ANNALES SCIENTIFIQUES DE L'É.N.S.

ORLANDO VILLAMAYOR Constructiveness of Hironaka's resolution

Annales scientifiques de l'É.N.S. 4^e série, tome 22, nº 1 (1989), p. 1-32 http://www.numdam.org/item?id=ASENS_1989_4_22_1_1_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1989, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CONSTRUCTIVENESS OF HIRONAKA'S RESOLUTION

BY ORLANDO VILLAMAYOR (1)

Introduction

In [9] Hironaka develops the notion of *local idealistic* presentation for an algebraic scheme X embedded in a regular scheme W. Here we take those results as starting point and we exhibit a *constructive resolution of singularities* (see 2.2)

Roughly speaking, an upper semicontinuous function is defined on a fixed Samuel stratum such that

(i) the function determines the center of a permissible transformation $\pi_1: X_1 \to X$.

(ii) for $\pi_1: X_1 \to X$ as before, an upper semicontinuous function can be defined at X_1 [as in (i)] such that either there is an improvement of the Hilbert-Samuel functions at X_1 , or there is an improvement on these functions. Repeating (i) and (ii) a finite number of times, say

$$\mathbf{X}_{r} \xrightarrow{\pi_{r}} \mathbf{X}_{r-1} \to \ldots \to \mathbf{X}_{1} \xrightarrow{\pi_{1}} \mathbf{X}$$

one can force an improvement (at X_r) of the Hilbert-Samuel function.

In section 1 we introduce the notation and some results (without proofs) required for the *construction*. We refer the reader mainly to [9] for more details and proofs. The definition of constructive resolutions and the development of these are given in section 2.

I thank Prof. Jean Giraud for important suggestions on this work.

§ 1. Throughout this article W will denote a regular algebraic scheme admitting a finite cover by affine sets. Each restriction to these being the spectrum of an algebra of finite type over a fixed field k of characteristic zero. And all patching maps being k-algebra maps.

A map $W_1 \rightarrow W$ will always mean a morphism of finite type.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/89/01 1 32/\$ 5.20/ © Gauthier-Villars

⁽¹⁾ Supported by the Alexander von Humboldt-Stiftung.

O. VILLAMAYOR

We consider pairs of the form (J, b) where b is a positive integer and $J \subset O_W$ is a coherent sheaf of ideals for which $J_x \neq 0$, $\forall x \in W$ (J_x denotes the stalk at x).

Given a valuation ring A and a principal ideal $J \subset A$ let ord (J) denote the value of J with respect to the valuation associated with A.

DEFINITION 1.1. — Assume that (J_1, b_1) and (J_2, b_2) are two pairs as before with the property that for any morphism h: Spec(A) \rightarrow W, where A is a noetherian valuation ring, the following equality holds:

$$\frac{\operatorname{ord}(\mathbf{J}_1 \mathbf{A})}{b_1} = \frac{\operatorname{ord}(\mathbf{J}_2 \mathbf{A})}{b_2}. \quad (\text{at } \mathbb{Q}).$$

 $J_i A$ the ideal induced by J_i via h at A.

This condition defines an equivalence relation among such pairs. We shall say that $(J_1, b_1) \sim (J_2, b_2)$ and the equivalence class of a pair (J, b), say $\mathscr{A} = ((J, b))$ is called an idealistic exponent at W (see Def. 3, p. 56 [9]).

Assume that $(J_1, b_1) \sim (J_2, b_2)$ and let $\pi: W_1 \to W$ be any morphism of regular schemes, then $(J_1 O_{W_1}, b_1) \sim (J_2 O_{W_2}, b_2)$ So we define for a given idealistic exponent $\mathscr{A} = ((J, b))$ at W, the idealistic exponent $\pi^{-1}(\mathscr{A})$ as:

$$\pi^{-1}(\mathscr{A}) = ((\mathrm{JO}_{\mathbf{W}_1}, b)).$$

DEFINITION 1.2. — Let (J_1, b_1) and (J_2, b_2) be two equivalent pairs at W corresponding to the idealistic exponent \mathscr{A} . If $x \in W$ then

$$c = \frac{\mathbf{v}_{\mathbf{x}}(\mathbf{J}_1)}{b_1} = \frac{\mathbf{v}_{\mathbf{x}}(\mathbf{J}_2)}{b_2},$$

where $v_x(J_i)$ denotes the order of the stalk $J_{i,x}$ at the local regular ring $O_{W,x}$. We define the order of \mathscr{A} at x to be $v_x(\mathscr{A}) = c$ and the order of \mathscr{A} to be $\operatorname{ord}(\mathscr{A}) = \max_{x \in W} \{v_x(\mathscr{A})\}.$

DEFINITION 1.3. — Given a pair (J, b) at W as in Def. 1.1 we define a reduced subscheme:

$$\operatorname{Sing}^{b}(\mathbf{J}) = \{ x \in \mathbf{W} \mid \mathbf{v}_{x}(\mathbf{J}) \geq b \}$$

A transformation $\pi: W_1 \to W$ is said to be *permissible for* (J, b) if it is the blowing up with center C, where C is a regular subscheme of W contained in Sing^b(J).

In this case there is a coherent sheaf of ideals $\overline{J} \subset O_{W_1}$ such that $JO_{W_1} = \overline{J}P^b$ where P denotes the sheaf of ideals $O(-\pi^{-1}(C)) \subset O_{W_1}$.

