variables X1, . . . , Xk, where each Xi = 1 with
probability at most p, we have Pr[∧k

i=1
Xi = 1] 6 pk. The Chernoff-Hoeffding concentration

bound [Che52, Hoe63] says that with all but exponentially small probability at most about pk

of the random variables X1, . . . , Xk will be 1. The computational analogue of this concentration
bound is often called a Threshold Direct Product Theorem (TDPT), saying that if a function F is
easy to compute on at most p fraction of inputs (by a certain class of algorithms), then computing
F k(x1, . . . , xk) correctly in significantly more than pk positions 1 6 i 6 k is possible for at most
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a (negligibly more than) exponentially small fraction of k-tuples (x1, . . . , xk) (for a related class of
algorithms). TDPTs are also known for a number of models, e.g., Boolean circuits (follows from
[Imp95, Hol05]), 2-prover games [Rao08], puzzles [IJK09b], and quantum XOR games [CSUU07].

Observe that Theorem 1.1 says that the Chernoff concentration bound for random variables
X1, . . . , Xn follows from the assumption that Pr[∧i∈SXi = 1] 6 p|S| for all subsets S of [n]. In
the language of direct products, this means that Threshold Direct Product Theorems follow from
Direct Product Theorems. We explain this connection in more detail next.

1.3.1 Equivalence between Direct Product and Threshold Direct Product Theorems

Let us call a DPT optimal if has perfect exponential increase in complexity: A function F that is
computable on at most p fraction of inputs gives rise to the function F k that is computable on at
most pk fraction of inputs. Similarly, we call a TDPT optimal, if its parameters match exactly its
probabilistic analogue, the Chernoff-Hoeffding bound.

As an immediate application of Theorem 1.1, we get that an optimal DPT implies an optimal
TDPT. We illustrate it for the case of the DPT for Boolean circuits. Suppose F is a Boolean
function that can be computed on at most p fraction of inputs (by circuits of certain size s). The
optimal DPT for circuits (provable, e.g., using [Imp95, Hol05]) says that for any k, the function F k

is computable on at most pk fraction of inputs (by any circuit of appropriate size s′ < s).
Towards a contradiction, suppose there is an algorithm A that computes F k(x1, . . . , xk) in

significantly more than pk positions 1 6 i 6 k, for more than the exponentially small fraction
of inputs (x1, . . . , xk). Define Boolean random variables X1, . . . , Xk, dependent on F , A, and a
random k-tuple (x1, . . . , xk), so that Xi = 1 iff A(x1, . . . , xk)i = F (xi). By our assumption, these
variables X1, . . . , Xk fail the Chernoff concentration bound. Hence, by Theorem 1.1, there is a
subset S ⊆ {1, . . . , k} such that Pr[∧i∈SXi = 1] > p|S|. But the latter means that our algorithm
A, restricted to the positions i ∈ S, computes F |S| with probability greater than p|S|, contradicting
the optimal DPT.

In an analogous way, we get an optimal TDPT for every non-uniform model where an optimal
DPT is known: e.g., decision trees [NRS94] and quantum XOR games [CSUU07]; for the latter
model, an optimal TDPT was already proved in [CSUU07].

1.3.2 A constructive version of Theorem 1.1

For non-uniform models (as in the example of Boolean circuits considered above), it suffices to use
Theorem 1.1 which only says that if the random variables X1, . . . , Xn fail to satisfy the concentration
bound, then there must exist a subset S of them such that ∧i∈SXi = 1 with large probability. To
obtain the Direct Product Theorems in the uniform model of computation, it is important that
such a subset S be efficiently computable by a uniform algorithm.

Our combinatorial proof of Theorem 1.1 immediately yields such an algorithm. Namely, we just
randomly sample a subset S by including each index i, 1 6 i 6 n, into S with probability q, where
q is chosen as a function of how far the variables X1, . . . , Xn are from satisfying the concentration
bound. We then output S if ∧i∈SXi = 1 has “high” probability; otherwise we sample another set
S. Here we assume that our algorithm has a way to sample from the distribution X1, ..., Xn. (See
Section 4 for the precise statement.)

Using this constructive version, we prove an optimal TDPT also for uniform models. In par-
ticular, we get such a result for the case of CAPTCHA-like puzzles, called weakly verifiable puz-
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zles [CHS05] (see Theorem 5.2).1 DPTs for puzzles are known [BIN97, CHS05], with [CHS05]
giving an optimal DPT. Also TDPTs are known [IJK09b, Jut10], but they are not optimal. Here
we immediately get an optimal TDPT for puzzles, using the optimal DPT of [CHS05], when the
success probabilities of the legitimate user and the attacker are constant.

We also show that the limitation on the success probabilities being constant is unavoidable for
the simple reductions between DPTs and TDPTs (see Section 4.1), and suggest a way to overcome
this information-theoretic limitation using a more general class of reductions (see Section 4.2).

Finally, we want to point out that our Theorem 1.1 would imply some TDPT even when we
only have a weak (suboptimal) DPT for the model. For example, we can get some version of a
TDPT for 2-prover games, using the best available DPT for such games [Raz98, Hol07, Rao08];2

however, a better TDPT for 2-prover games is known [Rao08]. Also, as shown by Haitner [Hai09],
for a wide class of cryptographic protocols (interactive arguments), even if the original protocol
doesn’t satisfy any DPT, there is a slight modification of the protocol satisfying some weak DPT.
Then, our results imply that these modified protocols also satisfy some weak TDPT.

1.3.3 Direct Product Theorems vs. XOR Lemmas

A close relative of DPTs is an XOR Theorem. For a Boolean function F : {0, 1}n → {0, 1}, its k-wise
XOR function is F⊕k : ({0, 1}n)k → {0, 1}, where F⊕k(x1, . . . , xk) = ⊕k

i=1F (xi). Intuitively, taking
XOR of the k independent copies of a function F , where F can be computed on at most p fraction
of inputs, is similar to taking the XOR of k independent random Boolean variables X1, . . . , Xk,
where each Xi = 1 with probability at most p. In the latter case, it is easy to compute that
Pr[⊕k

i=1Xi = 1] 6 1/2 + (2p− 1)k/2, i.e., the k-wise XOR approaches a fair coin flip exponentially
fast in k. In the computational setting, one would like to argue that F⊕k becomes essentially
unpredictable. Such XOR results are also known, the most famous being Yao’s XOR Lemma for
Boolean circuits [Yao82, Lev87, GNW95] (many proofs of this lemma have been given over the
years, see, e.g., [IJKW10] for the most recent proof, and the references).

We call an XOR lemma optimal if its parameters exactly match the probabilistic analogue given
above. Recently, Unger [Ung09] essentially showed that an optimal XOR result implies an optimal
TDPT (and hence also an optimal DPT). More precisely, he proved the following generalization
of the Chernoff-Hoeffding bound: Let X1, . . . , Xk be Boolean random variables such that for some
−1 6 β 6 1, we have that, for every subset S ⊆ {1, . . . , k}, Pr[⊕i∈SXi = 1] 6 1/2 + β|S|/2. Then
for any β 6 ρ 6 1, Pr[

∑k
i=1 Xi > (1/2 + ρ/2)k] 6 e−kD(1/2+ρ/2‖1/2+β/2), for D(· ‖ ·) the relative

entropy.
Unger’s original proof uses the method of moment-generating functions and some basic tools

from Fourier analysis. In contrast, we give a simple reduction showing that the assumption in
Unger’s theorem implies the assumption in Theorem 1.1, and thus we immediately get an alternative
(and simpler) proof of Unger’s result. Moreover, our reduction is constructive. Combining it with
the constructive version of Theorem 1.1, we get a constructive version of Unger’s result: if the
variables X1, . . . , Xn fail to satisfy the concentration bound, then we can efficiently find (using a
randomized algorithm) a subset S of indices such that ⊕i∈SXi has “large” bias. Such a constructive
version is not implied by the original proof of [Ung09].

1Unger [Ung09] claims to get a TDPT for puzzles, but in fact only proves a TDPT for circuits from Yao’s XOR
Lemma. Actually, no XOR Lemma for puzzles is known, and so Unger’s methods don’t apply.

2In fact, for 2-prover games, it is impossible to achieve the “optimal” decrease in the success probability from p

to pk, for k parallel repetitions of the game [Raz08].

5



1.4 Related work

1.4.1 Chernoff bounds for negatively correlated random variables

The assumption on the random variables X1, . . . , Xn used in Theorem 1.1 is similar to the as-
sumption that the Xi’s are negatively correlated ; the latter means that for every subset S ⊆ [n],
Pr[∧i∈SXi = 1] 6

∏
i∈S

Pr[Xi = 1]. The only difference between the negative correlation assump-
tion and the assumption in Theorem 1.1 is that the latter upperbounds Pr[∧i∈SXi = 1] by some
δ|S|, where δ is an upper bound on Pr[Xi = 1]. Panconesi and Srinivasan [PS97] observed that
the Chernoff-Hoeffding bound continues to hold for the case of random variables that satisfy this
generalized version of negative correlation. The proof given in [PS97] follows the standard proof of
the Chernoff-Hoeffding bound based on upperbounding the expectation Exp[et

P

n

i=1
Xi ] (for some

parameter t), with an extra idea to use the Taylor expansion of the function ex (to which the
assumed negative correlation bounds can be applied).

