
1

CONSTRUCTIVE VOLUME GEOMETRY

Min Chen and John V. Tucker

Department of Computer Science

University of Wales Swansea

Singleton Park, Swansea SA2 8PP

United Kingdom

Email: {m.chen, j.v.tucker}@swansea.ac.uk

Abstract: Having evolved from volume visualisation, volume graphics is

emerging as an important sub-field of computer graphics. This paper focuses on a

fundamental aspect of volume graphics, the modelling of complex graphics objects and

scenes using volume data types. We present an algebraic theory for volume data types,

and describe a hierarchical modelling scheme, called Constructive Volume Geometry

(CVG), for building complex volume objects. We also outline a recursive algorithm for

rendering scenes composed of CVG objects. The work has demonstrated the feasibility

of using volume data types in general graphics applications, and the advantages of

volume data types over surface/solid data types in some aspects.

Keywords: graphics modelling, volumetric data types, volume visualisation,

volume graphics, algebraic methods, constructive volume geometry.

1 . INTRODUCTION

The rapid development of computer hardware offers ample scope and encouragement to

develop new methods and tools for computer graphics and visualisation. In particular, volume

graphics, a combination of volume data types and traditional rendering techniques, is emerging

as an important sub-field of computer graphics. Volume graphics has the potential to match and

overtake surface graphics for the representation, manipulation, rendering and animation of 3D

geometric scenes [KAUF93], just as 2D raster graphics has superseded vector graphics in

many applications.

The majority of the existing schemes for modelling graphics objects deal with the geometric

specification of solids and surfaces [REQU80, REQU82, REQU83]. Many of them, such as

Constructive Solid Geometry [REQU77], have a sound theoretical foundation, and are well

supported by commercial modelling tools. However, the primary deficiencies of these schemes

2

include their inability to encapsulate the internal description of an object, and the difficulty in

maintaining “well-defined” representations.

Volume data types, where an object is no longer treated simply as a solid bounded by a

surface but as a mass of points, can be employed to compensate the weaknesses of traditional

solid modelling techniques. The method offers a simple means to describe the geometry and

physical properties of a complex object uniformly using a set of scalar fields. Such data types

are commonly used in medical imaging [STYT91] and scientific visualisation [UPSO88], and

are obtainable from many digital scanning devices (such as CT, MRI and CCD TV) and

computational processes (such as finite element analysis). However, programmers tend to

regard volumetric representations as trivial 3D arrays, and manipulate them with “arbitrary”

procedural operations. Apart from some study on applying octrees to volumetric data

[AYAL85, LEVO90] and, more recently, on a scene modelling scheme [LEU98], there is not

sufficient research into the methodologies for modelling complex graphics objects and scenes

based on volume data types.

The work presented in this paper aims at providing a high-level mathematically well-

founded modelling scheme for volume graphics. We formulate some general concepts of

volume data types and spatial objects in three dimensional Euclidean space and show how to

build complex scenes from similar component objects using algebraic operations. Thus, we

propose an algebraic framework and methodology for the specification, representation,

manipulation and rendering of volume data types which we call Constructive Volume

Geometry (CVG).

The CGV methodology is based on designing algebras of spatial objects in the context of

computer graphics. A CVG algebra consists of a set of spatial objects and some operations.

Composing the operations of a CVG algebra and applying them to some spatial objects, creates

more complex spatial objects. Notations for these operations are contained in the signature of

the CVG algebra and compositions of operations are denoted by CVG terms over the signature.

A range of algebraic techniques can be applied to these CVG terms to accomplish volume

graphics tasks (e.g., CVG tree representations, specification of rendering using recursion on

CVG terms). We will give a mathematically detailed account of the general framework,

illustrating it with CVG algebras for some practical models.

A basic example is a CVG algebra for modelling spatial objects specified by their opacity.

We give operations and laws for their application, and show that this generalises Constructive

Solid Geometry (CSG). All our CVG algebras are extensions of the basic opacity-channel

algebra. Another example is an CVG algebra for modelling spatial objects specified by four

colour channels with operations , and , called volume union, intersection and

difference, respectively. We consider rendering volume objects represented by CVG terms

such as ((o1, o2), o3).

3

Our CVG methodology has been guided by the algebraic theory of data types [WIRS91,

WECH91 and MEIN92]. In this paper, we have employed and adapted only a few simple

algebraic concepts (i.e. signature, algebra, term, tree, equation, homomorphism,

isomorphism). The paper is self-contained and reader need not be familiar with the general

algebraic theory of data.

In this paper, we will first, in Section Two, briefly examine the existing modelling

schemes, and describe the problems which motivated this work. We will then lay down a

algebraic foundation of scalar fields in Section Three, upon which the theory of CVG is

developed. In Section Four, the core theory of CVG, in particular the algebraic specification of

spatial objects and their composition will be described, and two example models will be given

to illustrate the concepts and operations. The link between CVG and volume data types will be

established in Section Five, leading to a practical solution for building CVG objects through

finite data representations. We will address the implementation of CVG in Section Six with

discussions on its data representations and rendering. A recursive rendering algorithm is given

which is used to generate the figures in this paper. This will be followed by our concluding

remarks in Section Seven.

2 . BACKGROUND, PROBLEMS AND DESIDERATA

Geometric modelling plays a key role in computer graphics and computer aided design (CAD).

Since interactive computer graphics became viable more than three decades ago, great efforts

have been made in this field, resulting in a variety of modelling schemes. Here we use the term

scheme to denote a specific data type and its associated methods for creating graphics objects.

2.1 Solid Modelling
Many existing modelling schemes were designed to support solid modelling, a discipline that

has a strong industrial relevance and encompasses a body of theory, techniques and systems

focused on “informationally complete” representations of solid [REQU82]. Those which

“made waves” include:

• Boundary Representations (b-reps) [AGOS76, REQU77, REQU85] — A solid object is

represented by segmenting its boundary into a finite number of faces. Planar faces are

normally further segmented into bounding edges and vertices, while non-planar faces are

specified with the support of additional representation schemes for curved surfaces, for

example, parametric bicubic patches [FOLE90].

• Constructive Solid Geometry (CSG) [REQU77] — This scheme allow complicated objects

to be represented as various ordered “union”, “intersection” and “difference” of simpler

objects, which may be bounded primitives or halfspaces. It is supported by the Boolean

4

algebra and a set of well-understood regularised set operators. Boundary representations

and CSG are the most extensively used schemes in computer graphics and CAD. They

have a range of variations, and are often used in conjunction with each other and other

schemes, leading to many hybrid schemes.

• Sweeping [BINF71] — The volume of a solid is defined by sweeping a 2D or 3D object

along a trajectory through space. The scheme provides users with an intuitive means for

constructing a group of objects, and is particularly effective in describing objects that can

be specified through translational or rotational sweeping.

• Cell Decomposition [AGOS76] — With this scheme, an object is decomposed into a set of

solid primitives such as cubes, spheres and tetrahedra. Methodologically, it could be

viewed as a restricted form of CSG, where objects are unions of disjoint cells. However,

the disjointness may be exploited usefully in computing various integral properties of

objects such as the volume of an object. The scheme, and the triangulated form in

particular, has been extensively used finite element analysis [WAIT85].

• Spatial Occupancy Enumeration [MARC74] — An object under this scheme is essentially a

list of spatial cells, which are normally cubes of a fixed size and lie in a fixed spatial grid.

The scheme was designed as “coarse” approximations of solids, and was also combined

with CSG to form a hybrid scheme [REDD78]. Although it possesses some theoretically

desirable properties such as uniqueness and finiteness, the scheme has not been adopted

extensively in solid modelling. Nevertheless, it introduced the term “volume element

(voxel)” that played a much more important role in volumetric representations.

