
Volume xx (200y), Number z, pp. 1–12

Constructive Visual Analytics for Text Similarity Detection

A. Abdul-Rahman1, G. Roe3, M. Olsen4, C. Gladstone4, R. Whaling4, N. Cronk2, R. Morrissey4, and M. Chen1

1Oxford e-Research Centre, and 2Faculty of Medieval and Modern Languages, University of Oxford.
3College of Arts and Social Sciences, Australian National University.

4Department of Romance Languages and Literatures, University of Chicago.

Abstract

Detecting similarity between texts is a frequently encountered text mining task. Because the measurement of simi-

larity is typically composed of a number of metrics, and some measures are sensitive to subjective interpretation,

a generic detector obtained using machine learning often has difficulties balancing the roles of different metrics

according to the semantic context exhibited in a specific collection of texts. In order to facilitate human interaction

in a visual analytics process for text similarity detection, we first map the problem of pairwise sequence compari-

son to that of image processing, allowing patterns of similarity to be visualized as a 2D pixelmap. We then devise

a visual interface to enable users to construct and experiment with different detectors using primitive metrics, in

a way similar to constructing an image processing pipeline. We deployed this new approach for the identification

of commonplaces in 18th-century literary and print culture. Domain experts were then able to make use of the

prototype system to derive new scholarly discoveries and generate new hypotheses.

1 Introduction

In the text mining literature, there has been a huge vol-
ume of work on detecting similarity between or among texts
(e.g., [SS95, CGPW97, FEC05, BCMB12]). Detection tech-
niques often have to address particular requirements related
to a specific context, such as languages, periods of articles,
genres of articles, and so on. Hence the metrics used for mea-
suring similarity are sensitive to subjective interpretation.
For example, in some cases, measuring trigram similarity
is more effective than unigram similarity, but vice versa in
other cases. In some cases, it is desirable to include numbers
in a comparison, but undesirable in other cases. This places
a huge weight on a generic detector, typically devised algo-
rithmically or obtained using machine learning, in balancing
the roles of different metrics according to the semantic con-
text exhibited in a specific collection of texts. Considering all
detection models together, all possible variants of these mod-
els define a model space, which is enormous and complex. In
bioinformatics, sequence alignment [Mou04] exhibits a sim-
ilar phenomenon, but this is beyond the scope of this work.

In some domains of text analysis, the term “text align-
ment” has been used for detecting similarity between or
among texts (e.g., [LMD01, BG07, HOR11]). Visualization
techniques have been used to support such analytical pro-
cesses (e.g., [HKBE12, JKM12, RPSF15]). This work ex-

plores the use of a visual analytics approach [DNKS10,
OSSK10, DWS∗12] to help analysts explore a model space
effectively through closely integrated visualization, interac-
tion, machine analysis, and human reasoning. In particular,
we focus on a subset of models for pairwise sequence com-

parison in text analysis, and draw a parallel between text
alignment and image processing.

Dot plots [GM70] are pixel-based visual representations
for sequence comparison, more widely used in bioinformat-
ics than in text analysis. They can be used to depict inter-
mediate and final results of a detection model as “images”.
Hence a detection model is conceptually similar to an image
processing pipeline. This parallel suggests that interactive
visualization could support the construction of a text align-
ment pipeline, visualization of the model and corresponding
results, and testing and improvement of the pipeline.

This work was conducted in collaboration with a team of
domain experts in the fields of literary studies, intellectual
history, and digital humanities. The domain experts have
worked on computational models for detecting text align-
ment for a number of years. As it is costly to test a model
over a large text corpus in terms of computational resources
as well as the time required to run the model and analyze the
results, the domain experts wished to observe behavior of a
model and its variations in relation to various scenarios in

submitted to COMPUTER GRAPHICS Forum (12/2015).



2 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

text alignment. In order to enable domain experts to explore
the model space, we defined a set of primitive metrics, and a
number of processing components. The domain experts re-
ferred to models as methods, and primitive metrics and pro-
cessing components as tools. Each text alignment pipeline is
thus a method composed of a number of tools. This was fol-
lowed by the design and prototyping of a visual analytics in-
terface for constructing a text alignment pipeline, and testing
it with various sample texts. We deployed this new approach
for the identification of commonplaces in 18th-century lit-
erary and print culture. Domain experts were then able to
make use of the prototype system to derive new scholarly
discoveries and generate new hypotheses. In summary, our
contributions are as follows:

• We have helped the advancement of visual analytics in
the scope of model development and optimization through
the design and implementation of a novel software system
and an application case study.

• We have mapped the models for text alignment to image
processing pipelines (Section 4), which facilitates a mech-
anism for decomposing a text alignment method (i.e.,
model) to a set of tools (i.e., primitive metrics and pro-
cessing components) (Section 5).

• We developed a web-based visual analytics interface
to enable domain experts to construct a text alignment
pipeline, visualize the components and connections inside
a method (i.e., a model) as well as the corresponding test-
ing inputs and outputs. The interaction with the pipeline
editing facility essentially becomes a visual programming
interface (Section 6).

• The domain experts tested the software prototype with
huge enthusiasm, and observed a number of new phenom-
ena in text alignment in the context of 18th-century liter-
ary and print culture. As examples, we describe two such
phenomena in the context of usage of function words in
text mining and the detection of disjointed segments of
commonplaces due to passage re-usage in Section 7.

2 Related Work

There are many visual representations for visualizing text
and documents. These include a variety of statistics graphics
(e.g., [HHN00]), tag clouds (e.g., [Fei]), pixel-based visu-
alization (e.g., [OSSK10]), multivariate visualization (e.g.,
[ARLC∗13]), and graphs and networks (e.g., [Fel98, Hol06,
CCP09, vHWV09]).

In recent years, a number of visual analytic tools have
been developed for text and document visualization in the
context of digital humanities. Vuillemot et al. [VCPK09]
present a multi-view visual interface (called POSvis) for
examining named entities in literary texts. Correll et

al. [CWG11] construct a collection of visualization tools
for analyzing large collections of texts that have been pre-
processed using natural language processing techniques.
Oelke et al. [OKK13] describe the Fingerprint Matrices

technique for analyzing the changing relationships between
characters in a novel. Koch et al. [KJW∗14] present a
method called VarifocalReader for examining a large cor-
pus of text with multi-level abstract representations. Jänicke
et al. [JGBS14] present several visualization techniques for
highlighting differences and similarities of various English
Bible translations. Our work differs from these tools by fo-
cusing on the visualization capability for model construction
and improvement.

Several approaches have been developed in model con-
struction and visualization. Bosch et al. [BTH∗13] describe
a method called ScatterBlogs2 for allowing users to con-
struct message filters based on existing events. Koop et

al. [KSC∗08] present a predictive workflow constructor
called VisComplete. Our work shares the same overall ob-
jective for empowering users in model development, while
bringing text alignment in line with image processing.