We define the transform of (J, b) by π to be the pair (\overline{J} , b) at W_1 .

 4^{e} série – tome 22 – 1989 – n° 1

One can check that if $(J_1, b_1) \sim (J_2, b_2)$ at W then:

(i) $\operatorname{Sing}^{b_1}(J_1) = \operatorname{Sing}^{b_2}(J_2)$ and if (\overline{J}_i, b_i) denotes the transform of (J_i, b_i) , i = 1, 2 by a permissible map π : $W_1 \to W$, then:

(ii) $(\bar{J}_1, b_1) \sim (\bar{J}_2, b_2)$ at W_1 .

So now let (J, b) be a pair at W, π : $W_1 \rightarrow W$ permissible for (J, b) and $\mathscr{A} = ((J, b))$, then we define the subscheme of *singular points*:

$$\operatorname{Sing}(\mathscr{A}) = \operatorname{Sing}^{b}(J) \subset W$$

A transformation π : $W_1 \rightarrow W$ is said to be *permissible for* \mathscr{A} if it is permissible for (J, b)and the transform of \mathscr{A} by the permissible transformation π to be $\mathscr{A}_1 = ((\overline{J}, b))$ at W_1 where (\overline{J}, b) is the transform of (J, b). Finally a sequence of permissible transformation of \mathscr{A} over W is a sequence

$$W = W_0 \stackrel{\pi_1}{\leftarrow} W_1 \stackrel{\pi_2}{\leftarrow} W_2 \dots \stackrel{\pi_r}{\leftarrow} W_r$$
$$\mathscr{A} = \mathscr{A}_0 \quad \mathscr{A}_1 \quad \mathscr{A}_2 \qquad \mathscr{A}_r$$

where each π_i is permissible for \mathscr{A}_{i-1} and \mathscr{A}_i is the transform of \mathscr{A}_{i-1} .

DEFINITION 1.4. — We define on W_1 for some index set Λ

$$E_{\Lambda} = \{E_{\lambda} \mid \lambda \in \Lambda\}$$

each E_{λ} being a smooth hypersurface of W or the empty set. We also assume that these hypersurfaces have only normal crossings *i.e.* $\bigcup_{\lambda \in \Lambda} E_{\lambda}(\subset W)$ is a subscheme with only

normal crossings.

A monoidal transformation $\pi: W_1 \to W$ is said to be *permissible for* (W, E_A) , if it is the blowing up at a center C which is regular and has only normal crossings with $\bigcup E_{\lambda}$.

$$\lambda \in \Lambda$$

In this case the *transform* of (W, E_{Λ}) is defined as (W_1, E_{Λ_1}) , where $\Lambda_1 = \Lambda \cup \{\beta\}$ and (i) for each $\lambda \in \Lambda \subset \Lambda_1$, E'_{λ} is the strict transform of $E_{\lambda} \subset W$, by this we mean the strict transform of the components of E_{λ} which are not components of C. $E'_{\lambda} = \emptyset$ if

 $E_{\lambda} = \emptyset$, also if $E_{\lambda} = C$.

(ii) $E'_{\beta} = \pi^{-1}(C)$.

It is clear that $\bigcup_{\alpha \in \Lambda_1} E'_{\alpha}$ consists of hypersurfaces with only normal crossings.

A permissible tree is a data of the form:

$$W = W_0 \stackrel{\pi_1}{\leftarrow} W_1 \leftarrow \dots W_{r-1} \stackrel{\pi_r}{\leftarrow} W_r$$

T:
$$E_{\Lambda} = E_{\Lambda_0} \quad E_{\Lambda_1} \qquad E_{\Lambda_{r-1}} \quad E_{\Lambda_r}$$
$$C = C_0 \quad C_1 \qquad C_{r-1}$$

each π_i permissible for $(W_{i-1}, E_{\Lambda_{i-1}})$ and (W_i, E_{Λ_i}) being the corresponding transform.

DEFINITION 1.5. — An isomophism $\Gamma = (\theta, \gamma)$: $(W, E_{\Lambda}) \rightarrow (W', E_{\Lambda'})$ consists of:

(i) A bijection $\gamma: \Lambda \to \Lambda'$.

(ii) An isomorphism θ : $W \rightarrow W'$ inducing by restriction an isomorphism

$$\theta: \quad E_{\lambda} \to E_{\gamma(\lambda)}$$

for seach $\lambda \in \Lambda$.

Remark 1.6. – Given an isomorphism of pairs $\Gamma: (W, E_{\Lambda}) \to (W', E_{\Lambda'})$ as before, and a transformation $\pi_1: W_1 \to W$ permissible for (W, E_{Λ}) (Def. 1.4) with center C, then $\theta(C) \subset W'$ has only normal crossings with $\bigcup_{\lambda \in \Lambda'} E_{\lambda}$ and if π'_1 denotes the corresponding transformation then there is a unique isomorphism $\Gamma_1 = (\theta_1, \gamma_1)$ of the transforms (W_1, E_{Λ_1}) and (W'_1, E_{Λ_1}) such that the diagram

$$\begin{array}{ccc} W_1 & \stackrel{\theta_1}{\to} & W'_1 \\ \stackrel{\pi_1}{\downarrow} & & \downarrow^{\pi_1} \\ W & \stackrel{\theta}{\to} & W' \end{array}$$

is commutative.