• Octrees [REDD78, MEAG82] — As a 3D analogue of the quadtree, octrees are a

hierarchical variant of spatial occupancy enumeration, aiming mainly at storage reduction.

With this scheme, each object is bounded by a cubical volume that is to be recursively

subdivided into congruent disjoint octants where occupancy is indicated, until an

appropriate balance between storage requirements and necessary complexity is reached.

• Binary Space-Partitioning Trees [THIB87] — The scheme was originally created for

determining visible surfaces in the rendering process, and it builds a binary tree structure

usually based on a boundary representation with planar faces.

There are also many hybrid schemes, and algorithms for conversion between different

representations [REQU80].

2.2 Non-solid Object Modelling
For the past two decades, we have also witnessed the rapid popularisation of a number of

modelling schemes that are capable of representing non-solid objects, or objects whose

boundary cannot easily be described explicitly. They include

5

• Implicit Surfaces — This scheme facilitates the representation of “blobby models”

[BLIN82] and “soft objects” [WYVI86] through implicit surface functions, and the

composition of more complicated objects based on the concept of “fields”. Its elegance lies

in the mapping from implicit functions in the real domain to surface-based objects primarily

in the binary domain. In addition to its built-in composition capability, the concept of CSG

was also applied to the scheme [DUFF92].

• Volumetric Representations — With this scheme, an object is represented by a “volume”

that is commonly defined by a regular 3D grid, where each grid point is associated with a

value. Although it is conceptually an extension of the spatial occupancy enumeration

scheme, the scheme has been popularised through its extensive usage in 3D medial imaging

[STYT91]. There are also representations allowing irregular grids or scatter point sets. The

underlying concept of this scheme is “scalar fields” [FOLE90]. Two important factors that

justify the popularity of the scheme are its simplicity in data structures and its power to

represent an object’s surface as well as its interior, and thereby to model solids as well as

amorphous phenomena.

• Particle Systems [REEV83] — A particle system is defined by a collection of particles that

evolves over time. The scheme has been used successfully to model objects such as fog,

fire, smoke, fireworks and grass.

• Fractals [FOUR82, BARN93] — Fractal objects, which exhibit self-similarity, are

generated by infinitely recursive processes, or approximated by finite ones. It was

computer graphics that brought it into the attention of the world with spectacular images,

while equipping itself with a sophisticated tool for modelling certain classes of objects

including terrain and images.

• Grammar-based Models [SMIT84] — Under this scheme, objects are described by

grammars and languages that are capable of representing symbolically parts of objects and

their topological and geometrical dependency. The scheme has demonstrated its particular

effectiveness through modelling plants.

There are also many special-purpose schemes, such as ocean-wave models [FOUR86], cloud

models [GARD84] and cloth models [WEIL86], many of which are physically-based

[BARR89].

2.3 Comparison and Discussions
There is a well-defined set of properties used to compare different schemes in solid modelling

[REQU80]. Using Requicha’s definition and his analysis of boundary representations and

CSG, we summarise in Table 1 the properties of the four modelling schemes which are most

commonly used and are relevant to this work. In the table, we consider only the basic

representation method of each scheme. For example, the properties of CSG are all correct for

6

representations built from only bounded primitives, but not so if half-spaces are used as

primitives. Neither did we include Boolean set operations on boundary representations

[REQU85] as such as this would be regarded as a hybrid scheme. For volumetric

representations, we adopt the definition where an object is referred to as a whole volume but

not the segments within a volume.

Table 1: A summary of the properties of four modelling schemes.
Boundary

Reps
CSG Implicit

Surfaces
Volumetric

Reps

Domains Ñ descriptive power:

object domain: suitable object types,
solids and
surfaces solids

blobby/soft
objects

rigid and amor-
phous objects

attribute domain: such as colour and opacity
which are defined with,

objects or
textures

primitives or
objects

primitives or
objects voxels

mathematical domain: for defining topology. bi- or trinary binary real real

Validity Ñ characteristics:

rigidity: a shape is independent of location and
orientation

Yes
Yes Yes Yes

orientability and closedness: each surface has
distinguishable sides and no dangling portions Yes Yes No No

spatial finiteness: all objects occupy a finite space Yes Yes No Yes

finite describability: all objects are represenable in
computer Yes Yes Yes Yes

operational closure: all composite objects posses
the same characteristics as their components N/A Yes Yes N/A

Completeness/unambiguousness Ñ a
representation correponds to one single object. Yes Yes Yes Yes

Uniqueness Ñ an object is uniquely described by its
representation. No No No No

Conciseness Ñ the ÒsizeÓ of representations. Poor Good Good Poor

Data creation Ñ the ease with which objects may be
created:

through user interface, Poor Good Fair Poor

through digitisation. Good N/A N/A Good

Although it would be unnecessary and impractical, and perhaps even impossible, to seek

unification of all these schemes into one super-scheme, it is desirable to have a general purpose

scheme which exhibits a number of important features, such as descriptive power, finite

describability, constructive geometry, mathematical rigour, and rendering efficiency.

The descriptive power of volume data types is generally recognised. They are true 3D

representations, which allow geometrical and physical properties to be defined on every point

in a given 3D volume. Most applications employ only very simply data structures in the form

of 3D arrays, which facilitate fast hardware and parallel implementations. Despite these

features, it is still quite common for volumetric data to be converted to surfaces before being

7

manipulated or rendered [RANJ94]. Many suggested obstacles to using volume data types

either result from misconceptions, or can be removed by recent technological developments.

Despite of various merits of using volume data types, it must be recognised that the

conventional volume-based modelling method is not as sophisticated as those of other

schemes. It lacks a constructive method that allows complex objects being built from simple

ones; and a mature mathematical specification that supports combinational operations on

volumetric datasets. In order for volume-based research to reach beyond the scope of

visualisation applications and to play a more important role in graphics, it is essential to address

such weaknesses of volume data types.

3 . ALGEBRA FOR SCALAR FIELDS

The fundamental definitions of a spatial and volume object, and operations on objects, are

based on scalar fields in three dimensional space E3 (i.e. R3 with the standard Euclidean

metric). In this section we summarise properties of scalar fields, and operations on fields and

their laws, which prepare the foundation for the general concepts of spatial objects and volume

objects in Sections 4 and 5 respectively.

3.1 Scalar Fields.
Let R denote the set of all real numbers, and E3 denote 3D Euclidean space.

Definition: A scalar field is a function F: E3 → R. A scalar field F is bounded if

there are m, n ∈ R, m n such that for all p ∈ E3, m F(p) n; in this case clearly F:

E3 → [m, n]. The set of all scalar fields is [E3 → R], and the set of scalar fields

bounded by m, n is [E3 → [m, n]].

Note that we do not require a scalar field to be a continuous function.

In a typical computer graphics or visualisation application, we may use an opacity field

O: E3 → R

to specify the visibility O(p) of every point in E3, and other fields

8

A1, A2, … Ak: E
3 → R

for colours, reflection coefficients, etc., which are referred to as attributes generically.

In the following discussions, we assume scalar fields are bounded by 0 and 1, that is,

F: E3 → [0, 1],

since for scalar fields this is the most commonly used real domain, and to which all other

computer-representable domains can be easily mapped. When scalars are used to represent

different attributes, we denote [0, 1] by S, T, etc. to reflect the name of the attributes. Thus the

sets of scalar fields are [E3 → S], [E3 → T], etc. The names of scalar fields will be considered

in a more formal manner in Section 4.2.