1.4.2 TDPTs from DPTs, and DPTs from XOR lemmas

A simple idea for converting DPTs into TDPTs by randomly sampling a subset of a given n-tuple
of instances was also suggested by Ben-Aroya et al. [BARW08, Theorem 10], but their reduction
doesn’t give the optimal parameters. In the setting of interactive protocols, Chung and Liu [CL10]
show how to obtain an almost-optimal TDPT from an optimal DPT, also using a very similar
sampling-based argument. The fact that XOR Lemma implies DPT was also shown by Viola
and Wigderson [VW08, Proposition 1.4]. Our proof of Theorem 3.10 (showing that optimal XOR
Lemma implies optimal DPT) is a very similar argument.

While the idea of using sampling to get weak versions of TDPTs from DPTs has been used in
earlier works, the difference in our paper is to use it in the abstract setting of probability-theoretic
concentration bounds, and achieve tight parameters. It is actually surprising that such a simple idea
is powerful enough to yield tight concentration bounds. The advantage of the abstract framework
is also that it suggests applications in settings where one doesn’t usually think in terms of standard
direct products and threshold direct products. For example, we use our Theorem 1.1 to prove the
Chernoff concentration bound for expander walks [Gil98] from the hitting property of [AKS87]. We
also show the information-theoretic limitations of simple reductions between DPTs and TDPTs,
and suggest a way to overcome these limitations with stronger reductions.

We consider the new proof of Chernoff-type concentration bounds more revealing and intu-
itive than the standard Bernstein-style proofs, and hope that its constructiveness will have other
applications in computer science.

Remainder of the paper We give basics in Section 2. In Section 3, we prove Theorem 1.1
and other concentration bounds, including Azuma’s bound for martingales, the Chernoff bound for
expander walks, and Unger’s theorem. In Section 4, we state and prove the constructive version
of Theorem 1.1, show the information-theoretic limitations of simple reductions between TDPTs
and DPTs, and suggest a way to overcome these limitations. In Section 5, we use our constructive
concentration bounds to give some examples of deriving TDPTs from DPTs. We give a brief
summary in Section 6.
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2 Preliminaries

For a natural number n, we denote by [n] the set {1, 2, . . . , n}. For 0 6 ρ, σ 6 1, let D(ρ ‖ σ) be
the binary relative entropy defined as D(ρ ‖ σ) = ρ ln ρ

σ
+ (1 − ρ) ln 1−ρ

1−σ
, with 0 ln 0 = 0. We shall

also use the following simple estimate: D(σ + ǫ ‖ σ) > 2ǫ2 (obtained by considering the Taylor
expansion of the function g(x) = D(p + x ‖ p) up to the second derivative).

For parameters 0 6 δ 6 γ 6 1, we define the function fδ,γ(q) = 1−q(1−δ)
(1−q)1−γ ; we shall be interested

in the case where 0 6 q < 1. When δ, γ are clear from the context, we drop the subscripts and
simply write f(q). Taking the derivative of the function f(q), we get that f(q) achieves its minimum

at q∗ = γ−δ
γ(1−δ) . It is easy to see that f(q∗) =

(

δ
γ

)γ (

1−δ
1−γ

)1−γ

= e−D(γ‖δ).

For parameters n ∈ N and 0 6 q 6 1, we denote by Bin(n, q) the binomial distribution on sets
S ⊆ [n], where a set S is obtained by picking each index 1 6 i 6 n, independently, with probability
q. We will denote by S ∼ Bin(n, q) the random choice of S ⊆ [n] according to Bin(n, q).

We use the following “mean is median” result of Jogdeo and Samuels [JS68] for general binomial
distributions (where the probabilities of choosing an index i may be different for different i’s).

Lemma 2.1 ([JS68]). For every n-tuple of real numbers p1, . . . , pn, 0 6 pi 6 1 for all 1 6 i 6 n,
and for the Boolean random variables X1, . . . , Xn where each Xi = 1 with probability pi, and Xi = 0
with probability 1−pi, let S =

∑n
i=1 Xi and let µ =

∑n
i=1 pi. Then the median of the distribution S

is either ⌊µ⌋ or ⌈µ⌉ (and is equal to µ if µ is an integer). In particular, we have Pr [S > ⌊µ⌋] > 1/2.

A similar result holds also for the case of hypergeometric distributions (see, e.g., [Sie01] for a
proof), where one chooses a random subset from among all subsets of a given fixed size.

Lemma 2.2 ([Sie01]). Let U be a universe of size n, let A ⊆ U be any subset of density µ = |A|/|U |,
and let 1 6 t 6 n be a parameter. Then PrT [|T ∩ A| > ⌊tµ⌋] > 1/2, where the probability is over a
random choice of t-size subset T ⊆ U , and tµ = ExpT [|T ∩ A|] is the expected intersection size of
a random t-size set T with A.

3 Concentration bounds

3.1 Boolean random variables

Theorem 1.1 is the special case of the following theorem (when δ1 = · · · = δn).

Theorem 3.1. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there are 0 6 δi 6 1,
for 1 6 i 6 n, such that, for every set S ⊆ [n], Pr [∧i∈SXi = 1] 6

∏

i∈S δi. Let δ = (1/n)
∑n

i=1 δi.

Then, for any γ such that δ 6 γ 6 1, Pr [
∑n

i=1 Xi > γn] 6 e−nD(γ‖δ).

Proof. For simplicity, we first prove the special case δ1 = · · · = δn, and then show how the general
case is reduced to this special case.

Case of equal δi’s: For a parameter 0 6 q 6 1 to be chosen later, consider the following
random experiment. Pick a random n-tuple (x1, . . . , xn) from the given distribution X1, . . . , Xn.
Pick a set S ∼ Bin(n, q) (i.e., each position 1 6 i 6 n, independently, is in S with probability q).

Let E be the event that
∑n

j=1 Xj > γn, and let p = Pr[E ]. By conditioning, we get that

Exp[∧i∈SXi = 1] > Exp[∧i∈SXi = 1 | E ] · p, (2)

where the expectations are over random choices of S ∼ Bin(n, q) and X1, . . . , Xn.

7



For every S ⊆ [n], we have Pr[∧i∈SXi = 1] 6 δ|S|. Hence,

Exp[∧i∈SXi = 1] 6

n
∑

k=0

(

n

k

)

qk(1 − q)n−kδk = (qδ + 1 − q)n, (3)

where we sum over all
(

n
k

)

subsets S of size 0 6 k 6 n, each chosen with probability qk(1 − q)n−k;
the last equality is by the binomial formula.

On the other hand, Exp[∧i∈SXi = 1 | E ] is the probability that a random S ∼ Bin(n, q) misses
all the 0 positions in the chosen sample from X1, . . . , Xn, conditioned on E . Since there are at most
n − γn such 0 positions, we get

Exp[∧i∈SXi = 1 | E ] > (1 − q)n−γn. (4)

Finally, combining Eqs. (2)–(4), we get p 6

(

qδ+1−q

(1−q)(1−γ)

)n

= (f(q))n, where f(q) is the function

defined in Section 2 above. Choosing q = q∗ to minimize f(q) (see Section 2), we get p 6 e−nD(γ‖δ).
Case of possibly distinct δi’s: In the general case, the success probability of the random

experiment is easily seen to be at most

∑

S⊆[n]

[

q|S|(1 − q)n−|S|
∏

i∈S

δi

]

. (5)

Let us denote by (z1, . . . , zn) ∈ {0, 1}n the characteristic vector of a set S chosen in the random
experiment above. That is, each zi is 1 with probability q, and 0 with probability 1 − q; all zi’s
are independent. In this new notation, the expression in Eq. (5) equals Expz1,...,zn

[
∏n

i=1 δzi

i ] =
∏n

i=1 Expzi
[δzi

i ] =
∏n

i=1(qδi +1− q), where the first equality is by the independence of the zi’s. By
convexity, (1/n)

∑n
i=1 ln(qδi + 1− q) 6 ln(qδ + 1− q), and hence

∏n
i=1(qδi + 1− q) 6 (qδ + 1− q)n.

The rest of the proof is identical to that of the previous case.

Remark 3.2. Note that if γ = 1 in the theorem above, then the resulting probability that all
Xi = 1 is at most e−nD(1‖δ) = δn, which is tight.

3.2 Real-valued random variables

We prove a version of Theorem 1.1 for the case of real-valued random variables. (A generalization
of Theorem 3.1 to the real-valued case can be proved using a similar argument.)

Theorem 3.3. There is a universal constant c > 1 satisfying the following. Let X1, . . . , Xn be real-

valued random variables, with each Xi ∈ [0, 1]. Suppose that there is a 0 6 δ 6 1 such that, for every

set S ⊆ [n], Exp
[
∏

i∈S Xi

]

6 δ|S|. Then, for any γ such that δ 6 γ 6 1, Pr [
∑n

i=1 Xi > γn] 6

c · e−nD(γ‖δ).

Proof. Let p = Pr [
∑n

i=1 Xi > γn]. Suppose that p > c · exp(−nD(γ ‖ δ)). Our proof is by a
reduction to the Boolean case. Consider Boolean random variables Y1, . . . , Yn, where Pr[Yi = 1] =
Xi, for all 1 6 i 6 n; that is, we think of the real value Xi as the probability that a Boolean
variable Yi is 1. Suppose we sample x1, . . . , xn from the distribution X1, . . . , Xn. Conditioned on
∑n

i=1 xi > γn, we have by Lemma 2.1 that Pr[
∑n

i=1 Yi > γn] > 1/c, for a universal constant
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c > 1. 3 Lifting the conditioning (and using the assumed lower bound on the probability p), we get
Pr [

∑n
i=1 Yi > γn] > p/c > e−nD(γ‖δ), where the probability is over Xi’s and Yi’s.