Moreover if T is any permissible tree for (W, E_A) , then via Γ , T induces a permissible tree over $(W', E_{A'})$ and the isomorphism Γ can be "lifted" by T.

Remark 1.7. – Let $\mathbb{A} = \operatorname{Spec}(k[X])$ and $P_n: W_n = W \times \mathbb{A}^n \to W$ the natural projection $(n \ge 0)$. Given a pair (W, E_Λ) as in Def. 1.4 we define on each W_n a set $(E_n)_\Lambda$, which consists for each $\lambda \in \Lambda$ of $(E_n)_{\lambda} = P_n^{-1}(E_{\lambda})$.

An isomorphism $\Gamma = (\theta; \gamma): (W, E_{\Lambda}) \rightarrow (W', E_{\Lambda'})$ (Def. 1.5) induces natural isomorphisms

$$\Gamma_n = (\theta_n; \gamma_n): (W_n, (E_n)_{\Lambda}) \to (W'_n, (E_n)_{\Lambda'})$$

for all $n \ge 0$.

DEFINITION 1.8. — Consider now a 3-tuple $(W, \mathcal{A}, E_{\Lambda})$ where \mathcal{A} is an idealistic exponent on W and (W, E_{Λ}) is as in Def. 1.4.

A tree T is said to be *permissible for* $(W, \mathcal{A}, E_{\lambda})$ when the two following conditions hold:

(a) T is permissible for (W, E_{A}) (Def. 1.4)

(b) the induced sequence of transformation

$$W = W_0 \stackrel{\pi_1}{\leftarrow} W_1 \leftarrow \ldots \leftarrow W_{r-1} \stackrel{\pi_r}{\leftarrow} W_r$$

is permissible for (W, \mathscr{A}) in the sense of Def. 1.3.

If $\pi_1: W_1 \to W$ is permissible for $(W, \mathscr{A}, E_\Lambda)$, let \mathscr{A}_1 denote the transform of \mathscr{A} (Def. 1.3) and (W_1, E_{Λ_1}) the transform of (W, E_Λ) (Def. 1.4), then $(W_1, \mathscr{A}_1, E_{\Lambda_1})$ is called the *transform of* $(W, \mathscr{A}, E_\Lambda)$.

 4^{e} série – tome $22 - 1989 - n^{\circ} 1$

The grove of $(W, \mathcal{A}, E_{\Lambda})$ consists of all possible permissible trees for $(W, \mathcal{A}, E_{\Lambda})$.

Let P_n : $W_n = W \times A^n \to W$ be as in Remark 1.7 then the polygrove of (W, \mathscr{A}, E_A) consists of the groves of $(W_n, P_n^{-1}(\mathscr{A}), (E_n)_A)$ for each $n \ge 0$. $P_n^{-1}(\mathscr{A})$ as in Def. 1.1 An *idealistic situation* is a 3-tuple (W, \mathscr{A}, E_A) as before, together with its polygrove.

DEFINITION 1.9. — An isomorphism from the idealistic situation (W, \mathscr{A} , E_{Λ}) to (W', \mathscr{A}' , $E_{\Lambda'}$) consists of an isomorphism

$$\Gamma = (\theta; \gamma): (W, E_{\Lambda}) \rightarrow (W', E_{\Lambda'}) \quad (\text{Def. 1.5})$$

such that the induced isomorphism

$$\Gamma_n = (\theta_n; \gamma_n): (W_n, (E_n)_{\Lambda}) \to (W'_n, (E_n)_{\Lambda'}), \qquad n \ge 0$$

(Remark 1.7) establish a bijection between those trees of the grove of $(W_n, P_n^{-1}(\mathscr{A}), (E_n)_{\Lambda})$ and those of the grove of $(W'_n, P_n^{-1}(\mathscr{A}'), (E_n)_{\Lambda'})$ for all $n \ge 0$. The correspondence of trees via an isomorphism being as in Remark 1.6.

DEFINITION 1.10. — Consider at W an idealistic situation (W, \mathscr{A} , E_{Λ}) and an etale map

e: $W_1 \rightarrow W$

then the restriction by e of $(W, \mathcal{A}, E_{\Lambda})$ is the idealistic situation $(W_1, e^{-1}(\mathcal{A}), (E_1)_{\Lambda})$ where:

(a) for each $\lambda \in \Lambda$, $(E_1)_{\lambda} = e^{-1} (E_{\lambda})$

(b) if \mathscr{A} is the class of (J, b), then $e^{-1}(\mathscr{A})$ is the class of (JO_{w1}, b) (Def. 1.1).

Given a closed point $x \in \text{Sing}(\mathscr{A})$, then an *etale neighbourhood of* $(W, \mathscr{A}, E_{\Lambda})$ at x consists of an etale map $e: W_1 \to W$, an idealistic situation $(W_1, e^{-1}(\mathscr{A}), (E_1)_{\Lambda})$ as before, and a point $y \in \text{Sing}(e^{-1}(\mathscr{A}))$ such that e(y) = x.