3 .2 Operations
We are interested in a number of operations on scalar fields which we will derive from

operations on scalars. Let S = [0, 1] be a set of scalars, and R+ denote the set of non-negative

real numbers. The general form of an operation on scalars can be written as a function

g: Su × R+v → S

that is, for s1, …, su ∈ S, r1, …, rv ∈ R+, u > 0 and v 0,

g(s1, …, su, r1, …, rv) ∈ S.

We can extend the definition of such an operation to scalar fields by applying the operation

to scalars at every point in E3. Let [E3 → S] be the set of all scalar fields on E3 with values in S .

Given an operation g on scalars, the corresponding operation

G: [E3 → S]u × R+v → [E3 → S]

on scalar fields is defined for all p ∈ E3,

G(F1, …, Fu, r1, …, rv)(p) = g(F1(p), …, Fu(p), r1, …, rv)

where F1, …, Fu ∈ [E3 → S], r1, …, rv ∈ R+, u > 0 and v 0. G is called the pointwise

extension of g.

Note that the extension is uniquely determined: for operations g and h on scalars with their

pointwise extensions G and H to operations on scalar fields,

g = h ⇒ G = H

9

Furthermore, standard properties and laws of operations on scalars also hold for the

corresponding operations on scalar fields.

Theorem: Let g1, … gk be operations on scalars. Let

t(g1, … gk) = t´(g1, … gk) in S

be a valid equation where t, t´ are terms that formalise a sequence of compositions of

g1, … gk. Then if G1, … Gk are the operations on scalar fields induced by g1, … gk,

we have

t(G1, … Gk) = t´(G1, … Gk) in [E3 → S].

This principle can be expressed more precisely and generally, in data type theory [MEIN92].

We will continue to use lower case names for operations on scalars and upper cases for scalar

fields. To avoid repetition, we will give only the definitions and laws of scalar operations. A

set of corresponding laws for scalar fields can be obtained easily.

3 .3 Basic Operators for Scalars and Their Laws

Definitions: Let s1, s2 ∈ S, r ∈ R+, and we define the following operators on the

interval S.

Algebra scalars
Carriers S=[0, 1], R+

Operations max: S×S→S

min: S×S→S

add: S×S→S

sub: S×S→S

mult: R+×S→S

Definitions max(s1, s2) = maximum(s1, s2)
min(s1, s2) = minimum(s1, s2)
add(s1, s2) = minimum(1, s1+s2)

sub(s1, s2) = maximum(0, s1–s2)
mult(r, s) =minimum(1, r·s)

where ‘+’, ‘–’ and ‘·’ are the ordinary arithmetic operators, and 0 and 1 are two

constants in S.

From these definitions, we can obtain the following set of equational laws that hold:

10

1. Commutative Laws max(s1, s2) = max(s2, s1)
min(s1, s2) = min(s2, s1)

add(s1, s2) = add(s2, s1)
mult(r, s) = mult(s, r)

2. Associative Laws max(s1, max(s2, s3)) = max(max(s1, s2), s3)
min(s1, min(s2, s3)) = min(min(s1, s2), s3)
add(s1, add(s2, s3)) = add(add(s1, s2), s3)

3. Distributive Laws add(s1, max(s2, s3)) = max(add(s1, s2), add(s1, s3))
add(s1, min(s2, s3)) = min(add(s1, s2), add(s1, s3))
mult(r, max(s1, s2)) = max(mult(r, s1), mult(r, s2))
mult(r, min(s1, s2)) = min(mult(r, s1), mult(r, s2))
mult(r, sub(s1, s2)) = sub(mult(r, s1), mult(r, s2))

4. Indempotent Laws max(s, s) = s min(s, s) = s
5. Identity Laws max(s, 0) = s

min(s, 1) = s
add(s, 0) = s

sub(s, 0) = s
mult(1, s) = s (1 ∈ R+)

6. Dominance Laws max(s, 1) = 1
min(s, 0) = 0
add(s, 1) = 1

sub(0, s) = 0
mult(0, s) = 0 (0 ∈ R+)

7. Absorption Laws max(s1, min(s1, s2)) = s1
max(s1, sub(s1, s2)) = s1

min(s1, max(s1, s2)) = s1
min(s1, add(s1, s2)) = s1

8. Other Useful Laws sub(s, 1) = 0
sub(s1, max(s2, s3)) = min(sub(s1, s2), sub(s1, s3))
sub(s1, min(s2, s3)) = max(sub(s1, s2), sub(s1, s3))
sub(s1, add(s2, s3)) = sub(sub(s1, s2), s3)
mult((r1+r2), s) = add(mult(r1, s), mult(r2, s))

We also note that

mult((r1·r2), s) mult(r1, mult(r2, s))
mult(r, add(s1, s2)) add(mult(r, s1), mult(r, s2))
sub(s1, sub(s2, s3)) add(sub(s1, s2), ss)

We can also derive more complicated operations from these basic operations, such as the

average function:

avg(s1, s2) = add(mult(0.5, s1), mult(0.5, s2)).

3 .4 Additional Operators for Scalars
Let S and T be two sets of scalars, representing two different types of attributes, on which we

have the following operations:

11

Algebra two scalars
Carrier S=[0, 1], T=[0, 1]
Operations combine: S×T×S×T→T

select: S×T×S×T→T

cap: S×T×S×T→T

Definitions

combine (,),(,)

,

s t s t

t s t s
s s

s s

t t
s s

1 1 2 2

1 1 2 2

1 2
1 2

1 2
1 2

0 0

2
0

() =

⋅ + ⋅
+

≠ ≠

+ = =










 or

select (,),(,)s t s t
t s s

t s s1 1 2 2
1 1 2

2 1 2
() =

≥
<





cap (,),(,)s t s t

t s s

s s
1 1 2 2

1 1 2

1 20
() =

>

≤







where ‘+’ and ‘·’ are the ordinary arithmetic operators.

4 . SPATIAL OBJECTS AND THEIR COMPOSITION

4 .1 Spatial Objects
In volume graphics, intuitively an object is considered to be a mass of points, with some

properties associated to each point. The specification of these properties depends on the

application concerned and unfortunately the rendering program used. We give a general

definition of “spatial object” (or object for short), all of whose properties are called attributes

and one of which is opacity.

Definition: A spatial object is a tuple

o=(O, A1, …, Ak)

of scalar fields defined in E3, including an opacity field O: E3 → R specifying the

visibility of every point in E3 and possibly other attribute fields A1, …, Ak: E3 → R,

k 0.

12

The opacity field “implicitly” defines the “visible geometry” of the object. Given an opacity

field O: E3 → [0, 1], a point p ∈ E3 is said to be opaque if O(p) = 1, transparent if O(p) = 0,

and translucent or semi-transparent otherwise. Any point which is not transparent is potentially

visible to a rendering algorithm. In order words, the “visible geometry” of the object can be

defined in general as

{p ∈ E3 | O(p) > 0}.

A spatial object is fully opaque if for all p ∈ E3, O(p) = 1, and is fully transparent if for all

p ∈ E3, O(p) = 0. We use the notations and for fully opaque and fully transparent if

objects respectively.

Note that we have deliberately avoided the introduction of the iso-surface concept

[LORE87] which has been extensively used in volume visualisation. This is simply because we

are interested in developing a modelling scheme that models objects in their three dimensional

entirety, and that is independent from specific rendering algorithms or applications. One may

argue the need for specifying points that belong to an object but are completely transparent. We

feel to include a separate geometry field which specifies the surface or volume of an object but

not its visibility would only introduce unnecessary complexity, because the need for specifying

invisible points is very rare in graphics applications, though the above definition does not

prevent such a field from being defined as an attribute.

4.2 Signature and Compatibility
Different applications define objects with different attributes. It is necessary for a modelling

scheme to maintain the inter-operability of objects in a consistent manner. We therefore

introduce syntax for naming and identifying scalar fields.