Pairwise sequence alignment is a technique that is com-
monly used in bioinformatics for comparing genetic se-
quences [Mou04, HHB07]. Dot plot, introduced by Gibbs
and McIntyre [GM70], is one of the techniques that is used
to compare genetic sequences and help identify similarity
between them. Dot plot is a 2D matrix where two sequences
of symbols are placed along the vertical and horizontal axes
respectively, and a dot is placed when the symbol at the
intersecting vertical and horizontal axes matches. Many of
the tools available for visualizing genetic sequences can be
found in a review by Nielsen et al. [NCD∗10]. Dot plot tech-
nique has also been used in the identification of text reuse (or
text plagiarism) (e.g., [CH93, Lee07, JGBS14]).

A number of systems have been developed to help with
the detection of software plagiarism (or similarity in soft-
ware code). In most of these systems [Aik, JL99, GT99], the
result is presented to the user as a ranked list that has been
computed through a distance matrix. Instead of a ranked list
view, Freire [Fre08] presents the result of the distance ma-
trix using a combination of graph and histogram representa-
tions. Ribler and Abrams [RA00] propose an n-gram based
visualization called Categorical Patterngram to help detect
software plagiarism. Sequence alignment has also been used
to help in identifying text reuse (e.g., [CGPW97, LMD01,
BG07, HOR11]). Jankowska et al. [JKM12] present a n-
gram approach of visualizing documents at a word-level.
There are commercial systems for detecting text plagiarism
(e.g., [Wri,Tur]). White and Joy [WJ04] present an approach
of identifying text plagiarism using sentence-level compar-
ison. Clough [Clo03] presents a review of automatic tech-
niques for detecting text plagiarism.

3 Application Background and Requirements Analysis

Application Background. This work was conducted in the
context of 18th-century literary and print culture. Exam-
ple texts used for testing and developing our visual analyt-
ics web application ViTA, Visualization for Text Alignment,

submitted to COMPUTER GRAPHICS Forum (12/2015).



Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection 3

were drawn from the ARTFL-FRANTEXT database of 18th-
century French literature [ARTa], housed at the University
of Chicago, and the ECCO (Eighteenth-Century Collections
Online) [ARTb] database provided to the project by the on-
line publisher Gale-Cengage Learning [Cen]. Historically,
the 18th century can be seen as one of the last in a long
line of “commonplace cultures” extending from Antiquity
through the Renaissance and Early Modern periods. Here
the term commonplacing denotes the thematic organization
of quotations and other passages for later recall and reuse.
In other words, two similar sequences in texts are poten-
tially commonplaces. Recent scholarship has demonstrated
that the various rhetorical, mnemonic, and authorial prac-
tices associated with Early Modern commonplacing were
highly effective strategies for dealing with the perceived “in-
formation overload” of the period, as well as for functioning
successfully in polite society (e.g., [All10, Bla11]). The re-
search goal of the domain experts has been to examine this
paradigm shift in 18th century culture from the perspective
of commonplaces and through their textual and historical de-
ployment over large scale text collections and across vari-
ous contexts of collecting, reading, writing, classifying, and
learning [EMR13].

While text reuse (or text borrowing) was a common phe-
nomenon in 18th-century print culture, the majority of au-
thors then did not practice modern conventions of cita-
tion, even in reference works such as the French Ency-

clopédie [EMR13]. In addition, it was common practice
for authors to “borrow” extensive passages from elsewhere,
without attempting to cover their traces, in the full knowl-
edge that readers “in the know” might recognize these bor-
rowings or re-writings. The 18th-century French philoso-
pher Voltaire (also known as François-Marie Arouet (1694–
1778)) even borrows extensively from himself. These stylis-
tic complexities have been until now extremely difficult to
analyze. Hence detecting commonplaces, or other forms of
shared passages, in 18th-century digital collections is both
of scholarly interest and technologically challenging.

Requirements Analysis Before this work started, the do-
main experts had substantial experience in using automated
methods, such as machine learned models, to detect com-
monplaces in collected texts. While these methods achieved
significant successes, they also resulted in many false pos-
itives, which were time-consuming to eliminate. Many of
these false positives are artifacts of the various digital
archives from which the domain experts draw their texts
– namely large scale literary and historical databases in
French and English. As the digitization process used to
build these archives is largely automatic, high frequency se-
quences such as publisher information, running headers or ti-
tles, and bookseller advertisements have been included along
with the literary or historical works themselves, leading to a
high number of uninteresting or spurious commonplace pas-
sages. The domain experts first shared many examples of
these false positives with the interdisciplinary team, which

led to the decision to adopt a visual analytics approach to
bring humans back into the loop. By allowing domain ex-
perts to examine a decomposed detection model, apply it
to testing texts and visualize the results, we can empower
them to optimize a model based on their knowledge of the
related background (e.g., authors, period, context, etc.) and
the research questions most relevant to investigations into
18th century print culture.

As the partners of the interdisciplinary team are dis-
tributed across three different continents, we made use of
two sessions of face-to-face meetings, each over several
days, as the major landmarks of the collaboration. In the first
set of meetings in May 2014, we explored the design of two
visual representations, and specified most primitive metrics
and processing components as tools for constructing meth-

ods. We identified that the main visualization task was to
help users create and optimize a method or several methods
for detecting commonplaces with a number of short texts.
The visual representations should allow users to observe the
alignments identified by a method as well as the impact of
varying its tool components and their parameters. This pro-
cess would allow the users to obtain a set of relatively opti-
mized methods for large scale computation to identify com-
monplaces in a large text corpus. We also recognized the dif-
ficulty for humanities scholars to gain access to text analysis
software in general. Hence, offering a web-based software
service would be attractive to a broad range of users in the
humanities. Of course, this would require the design of the
software to accommodate the diversity of users and the con-
straints of a web-based application. The team decided to ac-
commodate both requirements, developing a web-based ap-
plication for experimenting with methods (i.e., algorithmic
pipelines) in the context of commonplace identification in
English and French.

The web-based interface thus needed to be both highly
flexible from a methodological perspective and intuitively
designed for humanities users with little or no program-
ming experience. The ability to identify commonplaces is
deeply subjective, and thus open to many interpretations. As
such, humanities scholars need methods and tools that can
both identify potential commonplaces and provide a snap-
shot of the matching process itself, allowing users to mod-
ify methods and tools iteratively after initial results analysis.
This process in effect becomes a scholarly feedback loop,
in which lessons learned from low-level matching pipelines
can be combined and added to subsequent methods aimed
at more fine-grained matching and analysis. In this way
scholars can engage in the algorithmic process in ways that
would have been otherwise impossible or technologically in-
tractable for the average humanities user.

4 Text Similarity and Image Processing

A text is an ordered sequence of words. In this work, we
denote a text as T = {t1, t2, . . . , tl}, where ti is a word ele-

submitted to COMPUTER GRAPHICS Forum (12/2015).