Given two idealistic situations $(W_1, \mathscr{A}_1, E_{\Lambda_1})$, $(W_2, \mathscr{A}_2, E_{\Lambda_2})$ and closed points $x_1 \in \operatorname{Sing}(\mathscr{A}_1)$, $x_2 \in \operatorname{Sing}(\mathscr{A}_2)$, then x_1 is said to be *equivalent to* x_2 if there are etale neighbourhoods at x_1 and x_2 which are isomorphic *i.e.* there are etale maps $e_i \colon W'_i \to W_i$, i=1, 2, restrictions $(W'_i, e_i^{-1}(\mathscr{A}_i), e^{-1}(E)_{\Lambda_i})$, i=1, 2, closed points $y_i \in \operatorname{Sing}(e_i^{-1}(\mathscr{A}_i))$, i=1, 2 and an isomorphism of idealistic situations (Def. 1.9)

$$\Gamma = (\theta, \gamma): (W'_1, e_1^{-1}(\mathcal{A}_1), (e_1^{-1}(E))_{\Lambda_1}) \to (W'_2, e_2^{-1}(\mathcal{A}_2), e_2^{-1}(E)_{\Lambda_2})$$

such that $\theta(y_1) = y_2$.

Remark 1.10.1. – Let the notation and assumptions be as in Def. 1.9. Let $e: W'_1 \rightarrow W'$ be an etale map and

$$\begin{array}{c} W_1 \stackrel{\theta_1}{\to} W'_1 \\ \downarrow^e \\ W \stackrel{\theta}{\to} W' \end{array}$$

the commutative diagram arising from the fiber product of θ : $W \to W'$ and e: $W'_1 \to W'$.

Then e_1 is etale and θ_1 induces an isomorphism between the restricted situations (Def. 1.10).

This follows from the definition of excellence.

1.11. - Let $(Z, \overline{E}_{\Lambda})$, (W, E_{Λ}) be as in Def. 1.4 and *i*: $Z \rightarrow W$ be an immersion of regular schemes Assume furthermore that the following condition holds:

$$(1.11.1) \qquad \qquad \forall \lambda \in \Lambda: \quad \bar{\mathbf{E}}_{\lambda} = \mathbf{E}_{\lambda} \cap \mathbf{Z}.$$

In this case it is clear that a permissible tree T for (Z, \bar{E}_{Λ}) induces a permissible tree for (W, E_{Λ}) , say i(T). And the final transform of (Z, \bar{E}_{Λ}) and (W, E_{Λ}) by T and i(T) still satisfy 1.11.1.

Let \mathbb{A} (=Spec(k[X]), $W_n = W \times \mathbb{A}^n$, $Z_n = Z \times \mathbb{A}^n$ and $(E_n)_\Lambda$, $(\bar{E}_n)_\Lambda$ be as in Remark 1.7. If $i: Z \to W$ is such that condition 1.11.1 is satisfied, then the same will hold for the natural immersions $Z_n \subseteq W_n$.

DEFINITION 1.11. — Let $(Z, \mathscr{A}, \overline{E}_{\Lambda})$, $(W, \mathscr{B}, E_{\Lambda})$ be two idealistic situations (Def. 1.8), assume that Z is a subscheme of W, *i*: $Z \subseteq W$, and that \overline{E}_{Λ} and E_{Λ} satisfy 1.11.1. Then *i* is said to be a strong immersion if $Z_n \subseteq W_n$ induces a bijection between the grove of $(Z_n, P_n^{-1}(\mathscr{A}), (\overline{E}'_n)_{\Lambda})$ and that of $(W_n, P_n^{-1}(\mathscr{B}), (E_n)_{\Lambda})$ for all $n \ge 0$.

Theorem 1.12. — Let

$$(Z_1, \mathscr{A}_1, (\overline{E}_1)_{\Lambda}) \xrightarrow{i_1} (W, \mathscr{B}, E_{\Lambda})$$
 and $(Z_2, \mathscr{A}_2, (\overline{E}_2)_{\Lambda}) \xrightarrow{i_2} (W, \mathscr{B}, E_{\Lambda})$

be two strong immersions (Def. 1.11), and let x_i be a closed point at $Sing(\mathscr{A}_i) \subset Z_i$ (i=1, 2) such that $i_1(x_1) = i_2(x_2)$.

If dim $(\mathbb{Z}_1)_{x_1} = \dim (\mathbb{Z}_2)_{x_2}$ then x_1 is equivalent to x_2 (Def. 1.10).

Proof. – Argue as in Theorem 11.1 [8] and construct a retraction from W to Z, locally at some etale neighbourhood of $i_1(x_1) = i_2(x_2)$ which induces an isomorphism of the restricted idealistic situations (Def. 1.10).

THEOREM 1.13.1. — Let x_i be a closed singular point of an idealistic situation $(Z_i, \mathcal{A}_i, E_{\Lambda_i})$ i=1, 2 (Def. 1.8). If x_1 and x_2 are equivalent (Def. 1.10) then

$$v_{x_1}(\mathcal{A}_1) = v_{x_2}(\mathcal{A}_2)$$
 (Def. 1.2)

Proof. - (see Prop. 8, p. 68 [9].

1.13.2. — We now refer to Definition 1.9, p. 59 [9] for the notion of *tangent vector* space of an idealistic exponent \mathscr{A} at a closed point $x \in \text{Sing}(\mathscr{A}) \subset W$ (say $T_{\mathscr{A}, x}$). This is a subspace of $T_{W, x}$ (the tangent-space of W at x) and we shall denote its codimension by $\tau(\mathscr{A}, x)$.

4° série – tome 22 – 1989 – n° 1

THEOREM 1.13.2. — Let $(Z_i, \mathscr{A}_i, E_{\Lambda_i})$ i=1, 2 and x_i i=1, 2 be as in the last theorem. Then

$$\tau(\mathscr{A}_1, x_1) = \tau(\mathscr{A}_2, x_2)$$

and $\tau(\mathscr{A}_1, x_1) \ge 0$ iff $v_{x_1}(\mathscr{A}_1) = 1$ (Def. 1.2).