Definition: A spatial object signature is a collection of names for space,

attributes and scalar fields; it has the following form:

Spatial object signature

Space euclid

Attributes opacity, attribute1, …, attributek

Fields Opacity: euclid → opacity

Attribute1: euclid → attribute
…
Attributek: euclid → attributek

13

In this paper, we are assuming that space is interpreted by Euclidean space E3 and all attributes

are interpreted by the interval [0, 1].

We have

O()

to denote the set of all spatial objects with signature . Clearly, using the above interpretation

we have

O() = {(o0, …, ok) | oi: E
3→[0, 1] 0 i k} = [E3→[0, 1]]k+1

4 .3 Operations on Objects
Operations on objects are built from operations on the scalar fields of the objects. Let oi =(Oi,

Ai,1, …, Ai,k) and oj =(Oj, Aj,1, …, Aj,k) be two objects of the same signature . For

example, we may define a general binary operation

Φ: O()×O()→ O()

as the composition of any set of 2(k+1)-ary operations G0, G1, …, Gk on scalar fields by:

Φ(o1, o2) = (G0(Oi, Ai,1, …, Ai,k; Oj, Aj,1, …, Aj,k),

G1(Oi, Ai,1, …, Ai,k; Oj, Aj,1, …, Aj,k),

…,

Gk(Oi, Ai,1, …, Ai,k; Oj, Aj,1, …, Aj,k)).

In most applications it is adequate to define Φ using only binary operations on the

corresponding attribute fields as follows

Φ(oi, oj) = (GO(Oi, Oj), G1(Ai,1, Aj,1), …, Gk(Ai,k, Aj,k));

and sometimes allowing operations involving opacity fields in addition to the corresponding

attribute fields as

Φ(oi, oj) = (GO(Oi, Oj), G1(Oi, Ai,1, Oj, Aj,1), …, Gk(Oi, Ai,k, Oj, Aj,k)).

14

4.4 CVG Algebras
Our Constructive Volume Geometry is founded upon the following concept:

Definition: A CVG algebra consists of a set S() ⊆ O() of spatial objects

with spatial signature together with a collection Φ1, …, Φm operations on these

spatial objects. We write a CVG algebra in the following way:

CVG algebra

Objects S()

Operations Φ1: S()n1 → S()
…

Φm: S()nm → S()

We will shortly meet two spatial signatures and a selection of subsets S() and operations

Φ. Later (in Section 5) we will refine this general concept with computational properties.

4.5 CVG Terms
The purpose of a CVG algebra is to create spatial objects by building them from simpler objects

using the operations. For instance, given a CVG algebra with say three binary operations Φ, Ψ

and ∆, and spatial objects o1, o2, o3, o4, o5, algebraic expressions of the form:

Φ(∆(Φ(o1, o2), Ψ(o3, o4)), o5)

represent new spatial objects made by transforming the given o1, o2, o3, o4, o5. Such

expressions are (the semantics of) high-level descriptions of spatial objects, and are at the heart

of our CVG. We must make these high-level descriptions precise by defining the language of

CVG terms whose semantics will be spatial objects. The definition of the syntax of the

language proceeds in two steps.

15

Definition: A CVG signature Γ is a collection of names for a set of spatial

objects and operations on that set. Recalling the general definition of a CVG algebra in

4.4, a CVG signature for that algebra will have the following form:

Spatial object signature Γ
Spatial objects so

Operations φ1: son1 →so
…

φm: sonm →so

Now we can define the algebraic expressions formally:

Definition: Let X = {x1, x2, …} be a set of variables for spatial objects of

spatial signature . A CVG term over the CVG signature Γ and variables X is an

expression t that is recursively defined by

t ::= xi | φ1(t1, …, tn1) | … | φm(t1, …, tnm)

where xi ∈ X and tj are CVG terms. The set of all CVG terms over Γ and X we denote

CVG Term (Γ, X).

A CVG term is a syntactic definition of a spatial object. More precisely, there exists

semantic mappings

[]: CVG Term (Γ, X) →S()

such that for CVG term t

 [t] = spatial object of signature defined by t.

It is easy to define these mappings by recursion on the signature of terms. Given a CVG

algebra A with signature Γ (recall 4.4) and o = o1, o2, … ∈ S()

 []o: CVG Term (Γ, X) → A

by

16

[xi]o = oi

[φj(t1, …, tnj)]o = Φj([t1]o, …, [tnj]o)

with our standard interpretation of space and attributes.

4 .6 Example I: Opacity-Channel Model
One of the simplest models in CVG may contain only an opacity channel that determines the

visibility of E3. We define the signature of this model to be

Spatial Signature op = opacity channel model

Space euclid
Attributes opacity
Fields Opacity: euclid → opacity

and a set of operations below that allow us to compose objects.

CVG Algebra opacity channel model
Spatial Objects O(op) = [E3 → [0, 1]]
Operations union : O(op)×O(op) → O(op)

intersection : O(op)×O(op) → O(op)

difference : O(op)×O(op) → O(op)

Definitions (o1, o2) = MAX(O1, O2)

 (o1, o2) = MIN(O1, O2)

 (o1, o2) = SUB(O1, O2)

Here MAX, MIN and SUB are the pointwise extensions of max, min and sub in 3.3; and O1,

O2 are opacity fields.

Figure 1 illustrates the effects in an x-y plane with z=0, which result from applying such

operations to two spatial objects that are defined respectively by scalar fields

O1(p) =

1 0 5 1

0

2 2 2− = + + + ≤




r r p p pa a x y zif

otherwise;

(.) ,

O2(p) =

1 0 5 1

0

2 2 2− = − + + ≤




r r p p pb b x y zif

otherwise.

(.) ,

17

(a)

(c) (d)

(b)

(e)

Figure 1. A 2D illustration of operations in the opacity channel model:
(a) o1, (b) o2, (c) (o1, o2), (d) (o1, o2), and (e) (o1, o2),

where the opacity is mapped onto greyscale except that the zero opacity is shown in blue.

As the “geometry” of a spatial object is defined

through the visibility of every point in E3, the

traditional concept of “boundary” is no longer as

clear cut as in a surface based representation, but

can be defined with an iso-surface, O(p) = τ, in an

opacity field. Inevitably, an operation on scalar

fields, will affect different iso-surfaces differently.

Figure 2 shows three iso-surfaces in E3 with

Figure 2. Three iso-surafces in scalar field
MAX(O1, O2) with O(p) = 0.1, 0.4 and 0.7.

MAX(O1, O2)=0.1, 0.4 and 0.7 respectively, and iso-surfaces become disjoint when the

corresponding iso-values increase.

Let denote a fully opaque spatial object, and a fully transparent one as defined in 4.1.

From the laws for the basic operations on scalars (3.3) and the definition of operations on

objects (4.3), we can derive a set of laws for , , and as follows.

18

1. Commutative Laws (o1, o2) = (o2, o1) (o1, o2) = (o2, o1)

2. Associative Laws (o1, (o2, o3)) = ((o1, o2), o3)

 (o1, (o2, o3)) = ((o1, o2), o3)

3. Indempotent Laws (o, o) = o (o, o) = o
4. Identity Laws (o,) = o (o,) = o (o,) = o
5. Dominance Laws (o,) = (o,) = (, o) =
6. Absorption Laws (o1, (o1, o2)) = o1 (o1, (o1, o2)) = o1

 (o1, (o1, o2)) = o1

7. Other Useful Laws (o,) =
 (o1, (o2, o3)) = ((o1, o2), (o1, o3))

 (o1, (o2, o3)) = ((o1, o2), (o1, o3))

As mentioned in Section 4.1, the opacity channel implicitly defines the “visible geometry”

of an object. The geometrical features become more obvious if we substitute the interval [0, 1]

by Boolean domain B={0, 1}⊂ [0, 1] in the opacity model.