By Theorem 1.1, we have that there is a subset S ⊆ [n] such that Pr[∧i∈SYi = 1] > δ|S|.
Denote ~X = (X1, . . . , Xn), and similarly for ~Y . We can equivalently write Pr[∧i∈SYi = 1] =
Exp ~X

[

Exp~Y

[
∏

i∈S Yi

]]

= Exp ~X

[
∏

i∈S Exp~Y
[Yi]

]

= Exp ~X

[
∏

i∈S Xi

]

, where the second equality
is by the independence of Yi’s (given any fixing of Xi’s), and the last equality by the definition of
Yi’s. Thus, Exp[

∏

i∈S Xi] > δ|S|, which is a contradiction.

3.3 Martingales

Here we use Theorem 3.3 to derive Azuma’s inequality for martingales. Intuitively, a martingale is
a sequence of random variables X0, X1, . . . , Xn, where we think of Xi as the value of the random
process at time i, such that each time step increases the current value by a random amount whose
expectation is zero. More formally, a sequence of random variables X0, . . . , Xn is a martingale if
Exp[Xi+1 | Xi, Xi−1, . . . , X0] = Xi, for all 0 6 i < n.

Suppose that X0 = 0, for simplicity. The concentration bound for martingales (Azuma’s in-
equality [Azu67]) says that if |Xi+1 −Xi| 6 1 for all 1 6 i 6 n, then Xn is unlikely to deviate from
0 by more than

√
n. More precisely, for any λ > 0, Pr[Xn > λ

√
n] 6 exp(−λ2/2).

We will prove the following.

Theorem 3.4. There is a constant c > 1 such that the following holds. Let 0 = X0, X1, . . . , Xn be

a martingale such that |Xi+1 − Xi| 6 1 for all 0 6 i < n. Then, for any λ > 0, Pr[Xn > λ
√

n] 6

c · exp(−λ2/2).

Proof. Define new random variables Yi = Xi −Xi−1, for all 1 6 i 6 n; the sequence Y1, . . . , Yn is a
martingale difference sequence. Note that each Yi ∈ [−1, 1]. Clearly, Exp[Yi+1 | Yi, Yi−1, . . . , Y1] =
Exp[Yi+1 | Xi, Xi−1, . . . , X0] = 0.

Let us also define the random variables Zi = (1 + Yi)/2, for 1 6 i 6 n. Observe that each
Zi ∈ [0, 1]. We want to apply Theorem 3.3 to the Zi’s. To this end, we will show that, for every
subset S ⊆ [n], Exp[

∏

i∈S Zi] = (1/2)|S|.
We argue by induction over the size of the set S. When S = ∅, there is nothing to prove.

Consider any nonempty subset S, and let j ∈ S be the largest element in S. Define S′ = S − {j}.
The expectation Exp[

∏

i∈S Zi] is equal to the average of the conditional expectations Exp[Zj ·
∏

i∈S′ Zi | Yj−1, . . . , Y1] over all possible values of the variables Yj−1, . . . , Y1. For every fixing of
the Yj−1, . . . , Y1, the conditional expectation of Yj is 0, and hence, the conditional expectation of
Zj is 1/2. It follows that Exp[

∏

i∈S Zi] = (1/2) · Exp[
∏

i∈S′ Zi]. By the induction hypothesis,

Exp[
∏

i∈S′ Zi] = (1/2)|S
′|, and so, Exp[

∏

i∈S Zi] = (1/2)|S|.
Applying Theorem 3.3 to the Zi’s (with δ = 1/2 and γ = 1/2 + ǫ), we get (for the constant

c > 1 in the statement of Theorem 3.3) that, for every 0 6 ǫ 6 1/2, Pr[
∑n

i=1 Zi > (1/2 +
ǫ)n] 6 c · exp(−nD(1/2 + ǫ ‖ 1/2)) 6 c · exp(−2ǫ2n). Since

∑n
i=1 Zi = n/2 + (

∑n
i=1 Yi)/2, we get

Pr[
∑n

i=1 Yi > 2ǫn] 6 c · exp(−2ǫ2n). Using the fact that
∑n

i=1 Yi = Xn and choosing ǫ so that
λ = 2ǫ

√
n, we conclude that Pr[Xn > λ

√
n] 6 c · exp(−λ2/2).

3More precisely, Lemma 2.1 implies that Pr[
P

n

i=1
Yi > ⌊γn⌋] > 1/2 and so instead of γn we should actually use

⌊γn⌋ > γn− 1 in our estimates. However, this will only affect the final probability bound by a constant factor, which
we take into account by the constant c in the statement of the theorem.
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3.4 Expander walks

We recall some basic definitions (for more details on expanders, see the excellent survey [HLW06]).
For a d-regular undirected graph G = (V,E) on n vertices, let A = (ai,j) be its normalized adjacency
matrix, i.e., ai,j is (1/d) times the number of edges between vertices i and j. All eigenvalues of A
are between −1 and 1, with the largest eigenvalue being equal to 1. Order all eigenvalues according
to their absolute values. For 0 6 λ 6 1, we call G a λ-expander if the second largest (in absolute
value) eigenvalue of A is at most λ.

Expanders have numerous applications in computer science and mathematics (cf. [HLW06]), in
particular, due to the following sampling properties. For any set W of vertices of a λ-expander
G, say W of measure 1/2, if we pick a random vertex in G and then walk randomly in G for
t − 1 steps (for some integer t > 1), then the probability our walk stays within W is at most
exp(−Ω(t)) [AKS87], and the probability the walk contains the number of vertices from W that is
significantly different from the expected number tn/2 is also at most exp(−Ω(t)) [Gil98].

The first sampling property is called the hitting property of expanders, and was first shown by
Ajtai, Komlos, and Szemeredi [AKS87]. We state the improved version due to Alon et al. [AFWZ95].

Theorem 3.5 (Hitting property of expander walks [AKS87, AFWZ95]). Let G = (V,E) be a λ-

expander, and let W ⊂ V be any vertex subset of measure µ, with µ > 6λ. Then the probability

that a (t − 1)-step random walk started from a uniformly random vertex stays inside W is at most

µ(µ+2λ)t−1. Moreover, for any subset S ⊆ [t], the probability that, in each of the time steps i ∈ S,

the random walk hits a vertex in W is at most (µ + 2λ)|S|.

The second sampling property, originally proved by Gillman [Gil98], is similar to the Chernoff-
Hoeffding concentration bound, and is sometimes called the Chernoff bound for expander walks.

Theorem 3.6 (Chernoff bound for expander walks [Gil98]). Let G = (V,E) be a λ-expander, and

let W ⊂ V be any vertex subset of measure µ. Then the probability that a (t − 1)-step random

walk started from a uniformly random vertex contains at least (µ + ǫ)t vertices from W is at most

e−ǫ2(1−λ)t/4.

The hitting property of Theorem 3.5 is fairly easy to prove, using basic linear algebra. In
contrast, the original proof of Theorem 3.6 relied on some tools from perturbation theory and
complex analysis. Subsequently, the proof was significantly simplified by Healy [Hea08], who used
only basic linear algebra.

We first observe that Theorem 1.1 implies a version of the Chernoff bound for expanders from
the hitting property.

Theorem 3.7. Let G = (V,E) be a λ-expander, and let W ⊂ V be of measure µ, where µ > 6λ.

Let 1 > ǫ > 2λ. Then the probability that (t−1)-step random walk started from a uniformly random

vertex contains at least (µ + ǫ)t vertices from W is at most e−tD(µ+ǫ‖µ+2λ) 6 e−2(ǫ−2λ)2t.

Proof. Define the 0-1-valued random variables X1, . . . , Xt where Xi = 1 if the ith step of a random
walk in G lands in W , and Xi = 0 otherwise. By Theorem 3.5, we have that for every subset
S ⊆ [t], Pr[∧i∈SXi = 1] 6 (µ + 2λ)|S|. By Theorem 1.1, the probability that a random walk in G
contains at least (µ + ǫ)t vertices from W is at most e−tD(µ+ǫ‖µ+2λ). Using D(σ + ρ ‖ σ) > 2ρ2, we
can upperbound this probability by e−2(ǫ−2λ)2t.

Next we show how to lift the assumption of Theorem 3.7 that ǫ > 2λ, thereby getting the
following.
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Theorem 3.8. Let G = (V,E) be a λ-expander, and let W ⊂ V be of measure µ. Then the
probability that a (t−1)-step random walk started from a uniformly random vertex contains at least
(µ + ǫ)t vertices from W (where ǫ 6 (2/3)µ) is at most e−ǫ2(1−λ)t/(2 ln 4/ǫ).

Proof. The idea is to view random t-vertex walks in the graph G also as t/c-vertex walks in the
graph Gc (the cth power of the graph G), for a suitably chosen integer c. The second largest
eigenvalue of Gc is at most λc. By choosing c so that λc < ǫ/2, we will satisfy the assumptions
of Theorem 3.7, for walks of length t/c, thus getting an exponentially small upper bound on the
fraction of imbalanced walks in G. Since this probability is computed based on walks of length t/c
rather than t, we lose an extra factor (namely, (1 − λ)/(ln 1/ǫ)) in the exponent.