Proof. — The proof of this fact is similar to that of Theorem 1.13.1.

1.14. Let $Z \subseteq W$ be as before a closed immersion of regular schemes and $Z_n = Z \times \mathbb{A}^n \subseteq W_n = W \times \mathbb{A}^n$ the induced immersions.

Let $(W, \mathcal{A}, E_{\Lambda})$ be an idealistic situation and

$$W \times \mathbb{A}^{n} = (W_{n})_{0} \xleftarrow{\kappa_{1}} (W_{n})_{1} \dots \xleftarrow{} (W_{n})_{r}$$
$$(E_{n})_{\Lambda} = (E_{n})_{\Lambda_{0}} \quad (E_{n})_{\Lambda_{1}} \quad (E_{n})_{\Lambda_{r}}$$
$$C_{0} \qquad C_{1}$$

a tree over W_n , permissible for $(W_n, P_n^{-1}(\mathcal{A}), (E_n)_A)$ (see Def. 1.8). For any such tree let $(Z_n)_i \subset (W_n)_i$ denote the strict transform of $Z_n (\subset W_n = (W_n)_0)$.

DEFINITION 1.14. — With the notation as before, a regular subscheme $Z \subset W$ is said to have maximal contact with the idealistic situation $(W, \mathscr{A}, E_{\Lambda})$ if, for any fix $n \ge 0$ and any tree T of the grove of $(W_n, P_n^{-1}(\mathscr{A}), (E_n)_{\Lambda})$ one has that $C_i \subset (Z_n)_i$ $0 \le i < r$, or equivalently if \mathscr{A}_i denotes the transform at $(W_n)_i$ of $\mathscr{A}_0 = P_n^{-1}(\mathscr{A})$, then Sing $(\mathscr{A}_i) \subset (Z_n)_i$, $\forall n \ge 0$.

THEOREM 1.15. — Let $(W, \mathscr{A}, E_{\Lambda})$ be an idealistic situation (Def. 1.8), $Z \subseteq W$ a regular subscheme having maximal contact with \mathscr{A} , and (Z, \bar{E}_{Λ}) as in Def. 1.4. If the condition 1.11.1 holds for (Z, \bar{E}_{Λ}) and (W, E_{Λ}) then, locally at any closed point $x \in \text{Sing }(\mathscr{A})$, either

(a) Sing $\mathcal{A} = \mathbb{Z}$ or

(b) for a convenient restriction of $(Z, \overline{E}_{\Lambda})$ at a Zariski neighbourhood of x (as in Def. 1.10), say $(Z, \overline{E}_{\Lambda})$, there is an idealistic situation $(Z, \mathcal{B}, \overline{E}_{\Lambda})$ such that $i: Z \subseteq W$ is a strong immersion (Def. 1.11).

Proof. – See theorem 5, p. 111 [9].

DEFINITION 1.15. — If (a) ever holds at x, we shall say that x is a regular point of $Sing(\mathcal{A})$.

THEOREM 1.16.1. — Let (W, \mathscr{A}, E_A) be an idealistic situation and assume that ord $(\mathscr{A}) = 1$ (Def. 1.2). Then, locally at any closed point $x \in \text{Sing}(\mathscr{A})$, there is a regular hypersurface H having maximal contact with the restricted idealistic situation (Def. 1.10 and Def. 1.14).

COROLLARY 1.16.1. — Assume that $x \in W$ is not a point at which (locally) Sing(\mathscr{A}) is regular of codimension one (Def. 1.15). And assume also that H is a hypersurface

O. VILLAMAYOR

of maximal contact, (H, \bar{E}_{Λ}) is as in Def. 1.4 and that (H, \bar{E}_{Λ}) and (W, E_{Λ}) satisfy the condition 1.11.1. Then, after restricting to a convenient Zariski neighbourhood of x, there is an idealistic situation $(H, \mathcal{B}, \bar{E}_{\Lambda})$ such that $i: H \subseteq W$ is a strong immersion (Def. 1.11).

THEOREM 1.16.2. — Let $\pi: W_1 \to W$ be permissible for an idealistic situation $(W, \mathscr{A}, E_{\Lambda})$ (Def. 1.8), assume that $\operatorname{ord}(\mathscr{A}) = 1$ and let $(W_1, \mathscr{A}_1, E_{\Lambda_1})$ be the transform. Then either $\operatorname{Sing}(\mathscr{A}_1) = \emptyset$ or $\operatorname{ord}(\mathscr{A}_1) = 1$. If x is any closed point of $\operatorname{Sing}(\mathscr{A}_1)$:

$$\tau(\mathscr{A}, \pi(x)) \leq \tau(\mathscr{A}, x)$$

DEFINITION 1.16.3. — Let $(W, \mathcal{A}, E_{\Lambda})$ be an idealistic situation, we define

$$\tau(\mathscr{A}) = \inf_{x \in \operatorname{Sing}(\mathscr{A})} \left\{ \tau(\mathscr{A}, x) \right\}$$

and

 $\mathbf{R}(\tau)(\mathscr{A}) = \{ x \in \operatorname{Sing}(\mathscr{A}) \mid \tau(\mathscr{A}, x) = \tau(\mathscr{A}) \text{ and } x \}$

is a regular point of $Sing(\mathscr{A})$ (Def. 1.15) }.