Given a Boolean opacity field O: [E3 → B], a point p ∈ E3 is said to be inside a surface (or

opaque) if O(p) = 1, and outside (or transparent) if O(p) = 0. In this context, operations ,

and are essentially operations on sets defined by Boolean scalar fields, and they are

equivalent to those in CSG (Constructive Solid Geometry) [REQU77].

Theorem: The Constructive Solid Geometry (CSG) based on union ∪ ,

intersection ∩ and difference – is embedded in the corresponding Boolean Opacity Only

Model of CVG based on , , and .

The precise formulation and proof of this requires an injective mapping ε from a CSG

algebra to a CVG algebra such that:

ε(xa ∪ xb) = ε(xa) ε(xb),

ε(xa ∩ xb) = ε(xa) ε(xb),

ε(xa – xb) = ε(xa) ε(xb),

19

where xa and xb are two CSG objects. Figure 3 illustrates such a correspondence. Thus, with

our chosen operations, we can embed isomorphically a CSG algebra into a CVG algebra. The

well known CSG laws for ∪ , ∩ and –, can then be deduced from our CVG laws for , ,

and . Of course, other operations of CSG (e.g., regularised set operations) would need

corresponding additional operations and laws for the CVG algebra.

CSG

CVG —
Boolean

Opacity Only
Model

CVG — Opacity Only Model

ε

Figure 3. The algebraic mapping from CSG to the Boolean Opacity Only Model.

In practice, the CVG Boolean Opacity Only

Model possesses the same modelling capability as

the CSG Method. Figure 4 shows CVG objects

 (o1, o2) defined with Boolean scalar fields

O1(p) =

1 0 5 1

0

2 2 2if

otherwise;

(.) ,p p px y z+ + + ≤





O2(p) =

1 0 5 1

0

2 2 2if

otherwise.

(.) ,p p px y z− + + ≤





Figure 4. Spatial objects based on Boolean
scalar fields.

From the perspective of surface-based modelling, operations defined in the real domain R,

or [0, 1] in our case, may seem to be an over-kill. Nevertheless, they are absolutely essential in

volume graphics because of the presence of amorphous objects and the necessity for

maintaining accuracy in finite volumetric representations. This will become obvious in the

following discussions.

4 .7 Example II: 4-Colour-Channel Model
Consider a more commonly used 4-colour-channel model proposed by Porter and Duff

[PORT84]. It was originally designed to describe an image, and was later adapted for

volumetric datasets in visualisation [LEVO88]. In this model, there are three colour channels,

red, green and blue, and an alpha channel used to simulate opacity or assist anti-alisasing

20

techniques. We define the signature of this model as 4cc =(opacity, red, green, blue) and a set

of operations derived from Porter and Duff’s work. These operations are intended for CSG in

the domains of scalar fields, but not for colour mixing in terms of particle or fluid materials,

which will be discussed briefly in Section 4.8.

Spatial Signature 4cc = 4 colour channel model

Space euclid
Attributes opacity, red, green, blue
Fields Opacity: euclid → opacity

Red: euclid → red

Green: euclid → green

Blue: euclid → blue

CVG Algebra 4 colour channel model
Spatial Objects O(4cc) = [E3 → [0, 1]]4

Operations union : O(4cc)×O(4cc) → O(4cc)

intersection : O(4cc)×O(4cc) → O(4cc)

difference : O(4cc)×O(4cc) → O(4cc)

Definitions (o1, o2) = (MAX(O1,O2), SELECT (O1,R1,O2,R2),
SELECT(O1,G1,O2,G2), SELECT(O1,B1,O2,B2))

 (o1, o2) = (MIN(O1,O2), , SELECT (O1,R1,O2,R2),
SELECT(O1,G1,O2,G2), SELECT (O1,B1,O2,B2))

 (o1, o2) = (SUB(O1,O2), R1, G1, B1)

where MAX, SELECT and SUB are the pointwise extensions of max, select and sub in 3.3

and 3.4. Note that some of the laws given in 4.6 will not be applicable to 4cc, because of the

SELECT operation used for colour fields. However, singularity conditions normally appears at

only points where two spatial objects have the same opacity.

We may also define a scaling operation : R+4×V→V as

 ((rO,rR,rG,rB), o) = (MULT(rO,O),MULT(rR,R),MULT(rG,G),MULT(rB,B)).

Figure 5 shows the basic operations, , and , on two spatial objects. Spatial object

o1 is defined with a cubic region within which {O, R, G, B} = {0.5, 1, 0, 1}, while o2 is

defined with a different cubic region, within which {O, R, G, B} = {1, 0.5, 1, 0.5}. As o2

has a stronger opacity field than o1, one can clearly notice that the resulting objects are non-

21

symmetric. For example, in (o1, o2), o2 appears to have penetrated into o1 but not vice

versa. With difference operations, part of o1 has been segmented off by o2 through

 (o1, o2), while o1 has only managed to reduce the opacity of part of o2 with (o2, o1).

(a) (o1, o2)

(c) (o1, o2)

(b) (o1, o2)

(d) (o2, o1)

(e) Two iso-surfaces of (o1, o2)
with O(p) = 0.5 and 1.0 respectively.

Figure 5: Examples of basic CVG operations for ·4cc.

Similar to CSG, complex spatial objects can be constructed from elementary spatial objects

such as cubes, spheres and so on. Figure 6 shows three simple spatial objects, a cube, a sphere

and a cylinder, and two composite objects generated using CVG operations. The three simple

spatial objects in Figure 6(a) are defined with the following field functions:

Green
cube

{O, R, G, B}(p)
if

otherwise.
=

− ≤ ≤



{ , . , , . } , , ,

{ , , , }

1 0 4 1 0 4 1 1

0 0 0 0

p p px y z

Peach
sphere {O, R, G, B}(p) if

otherwise.
= − = + + ≤





{ , , . , . } ,

{ , , , }

1 1 0 7 0 4 1

0 0 0 0

2 2 2r r p p ps s x y z

Blue
cylinder {O, R, G, B}(p) if

otherwise.
= − = + ≤ − ≤ ≤





{ , . , . , } ,

{ , , , }

1 0 3 0 3 1 1 1 1

0 0 0 0

2 2r r p p pc c x y z

22

To compose the spatial object shown in Figure 6(b), we first apply appropriate geometrical

transformations, including scaling and translation in this case, to the simple objects, resulting

in a flat rectangular slab r, a sphere s and two cylinders c1, c2. These spatial objects are then

integrated together through a CVG term, ((r, s), (c1, c2)). Similarly, the composite

object shown in Figure 6(c) is constructed using (((c1, c2), r), s) with appropriate

transformations.

(a)

(b) (c)

Figure 6. (a) Three simple spatial objects, s, r, c, and their compositions with
(b) ((r, s), (c1, c2)), and (c) (((c1, c2), r), s)

Unlike CSG objects that are normally modelled with boundary representations, spatial

objects in 4cc has true 3D “geometry” as well as 3D colour properties. The colour properties

of a spatial object are manipulated in the same way as its opacity (i.e. geometry), though with a

different field operation. By replacing the constant colour fields of simple objects with some

field functions, CVG can be used to describe effectively the internal structures of objects, and

subsequently to compose new objects in a more sophisticated manner. Figure 7 show such an

example, where the colour fields of the sphere and cylinder are defined as:

Peach
sphere {R, G, B}(p) if

otherwise.
= + = + + ≤





{ . . , . , . } ,

{ , , }

0 3 0 7 0 4 0 4 1

0 0 0

2 2 2r r r r p p ps s s s x y z

Blue
cylinder {R, G, B}(p) if

otherwise.
= + + = + ≤ − ≤ ≤





{ . . , . . , } ,

{ , , }

0 7 0 3 0 7 0 3 1 1 1

0 0 0

2 2r r r r p p pc c c c x y z

23

Figure 7: Isosurfaces of spatial objects with varying internal structures, from left to right:
 (s, r), (c, r), (c, s), ((c, s), r), (c, s), ((c, s), r).