4 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

(a) An example of perfect text alignment using bipartite graph representation

(b) A perfect alignment (c) Text deletion (d) Text insertion (e) Text swapping

Figure 1: Example of text alignment using (a) bipartite graph representation and (b)-(e) 2D pixelmap.

ment that is an independently-meaningful sequence of char-
acters. To compare two texts, Ta = {ta,1, ta,2, . . . , ta,n} and
Tb = {tb,1, tb,2, . . . , tb,m}, one can apply a similarity metric
M(ta,i, tb, j) to all pairs of word elements in Ta and Tb. The
metric M returns a value to indicate the level of similarity.
Without losing any generality, we assume that the returned
similarity values are in the domain [0,1], where 0 implies to-
tally different, and 1 the same. It is not necessary for M to re-
strict its comparison to ta,i and tb, j , and the comparison often
involves neighboring word elements in a given sliding win-
dow. Nevertheless, each returned measure is always associ-
ated with a unique 2D position (i, j),1 ≤ i ≤ n,1 ≤ j ≤ m.
Hence, one may write a generalized form of a similarity met-
ric as M(Ta,Tb, i, j).

Given all similarity measures, si, j, we can organize them
into an m × n matrix. As a convention, the first text Ta is
referred to as source text, and the positions of its word ele-
ments correspond to column indexes. The second text Tb is
referred to as target text, and the positions of its word el-
ements correspond to row indexes. The similarity matrix S

thus takes the following form:

Sab =











s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

...
. . .

...
sm,1 sm,2 · · · sm,n











One intuitive way to visualize the similarity between two
texts is to display the word elements of Ta and Tb along two
parallel lines as shown in Fig. 1(a). One then represents each
non-zero si, j, as a connection path between position i on the
first line and j on the second. This is in effect a bipartite

graph. The value of si, j can be encoded using visual chan-
nels such as opacity, color, and thickness. In Fig. 1(a), the
level of similarity [0, 1] is mapped to the range of opacity
[0, 1]. From this figure, we can observe some text alignment

patterns suggested by a sequence of parallel or near parallel
connection paths between the two text lines. It is not difficult
to notice that occlusion and cluttering can be a major issue.
When many connection paths cross each other, observing the
alignment patterns becomes difficult.

An alternative way of visualizing similarity patterns is to
display the similarity matrix as an m × n dot plot, similar
to an image, except that each dot may be shown as a block
of pixels. Figs. 1(b)-(e) show examples of four dot plots. In
general, the dot plots do not suffer from occlusion and clut-
tering issues, and are more likely to successfully scale than
bipartite graphs in terms of space utilization. The advantage
of dot plots over the bipartite graphs was also shown in the
context of genome comparison [HHB07]. However, show-
ing of texts with a dot plot is not as intuitive as displaying
them along the two lines in a bipartite graph. Hence these
two visual representations are complementary.

Once a user is accustomed to the pixel-based visualiza-
tion, different alignment patterns are also more observable.
In Fig. 1(b), a continuous line of dots suggests that there is
a perfect text alignment between two common passages in
the two texts respectively. In (c), the horizontal gap between
two aligned segments suggests that some word elements in
the source text have been deleted from a common passage in
the target text. In (d), the vertical gap suggests that some new
word elements have been inserted into the common passage
of the target text. In (e), the relative locations of two aligned
segments suggest that there is a common passage between
two texts, except that it has been divided into two sections
with their order swapped in the target text.

When dot plots are considered as images, we can uti-
lize image processing techniques (e.g., [GW08]) to improve
such plots. Any improvement of a dot plot corresponds di-
rectly to the improvement of text alignment. For example, if
one uses an image processing tool to remove isolated dots

submitted to COMPUTER GRAPHICS Forum (12/2015).



Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection 5

Table 1: The 41 tools that are currently available in the framework.

Tools Categories Descriptions

Any Word Word Matching Arbitrary word matching using n-gram
Any Word (with order invariance) Word Matching Arbitrary word matching using n-gram, while disregarding word ordering
Any Word (without function words) Word Matching Arbitrary word matching using n-gram, while excluding function words
Any Word (without numbers) Word Matching Arbitrary word matching using n-gram, while excluding numbers
Any Word (with punctuations) Word Matching Arbitrary word matching using n-gram, with punctuations
Any Word (with flatten accents) Word Matching Arbitrary word matching using n-gram, while flattening accented characters
Any Word (with synonyms) Word Matching Arbitrary word matching using n-gram, while allowing matching with syn-

onyms using the online French and English thesauri of OpenOffice [The]
Keywords Word Matching Specific word matching using n-gram
Keywords (with order invariance) Word Matching Specific word matching using n-gram, while disregarding word ordering
Keywords (without function words) Word Matching Specific word matching using n-gram, while excluding function words
Keywords (without numbers) Word Matching Specific word matching using n-gram, while excluding numbers
Keywords (with punctuations) Word Matching Specific word matching using n-gram, with punctuations
Keywords (with flatten accents) Word Matching Specific word matching using n-gram, while flattening accented characters
Keywords (with synonyms) Word Matching Specific word matching using n-gram, while allowing matching with synonyms

(as Any Word with synonyms)
Any Word and Keywords Word Matching Arbitrary and specific word matching using n-gram
Any Word and Keywords (with order invariance) Word Matching Arbitrary and specific word matching using n-gram, without word ordering
Any Word and Keywords (without function words) Word Matching Arbitrary and specific word matching using n-gram, without function words
Any Word and Keywords (without numbers) Word Matching Arbitrary and specific word matching using n-gram, while excluding numbers
Any Word and Keywords (with synonyms) Word Matching Arbitrary and specific word matching using n-gram, while allowing matching

with alternative synonyms (as Any Word with synonyms)
Word Length Language Processing Scaling each value in the similarity matrix by word length
Word Frequency Language Processing Scaling each value in the similarity matrix input by word usage frequency
Inverting Visual Processing Inversion of the similarity matrix
Banding Visual Processing Grouping the values in the similarity matrix into a number of bands
Darkening Visual Processing Increase or decrease brightness of the similarity matrix
Contrasting Visual Processing Change the contrast of the similarity matrix by changing the range of the lumi-

nance values
Thresholding Visual Processing Set all value above a certain threshold level to white, and the rest to black
Box Smoothing Visual Processing Modify the similarity matrix by convolution using a Box Smoothing filter
Gaussian Smoothing Visual Processing Modify the similarity matrix by convolution using a Gaussian filter
Sharpening Visual Processing Modify the similarity matrix by convolution using a Sharpening filter
Unclutter Visual Processing Remove single, unconnected points
Diagonal Grow Visual Processing Expand an alignment pattern diagonally
Diagonal Fill Visual Processing Connect line segments with diagonal gaps between them
Horizontal Fill Visual Processing Connect line segments with horizontal gaps between them
Vertical Fill Visual Processing Connect line segments with vertical gaps between them
Union Operator Merge two or three pipelines using the union function
Intersection Operator Merge two or three pipelines using the intersection function
Blend Operator Merge two or three pipelines using the blending function
Pass Operator Passes on the input similarity matrix to the output
Difference Operator Merge two or three pipelines using the difference function
Mult Operator Merge two or three pipelines using the multiplication function
Add Operator Merge two or three pipelines using the addition function

in Figs. 1(b-e), it corresponds to the elimination of isolated
unigram matching in text alignment. As image processing
techniques are typically organized into a pipeline, it sug-
gests that elementary tools of text alignment can also be
organized into a pipeline. At every stage of an image pro-
cessing pipeline, one can observe the intermediate images
as a means of debugging. Similarly at every stage of a text
alignment pipeline, one could observe the intermediate dot
plots as a means of debugging. When observing a dot plot
while constructing and debugging such an “image” process-
ing pipeline, it is necessary to maintain a stable spatial map-
ping from words to dots. It is not desirable to compress out
the white space in a dot plot at this stage as they may vary
with any slight change to the pipeline or parameters.