PROPOSITION 1.16.4 (with the same notation as before). — (a) The set $R(\tau)(\mathcal{A})$ is a regular subscheme of W, of codimension $\tau(\mathcal{A})$ at any point, and every irreducible component of $R(\tau)(\mathcal{A})$ is a connected component of Sing(\mathcal{A}).

(b) Let $\pi: W_1 \to W$ be permissible for $(W, \mathscr{A}, E_{\Lambda})$ (Def. 1.8) and let $(W_1, \mathscr{A}_1, E_{\Lambda_1})$ be its transform, then at a closed point $x \in \text{Sing}(\mathscr{A}_1)$ both conditions:

(i) x is regular at $Sing(\mathcal{A}_1)$ (in the sense of Def. 1.15).

(ii) $\tau(\mathscr{A}_1, x) = \tau(\mathscr{A})$

will hold if and only if $\pi(x) \in \mathbb{R}(\tau(\mathscr{A}))$.

Theorem 1.16.1, 1.16.2 and Prop. 1.16.4 follow from Theorem 1 p. 104 [9].

1.17. WEIGHTED IDEALISTIC SITUATIONS. – Let (W, E_{Λ}) be as in Def. 1.4 and P_{λ} the sheaf of ideals ($\subset O_{W}$) defining E_{λ} (*i.e.* $P_{\lambda} = O(-E_{\lambda})$) for each $\lambda \in \Lambda$.

DEFINITION 1.17.1. — A weighted idealistic situation is an idealistic situation $(W, \mathcal{A}, E_{\Lambda})$ (Def. 1.8) together with:

(i) a set A_{Λ} consisting for each $\lambda \in \Lambda$, of a locally constant function

 $\alpha(\lambda): E_{\lambda} \to (Q \ge 0)$ (non negative rational numbers) such that if $\mathscr{A} = ((J, b) \text{ and } x \in \operatorname{Sing}^{b}(J)$, then at $O_{W, x}$:

$$\mathbf{J}_{\mathbf{x}} = \prod_{\{\lambda \mid x \in \mathbf{E}_{\lambda}\}} \mathbf{P}_{\lambda, x}^{\beta(\lambda)(\mathbf{x})} \cdot \mathbf{\bar{J}}_{\mathbf{x}}, \ \mathbf{\bar{J}}_{\mathbf{x}} \not\subset \mathbf{P}_{\lambda, x}, \qquad \forall \, \lambda/x \in \mathbf{E}_{\lambda}$$

and $\beta(\lambda)(x) = b.(\alpha(\lambda)(x)) \in (\mathbb{Z} \ge 0)$, for some coherent sheaf of ideals $\overline{J}(\subset O_w)$.

(ii) at each closed point $x \in \operatorname{Sing}^{b}(J)$ define $\Lambda_{x} = \{\lambda \in \Lambda \mid x \in E_{\lambda}\}$. Since these hypersurfaces have only normal crossings at W it follows that $\varphi \Lambda_{x} \leq \dim W$. We assume

 4^{e} série – tome 22 – 1989 – n° 1

the existence of a total order at any such Λ_x , say <, subject to the following conditions:

(1.17.1.1) Given two closed points $\{x_1, x_2\} \subset E_{\alpha_1} \cap E_{\alpha_2}$ then $\alpha_1 \leq \alpha_2$ if and only if $\alpha_1 \leq \alpha_2$. We denote this weighted idealistic situation by (W, \mathscr{A} , E_{Λ} , A_{Λ}).

We also define the weighted order of \mathscr{A} at x

$$w - v_x(\mathscr{A}) = \frac{v_x(\bar{J})}{b}$$
 (check consistency).

The weighted order of \mathscr{A} :

w-ord
$$(\mathscr{A}) = \max_{x \in \operatorname{Sing} \mathscr{A}} \{ w - v_x(\mathscr{A}) \}.$$

And the weighted singularities of \mathcal{A} :

w-Sing
$$(\mathscr{A}) = \{ x \in \operatorname{Sing}(\mathscr{A}) \mid w - v_x(\mathscr{A}) = w \operatorname{ord}(\mathscr{A}) \}$$

which is a closed subset of $Sing(\mathscr{A})$.

DEFINITION 1.17.2 (notation as in Definition 1.9). — Two weighted idealistic situations (W, \mathscr{A} , E_{Λ} , A_{Λ}) and (W', \mathscr{A}' , $E_{\Lambda'}A_{\Lambda'}$) are said to be *isomorphic* if there is an isomorphism of the underlying idealistic situation (W, \mathscr{A} , E_{Λ}) and (W', \mathscr{A}' , $E_{\Lambda'}$), induced by an isomorphism

$$\Gamma: (\theta, \gamma): (W, E_{\Lambda}) \to (W', E_{\Lambda'})$$
 (Def. 1.9)

such that:

(i) for each $\lambda \in \Lambda$ let $\alpha(\lambda) \in A_{\Lambda}$ and $\alpha'(\gamma(\lambda)) \in A_{\Lambda'}$ be the corresponding functions, then

$$\alpha(\lambda) = \alpha'(\gamma(\lambda)) \circ (\theta|_{E_{\lambda}}) : E_{\lambda} \to (Q \ge 0)$$

(ii) at any closed point $x \in \text{Sing}(\mathscr{A})$, $\lambda_1 < \lambda_2$ (at Λ_x) if and only if $\gamma(\lambda_1) < \gamma(x_2)$ (at

 $\Lambda'_{\theta(x)}$).