4 .8 Other Possible Models
There are normally many other attributes associated with a graphics object, including

coefficients for ambient, diffuse and specular reflections and specular reflection exponent. For

those figures in 4.7, we used the SELEC operation, which is the pointwise extension of select

in 3.4, for such attributes in a way similar to colour fields. There are also more complicated

colour mixing operations suitable for particle systems and fluid materials. For example, Oddy

and Willis introduced a 7-colour-channel model [ODDY91] based on an idealised physical

analogy, where the colour of an object is separated into the part from pigmented particles, and

that from a homogeneous medium. An additional channel defines the opacity of the material

and the proportional effect of the two parts of colour.

With the scalar operations in 3.3 and 3.4 and other additional ones if necessary, more

complicated signatures may be formulated to model the composition of spatial objects based on

physics or empirical simulation. The theory of CVG has provided a mathematically sound

framework for such extensions, together with a mechanism, to be outlined below, for dealing

with fields which cannot be described by simple functions.

5 . VOLUMETRIC OBJECTS

We have so far considered the concepts of “scalar fields” and “spatial objects” in the abstract,

without looking at the practical details of how they would be defined or computed. Of course, a

scalar field can be defined by any function in [E3 → R] as shown in 4.6 and 4.7. In the context

of volume graphics, however, this is not the main objective of CVG proposed here. As

mentioned in Section 2, this work concerns a modelling scheme that

(a) facilities finite representations of graphics objects,

(b) is suitable for geometrical manipulation and computation, and

(c) can be efficiently implemented and rendered.

24

Conventional volumetric representations satisfy (a) and (c) quite well, but can not be directly

employed in constructing complex object. By transforming volume data types to spatial objects

based on scalar fields, we shall be able to apply the algebraic operations defined above to

volume data types indirectly. In this section, we will give a method which allow a spatial object

to be derived from its original volumetric dataset.

First we consider a general boundedness property of spatial objects with aims (a) ~ (c) in

mind. Then we define a practically useful class of spatial objects defined by interpolation

methods on convex subsets of E3.

5 .1 Volume Objects
We are interested in spatial objects whose “visible geometry” are contained within a finite

region of E3.

A scalar field F: E3 → [0, 1] is bounded (respectively, compact) if there exists a bounded

set X ⊆ E3 (respectively, compact) such that

x ∈ E3 – X implies F(x) = 0.

We say F is bounded by X.

Definition A spatial object o ∈ O() is a volume object if there is a bounded

set X such that each scalar field of o is bounded by X. We denote V() to the set of all

volume objects of spatial signature .

Returning to our concept of a CVG algebra in 4.4, we note that the set S() of spatial

objects of interest are likely to be volume objects, i.e.

S() ⊆ V() ⊆ O()

and the operations Φ1, …, Φm are likely to preserve boundedness. Clearly, the operations of

op and 4cc (in 4.6, 4.7) preserve boundedness.

25

5 .2 Volumetric Scalar Fields
A practical method of creating a volume object is to derive a bounding set X from a finite set P

of points and to derive scalar fields by interpolating values over X from values at the points in

P .

Given a finite set P={p1, p2, …, pn | pi ∈ E3} of distinct points, we will call the convex

hull Vol(P) of the point set P the volume of P, and p1, p2, …, pn voxels.

When each voxel pi is associated with a known scalar value vi, and the value at every other

point in Vol(P) can be uniquely determined by an interpolation function I defined upon the

known scalar values, a volumetric scalar field F can be defined in E3 by

F(p)

I p, p ,v , , p ,v p (P)1 1 n n= () … ()() ∈
∉





Vol
Vol0 p P()

Such a field is defined by a tuple

(I, (p1, v1), … (pn, vn)).

The most typical volumetric scalar field would be the data obtained through computed

tomography (CT), where voxels are organised in the form of a regular 3D grid and each voxel

is associated with a density value. Tri-linear interpolation is usually used to determine the

unknown values in Vol(P), and this, together with the grid of voxels, defines a volumetric scalar

field. For a non-regular volume with scattered voxels, 3D Delaunay triangulation [HOPP92]

may be applied to Vol(P), and unknown values in each tetrahedon are then determined by either

tri-linear interpolation, or bary-centric interpolation. The latter method is commonly used in

finite element anaysis, and is defined as follows.

Given an arbitrary tetrahedron with four vertices, p1, p2, p3, p4, whose values are known

as v1, v2, v3, v4, the value v of any point p in the tetrahedron can be uniquely determined by:

v w v vi i
i

i
i

i

= = ∇
∇= =

∑ ∑
1

4

1

4

where wi is the ith bary-centric coordinate of p, ∇ is the volume of the whole tetrahedron, and

∇ i is that of the sub-tetrahedron defined by p and the three tetrahedral vertices other than pi.

26

5 .3 Convex Volume Objects

Definition: A convex volume object based on an interpolation method I is an

object that consists of a finite set of volumetric scalar fields all of which are defined

upon the same Vol(P) by the same interpolation method.

A convex volume object of signature based on method I, is finitely represented by a set of

pairs of voxels and values of the form

{ (pi, vi,j) | 1 i n, 0 j k }

where |P| = n and has k+1 scalar fields.

In volume visualisation [STYT91], for instance, a volumetric scalar field may be defined

upon a CT dataset. By defining a few simple mapping functions, we obtain an opacity field and

three colour fields, which form a spatial object o ∈ O(4cc) as defined in 4.7. Since all scalar

fields in o are derived from the same volumetric scalar field, they share a common Vol(P).

Hence o is a convex volume object.

We also notice that a 2D image is a convex volume object if one associates it with an

opacity field. Figure 9 shows a scene constructed with three convex volume objects, namely

head, sky and clouds. The opacity and colour fields of head are built from a CT dataset

(from University of North Carolina) and colour fields are defined with appropriate mapping

functions upon the opacity field. Both sky and clouds are constructed from an image

(Figure 9(b)) with appropriate transformations (Figure 9(c)), and their colour fields are defined

using the RGB colours of the image. Object sky is placed at the background of the scene and

is completely opaque, while clouds that simulates the clouds surrounding the CT head is

modelled by setting its opacity at each voxel in proportion to the brightness of the

corresponding image pixel. This figure also demonstrates the capability of CVG in modelling

both solid and amorphous objects. The CVG term for this scene is simply the union of three

objects ((sky, clouds), head).

Let C() be a class of all convex volume objects of signature based on method I. Given

o1, o2, …, on ∈ C(), we can construct a composite object o ∈ V() by applying a finite

number of CVG operations to o1, o2, …, on. Clearly the operations in the models in 4.6 and

4.7 preserve boundedness, but not necessarily the convexity. Consider a CVG algebra with

27

signature Γ for C() as discussed in 4.5. The operations of Γ applied to C() generate a sub-

algebra <C()>Γ of V(), and this is illustrated in Figure 10.

(a)

(b)

(c)

Figure 9. Man in the Sky.

O()C() V()<C()> Γ

Figure 10. Classes of CVG objects.