Let γ = µ + ǫ. Let p be the fraction of walks with at least γt vertices from W . Choose an
integer c > 1 such that λc 6 min{ǫ/4, µ/6} = ǫ/4; set c = (ln 4/ǫ)/(ln 1/λ). Let G′ = Gc, the
graph G raised to the power c. For t′ = t/c (assumed integer, for simplicity), we will also be taking
t′-vertex random walks in G′. Note that the second largest (in absolute value) eigenvalue of G′ is
λ′ 6 λc. Let δ = µ + ǫ/2. By Theorem 3.5, we have that for every subset S ⊆ [t′], the probability
that a random t′-vertex walk in G′ hits W in each time step j ∈ S is at most δ|S|.

We will follow the argument in the proof of Theorem 3.1. Consider the following random
experiment. Pick a uniformly random t-vertex walk v̄ = (v0, v1, . . . , vt−1) in G. Pick a uniformly
random integer i where 0 6 i < c. Let w̄i be the subsequence of exactly those vertices vj of v̄
with j = i mod c. For each vertex in w̄i, independently, choose this vertex with probability q (for
some parameter 0 6 q 6 1 to be determined). Let S be the set of chosen vertices. Declare the
experiment a success if ∧j∈S(vj ∈ W ).

Next we bound the success probability of this experiment. For a t-vertex walk v̄ in G, let
γ(v̄) denote the fraction of vertices of v̄ that fall into the set W . For each subsequence w̄i of
v̄, for 0 6 i < c, let γi(v̄) denote the fraction of vertices of w̄i that are in W . Observe that
γ(v̄) = (1/c)

∑c
i=0 γi(v̄).

By our assumption, with probability p, we choose a t-vertex walk v̄ in G such that γ(v̄) > γ.
Condition on choosing such a v̄. For each fixed 0 6 i < c, the conditional success probability of our
experiment (given i) is (1− q)(1−γi(v̄))t′ . Thus the average (over i) success probability (conditioned
on v̄) is Expi[(1 − q)(1−γi(v̄))t′ ] > (1 − q)(1−γ(v̄))t′ > (1 − q)(1−γ)t′ , where the first inequality is by
convexity, and the second one by our assumption that γ(v̄) > γ. Lifting the conditioning on v̄, we
get that Pr[ success ] > p · (1 − q)(1−γ)t′ .

On the other hand, for each fixed 0 6 i < c, our experiment concerns random t′-vertex walks in
the graph G′. By the same argument as in the proof of Theorem 3.1 and by the hitting property of
G′ noted above, we get that the conditional success probability (given i) is at most (qδ + 1 − q)t′ .
Since this is true for every 0 6 i < c, it is also true for the average over i’s. Thus we get
Pr[ success ] 6 (qδ + 1 − q)t′ .

Comparing the upper and lower bounds for Pr[ success ] obtained above, we get p 6 (qδ + 1−
q)t′/(1 − q)(1−γ)t′ = (f(q))t′ 6 e−t′D(γ‖δ), for q = q∗ that minimizes the function f (cf. Section 2).
Recall that γ = µ + ǫ and δ = µ + ǫ/2. Using D(σ + ǫ ‖ σ) > 2ǫ2, we upperbound p by e−t′ǫ2/2.
Recalling that t′ = t/c for c = (ln 4/ǫ)/(ln 1/λ), and using the inequality ln 1/x > 1 − x, we get
p 6 e−tǫ2/(2c) 6 e−ǫ2(1−λ)t/(2 ln 4/ǫ), as required.

Compared to the best Chernoff bounds for expander walks [Gil98, Hea08], we lose a factor ln 1/ǫ
in the exponent. The advantage of our proof is simplicity. Nonetheless, it is an interesting question
if an optimal Chernoff bound can be obtained from the hitting property of expander walks, using
a simple direct reduction like ours.
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3.5 Chernoff-Hoeffding’s concentration bound from small biases

Here we give a simple, combinatorial proof of Unger’s theorem [Ung09]. Let X1, . . . , Xn be Boolean
random variables. For any set S ⊆ [n], let bias(S) = Pr[⊕i∈SXi = 0] − Pr[⊕i∈SXi = 1].

Theorem 3.9 ([Ung09]). Let X1, . . . , Xn be 0-1-valued random variables. Suppose there are −1 6

βi 6 1, 1 6 i 6 n, such that, for every S ⊆ [n], bias(S) 6
∏

i∈S βi. Let β = (1/n)
∑n

i=1 βi. Then,

for any β 6 ν 6 1, Pr[(X1, . . . , Xn) has at least (1/2 + ν/2)n zeros] 6 e−nD(1/2+ν/2‖1/2+β/2).

By an argument very similar to that of Viola and Wigderson [VW08], we first prove the following.

Theorem 3.10. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there are −1 6 βi 6

1, 1 6 i 6 n, such that, for every S ⊆ [n], bias(S) 6
∏

i∈S βi. Let β = (1/n)
∑n

i=1 βi. Then, for

every S ⊆ [n], Pr[∧i∈S(Xi = 0)] 6 (1/2 + β/2)|S|.

Proof. Denote δ = (1/2 + β/2). For the sake of contradiction, suppose that there is some subset S
of size 0 < k 6 n such that Pr[∧i∈S(Xi = 0)] > δk. For simplicity of notation, let us assume that
S = [k] (i.e., is the set of the first k positions). Consider the following random experiment. Sample
a random n-tuple (x1, . . . , xn) from the distribution (X1, . . . , Xn). Let T ∼ Bin(k, 1/2). Declare
the experiment a success if ⊕i∈T xi = 0.

Define the bias of the experiment as the probability it succeeds minus the probability it fails.
With probability greater than δk, we sample the all-zero k-tuple 0k. Conditioned on that, our
experiment succeeds with probability 1, and hence has bias 1. If the sampled k-tuple has at least
one non-zero position, then the conditional success probability of the experiment is exactly 1/2,
and hence the bias is 0. Thus, the overall bias of the experiment is greater than δk.

We next upperbound the bias of the random experiment. We first consider the case of equal
βi’s, and then show how the general case follows by convexity.

Case of equal βi’s: For every fixed subset T of size m (for 0 6 m 6 k), the bias of the
random experiment on this T is at most βm. For each 0 6 m 6 k, there are

(

k
m

)

subsets T ⊆ [k]
of size m, each selected with probability 2−k. Hence, the overall bias of our experiment is at most
2−k

∑k
m=0

(

k
m

)

βm = 2−k(1 + β)k = 2−k2k(1/2 + β/2)k = δk, which is a contradiction.
Case of possibly distinct βi’s: Let (z1, . . . , zk) ∈ {0, 1}k be the characteristic vector of a

set T chosen in the random experiment above. That is, each zi = 1 with probability 1/2; all

zi’s are independent. The bias of our random experiment is then at most Expz1,...,zk

[

∏k
i=1 βzi

i

]

=
∏k

i=1 Expzi
[βzi

i ] =
∏k

i=1(βi/2+1/2) 6 (β/2+1/2)k, where the first equality is by the independence
of zi’s, and the last inequality by convexity (cf. the proof of Theorem 3.1). The rest of the proof is
as in the previous case.

Proof of Theorem 3.9. The proof is immediate from Theorems 3.1 and 3.10.

4 A constructive version of the Chernoff-Hoeffding theorem

We assume here that we are given an oracle access to the distribution X1, . . . , Xn of random
variables, and so we can efficiently sample from that distribution. Suppose that these variables fail
to satisfy the concentration bound of Theorem 1.1 by a noticeable amount, then we can efficiently,
probabilistically, find a subset S ⊆ [n] such that Pr[∧i∈SXi = 1] is greater than δ|S| by a noticeable
amount. Our proof of Theorem 1.1 suggests an obvious algorithm for doing this: sample random
subsets S ∼ Bin(n, q) (for an appropriate parameter 0 < q < 1), and check if S is a good set.

More precisely, we have the following.
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Theorem 4.1. There is a randomized algorithm A such that the following holds. Let X1, . . . , Xn be

0-1-valued random variables. Let 0 < δ < γ 6 1 be such that Pr[
∑n

i=1 Xi > γn] = p > 2α, for some

α > e−nD(γ‖δ). Then, on inputs n, γ, δ, α, the algorithm A, using oracle access to the distribution

X1, . . . , Xn, runs in time poly(α−1/((γ−δ)δ), n) and outputs a set S ⊆ [n] such that, with probability

at least 1 − o(1), Pr[∧i∈SXi = 1] > δ|S| + Ω(α4/((γ−δ)δ)).

Proof. Recall the random experiment from the proof of Theorem 3.1. Sample a random n-tuple
(x1, . . . , xn) from the distribution (X1, . . . , Xn). Pick S ∼ Bin(n, q) for a parameter 0 < q < 1 to
be determined. Declare success if ∧i∈Sxi = 1.