(From Theorem 1.13.1 it follows that only (ii) must be checked)

DEFINITION 1.17.3 (notation as in Def. 1.10). — Consider a weighted idealistic situation (W, \mathscr{A} , E_A , A_A) and an etale map $e: W_1 \rightarrow W$ then the *restriction* by *e* consists of:

(i) the restriction of the idealistic situation

$$(W_1, e^{-1}(\mathcal{A}), (E_1)_{\Lambda})$$
 (Def. 1.10)

(ii) $(e^{-1}(\mathbf{A}))_{\mathbf{A}} = \{ \alpha'(\lambda) | \lambda \in \mathbf{A} \}$ where

$$\alpha'(\lambda) = \alpha(\lambda) \circ e \Big|_{e^{-1}(\mathbf{E}_{\lambda})}, \qquad \forall \lambda \in \Lambda$$

(iii) At a closed point $x \in \text{Sing}(e^{-1}(\mathscr{A}))$, given $\lambda_1, \lambda_2 \in \Lambda_x$, define $\lambda_1 \leq \lambda_2$ if and only

if $\lambda_1 < \lambda_2$. The restriction by *e* of (W, \mathscr{A} , E_{Λ} , A_{Λ}) is again a weighted idealistic situation.

Given two weighted idealistic situations $(W_i, \mathscr{A}_i, E_{\Lambda_i}, A_{\Lambda_i})$ i=1,2 and closed points $x_i \in \text{Sing}(\mathscr{A}_i)$, then x_1 and x_2 are said to be *equivalent* (as singular points of weighted idealistic situations) if there are restrictions at etale neighbourhoods of x_i (i=1,2) and an isomorphism as in Def. 1.10 which is also isomorphism of weighted idealistic situations (Def. 1.17.2).

Remark. — So far we have not defined a notion of transform of weighted idealistic situations, at least not as weighted idealistic situations.

DEFINITION 1.17.4. — Let $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ be as before. A transformation $\pi: W_1 \to W$ is said to be w-permissible if:

(i) π is permissible for the idealistic situation (W, \mathscr{A} , E_A) (Def. 1.8).

(ii) In the case that w-ord (\mathscr{A})>0 (Def. 1.17.1), and if π is the blowing up at center C \subset W then C \subset w-Sing (\mathscr{A}).

If $\pi: W_1 \to W$ is a w-permissible transformation as before and (W_1, E_{Λ_1}) is the transform of (W, E_{Λ}) (see Def. 1.4), then $\Lambda_1 = \Lambda \cup \{\beta\}$ and we define now A_{Λ_1} as follows:

(i) for each $\lambda \in \Lambda \subset \Lambda_1$, let $\alpha'(\lambda) = \alpha(\lambda) \circ \pi |_{E'_{\lambda}}$ where E'_{λ} is the strict transform of E_{λ} (Def. 1.4).

(ii)
$$\alpha'(\beta)|_{\pi^{-1}(c_i)} = \sum_{\{\lambda \mid c_i \in E_{\lambda}\}} \alpha'(\lambda) \circ \pi + w \text{-ord}(\mathscr{A})$$

where the c_i are the connected components of C, so $\alpha'(\beta): \pi^{-1}(C) \to Q$ is a locally constant function. Now we define at each closed point $x \in \text{Sing}(\mathcal{A}_1)$ [\mathcal{A}_1 the transform of \mathcal{A} (Def. 1.3)] a total order at $(\Lambda_1)_x$:

- (i) If $\beta \in (\Lambda_1)_x$ [*i. e.* if $x \in \pi^{-1}(C)$] and $\beta \neq \alpha \in (\Lambda_1)_x$ then $\beta < \alpha$.
- (ii) Given $\alpha_1 \neq \beta \neq \alpha_2$, then $\alpha_1 < \alpha_2$ if and only if $\alpha_1 < \alpha_2$.

 $(W, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1})$ is now a weighted idealistic situation called the *transform* of

 $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ by π , which we also denoted by $(W_1, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1}) \xrightarrow{\pi} (W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$.

Remark 1.17.5. – Let $\Gamma:(\theta, \gamma):(W, \Lambda) \to (W', \Lambda')$ define an isomorphism of the weighted idealistic situations $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ and $(W', \mathscr{A}', E_{\Lambda'}, A_{\Lambda'})$ (Def. 1.17.2). Let $\pi: W_1 \to W$ be a w-permissible transformation for $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ (Def. 1.17.4). Then there exists a unique isomorphism of weighted idealistic situations Γ' such that the diagram

 4^{e} série – tome 22 – 1989 – n° 1

commuts, where π' corresponds to π via Γ and $(W'_1, \mathscr{A}'_1, E_{\Lambda'_1}, A_{\Lambda'_1})$ is the transform of $(W', \mathscr{A}', E_{\Lambda'}, A_{\Lambda'})$.

Remark 1.17.6. – With the notion as in Def. 1.17.1.

Let $(W, \mathcal{A}, E_{\Lambda}, A_{\Lambda})$ be a weighted idealistic situation and t = w-ord (\mathcal{A}) . If $\mathcal{A} = ((J, b))$ then:

(a)
$$t_1 = b \cdot t = \max_{x \in W} \{v_x(\overline{J})\}$$
 and

(b) w-Sing(\mathscr{A}) = { $x \in Sing(\mathscr{A}) | v_x(\tilde{J}) = t_1$ }.