The set of algebraic rules outlined above enable such a composition through a series of

geometrical generalisations, that is, from a set of points, to convex volume object (defined

28

upon a convex hull Vol(P)), then a volume object (upon volumetric scalar field defined in E3),

and finally a spatial object (upon general scalar field in E3); together with a series of operational

decomposition from operations on spatial objects, to those on scalar fields, and then those on

scalars. These algebraic rules not only provide a means for constructing complex CVG objects

from simple convex volume objects, but also ensure that the modelling scheme governed by

these rules is mathematically consistent. It is the general scalar fields at the high-end of the

pipeline facilitates the inter-operability of spatial objects, while the finite representations of

convex volume objects at the other end make data acquisition practical.

6 IMPLEMENTATION

The implementation of CVG techniques involves the design of CVG languages, data

representation methods and rendering algorithms. Here we discuss briefly our implementation

of CVG trees, and a recursive rendering algorithm.

6.1 Hierarchical Data Representations
The previous sections have presented the theoretical concepts for Constructive Volume

Geometry that enable a volume object to be constructed from a set of convex volume objects

can be expressed in a CVG term, such as (((c1, c2), r), s) in 4.7. As with many

other algebraic data types in computer science, a CVG term can be represented by a CVG tree,

where terminal nodes represent convex volume objects and non-terminal nodes represent CVG

operators.

Leu and Chen introduced recently a two-level representation scheme, called TROVE, for

scenes composed of multiple volumetric datasets [LEU98]. The scheme separates objects from

their underlying volumetric data and facilitates a high degree of data sharing and space

reduction. We find that the design principles of TROVE can also be applied to CVG trees.

 As shown in Figure 11, we organise the data of a CVG tree into two levels, namely the

voxel level and object level. The voxel level contains all the raw volumetric datasets, each of

which maintains its original point set and a local coordinate system. At the object level, a CVG

tree is defined with a world coordinate system, and the position of each convex volume object

(terminal node) is specified by a bounding box.

29

SUB

SUB

OR

Disc
Dataset

Sphere
Dataset

Object Level

Voxel Level

Figure 11. The data organisation of a CVG tree.

The bounding box of a convex volume object is a hexahedral box with quadrilateral faces.

As in TROVE, it is not necessary for the adjacent faces or edges to be orthogonal, nor for the

size of the object to correlate with the dimensions of the corresponding Vol(P). To maintain the

generality of CVG trees where the representation of volumetric datasets is not restricted to

regular 3D grids, we define the dimensions of a Vol(P) through a bounding box defined in the

local coordinate system. Thus a mapping can easily be obtained from the two corresponding

bounding boxes. In each terminal node, one may also specify opacity and colour mapping

functions to define or redefine opacity and colour fields in a variety of ways, including

constants, equations and look-up tables. For example, the green rectangular slab in Figure 11

is defined upon the sphere dataset with a constant opacity mapping and some geometrical

transformations.

30

To assist an efficient rendering process, there is also x, y, z-extents stored in each node,

which defines a rectangular region that bounds the corresponding sub-tree. In addition to CVG

operators, we also allow geometric transformations to be specified through CVG trees,

following the provision in many CSG implementations. The semantics of basic CVG trees can

therefore be described as:

Object Level:
<CVG tree> ::= <convex volume object>

| <CVG tree> <operator node> <CVG tree>
| <CVG tree> <transformation node>

<convex volume object> ::= <rectangular region in world coordinates>
<hexahedral box in world coordinates>
<volumetric data>

<operator node> ::= <rectangular region in world coordinates>
<CVG operator>

<transformation node> ::= <rectangular region in world coordinates>
<transformation parameters>

Voxel Level:
<volumetric data> ::= <dimensions in volume coordinates>

<channel dataset> [<channel dataset>]
<channel dataset> ::= <volumetric scalar field>

This representation scheme

facilitates high level data

sharing and separates data to

suit different computational

processes. The scene in Figure

12 contains only two

volumetric datasets, an MRI

scan (from University of North

Carolina), and an image of a

disc. Both the circular base and

the cylinder are defined from

the disc dataset with

appropriate transformation and

colour mappings at the object

level. Four convex volume

objects are constructed from

the same MRI scan with

different colour mappings.
Figure 12. MRI sculpture.

31

6.2 A Direct Rendering Algorithm
Given a CVG object represented by a CVG tree, the goal of a rendering process is to generate a

2D image representing a view of the object. There are three classes of rendering methods in

volume visualisation, namely surface reconstruction [LORE87], forward projection (splatting)

[WEST90, WILH91] and ray casting [LEVO88, SABE88]. In principle, we could always

transform the tree into a single volumetric object by combining scalar fields at each level of the

tree, and then render the tree using one of the conventional methods. However, as discussed

early, it would be more desirable to render the CVG tree directly by processing individual

components as independently as possible. This is the manner that was adopted by most

rendering algorithms designed for constructive solid geometry, for which past research has

shown that ray casting provides the most effective and efficient mechanism. Moreover, in the

context of volume rendering, surface reconstruction suffers from the inability to render

amorphous structures, and forward projection has difficulties to produce high quality surface

for solid models, while ray tracing is able to handle both types of objects.

Consider a ray R that is cast into a scene as illustrated in Figure 13, passing through a pixel

in the image plane and intersecting with the bounding box of a CVG object at the root level of

its CVG tree. Let the ray be represented by [t·Direction+Origin] where Direction is a

normalised vector and Origin is a point in 3D space. The ray enters the box at a point where

t=TE, and leaves at a point t=TL. Similar to volume ray casting, we sample the line segment

between TE and TL at a regular interval.

The implementation supports both direct volume rendering [LEVO88] and direct surface

rendering [JONE95]. The former, which was used to generate Figure 9 and most of the images

in Figure 5, was primarily designed for amorphous objects, but can also work with solid

objects if an opacity field can be suitably defined. With direct volume rendering, the ray

accumulates some opacity and colour at each sampling point S between TE and TL to determine

the colour of the corresponding pixel. The backward ray casting, which samples in the

direction away from the viewing position, is employed to take the advantage of possible early

termination of the ray.

Direct surface rendering allows the display of an iso-surface without explicit surface

reconstruction. Being able to calculate a surface normal at each ray-surface intersection point,

the method avoids the less accurate vertex normal calculations in both Gouraud and Phong

shading, resulting in better rendering quality. Given an iso-value τ, the method follows each

ray and examines pairs of successive samples, S1 and S2. A ray-surface intersection is detected

if O(S1) τ O(S2), or O(S2) τ O(S1).

32

TE
TLRay

Image Plane
Composite Object
at the Root Level

Composite Object

Primary Object

Primary Object

Primary Object

sampling points

Figure 13. Direct volume rendering of a CVG tree.

Our implementation also supports the rendering of multiple iso-surfaces with varying

display opacities (which is not necessarily the iso-values). Figure 14 shows a scene rendered

using direct surface rendering, and it contains three volume datasets, a CT scan, an MRI scan

and an image of rosewood texture. The semi-transparent mask is specified using the CT scan

as (ct, box) where box is used to remove the rear half of ct. The head is built from the

MRI scan with a field scaling operation ((k,1,1,1), mri) in order to eliminate the opacity

overlap between the CT and MRI datasets. The complete CVG term for this scene is:

 (((ct, box), ((k,1,1,1), mri)), wood).

Direct surface rendering was also employed to render many other CVG objects and scenes in

this paper.

33

Figure 14. Man and mask.

7. CONCLUSIONS

We have described the core of a new graphics modelling scheme, namely Constructive

Volume Geometry (CVG), which includes:

• the concepts of spatial objects which are definable through scalar fields in Euclidean

space E3;

• the concepts of operations on objects, CVG algebras and CVG terms;

• a set of basic operations on objects in the context of appropriate graphics models;

• some laws used to characterise operations;

• a hierarchical data representation scheme;

• a recursive rendering algorithm with both surface and volume rendering capabilities.