5 Constructive Text Alignment

In this section, we present a framework for Constructive Text

Alignment, which defines the mathematical constraints of the
tools that are used as the components of a text alignment

pipeline (i.e., a method). In this framework, each tool is a
function that operates essentially on one or more input simi-
larity matrices and generates a similarity matrix as an output.
As mentioned previously, a similarity matrix is equivalent
to a grayscale image, these tools or functions are analogous
to filters in image processing. Table 1 shows the collection
of tools that have been defined in our framework. They are
grouped into four categories: Word Matching (M), Language

Processing (L), Visual Processing (V), and Operator (O).

All word matching tools have access to two texts and a
similarity matrix as the inputs and a similarity matrix as
the output. Hence they take a common form of M : Tn ×
Tm × Sm×n → Sm×n, where Tx is the set of all texts with
x word elements, and Sm×n are the set of all m × n simi-
larity matrices. When a word matching tool appears at the
beginning of a pipeline, the input S is assumed to contain all
0s. The word matching tools are divided into three subcat-
egories, “Any Word”, “Keyword”, and both. The Any Word

tools will match any words in the two input texts as long

submitted to COMPUTER GRAPHICS Forum (12/2015).



6 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

as they meet the matching criteria, such as n-gram match-
ing. The Keyword tools will match only those words in a list
of keywords specified by the user. This allows for a more
targeted search for common passages. For example, a user
may be only interested in common passages that contain
words “sun”, “moon”, “star”, etc. The third category of word
matching tools allow for matching arbitrary words, and re-
turn a higher similarity value for keyword matching and a
lower value for non-keyword matching.

Each category consists of several variations. For example,
one matches n-grams without considering the order of word
elements in each n-gram. Another matches each word ele-
ment with its synonyms. For the synonyms match, we use
the online French and English thesauri of OpenOffice [The],
which allow real-time retrieval of synonyms of a given word.
Others ignore the matching of function words or numbers.
We purposely designed multiple tools for different variations
in order to minimize the number of parameters in each tool.
We found that users in arts and humanities are more accus-
tomed to choosing the appropriate tool than customizing a
generic tool.

Language processing tools are used to modify values in
the input similarity matrix based on the two texts. For ex-
ample, the Word Length tool allows each value at position
(i, j) in the similarity matrix to be scaled according to the
lengths of the word elements ta, j, and tb,i. Such a scaling can
be used to weight the matching of long word elements more
than short ones. Hence, these tools can also take a common
form of L : Tn ×Tm ×Sm×n → Sm×n.

The Visual Processing tools are very similar to traditional
image processing filters. Reading the names of these tools in
Table 1, such as “Contrasting”, “Gaussian Smoothing”, one
can easily relate them to similar filters in image processing.
In several cases, domain experts preferred to rename them to
avoid clashing with certain connotations in arts and human-
ities. Tools in this category do not handle texts, and all have
one similarity matrix as the input and another as the output.
They thus take the same form of V : Sm×n → Sm×n.

The Operator tools apply real-value constructive opera-
tions to one or more input similarity matrices. For exam-
ple, “Union” and “Intersection” tools can be used to com-
bine two or more input similarity matrices. Because they
are real-value operators, we use pixel-based (or piecewise)
MAX and MIN functions to achieve the union and inter-
section as in Constructive Volume Geometry [CT00]. All of
the mathematical definitions of the Operator tools can be
found in [CT00] with the exception of the Pass tool. Tools
in this category take the form of O : Sk

m×n → Sm×n, where
k = 1,2,3. Although many tools in this category can take
a number of inputs, we limit k to 3, to reduce the memory
requirements for multiple similarity matrices since m× n in
text processing is typically a large number.

All tools in the four categories can be slightly customized.

Most customization facilities are unavoidable, such as speci-
fying n for n-gram matching. Some tools allow for the spec-
ification of a sliding window or the size of a convolution
kernel. We made a conscious effort to keep the same look
and feel for all properties windows for setting parameters.
For example, each property window starts with an input fil-
tering threshold, defining only certain values (e.g., > 0.5) in
the input similarity matrix will be processed.

6 Visual Interface

We developed a visual analytics web application called ViTA,
Visualization for Text Alignment. ViTA is designed to enable
users to create specific methods that are suited to the users’
particular context, such as languages and genres of articles,
to be deployed on a larger, offline text alignment pipeline.
Fig. 2 shows a screenshot of ViTA. ViTA uses the concept
of visual programming [BD94] to enable users to construct
a method by selecting appropriate tools from a menu and
connecting them together. This empowers users, who may
not be expert programmers, with the capabilities and abilities
to construct a “program” to serve their research objectives.
It also allows users to explore new hypotheses.

There are two ways in which users are able to analyze a
text in ViTA: either by selecting one piece of the pre-stored
texts or pasting one into the input text areas. Fig. 2(a) shows
the main visual interface, which has three main components.
Fig. 2(a)(i) shows the Bipartite Graph View Panel for dis-
playing the connection paths between the two input texts.
Users are able to view the text by brushing along any of the
two parallel lines. A connection path between the two par-
allel lines indicates that the two word elements in the two
texts are similar or related, and its strength of similarity is
represented by the opacity channel.

Fig. 2(a)(ii) shows the Method Overview Panel for dis-
playing the method that has been used to detect text align-
ment. Clicking on the Method Overview Panel opens up the
Method Editor for creating a text alignment pipeline, i.e., a
method. While Fig. 2(a)(iii) shows the Pixelmap View Panel

representing the similarity matrix through a dot plot where
the first input text (i.e., the source text) is located along the x-
axis and the second input text (i.e., the target text) is located
along the y-axis. Once again the similarity between the two
input texts is encoded using the grayscale channel. Clicking
on any of the pixels in the Pixelmap View Panel would high-
light the corresponding texts in the Bipartite Graph View

Panel as well as its connecting path.

Fig. 2(b) shows the Method Editor. The list of avail-
able tools in ViTA can be accessed through the Tools Panel

(Fig. 2(b)(iv)). Each of the tools that is defined in Table 1 is
represented as a single block in the panel. The users are able
to drag-and-drop a tool from the Tools Panel to a desired
position in the Grid Layout Panel (Fig. 2(b)(v)). The Tools

Panel is an accordion panel component where each group of

submitted to COMPUTER GRAPHICS Forum (12/2015).



Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection 7

(a) The main visual interface for ViTA. (i) A Bipartite Graph View Panel showing the connecting edges between the two texts. (ii) A Method

Overview Panel showing a method being developed for text alignment. (iii) A Pixelmap View Panel showing the similarity matrix as a dot plot.