As in the proof of Theorem 3.1, the overall success probability of our random experiment
is greater than p(1 − q)(1−γ)n. For any subset S ⊆ [n], let a(S) = Pr[∧i∈SXi = 1]. The success
probability of our experiment is ExpS [a(S)]. By the linearity of expectation, we have: ExpS [a(S)−
δ|S|] = ExpS [a(S)]−ExpS [δ|S|]. As in the proof of Theorem 3.1, we have ExpS [δ|S|] = (1− q(1−
δ))n. So we get

ExpS [a(S) − δ|S|] > p(1 − q)(1−γ)n − (1 − q(1 − δ))n = (1 − q)(1−γ)n(p − (f(q))n), (6)

where f(q) = (1 − q(1 − δ))/(1 − q)1−γ .
We consider two cases depending on how big α is.
Case 1: α > e−n(γ−δ)2/4. We choose 0 < q0 6 1/2 so that (f(q0))

n 6 α. Using the inequalities
1−x 6 e−x (valid for all x) and 1−x > e−x−x2

(valid for 0 < x 6 1/2, as can be seen by considering
the Taylor expansion ln(1 − x) = −

∑
j>1 xj/j), we upperbound f(q) by e−q(1−δ)e(1−γ)(q+q2) =

e−q(1−δ−(1−γ)(1+q)) 6 e−q(γ−δ−q). Assuming q 6 (γ − δ)/2 (which we will ensure by our choice of
q), we can upperbound f(q) 6 e−q(γ−δ)/2. To make the latter expression at most α1/n, we solve
for q, getting q0 = (2 ln 1/α)/(n(γ − δ)). Note that the condition q0 6 (γ − δ)/2 is equivalent to
(γ − δ)2 > (4 ln 1/α)/n, which follows from the assumed lower bound on α. Observe also that
q0 6 1/2, as required.

Using the chosen q0, we lowerbound the last expression in Eq. (6) by (1−q0)
(1−γ)nα (since p > 2α

and (f(q0))
n 6 α). Using the formula 1−x > e−2x (valid for 0 < x 6 1/2), we get (1− q0)

(1−γ)n >

e−2q0(1−γ)n = α4(1−γ)/(γ−δ). Thus, the expression in Eq. (6) is at least α4(1−γ)/(γ−δ)+1 > α4/(γ−δ).
Case 2: e−nD(γ‖δ) 6 α < e−n(γ−δ)2/4. In this case, we choose q = q∗ so that f(q∗) = e−D(γ‖δ),

where q∗ = (γ − δ)/(γ(1 − δ)) (cf. Section 2). For this choice of q, the right-hand side of Eq. (6)
is (1 − q∗)(1−γ)n(p − ((f(q∗))n) > (1 − q∗)(1−γ)n((f(q∗))n = (1 − q∗(1 − δ))n = (δ/γ)n, where the
first inequality is by the assumption that p > 2(f(q∗))n, and then we used the definitions of f and
q∗. Using 1 + x 6 ex, we get γ/δ = 1 + (γ − δ)/δ 6 e(γ−δ)/δ. Thus we get ExpS [a(S) − δ|S|] >
e−n(γ−δ)/δ > α4/((γ−δ)δ), where the last inequality is by our assumption that α < e−n(γ−δ)2/4.

Define µ = α4/((γ−δ)δ). Observe that for both cases considered above, ExpS [a(S) − δ|S|] > µ.
Our algorithm A is: “Randomly sample sets S ∼ Bin(n, q) (where q is q0 or q∗, depending on α),
and output the first S with a(S) − δ|S| > µ/2, where the probability a(S) is estimated by random
sampling. If no such S is found within the allotted time, then output ∅.” It is easy to see that,
with very high probability, A finds a required set S within time poly(1/µ, n).

In a similar fashion, the proof of Theorem 3.10 yields a simple randomized algorithm for finding
a set T where ⊕i∈T Xi has a large bias, when there is a subset S where Pr[∧i∈SXi = 1] is large.
For completeness, we state this below.

Theorem 4.2. There is a randomized algorithm A satisfying the following. Let X1, . . . , Xn be 0-1-
valued random variables. Let S ⊆ [n] be a subset such that Pr[∧i∈S(Xi = 0)] > (1/2 + β/2)|S| + α,

for some −1 6 β 6 1 and α > 0. Then the algorithm A, on inputs n, S, α, β, using oracle access
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to X1, . . . , Xn, runs in time poly(1/α, n), and outputs a subset T ⊆ S such that, with probability

at least 1 − o(1), bias(T ) > β|T | + Ω(α).

Proof. Without loss of generality, assume that S = [k], for some 1 6 k 6 n. Let δ = 1/2 + β/2,
and let ρ = δk +α. We consider the same random experiment as in the proof of Theorem 3.10. Let
T ∼ Bin(k, 1/2). Declare success if ⊕i∈T Xi = 0.

As in the proof of Theorem 3.10, we get that the bias of our random experiment is greater than
the probability that ∧i∈S(Xi = 0), which is ρ. On the other hand, the bias of our experiment is
equal to ExpT⊆[k][bias(T )], where the expectation is over uniformly chosen subsets T of [k]. By

linearity of expectation, ExpT [bias(T ) − β|T |] = ExpT [bias(T )] − ExpT [β|T |]. As in the proof of
Theorem 3.10, we get that ExpT [β|T |] = δk. Thus, ExpT [bias(T ) − β|T |] > ρ − δk = α.

The algorithm A randomly samples poly(1/α, n) sets T ⊂ [k] and outputs a T with large
bias(T ) (estimated by sampling). By Chernoff bounds, we get with high probability a set T such
that bias(T ) > β|T | + Ω(α).

Combining Theorems 4.2 and 4.1 immediately yields an algorithmic version of Unger’s theorem
(Theorem 3.9), with parameters essentially the same as those of Theorem 4.1.

4.1 The near-optimality of Theorem 4.1

Theorem 4.1 shows that if given random variables X1, . . . , Xn fail the Chernoff-Hoeffding concen-
tration bound by a noticeable amount α, then there is subset S of indices where Pr[∧i∈SXi =
1] > δ|S| + αO(1/((γ−δ)δ). Note that in the latter expression, the exponent of α depends on γ and
δ, and so, in general, may not be constant. In the remainder of this section, we will argue that
the exponent of α must have dependence on γ and δ. That is, the parameters of Theorem 4.1 are
essentially optimal.

Lemma 4.3. There are Boolean random variables X1, . . . , Xn, and parameters 0 < δ < γ < 1 such

that Pr[
∑n

i=1 Xi > γn] = p/2 > 2α, for α > e−nD(γ‖δ), but, for every subset S ⊆ [n],

Pr[∧i∈SXi = 1] − δ|S| 6 (4α)δ(ln 1/δ)/(γ−δ).

Proof. Let 0 < δ < γ < 1 and let n ∈ N be such that γn is an integer. Let p > 4 · exp(−nD(γ ‖
δ)). Consider the following distribution X1, . . . , Xn. Flip a random coin which is “heads” with
probability p. If the coin falls “heads”, then, independently for each 1 6 i 6 n, assign Xi = 1 with
probability γ and 0 with probability 1 − γ. Otherwise (if the coin falls “tails”), assign all Xi = 0.

Note that in the first case, with probability p, we get an expected number γn of 1’s. Conditioned
on the event that our first coin is “heads”, the probability we get at least the expected γn of 1’s
is at least 1/2, by Lemma 2.1. Thus, the random variables X1, . . . , Xn contain at least γn of 1’s,
with the overall probability at least p/2. Let α = p/4. Then the defined probability distribution
satisfies the assumption of Theorem 4.1.

We know that there must exist a subset S ⊆ [n] of indices such that λ = Pr[∧i∈SXi = 1]−δ|S| >
0. We will upperbound this quantity λ next. We have Pr[∧i∈SXi = 1] 6 pγ|S|. Thus, the maximum
value of λ is at most the maximum of the function g(x) = p · γx − δx, for 0 < x 6 n. Taking the
derivative of g, we see that it achieves its global maximum at x∗ = (ln 1/p+ln(ln δ/ ln γ))/(ln γ/δ).
Note that, for x0 = (ln 1/p)/(ln γ/δ), we have g(x0) = 0, i.e., pγx0 = δx0 . Writing x∗ = x0 + ǫ (for
ǫ = x∗ − x0), we get pγx∗ − δx∗ = pγx0γǫ − δx0δǫ = δx0(γǫ − δǫ). The latter expression is at most
δx0 = p(ln 1/δ)/(ln γ/δ). Recalling that p = 4α, we get that the maximum value of λ can be at most
(4α)t for t > δ(ln 1/δ)/(γ − δ) (where we used the inequality (ln γ/δ) 6 (γ − δ)/δ).
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The dependence on 1/(γ−δ) in the exponent of α, as stated n Theorem 4.1, is indeed necessary.
A way to circumvent this bad dependence on γ − δ is suggested in the next subsection.

4.2 Better efficiency through conditioning

We are given n Boolean-valued random variables X1, . . . , Xn with Exp[Xi] 6 δ for every i ∈
[n], and some extra condition on the Xi’s (e.g., negative correlation), and we want to show that
Pr[

∑n
i=1 Xi > γn] 6 p for some δ < γ 6 1 and some p = exp((γ − δ)2n). Moreover, we would

like a constructive proof that would say that if Pr [
∑n

i=1 Xi > γn] > α for some α ≫ p, then one
can efficiently find a subset S ⊆ [n] such that Pr [∧i∈SXi = 1] > δ|S| + g(α), for some function g,
ideally a polynomial.