Unlike constructive solid geometry (CSG), CVG does not limit its operations to

geometrical compositions only, and it can be applied to combine physical properties that are

associated with objects, in addition to the geometrical property. It is intended for CVG not to

fix a set of operations for all graphics models, but to provide an algebraic framework for

defining a variety of operations appropriate to the geometrical, graphical and physical

properties defined in a computer graphics model. The operations defined in Sections 4.6 and

4.7 are treated as templates rather than standards. However, this does not prevent one from

34

defining a set of standard operations for a given graphics model. It is indeed the authors’ wish

to encourage the standardisation of operations within a well-specified model though it is

generally beyond the scope of this paper.

REFERENCES

AGOS76 M. K. Agoston, Algebraic Topology, Marcel Dekker, New York, 1976.
AYAL85 D. Ayala, P. Brunet, R. Juan and I. Navazo, Object representation by means of

non-minimal division quadtrees and octrees.
BARN93 M. F. Barnsley, Fractals Everywhere, Second Edition, Academic Press, Boston,

1993.
BARR89 A. H. Barr (ed.), Topics in Physically Based Modeling, Addison-Wesley,

Reading, MA, 1989.
BINF71 T. Binford, Visual perception by computer, Proc. IEEE Conference on Systems

and Control, Maimi, FL, December 1971.
BLIN82 J. F. Blinn, A generalization of algebraic surface drawing, ACM Trans. Graphics,

1(3):235-256, 1982.
DUFF92 T. Duff, Interval arithmetic and recursive subdivision for implicit functions and

constructive solid geometry, ACM/SIGGRAPH Computer Graphics, 26(2): 131-
138, 1992.

FOLE90 J. D. Foley, A. van Dam, S K. Feiner and J. F. Hughes, Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, 1990.

FOUR82 A. Fournier, D. Fussell and L. Carpenter, Computer rendering of stochastic
models, Communications of the ACM, 25(6):371-384, June 1982.

FOUR86 A. Fournier and W. T. Reeves, A simple model of ocean waves,
ACM/SIGGRAPH Computer Graphics, 20(4): 75-84, 1986.

JONE95 M. W. Jones, The Visualisation of Regular Three Dimensional Data, PhD Thesis,
University of Wales Swansea, 1995.

HOPP92 H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, Surface
reconstruction from unorganized points, ACM/SIGGRAPH Computer Graphics,
26(2): 71-78, 1992.

KAUF87 A. Kaufman, Efficient algorithms for 3D scan-conversion of parametric curves,
surfaces and volumes, ACM/SIGGRAPH Computer Graphics, 21(4): 171-179,
1987.

LEU98 A. Leu and M. Chen, Direct Rendering Algorithms for Complex Volumetric
Scenes, Proc. 16th Eurographics UK Conference, Leeds, March 1998, pp.1-15.

LEVO88 M. Levoy, Display of surfaces from volume data, IEEE Computer Graphics and
Applications, 8(5):29-37, 1988.

LEVO90 M. Levoy, Efficient Ray Tracing of Volume Data, ACM Trans. Graphics, 9(3):
245-261, 1990.

LORE87 W. Lorensen and H. Cline, Marching cubes: a high resolution 3D surface
construction algorithm, ACM/SIGGRAPH Computer Graphics, 21(4):163-169,
July 1987.

MARC74 L. March and P. Steadman, The geometry of Environment, MIT Press, Cambridge,
Mass., 1974.

35

MEAG82 D. Meagher, Geometric modeling using octree encoding, Computer Graphics and
Image Processing, 19(2):129-147, June 1982.

MEIN92 K. Meinke and J. V. Tucker, Universal algebra, in S. Abransky, D. Gabbay and T.
S. E. Maibaum (eds) Handbook of Logic in Computer Science, Volume I, Oxford
University Press, 1992, pp.189-411.

MUEA91 S. Muraki, Volumetric shape description of range data using “Blobby Model”,
ACM/SIGGRAPH Computer Graphics, 25(4): 227-246, 1991.

ODDY91 R. J. Oddy and P. J. Willis, A physically based colour model, Computer Graphics
Forum, 10(2):121-127, 1991.

PORT84 T. Porter and T. Duff, Compositing digital images, ACM/SIGGRAPH Computer
Graphics, 18(3):253-259, 1984.

RANJ94 V. Ranjan and A. Fournier, Volume models for volumetric data, IEEE Computer,
27(7):28-36, 1994.

REEV83 W. T. Reeves, Particle systems — a technique for modelling a class of fussy
objects, ACM/SIGGRAPH Computer Graphics, 17(3):359-376, 1983.

REDD78 D. Reddy and S. Rubin, Representation of Three-Dimensional Objects, CMU-CS-
78-113, Computer Science Department, Carnegie-Mellon University, Pittsburgh,
PA, 1978.

REQU77 A.A.G. Requicha, Mathematical Models of Rigid Solids, Technical Memo 28,
Production Automation Project, University of Rochester, Rochester, NY, 1977.

REQU80 A.A.G. Requicha, Representations for rigid solids: theory, methods and systems,
ACM Computing Surveys, 12(4):437-464, 1980.

REQU82 A.A.G. Requicha and H. B. Voelcker, Solid modeling: a historical summary and
contemporary assessment, IEEE Computer Graphics and Applications, 2(2):9-24,
March, 1982.

REQU83 A.A.G. Requicha and H. B. Voelcker, Solid modeling: Current status and research
directions, IEEE Computer Graphics and Applications, 3(7):25-37, October, 1983.

REQU85 A.A.G. Requicha and H. B. Voelcker, Boolean operations in solid modelling:
boundary evaluation and merging algorithhms, Proceedings of IEEE, 73(1):30-44,
January, 1985.

SABE88 P. Sabella, A rendering algorithm for visualizing 3D scalar fields,
ACM/SIGGRAPH Computer Graphics, 22(4):51-58, 1988.

SMIT84 A. R. Smith, Plants, fractals and formal languages, ACM/SIGGRAPH Computer
Graphics, 18(3):1-10, 1984.

STYT91 M. R. Stytz, G. Frieder and O. Frieder, Three-dimensional medical imaging:
algorithms and computer systems, ACM Computing Surveys, 23(4):421-499,
1991.

THIB87 W. C. Thibault and B. F. Naylor, Set operations on polyhedra using binary space
partitioning trees, ACM/SIGGRAPH Computer Graphics, 21(4):153-162, 1987.

UPSO88 C. Upson and M. Keeler, V-BUFFER: visiable volume rendering,
ACM/SIGGRAPH Computer Graphics, 22(4): 59-64, 1988.

WAIT85 R. Wait and A. R. Mitchell, Finite Element Analysis and Applications, John Wiley
& Son, Chichester, 1985.

WECH91 W. Wechler, Universal algebra for computer scientists, EATCS Monographs,
Springer-Verlag, Berlin, 1991.

WEIL86 J. Weil, The synthesis of cloth objects, ACM/SIGGRAPH Computer Graphics,
20(4):49-54, 1986.

WEST90 L. Westover, Footprint evaluation for volume rendering, ACM/SIGGRAPH
Computer Graphics, 24(4):59-64, 1988.

36

WILH91 J. Wilhelms and A. Van Gelder, A coherent projection approach for direct volume
rendering, ACM/SIGGRAPH Computer Graphics, 25(4): 275-284, 1991.

WIRS91 M. Wirsing, Algebraic specification, in J van Lecuren (ed) Handbook of Theoretic
Computer Science, Volume B: Formal Methods and Semantics, North-Holland,
1991, 675-678.

WYVI86 G. Wyvill, C. McPheeters and B. Wyvill, Data tructures for soft objects, The
Visual Computer, 2(4):227-234, April 1986.