(b) The Method Editor for creating a pipeline with a composition of tools. (iv) The Tools Panel holds a selection of tools available in ViTA. (v)
The Grid Layout Panel is a grid of 8 rows × 3 columns for representing up to three parallel flows in the method. (vi) The Attributes Panel is
for modifying the parameters of the currently-selected tool.

Figure 2: An overview of ViTA, a visual analytics tool for developing detection models for text alignment.

tools can be “expanded” or “collapsed” by clicking on the
header of the group.

To help with the memorization of the tool block, logologic
links are used to relate the types of tools to colors, such as L

for Language/Lime, M for Matching/Magenta, O for Opera-
tor/Orange, and V for Visual/Violet. The design of each tool
icon is divided into three parts (starting from left to right)
indicating its specific category (i,.e., whether it is Language

Processing, Word Matching, etc.), its subcategories, for ex-
ample, “Any Word”, “Keywords”, etc., in its main group cat-
egory of Word Matching, and then its variations of the sub-
categories, for example, “With order invariance” or “Without
function words”. This is also represented by the changing of
the color, for example, from a dark magenta to a lighter ver-
sion of magenta.

The Grid Layout Panel comprises a grid of 8 × 3 cells
where the ordering of grid cells begins at the top-left cor-
ner. In comparison to a canvas-based block diagram, the
grid restricts the freedom of placing a tool block arbitrar-
ily and connecting them using polylines. However, as hu-
manities scholars wish to focus on scholarly questions rather
than engineering activities, they viewed the restriction in
block placement, connection drawing as well as the rela-
tively smaller grid size as advantages. This design also al-
lowed the model and the visualization results to be displayed
side-by-side.

Each tool in the Grid Layout Panel is linked to another
using a connector, accepting one input connection. The ex-
ception are those in the Operator category, which can accept
a maximum of three input connections. Only the Operator

submitted to COMPUTER GRAPHICS Forum (12/2015).



8 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

tools cannot be placed in the first row. Underneath each dot-
ted cell there are three checkboxes representing the on/off

switches for the output connections to the tools in the row
below. All tools can have up to three output connections,
and each switch corresponds to one of the three parallel
pipelines, i.e., first switch for the left, and second middle and
third right. A pipeline is valid when the last filled row con-
tains only a single tool. Users are able to adjust the parame-
ters for each tool using the Attributes Panel (Fig. 2(b)(vi)).

Once a method has been created, users are able to run the
created pipeline of tools (i.e., a method) by clicking on the
Run option at the top-right corner in the main visual inter-
face. A number of other features, such as the downloading
and uploading of created methods as well as the functions
of saving the generated image of the 2D pixelmap and the
downloading of the matching text alignment, can also be
found at the top-right corner in the main visual interface.

7 Testing and Evaluation

The main evaluation session was carried out in the second
set of meetings in October 2014. The domain experts were
those directly involved in the requirements analysis (see Sec-
tion 3). The domain experts spent considerable time testing
different tools and their parameters together with the visual-
ization scientists, with the visualization scientists responded
to the feedback by making various minor improvements con-
currently. During the evaluation meetings, the domain ex-
perts used their wealth of knowledge about the literature,
and pulled out various texts from different articles contained
in the ARTFL-FRANTEXT [ARTa] and ECCO [ARTb]
databases to test the software. Although domain experts had
never used dot plots before, it soon became apparent that the
domain experts found the dot plot more effective than the bi-
partite graph, and had little difficulty using the pipeline edi-
tor to construct different methods. In particular, they discov-
ered a number of unexpected phenomena in text alignment.

One of the phenomena was the use of function (or stop)
words. The conventional wisdom in text mining has been
to remove all function words before applying any similar-
ity metrics (e.g., n-gram matching). Using the dot plots, do-
main experts discovered a commonplace that the previous
automated method failed to detect (i.e., false negative). They
quickly hypothesized that the removal of all function words
might have caused other false negatives. With their knowl-
edge of the literature, they soon discovered a few other ex-
amples that illustrate this phenomena.

During a discussion about connecting disjointed segments
of commonplaces, one domain expert noticed another phe-
nomenon. When a passage was reused in another article,
some parts of the passage were often deleted or pieces of
new text were inserted. Both deletion and insertion resulted
in disjointed line segments in the corresponding dot plots,
as well as separated commonplaces in the detection results.
Hence a specific tool would be required to reconnect the dis-

jointed line segments, which would subsequently derive a
merged commonplace. When observing various dot plots,
the domain expert hypothesized that the average length of
deletion might be longer than that of insertion. This led to
further examination of various passages, and a decision to
separate the connection tool into a horizontal connection
tool (for deletion) and a vertical tool (for insertion). The for-
mer tool allows for connecting line segments that are further
apart than the latter.

Fig. 3 illustrates these two phenomena. Fig. 3(a) shows
the two passages that are being compared, where the red text
was detected by PhiloLine [ART09], a sequence alignment
extension to the ARTFL Project’s PhiloLogic search engine,
as a match and the blue text can be considered as a match as
well, but was missed by PhiloLine. Comparing the red texts
in the source and target, we can observe that some part of the
source text was deleted in the target. Meanwhile the text in
blue should still logically be part of the common sequence,
but was missed by the automated detection system.

As shown in Fig. 3(b), when function words are not con-
sidered in the text alignment, the patterns in the dot plot are
rather sparse. When function words are included in the simi-
larity measures, the alignment patterns in Fig. 3(c) are more
clearly observable, especially the third long segment towards
the bottom-right of the plot. Such visualization helped do-
main experts to reassess the traditional wisdom about func-
tion words in text alignment.

One domain expert commented: “What I find particularly
interesting in the function word examples is that it may be a
way to control for the extremely dirty OCR. Given any error
rate, it is more likely that longer ‘content’ words will contain
an error, thus eliminating it as a valid match from any exact
match scheme. Shorter function words will have less chance
of error. ... More generally, there have been various kinds of
studies, in areas like author attribution and stylometry, which
are based on patterns of function words. So, ViTA made this
kind of initial experiment both easily performed and quite
compelling.”

Another domain expert commented: “The general idea
here is that for text mining it’s often taken for granted that
you throw out the most common words (which are by and
large small function words), for reasons of efficiency and
to reduce dimensionality. This may, however, result in us
missing certain sequences if they contain mainly function
words. ... So this [example] tells us that by including func-
tion words, we can, in some cases, extend matches beyond
where our traditional sequence alignment approach stops.”

After the meetings in October 2014, we developed three
new image processing tools, Diagonal Fill, Horizontal Fill,
and Vertical Fill, following the specification by the domain
experts. Fig. 3(d) shows the results of applying two imaging
processing tools to the dot plot in (c). The first is an inte-
grated erosion-dilation tool that removed all single points in
(c). The second is a horizontal fill tool, which extends at both

submitted to COMPUTER GRAPHICS Forum (12/2015).



Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection 9

Target: Guys, M. (Pierre-Augustin), 1721-1799., [1771], Voyage littéraire de la Grèce,
ou, Lettres sur les Grecs, anciens et modernes, avec un parallèle de leurs moeurs: 
jeunes et vieux chanter en dansant, de maniere que les plus âgés répondent aux
enfans qui les provoquent par leurs chansons, je me rappelois ces choeurs de
Lacédémone , où, suivant la traduction d'Amiot , dont vous aimez tant la naïveté, les
vieillards chantoient: nous avons été jadis jeunes, vaillans, et hardis. À quoi les jeunes
répondoient: nous le sommes maintenant, à l'épreuve à tout venant . Et les enfans,
pour n'être pas en reste, ajoûtoient: et nous un jour le serons qui tous vous
surpasserons. Lorsque j'entends une jeune grecque se plaindre de ce qu'elle ne peut
pas aller danser avec ses compagnes, je crois entendre 

Source: Rousseau, Jean-Jacques, 1712-1778., [1758], Lettre à Mr. d'Alembert sur les
spectacles:
publics, en voici un rapporté par Plutarque . Il y avoit, dit-il, toujours trois danses en
autant de bandes, selon la différence des âges; et ces danses se faisoient au chant de
chaque bande. Celle des vieillards commençoit la première, en chantant le couplet
suivant, nous avons été jadis, jeunes, vaillans et hardis . Suivoit celle des hommes, qui
chantoient à leur tour en frappant de leurs armes en cadence, nous le sommes
maintenant, à l'épreuve à tout venant . Ensuite venoient les enfans qui leur
répondoient, en chantant de toute leur force, et nous bientôt le serons, qui tous vous
surpasserons . Voilà, monsieur, les spectacles qu'il faut à des républiques. Quant à
celui dont votre article Genève 

(a)

(b) (c) (d) (e)

Figure 3: (a) The two sample texts being compared. The red text was detected by PhiloLine [ART09] as alignment. The blue

text can be considered as also a match, but was missed by the automated detection system. (b) Word matching without function

words. (c) Word matching with function words, where the lighter shade indicates the function words in the sample texts. (d)

Word matching with a horizontal fill, where the gray boxes indicate possible text deletion and insertion. (e) Word matching with

horizontal fill where short line segments have been removed.

ends of each line segment in search for a possible connec-
tion. The search region is set differently for Diagonal Fill,
Horizontal Fill, and Vertical Fill. Fig. 3(d) shows the suc-
cessful connections of the three segments in this example. A
further image processing tool is then applied to remove short
line segments. The final result is shown in Fig. 3(e).

Fig. 4 illustrates an example that PhiloLine [ART09]
found difficult to process. Fig. 4(b) shows the dot plot re-
sulted from applying a trigram alignment method, which is
the top tool in the middle column in Fig. 2(v) with an opened
attribute panel in Fig. 2(vi). We can observe that there is a
diagonal line pattern among many short line segments. One
feature that may be used to differentiate these false positives
(i.e., short line segments) and the true positive is that the true
positive in this case contain a few relatively long words. We
thus introduce a second pipeline as shown in the left column
in Fig. 2(v).

This second pipeline first identifies all unigram matches,
and then applies a language processing tool Word Length to
select all those matches with 6 or more letters in a word. As
shown in Fig. 4(c), there are only a few dots along the poten-
tial commonplace. The pipeline applies five repeated steps
of a morphological operator dilation to these dots, resulting
in Fig. 4(d). In ViTA, this is achieved by using a Diagonal

Grow tool.

After the two pipelines are combined using an Intersec-

tion operator, the result shown in Fig. 4(e) is a diagonal
line pattern reflecting the true positive. We can observe that
there are minor modifications to the source text as well as a

major deletion. The constructive method confirms the align-
ment where minor modifications were made, while remov-
ing many false positives in this case. Similar to Figs. 3(d-e),
further image processing tools can be used to make the con-
nections and remove the remaining noise.

The above examples serve to demonstrate that from a
domain-specific perspective – centered on the literary and
print culture of the 18th-century – and considering the most
common presumptions of standard text-mining practices, the
combination of image processing tools and methods with ex-
isting sequence alignment approaches for constructive text
alignment can yield interesting, and previously unforeseen,
results. The use of darkening for example, based on thresh-
olds that determine what constitutes a match using a sliding
scale of 0 to 1 allows users to highlight possible matches
in otherwise unremarkable sequences. Extending match pa-
rameters beyond normal constraints and conditions, such as
the darkening of potentially matching heptagrams (which are
very rare, and would normally not be considered), allows us
to leverage our capacity to extend patterns visually beyond
the strict parameters of the sequence alignment algorithm.
This capacity also allows us to refine these same match-
ing parameters and algorithms iteratively using the ViTA in-
terface, moving from obvious to less-obvious matches and
building a set of rule-based pipelines for different text min-
ing tasks. This ability to treat multiple data formats and qual-
ity is all the more relevant given the mixed nature of the var-
ious datasets from which we are drawing our texts. For ex-
ample, the construction of a stop word or high-frequency list
for exclusion at the pre-processing stage is standard practice

submitted to COMPUTER GRAPHICS Forum (12/2015).



10 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

Target: : Source: Hume: 

(a)

(b) (c) (d) (e)

Figure 4: (a) The two sample texts being compared. The blue text can be considered as an alignment, but was missed by the

automated detection system [ART09]. (b) Word matching with a trigram alignment (above: detailed view and below: full matrix

view). (c) Word matching with a unigram alignment followed by a selection of words containing 6 or more letters and the

darkening of input values ≥ 0.4. (d) Grow the alignment pattern in (c) diagonally to extend the influence of the matched long

words. (e) The results of combining the two pipelines using the intersection operator.

for many text-mining tasks, but these exclusions can have
unintended results when applied to very noisy data. The as-
sumptions for one sort of data are thus not always applicable
for other data sources, and the “one-size-fits-all” model of
sequence alignment is not sufficiently robust to include the
level of flexibility that humanities scholars come to expect.
Our aim in the project was thus to be able to visualize both
sorts of data, i.e., texts drawn from highly curated and cor-
rected collections such as the ARTFL-FRANTEXT database
(Fig. 3), as well as those that are the result of uncorrected
OCR processes and therefore contain an unknown, and of-
ten significant, amount of textual inaccuracy (Fig. 4).

Thus, in order to leverage the scale of the digital collec-
tions we are targeting in this project, text alignments must
be able to be made not only based on exact word or n-gram
matches, but also with a high degree of match flexibility.

This flexibility is essential from a humanities perspective:
some matches will include deletions, modifications, or inser-
tions (Fig. 3) that are significant for literary scholars to iden-
tify and analyze; other matches will be difficult to find given
the noisy information space of uncorrected OCR collections
(Fig. 4), and thus require more expansive matching criteria
than what is normally required in the generic text alignment.
ViTA thus addressed both of these concerns by way of its
constructive visual analytic approach to text alignment and
matching algorithms.

In February 2015, before the release of ViTA (beta) on-
line, we organized a small workshop, and invited eight liter-
ary scholars to test the software. None of these scholars was
involved in the design and early testing of the software. None
of them had used visual or non-visual software tools for text
alignment. The workshop consisted of a 30-minute introduc-

submitted to COMPUTER GRAPHICS Forum (12/2015).



Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection 11

tion, 60 minutes of hands-on experience, and 30 minutes of
discussion and feedback. It did not take long for the schol-
ars to understand the two visual representations and com-
mon patterns shown in the dot plots. The scholars found
the Method Editor easy to use, and would like more on-
line help about the functions and parameters of each tool.
Scholars worked on a number of pieces of texts selected
by them just before the workshop, including 19 pieces in
French from the Questions sur l’Encyclopédie [ARTc] and
201 short passages in English from Night and Day [Woo19].
The known commonplaces were discovered, stimulating dis-
cussions among scholars. The workshop also helped us to
identify a number of aspects for future improvement, in-
cluding the speed of the web-server for dealing with texts
over 1000 words, online help, and small-screen devices.
The scholars considered that making such a software system
available to them is “fantastic” and “amazing”. They were
pleasantly surprised that they were actually constructing pro-
grams shortly after the 30-minute introduction.

ViTA (beta) was released online in March 2015 and is
available at www.ovii.org/vita.

8 Conclusion

In this paper, we have presented a visual analytics approach
to help improve the existing text alignment methods that rely
on analytical models. This approach brings back human an-
alytical capabilities through the use of visualization of text
alignment pipelines in conjunction with testing inputs and
outputs, and the use of interaction for constructing and im-
proving such pipelines. As the research was embedded in
an application directly, namely, the context of 18th-century
print culture, this approach was developed in an interdisci-
plinary manner, and was evaluated in intensive meetings at
the design stage as well as after prototyping. The evalua-
tion confirmed that the domain experts can quickly accus-
tom themselves to the pixel-based visualization that appears
to be less intuitive than bipartite graphs. More importantly,
they can use the visual interface to construct and modify
text alignment pipelines. During the testing of the prototype
software, domain experts discovered several interesting phe-
nomena, which stimulated new hypotheses and further re-
search and development activities.

Although this work was conducted in a specific applica-
tion context, the capability of visual analytics in model vi-
sualization and development demonstrated in this work can
easily be applied to many other applications that rely solely
on analytical models. We will continue to explore further
applications of this visual analytics approach. We are also
making further improvement to the online help and the scal-
ability of dot plots.

Acknowledgments

This work was funded jointly by NEH (USA) and JISC (UK)
under the Digging into Data Challenge Program (III). The

authors would like thank Professor I. Foster (University of
Chicago) for his organizational support to this project, A.
Himpson (University of Oxford) for his technical assistance
in recording the workshop and video editing, and E. Maguire
(CERN) for designing the ViTA logo. The authors would
also like to thank the literature scholars who participated in
the workshop. They are A. Breathe, P. Cotsapas, L. Ludtke,
T. Nurmikko-Fuller, G. Pink, K. Rubin-Detlev, R. Sciuto,
and C. Warman (University of Oxford).

References

[Aik] AIKEN A.: MOSS: A system for detecting software
plagiarism. http://theory.stanford.edu/~aiken/

moss/. (3 Dec 2014). 2

[All10] ALLAN D.: Commonplace Books and Reading in Geor-

gian England. Cambridge University Press, 2010. 3

[ARLC∗13] ABDUL-RAHMAN A., LEIN J., COLES K.,
MAGUIRE E., MEYER M., WYNNE M., JOHNSON C., TRE-
FETHEN A., CHEN M.: Rule-based visual mappings – with a
case study on poetry visualization. Computer Graphics Forum

32, 3 (2013), 381–390. 2

[ARTa] ARTFL PROJECT: ARTFL-FRANTEXT. https:

//artfl-project.uchicago.edu/content/

artfl-frantext. 3, 8

[ARTb] ARTFL PROJECT: ECCO-TCP. https:

//artfl-project.uchicago.edu/content/

ecco-tcp. 3, 8

[ARTc] ARTFL PROJECT: TOUT VOLTAIRE. http://

artfl-project.uchicago.edu/tout-voltaire. 11

[ART09] ARTFL PROJECT: PhiloLine. https://code.

google.com/p/text-pair/, Mar 2009. 8, 9, 10

[BCMB12] BÜCHLER M., CRANE G., MORITZ M., BABEU A.:
Increasing recall for text re-use in historical documents to support
research in the humanities. In Proc. 2nd Int. Conf. Theory &

Practice of Digital Libraries (2012), pp. 95–100. 1

[BD94] BRAGG S., DRISKILL C.: Diagrammatic-graphical pro-
gramming languages and dod-std-2167a. In IEEE Systems Readi-

ness Technology Conf. ‘Cost Effective Support Into the Next Cen-

tury’ (Sep 1994), pp. 211–220. 6

[BG07] BOURDAILLET J., GANASCIA J.: Alignment of noisy
unstructured text data. IJCAI Workshop on Analytics for Noisy

Unstructured Text Data (Jan 2007). 1, 2

[Bla11] BLAIR A.: Too Much to Know: Managing Scholarly In-

formation before the Modern Age. Yale University Press, New
Haven, 2011. 3

[BTH∗13] BOSCH H., THOM D., HEIMERL F., PUTTMANN

E., KOCH S., KRUGER R., WORNER M., ERTL T.: Scat-
terblogs2: Real-time monitoring of microblog messages through
user-guided filtering. IEEE Tran. Visualization & Comp. Graph-

ics 19, 12 (2013), 2022–2031. 2

[CCP09] COLLINS C., CARPENDALE M. S. T., PENN G.:
Docuburst: Visualizing document content using language struc-
ture. Computer Graphic Forum 28, 3 (2009), 1039–1046. 2

[Cen] CENGAGE LEARNING: Eighteenth Century
Collections Online (ECCO). http://gale.

cengage.co.uk/product-highlights/history/

eighteenth-century-collections-online.aspx.
3

submitted to COMPUTER GRAPHICS Forum (12/2015).



12 Abdul-Rahman et al. / Constructive Visual Analytics for Text Similarity Detection

[CGPW97] CLOUGH P., GAIZAUSKAS R., PIAO S. S. L.,
WILKS Y.: METER: MEasuring TExt Reuse. In Proc. 40th An-

niversary Meeting for the Asso. for Computational Linguistics

(1997), pp. 152–159. 1, 2

[CH93] CHURCH K. W., HELFMAN J. I.: Dotplot: A program
for exploring self-similarity in millions of lines of text and code.
J. Computational & Graphical Statistics 2, 2 (1993), 153–174. 2

[Clo03] CLOUGH P.: Old and new challenges in automatic pla-
giarism detection. In National UK Plagiarism Advisory Service

(2003), pp. 391–407. 2

[CT00] CHEN M., TUCKER J. V.: Constructive volume geome-
try. Computer Graphics Forum 19, 4 (2000), 281–293. 6

[CWG11] CORRELL M., WITMORE M., GLEICHER M.: Explor-
ing collections of tagged text for literary scholarship. Computer

Graphics Forum 30, 3 (2011), 731–740. 2

[DNKS10] DIAKOPOULOS N., NAAMAN M., KIVRAN-SWAINE

F.: Diamonds in the rough: Social media visual analytics for
journalistic inquiry. In IEEE VAST (Oct 2010), pp. 115–122. 1