In Theorem 4.1, we argued such a constructive version for the function g(α) > α4/(γ−δ)δ. This
function g is not polynomial in α, and we have showed that, in general, g cannot be polynomial in
α (see Section 4.1). Here we suggest a way to avoid this limitation on the function g. To achieve
this, we will assume efficient sampleability from the conditional distributions X1, . . . , Xn | E , where
E is a random event of the form

∑

j∈T Xj > t, for some T ⊆ [n] and integer 0 6 t 6 n. (This
assumption is usually true in the computational setting; we give an example in Section 5.2.)

For this new framework, we get the following.

Theorem 4.4. There is a randomized algorithm A satisfying the following. Let X1, . . . , Xn be
Boolean-valued random variables, and let 0 6 δ < γ 6 1. Suppose that Pr

[

1
n

∑n
i=1 Xi > γ

]

> α,

where α > (32/(γ−δ)) ·e−(γ−δ)2n/64. Then, the algorithm A on inputs n, γ, δ, α, using oracle access
to the conditional distribution (X1, . . . , Xn |

∑

j∈S Xj > γn/2), runs in time poly(n, 1/α, 1/γ, 1/δ)

and outputs a subset S ⊂ [n] (of size n/2) and an index i0 ∈ S̄ (where S̄ = [n]−S) such that, with

probability at least 1 − o(1), Pr

[

Xi0 = 1 |
∑

j∈S Xj > γn/2
]

> δ + (γ − δ)/16.

First we give the intuition behind the proof. Suppose we are given X1, . . . , Xn such that
Pr[

∑n
i=1 Xi > γn] > α for α. Randomly partition the set [n] into two disjoint subsets S and

S̄ (of size n/2 each), and consider the random variable
∑

i∈S̄ Xi conditioned on the event E that
∑

j∈S Xj > γ|S|. We will argue that, with constant probability over the random choice of S ⊂ [n],

1. the event E has probability at least α/2, and

2. Pr
[
∑

i∈S̄ Xi > γ′|S̄| | E
]

> 1 − (γ′ − δ)/2, where γ′ ∈ [δ, γ] (e.g., γ′ = (γ + δ)/2).

Observe what has happened. We started with n random variables X1, . . . , Xn whose sum exceeds
a fractional threshold γ with some noticeable (but possibly exponentially small) probability α.
Then, by conditioning on an event E (of non-negligible probability), we get n/2 random variables
Xi, for i ∈ S̄, such that the sum of these variables exceeds a (slightly smaller) fractional threshold
γ′ with the conditional probability that is close to one!

In this new conditioned sample space, we can then randomly sample a single coordinate i ∈ S̄,
and get an i such that Pr [Xi = 1 | E ] > γ′(1−(γ′−δ)/2) > δ+(γ′−δ)/2, where the first inequality
follows since, with probability at least 1− (γ′ − δ)/2, we get a tuple with at least γ′ fraction of 1s.
Thus we are likely to get a singleton set {i} with Pr[Xi = 1] > δ by a noticeable amount. This
reduction can be used to derive a TDPT from DPT in concrete computational settings, as we will
illustrate in the next section.

Next we will give the formal proofs.
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Lemma 4.5. Let X1, . . . , Xn be Boolean-valued random variables, and let 0 6 δ < γ′ < γ 6 1.
Suppose that Pr

[

1
n

∑n
i=1 Xi > γ

]

> α, for some α > 0. Let S ⊂ [n] be a random subset of size

n/2, and let S̄ = [n] − S be its complement. We have

Pr





1

|S̄|

∑

i∈S̄

Xi > γ′ |
1

|S|

∑

j∈S

Xj > γ



 > 1 − ǫ, (7)

for ǫ 6 4 · e−(γ−γ′)2n/16/α, where the probability is over X1, . . . , Xn and a random choice of S.

Proof. As before, let us denote by E the event that 1
|S|

∑

j∈S Xj > γ. First we show that E has

probability Ω(α).

Claim 4.6. Pr[E ] > α/2.

Proof of Claim 4.6. By our assumption, with probability at least α, we get a tuple x̄ = (x1, . . . , xn)
from X1, . . . , Xn such that x̄ has at least γn ones. Conditioned on x̄ having at least that many 1s,
a random n/2-size subset S ⊂ [n] is expected to contain γ|S| positions with 1s. By the “mean is
median” theorem for hypergeometric distributions, Lemma 2.2, we get that at least 1/2 fraction of
sets S will contain at least ⌊γ|S|⌋ positions with 1s. Lifting the conditioning, we get that E happens
with probability at least α/2.

The desired inequality in Eq. (7) can be equivalently written as: Pr

[

1
|S̄|

∑

i∈S̄ Xi < γ′ | E
]

6

ǫ. Hence, we need to upperbound Pr

[

1
|S̄|

∑

i∈S̄ Xi < γ′ & E
]

/Pr[E ]. We can use Claim 4.6 to

lowerbound the denominator of the expression above. To upperbound the numerator, we use the
fact that both S and its complement S̄ are likely to give very accurate estimates of the fraction
of 1s in a given n-tuple x̄ = (x1, . . . , xn) ∈ {0, 1}n. More precisely, let x̄ = (x1, . . . , xn) ∈ {0, 1}n

be any string with µn ones. Let S ⊆ [n] be a random s-size subset (for some 1 6 s 6 n; think
of s = n/2). Then, by the Hoeffding bound for hypergeometric distributions [Hoe63] (see, e.g.,
[JLR00] for the proof of the variant of the bound given below), we have

PrS

[∣

∣

∣

∣

∣

1

s

∑

i∈S

xi − µ

∣

∣

∣

∣

∣

> ν

]

6 2e−ν2s/2. (8)

In our case, both S and its complement S̄ are random subsets of size s = n/2, and so each of
them, individually, satisfies the above concentration bound. We get the following claim.

Claim 4.7. For every ν > 0 and every n-tuple x̄, PrS

[∣

∣

∣

1
|S|

∑

i∈S xi −
1
|S̄|

∑

j∈S̄ xj

∣

∣

∣
> 2ν

]

6

2e−ν2n/4.

Proof of Claim 4.7. Fix any x̄. Let µ be the fraction of 1s in x̄. If both S and S̄ estimate the
fraction of 1s in x̄ to within an additive error ν, then their estimates are within 2ν of each other.
Thus, the probability of the event in the claim is at most the probability that either S or S̄ errs in
the estimate of µ by more than additive ν. Applying the Hoeffding concentration bound of Eq. (8)
completes the proof.

Using Claim 4.7 with ν = (γ − γ′)/2, we get Pr

[

1
|S̄|

∑

i∈S̄ Xi < γ′ & 1
|S|

∑

j∈S Xi > γ
]

6

2e−(γ−γ′)2n/16. Together with Pr[E ] > α/2 (of Claim 4.6), this concludes the proof.
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Proof of Theorem 4.4. Let γ′ ∈ [δ, γ] such that (γ − δ)/2 = γ − γ′ = γ′ − δ. By Lemma 4.5,

for random n/2-size subset S ⊂ [n], Pr

[

∑

i∈S̄ Xi > γ′(n/2) |
∑

j∈S Xj > γn/2
]

> 1 − ǫ, where

ǫ 6 4 · e−(γ−δ)2n/64/α. By Markov, with probability at least 1/2 over the choice of S, we have

Pr

[

∑

i∈S̄ Xi > γ′(n/2) |
∑

j∈S Xj > γn/2
]

> 1−2ǫ, where the probability is over X1, . . . , Xn only.

By our assumption, 2ǫ 6 (γ − δ)/4. Thus, in the sample space conditioned on the event E that
∑

j∈S Xj > γn/2, we have that Pr[
∑

i∈S̄ Xi > γ′n/2 | E ] > 1 − (γ − δ)/4. If we randomly sample

an index i ∈ S̄, we get Pr[Xi = 1 | E ] > γ′(1 − (γ − δ)/4) > δ + (γ − δ)/8.
If we randomly sample i ∈ S̄ and estimate Pr[Xi = 1 | E ]− δ to within (γ − δ)/16, we get, with

high probability, an index i0 ∈ S̄ such that Pr[Xi0 = 1 | E ] > δ + (γ − δ)/16. Our algorithm A will
randomly choose S ⊆ [n] and i0 ∈ S̄, and check (by sampling) that these are good choices. The
running time of the described algorithm for finding S and i0 is poly(n, 1/α, 1/(γ− δ)) and the time
required to sample from the conditional distribution (X1, . . . , Xn |

∑

j∈S Xj > γn/2).

5 Applications: Uniform TDPTs

5.1 Hardness amplification of CAPTCHA puzzles

CAPTCHAs are a special case of weakly verifiable puzzles defined by [CHS05]. A weakly verifiable
puzzle has two components: (1) a polynomial-time sampleable distribution ensemble D = {Dn}n>1

on pairs (x, α), where x is called the puzzle and α the check string (n is the security parameter); and
(2) a polynomial-time computable relation R((x, α), y), where y is a string of a fixed polynomially-
related length. Here we think of α as a uniform random string used to generate the puzzle x. The
k-wise direct product puzzle P k is defined in the obvious way.

A puzzle P is called δ-hard (for some 0 6 δ 6 1) if, for every randomized polynomial-time
algorithm A, there is a negligible function negl so that the success probability of A on a random
P -instance is at most (1 − δ) + negl.