[DWS∗12] DOU W., WANG X., SKAU D., RIBARSKY W.,
ZHOU M.: Leadline: Interactive visual analysis of text data
through event identification and exploration. In IEEE VAST (Oct
2012), pp. 93–102. 1

[EMR13] EDELSTEIN D., MORRISSEY R., ROE G.: To Quote or
not to Quote: Citation Strategies in the Encyclopédie. Journal of

the History of Ideas 74, 2 (Apr 2013), 213 – 236. 3

[FEC05] FORMAN G., ESHGHI K., CHIOCCHETTI S.: Find-
ing similar files in large document repositories. In Proc. 11th

ACM SIGKDD Int. Conf. Knowledge Discovery in Data Mining

(2005), pp. 394–400. 1

[Fei] FEINBERG J.: Wordle. http://www.wordle.net/. (4
Dec 2014). 2

[Fel98] FELLBAUM C. (Ed.): WordNet: An Electronic Lexical

Database. MIT Press, Cambridge, MA, 1998. 2

[Fre08] FREIRE M.: Visualizing program similarity in the ac pla-
giarism detection system. In Proc. Working Conf. AVI (2008),
pp. 404–407. 2

[GM70] GIBBS A. J., MCINTYRE G. A.: The diagram, a method
for comparing sequences. European Journal of Biochemistry 16,
1 (1970), 1–11. 1, 2

[GT99] GITCHELL D., TRAN N.: Sim: A utility for detecting
similarity in computer programs. In Proc. 13th SIGCSE Tech.

Symp. Computer Science Educ. (1999), pp. 266–270. 2

[GW08] GONZALEZ R. C., WOODS R. E.: Digital Image Pro-

cessing, 3rd ed. Pearson, 2008. 4

[HHB07] HENLEY M., HAGEN M., BERGERON R. D.: Evalu-
ating two visualization techniques for genome comparison. In
Proc. Information Visualization (2007), pp. 551–558. 2, 4

[HHN00] HAVRE S., HETZLER B., NOWELL L.: ThemeRiver:
Visualizing theme changes over time. In Proc. IEEE Symp. In-

formation Visualization (2000), pp. 115–123. 2

[HKBE12] HEIMERL F., KOCH S., BOSCH H., ERTL T.: Visual
classifier training for text document retrieval. IEEE Trans. Visu-

alization & Comp. Graphics 18, 12 (2012), 2839–2848. 1

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE Trans. Visualiza-

tion & Comp. Graphics 12, 5 (Sept. 2006), 741–748. 2

[HOR11] HORTON R., OLSEN M., ROE G.: Something bor-
rowed: Sequence alignment and the identification of similar pas-
sages in large text collections. Digital Studies / Le champ

numérique 2, 1 (2011). 1, 2

[JGBS14] JÄNICKE S., GESSNER A., BÜCHLER M., SCHEUER-
MANN G.: Visualizations for text re-use. In IVAPP (2014),
pp. 59–70. 2

[JKM12] JANKOWSKA M., KESELJ V., MILIOS E.: Relative n-
gram signatures: Document visualization at the level of character
n-grams. In IEEE VAST (Oct 2012), pp. 103–112. 1, 2

[JL99] JOY M., LUCK M.: Plagiarism in programming assign-
ments. IEEE Trans. on Educ. 42, 2 (May 1999), 129–133. 2

[KJW∗14] KOCH S., JOHN M., WORNER M., MULLER A.,
ERTL T.: VarifocalReader - In-depth visual analysis of large text
documents. IEEE Trans. Visualization & Comp. Graphics 20, 12
(Dec 2014), 1723–1732. 2

[KSC∗08] KOOP D., SCHEIDEGGER C. E., CALLAHAN S. P.,
FREIRE J., SILVA C. T.: VisComplete: Automating suggestions
for visualization pipelines. IEEE Trans. Visualization & Comp.

Graphics 14, 6 (Nov. 2008), 1691–1698. 2

[Lee07] LEE J.: A computational model of text reuse in ancient
literary texts. In Proc. 45th Anniversary Meeting for the Asso. for

Computational Linguistics (2007), pp. 472–479. 2

[LMD01] LYON C., MALCOLM J., DICKERSON B.: Detecting
short passages of similar text in large document collections. In
Proc. Conf. Empirical Methods in Natural Language Processing

(2001), pp. 118–125. 1, 2

[Mou04] MOUNT D. W.: Bioinformatics: Sequence and Genome

Analysis, 2nd ed. Cold Spring Harbor Lab. Press, 2004. 1, 2

[NCD∗10] NIELSEN C. B., CANTOR M., DUBCHAK I., GOR-
DON D., WANG T.: Visualizing genomes: Techniques and chal-
lenges. Nature Methods 7, 3 Suppl (Mar 2010), S5–S15. 2

[OKK13] OELKE D., KOKKINAKIS D., KEIM D. A.: Fingerprint
Matrices: Uncovering the dynamics of social networks in prose
literature. Computer Graphics Forum 32, 3 (2013), 371–380. 2

[OSSK10] OELKE D., SPRETKE D., STOFFEL A., KEIM D.: Vi-
sual readability analysis: How to make your writings easier to
read. In IEEE VAST (Oct 2010), pp. 123–130. 1, 2

[RA00] RIBLER R. L., ABRAMS M.: Using visualization to de-
tect plagiarism in computer science classes. In Proc. IEEE Symp.

Information Vizualization (2000), pp. 173–178. 2

[RPSF15] RIEHMANN P., POTTHAST M., STEIN B.,
FROEHLICH B.: Visual assessment of alleged plagiarism
cases. Computer Graphics Forum 34, 3 (2015). 1

[SS95] SINGHAL A., SALTON G.: Automatic text browsing us-
ing vector space model. In Proc. Dual-Use Technologies and

Applications Conference (1995), pp. 318–324. 1

[The] THESAURUS:. http://thesaurus.altervista.

org/. (4 Dec 2014). 5, 6

[Tur] TURNITIN:. http://turnitin.com/. (4 Dec 2014).
2

[VCPK09] VUILLEMOT R., CLEMENT T., PLAISANT C., KU-
MAR A.: What’s being said near “Martha”? Exploring name en-
tities in literary text collections. In IEEE VAST (2009), pp. 107–
114. 2

[vHWV09] VAN HAM F., WATTENBERG M., VIEGAS F. B.:
Mapping text with phrase nets. IEEE Trans. Visualization &

Comp. Graphics 15, 6 (Nov. 2009), 1169–1176. 2

[WJ04] WHITE D. R., JOY M. S.: Sentence-based natural lan-
guage plagiarism detection. J. on Educ. Res. in Computing 4, 4
(Dec. 2004). 2

[Woo19] WOOLF V.: Night and Day. Duckworth, 1919. 11

[Wri] WRITECHECK:. http://en.writecheck.com/. (4
Dec 2014). 2

submitted to COMPUTER GRAPHICS Forum (12/2015).