Theorem 5.1 ([CHS05]). Suppose a puzzle P is (1 − ρ)-hard, for some 0 6 ρ 6 1. Then P k is
(1 − ρk)-hard.

We show the following optimal threshold direct-product result for P k.

Theorem 5.2. Suppose a puzzle P is (1 − ρ)-hard, for a constant 0 6 ρ 6 1. Let γ = ρ + ν 6 1,
for any constant 0 6 ν 6 1. Then, for every randomized polynomial-time algorithm A, there is a
negligible function negl such that the following holds: The fraction of k-tuples ~x = (x1, . . . , xk) of
instances of P k where A solves correctly at least γk of the xi’s, is at most e−kD(γ‖ρ) + negl.

Proof. For the sake of contradiction, suppose A is a randomized polynomial-time algorithm that
violates the conclusion of the theorem. For random strings α1, . . . , αk, define the 0-1-valued random
variables Z1, . . . , Zk so that, for each 1 6 i 6 k, Zi = 1 iff the algorithm A(x1, . . . , xk) is correct
on xi, where x1, . . . , xk are the puzzles determined by the random strings α1, . . . , αk. Thus, the
random variables Zi’s are defined based on the random tapes αi’s and the internal randomness of
the algorithm A. Also note that the distribution of Z1, . . . , Zk is efficiently sampleable since A is
efficient (and since the puzzle P is defined for a polynomial-time sampleable distribution D).

By assumption, there is some nonnegligible function η > e−kD(γ‖ρ) so that Pr[
∑k

i=1 Zi > γk] >

e−kD(γ‖ρ) + 2η. By Theorem 4.1, we can efficiently find (in randomized time poly(η−1/(νρ)), which
is polynomial for constant ν and ρ, and for a nonnegligible function η) a subset S ⊆ [k] such that
Pr[∧i∈SZi = 1] > ρ|S| + η′, where η′ = Ω(η4/(νρ)) is nonnegligible. Let |S| = t. The above means
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that we have an efficient algorithm that solves the t-wise direct product P t with success probability
noticeably higher than ρt. By Theorem 5.1, this contradicts the assumed (1−ρ)-hardness of P .

Remark 5.3. It is easy to see that the argument in the proof of Theorem 5.2 continues to hold
for any cryptographic interactive protocol as long as the protocol can be efficiently simulated ; the
latter is needed to ensure efficient sampleability of the distribution Z1, . . . , Zk as defined in the proof
above. As a corollary, we get that for every class of protocols that can be efficiently simulated,
there is an optimal DPT for the class iff there is an optimal TDPT ; here the hardness parameters
(as ρ and ν in Theorem 5.2) are assumed to be constants.

Our Theorem 5.2 provides an optimal concentration bound, but it needs the assumption that
the probabilities γ and ρ are constant; the same assumption is also needed for the similar result
of [CL10]. The earlier bounds of [IJK09b, Jut10] do not make such an assumption, but they are not
optimal. Using conditioning in the reductions (cf. Section 4.2), we can remove the said limitation
on γ and δ, albeit at the expense of losing the tightness of the probability bound. Nonetheless, the
resulting proof is conceptually simpler than, e.g., the earlier proof of [IJK09b]. For completeness,
we present a version of the argument in the following subsection.

5.2 Using conditioning

To simplify the notation, we show a uniform TDPT for Boolean circuits, rather than for CAPTCHAs.
The results for CAPTCHAs follow by essentially the same reasoning.

Let F : U → R be a function. Let 0 6 δ 6 γ 6 1. Suppose we are given a circuit C : Un → Rn

such that, for at least α > 0 fraction of inputs u ∈ Un, the circuit C(u) correctly computes Fn(u)
in at least γn positions. We will show how to compute F on at least δ fraction of inputs in U ,
assuming we can generate the pairs (u, F (u)) for random u ∈ U . The ability to simulate a function
(protocol) on random inputs of our choice is the only assumption on the model. Intuitively, this
assumption is used to argue that the following distribution (as well as its conditioned versions) is
efficiently sampleable: X1, . . . , Xn, where Xi = 1 iff C is correct in the ith position, for a random
input in Un. In turn, this sampleability allows us to apply Theorem 4.4.

Theorem 5.4. There is a randomized algorithm A satisfying the following. let F : U → R be any

function. For parameters 0 6 δ 6 γ 6 1, let C : Un → Rn be a circuit such that, for at least α > 0
fraction of inputs u ∈ Un, the circuit C(u) correctly computes Fn(u) in at least γn positions, where

α > (32/(γ−δ)) ·exp(−(γ−δ)2n/1024). Then the algorithm A, on inputs n, α, γ, δ, C, runs in time

poly(|C|, 1/α, (ln 1/(γ − δ))), and outputs a circuit A such that, with probability at least 1 − o(1),
A computes F on at least δ + (γ − δ)/20 fraction of inputs in U .

Our proof of Theorem 5.4 will proceed in two stages. In the first stage, we give a simple
probabilistic construction of a new circuit C ′ : Un/2 → Rn/2 such that, with constant probability,
C ′ is a “zero-error version” of the algorithm C in the following sense: either C ′ outputs ⊥ (which
we interpret as “don’t know”), or C ′ outputs a tuple which is correct in at least γ′ fraction of
positions. More precisely, we show that, conditioned on C ′ outputting an answer other than ⊥,
it outputs a tuple with γ′ fraction of correct positions with probability close to 1. Moreover, C ′

outputs a non-⊥ answer on at least about α fraction of inputs.
Note the difference between C and C ′. The circuit C gives a good answer on at least α fraction

of inputs, but may be arbitrarily bad on other inputs. In contrast, C ′ almost never gives a bad
answer, but may just say “don’t know” for some inputs. Moreover, C ′ will give a good answer on at
least about α fraction of inputs. Thus, in some sense, C ′ filters out the bad answers of C and keeps
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only good answers. We should point out that the new circuit C ′ computes the direct product of F
of half the size, i.e., Fn/2. So we trade the size of the direct product for the “zero-error” property.
(Our reduction from C to C ′ may be viewed as a simple alternative to the “Trust Halving Strategy”
of [IW97, BIN97].)

In the second stage, we use our “zero-error” circuit C ′ to compute F . The algorithm A is
simple: “Given an input x ∈ U , we randomly embed it in a n/2-size tuple v ∈ Un/2, and run C ′(v).
If C ′(v) produces a definite answer, we output C ′(v)x. Otherwise, we randomly embed our x into
a new tuple v′, and repeat the above for this new v′. We continue sampling tuples v for at most
poly(1/α, (ln 1/(γ − δ)) iterations. If still no answer is produced, we output ⊥.”

The analysis of the above algorithm is fairly standard. It is based on a sampling lemma, due to
Raz [Raz98], showing that the distribution obtained by sampling a random m-tuple (x1, . . . , xm)
from a subset T ⊆ Um of measure µ, and then outputting xi for a uniformly random position
i ∈ [m] is statistically close to the uniform distribution on U . Using this sampling lemma, we
can show that the success probability of our algorithm described above is essentially the same as
when we first sample a random tuple v on which C ′ outputs a definite answer, and then pick a
random position i ∈ [m] and output C ′(v)i. With probability close to 1, our picked tuple v is such
that C ′(v) is correct in at least γ′ fraction of positions. Conditioned on picking such a tuple, the
probability of producing a correct output is at least γ′. Overall, we get that the success probability
of our algorithm is close to γ′ > δ.

The two stages are described in more detail and analyzed in Sections 5.2.1 and 5.2.2 below.
Combining them, we get the proof of Theorem 5.4 at the end of Section 5.2.2.

Remark 5.5. The two-stage approach described above was used in [IJK09b] to give intuition
why their algorithm works. However, the actual proof argument in [IJK09b] was considerably
more complicated. Here we use our Theorem 4.4 to show that this intuitive and simple two-stage
approach can indeed be implemented.

5.2.1 Trading DP size for “zero error”

We now define and analyze our reduction from C to C ′. As usual, we define the Boolean random
variables X1, . . . , Xn, dependent on F , C, and a random n-tuple u = (u1, . . . , un) ∈ Un, so that,
for each 1 6 i 6 n, Xi = 1 iff C(u)i = F (ui) (i.e., Xi indicates whether C “succeeded” on input
ui).

For α satisfying the assumption of Theorem 4.4, we can apply Theorem 4.4 to these X1, . . . , Xn.
Let γ′ be the midpoint in the interval [δ, γ]. We get that, with probability at least 1/2 over random
subsets S ⊆ [n] of size n/2,

Pr



(2/n)
∑

i∈S̄

Xi > γ′ | (2/n)
∑

j∈S

Xj > γ



 > 1 − (γ − δ)/4. (9)

For simplicity of notation, let us assume that S̄ = [n/2] (and so S = {n/2 + 1, . . . , n}). Also,
let m = n/2.

Consider the following algorithm C ′:

“On input v = (v1, . . . , vm) ∈ Um, randomly sample an m-tuple w = (w1, . . . , wm) and
test if C(v, w)w = Fm(w) in at least γ fraction of positions. If the test is satisfied,
then output C(v, w)v, and halt. Otherwise, re-sample w. If no acceptable w is sampled
within t1 = (4/α) · ln 8/α trials, then output some default (say, ⊥) answer, and halt.”
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The following lemma summarizes the properties of C ′.

Lemma 5.6. With probability at least 1/2 over the choice of random S ⊂ [n], the algorithm C ′ is
such that

1. Pr[C ′(v) = Fm(v) in at least γ′ fraction of positions | C ′(v) 6= ⊥] > 1 − (γ − δ)/4,

2. Pr[C ′(v) 6= ⊥] > α/8;

where, in both cases, the probability is over a uniformly random v ∈ Um and internal randomness
of C ′.

Proof. (1): To simplify the notation, let us introduce the events E : (2/n)
∑

j∈S Xj > γ and
D : (2/n)

∑

i∈S̄ Xi > γ′. Let E(v) be the event event E conditioned on v (i.e., conditioned on
the fixed randomness of the variables Xi for i ∈ S̄).

For a given input v, let us say that C ′(v) succeeds if C ′(v) agrees with Fm(v) in at least γ′

fraction of positions. Conditioned on C ′(v) 6= ⊥, the output of C ′(v) is distributed exactly like
C(v, w)v for a uniformly random w satisfying E(v). That is, for a fixed v, we have

Pr[C ′(v) succeeds | C ′(v) 6= ⊥] = Prw[C(v, w)v is correct in at least γ′ positions | E(v)].

Thus, over a random input v, we get Prv[C
′(v) succeeds | C ′(v) 6= ⊥] = Pr[D | E ], which is at

least 1 − (γ − δ)/4 by Eq. (9).
(2): Define the subset

G = {v ∈ Um | Prw∈Um [C(v, w)w = Fm(w) in at least γ fraction of positions ] > α/4}.

Note that, for v ∈ G, the algorithm C ′(v) is unlikely to timeout. By our choice of t1 = (4/α)·ln 8/α,
we ensure that the probability of timeout on an input v ∈ G is at most (1−α/4)t1 6 e−t1α/4 6 α/8.

It remains to lowerbound the size of G. We have Pr[E ] = Expv[Prw[E(v)]]. Note that Pr[E ] >

α/2 by Claim 4.6. Hence, by Markov, we get that for at least α/4 of v’s, Prw[E(v)] > α/4. Thus,
Prv[v ∈ G] > α/4.

Finally, we get that Prv[C
′(v) 6= ⊥] > Prv[v ∈ G & C ′(v) 6= ⊥] = Prv[C

′(v) 6= ⊥ | v ∈
G] · Prv[v ∈ G] > (1 − α/8) · α/4 > α/8.

5.2.2 Using the “zero error” DP algorithm

Here we show how to compute the function F , given a “zero-error” DP circuit C ′ from the previous
subsection. Recall that the statistical distance between two probability distributions D1 and D2

over the same finite universe U is defined as half the ℓ1-norm of the difference D1 − D2, i.e.,
(1/2) ·

∑

x∈U |D1(x) − D2(x)|, where Di(x) is the probability of x under the distribution Di, for
i = 1, 2. We will use the following sampling lemma is implicit in [Raz98] (see, e.g., [IJK09a] for the
proof).

Lemma 5.7 (Sampling Lemma [Raz98]). Let G ⊆ Um be any set of measure at least ǫ. Let D be
the distribution on U defined as follows: Pick a uniformly random m-tuple (x1, . . . , xm) ∈ G, then
pick a uniformly random index i ∈ [m], and output xi. Then the statistical distance between D and
the uniform distribution over U is at most

√

2(ln 1/ǫ)/m.

Consider the following algorithm A:
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“On input x ∈ U , pick a random i ∈ [m], pick a random m-tuple v ∈ Um containing
x in position i, and run the circuit C ′(v). If C ′(v) 6= ⊥, then output C ′(v)i, and halt.
Otherwise, re-sample i and v. If no output is produced within t2 = (128/α)·ln 120/(γ−δ)
iterations, then output ⊥, and halt.”

We will show that A computes F well on average.

Lemma 5.8. Prx[A(x) = F (x)] > δ + (γ − δ)/20.

Proof. We have

Prx[A(x) = F (x)] = Prx[A(x) = F (x) | A(x) doesn’t time out] · Prx[A(x) doesn’t time out].

In what follows, we lowerbound both probabilities on the right-hand side of the equation above.
For a fixed x ∈ U , Pr[A(x) = F (x) | A(x) doesn’t time out] = Pri∈[m],v∈Um [C ′(v)i = F (vi) |

C ′(v) 6= ⊥]. Thus,

Prx∈U [A(x) = F (x) | A(x) doesn’t time out] =
∑

x∈U

1

|U |
Pri∈[m],v∈Um [C ′(v)i = F (vi) | C ′(v) 6= ⊥].

Now define the distribution D on U as follows: Sample a uniformly random i ∈ [m], a uniformly
random m-tuple v ∈ Um such that C ′(v) 6= ⊥, and output vi. By Lemma 5.6, the measure
of the set {v ∈ Um | C ′(v) 6= ⊥} is at least α/8. By Lemma 5.7, D is close to the uniform
distribution over U , where the statistical distance between the two is at most

√

2(ln 8/α)/m. By

the assumption, α > (32/(γ − δ)) · e−(γ−δ)2n/1024. Then the statistical distance between D and the
uniform distribution over U is at most

√

2(γ − δ)2(2m)/(1024m) = (γ − δ)/16.
We get that

∑

x∈U (1/|U |) · Pri∈[m],v∈Um [C ′(v)i = F (vi) | C ′(v) 6= ⊥] is at least

∑

x∈U

D(x) · Pri∈[m],v∈Um

[

C ′(v)i = F (vi) | C ′(v) 6= ⊥
]

−
∑

x∈U

|1/|U | − D(x)| .

By the above, the second term is at most (γ− δ)/8. By the definition of D, the first term is exactly
equal to Pri∈[m],v∈Um [C ′(v)i = F (vi) | C ′(v) 6= ⊥], which is at least γ′(1−(γ−δ)/4) by Lemma 5.6.
Overall, we get

Prx∈U [A(x) = F (x) | A(x) doesn’t time out] > γ′(1− (γ − δ)/4)− (γ − δ)/8 > δ +(γ − δ)/8, (10)

where we used the definition of γ′ = δ + (γ − δ)/2.
Finally, we upperbound the probability that A times out. To this end, we define the set

H = {x ∈ U | D(x) 6 1/(16|U |)}. Since the statistical distance between D and the uniform
distribution is at most (γ − δ)/16, we get that the |H|/|U | 6 (γ − δ)/15.

For each x ∈ U , let px = Pri∈[m],v∈Um [C ′(v) 6= ⊥ | vi = x]. We have Expx[px] = Prv∈Um [C ′(v) 6=
⊥] > α/8. On the other hand, D(x) = Pri∈[m],v∈Um [vi = x | C ′(v) 6= ⊥]. It is not hard to see that
D(x) = px/(

∑

x′ px′). Hence, px = D(x) · |U | ·Prv∈Um [C ′(v) 6= ⊥]. It follows that, for every x 6∈ H,
we have px > α/128.

For each x 6∈ H, the timeout probability is then at most (1 − α/128)t2 6 e−t2α/128, where t2
is the number of iterations of our algorithm A. By our choice of t2 = (128/α) · ln 120/(γ − δ), we
ensure that the timeout probability is at most (γ − δ)/120.

Overall, we get

Prx[A(x) times out] 6 Prx[A(x) times out | x 6∈ H]+Prx[x ∈ H] 6 (γ−δ)/120+(γ−δ)/15. (11)

By Eqs. (10) and (11), we get Prx[A(x) = F (x)] > δ+(γ−δ)(1/8−1/120−1/15) = δ+(γ−δ)/20.
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Now we can finish the proof of Theorem 5.4.

Proof of Theorem 5.4. We get our algorithm A by combining the algorithms of the two stages
described above. Putting together Lemmas 5.6 and 5.8, we get with constant probability (at least
1/2) an algorithm A such that Prx∈U [A(x) = F (x)] > δ + (γ − δ)/20.

Since we assume that we have an efficient way to generate pairs (x, F (x)) for uniformly random
x ∈ U , we can test if our produced algorithm A is good for F by estimating its success probability
(through random sampling). If A is not good, then we sample a different A. After a small number
of trials, we get a good algorithm A with very high probability.

6 Summary

Here we summarize some of the results mentioned in the paper. Let X1, . . . , Xn be Boolean random
variables such that, for some 0 6 δ 6 1, Pr[Xi = 0] 6 δ, for all 1 6 i 6 n. Note that bias(Xi) =
Pr[Xi = 0] − Pr[Xi = 1] 6 β = 2δ − 1, for 1 6 i 6 n. Consider the following statements.

1. X1, . . . , Xn are independent.

2. ∀S ⊆ [n], bias(⊕i∈SXi) 6 β|S|.

3. ∀S ⊆ [n], Pr[∧i∈S(Xi = 0)] 6 δ|S|.

4. ∀0 6 δ 6 γ 6 1, Pr[X1, . . . , Xn has > γn zeros ] 6 e−n·D(γ‖δ).

Theorem 6.1. (1) ⇒ (2) ⇒ (3) ⇔ (4).

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (3), see Theorem 3.10. For (3) ⇒ (4), see Theorem 3.1 (the
implication (4) ⇒ (3) is trivial).

An analogous statement for direct product theorems is: optimal XOR Theorems ⇒ optimal
DPTs ⇔ optimal TDTPs. Moreover, the implications have constructive proofs.
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