When t > 0 we attach to (J, b) a new idealistic pair w(J, b) as follows:

If $t \ge 1$, then: $w(\mathbf{J}, b) = (\overline{\mathbf{J}}, t_1)$.

If 0 < t < 1, then: $w(J, b) = (\langle (\Pi P_{\lambda}^{\beta(\lambda)})^{t_1}, \overline{J}^{b-t_1} \rangle, t_1(b-t_1))$ where $t_1 = tb$, and \overline{J} and $P_{\lambda}^{\beta(\lambda)}$ are as in Def. 1.17.1. Now we can check:

(i) If $(J, b) \sim (J', b') \Rightarrow w(J, b) \sim w(J', b')$ (check first that $(\overline{J}, b) \sim (\overline{J}', b')$, notation as before).

(ii) If $w(\mathscr{A})$ denotes (w(J, b)), then $\operatorname{Sing}(w(\mathscr{A})) = w\operatorname{-Sing}(\mathscr{A})$. So $\pi: W_1 \to W$ is w-permissible for $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ if and only if it is permissible for $(W, w(\mathscr{A}), E_{\Lambda})$ (Def. 1.17.4 and Def. 1.8).

(iii) Let $\pi: W_1 \to W$ be as in (ii) and let $(W_1, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1})$ be the transform of $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ (Def. 1.17.4). Then:

$$w$$
-ord $(\mathscr{A}_1) \leq w$ -ord (\mathscr{A})

and if the equality holds, then $w(\mathcal{A}_1)$ is the transform (simply as idealistic situation) of $w(\mathcal{A})$ (Def. 1.8).

Remark 1.17.7. – Given a weighted idealistic situation (W, \mathscr{A} , E_{Λ} , A_{Λ}), assume word (\mathscr{A}) > 0, and let $w(\mathscr{A})$ be as before, then: ord $(w(\mathscr{A})) = 1$.

Remark 1.17.8. – If $(W, \mathscr{A}, E_{\Lambda})$ is an idealistic situation (Def. 1.8) and $\operatorname{ord}(\mathscr{A}) = 1$ (Def. 1.2) then it can be given a structure of weighted idealistic situation, taking A_{Λ} to consists of the functions $\alpha(\lambda)$ which are constantly equal to zero along E_{λ} for each $\lambda \in \Lambda$ (Def. 1.17.2).

Note also that in this case w-Sing(\mathscr{A}) = Sing(\mathscr{A}). So the notions of w-permissibility and of permissibility coincide (Def. 1.17.4 and Def. 1.8).

If $\pi: W_1 \to W$ is permissible for $(W, \mathscr{A}, E_{\Lambda})$ [w-permissible for $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$] and $(W, \mathscr{A}_1, E_{\Lambda_1})$ $((W_1, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1}))$ denotes the transform. Then again A_{Λ_1} consists of functions $\alpha(\lambda): E_{\lambda} \to Q$ such that $\alpha(\lambda)(x) = 0 \forall x \in E_{\lambda}, \forall \lambda \in \Lambda_1$.

1.18. IDEALISTIC SPACES

DEFINITION 1.18.1. — By $(C(m), \Lambda)$ we denote a category, where the objects are those weighted idealistic situations $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ where dim W = m (Def. 1.17.1) and a map $(W_1, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1}) \rightarrow (W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ is an etale map $e: W_1 \rightarrow W$ such that id_{W_1} induces an isomorphism (Def. 1.17.2) between $(W_1, \mathscr{A}_1, E_{\Lambda_1}, A_{\Lambda_1})$ and the restriction of $(W, \mathscr{A}, E_{\Lambda}, A_{\Lambda})$ by e (Def. 1.17.3).

To simplify the notation, given an object $\alpha \in C(m, \Lambda)$ we denote

$$\alpha = (W(\alpha), \mathscr{A}(\alpha), E_{\Delta_{\alpha}}, A_{\Delta_{\alpha}}).$$

A subset C of $C(m, \Lambda)$ consists, for each $\alpha \in C(m, \Lambda)$ of a locally closed subset $C(\alpha) \subset \text{Sing } (Q(\alpha)) \subset W(\alpha)$ subject to the following conditions:

1. Given $\alpha \xrightarrow{j} \beta$ in $C(m, \Lambda)$, then $e(j)^{-1}(C(\beta)) = C(\alpha)$ where $e(j): W(\alpha) \to W(\beta)$ is the associated etale map.

2. Given $\alpha_1, \alpha_2 \in C(m, \Lambda)$ and closed points $x_i \in W(\alpha_i)$, if x_1 and x_2 are equivalent (Def. 1.17.3), then $x_1 \in C(\alpha_1) \Leftrightarrow x_2 \in C(\alpha_2)$.

DEFINITION 1.18.2. — An idealistic space of dimension m is a map χ from a set I to C (m, Λ) (dim $\chi = m$).

A closed subset C of χ consists of a subset C of $C(m, \Lambda)$ such that for each $\alpha \in I$ $C(\chi(\alpha)) (\subset W(\chi(\alpha)))$ is a closed subset. A closed subset C of χ is said to be *permissible* for χ if $C(\chi(\alpha))$ is w-permissible for $\chi(\alpha)$ in the sense of Def. 1.17.4. In such case the *transform of* χ by C is defined by $\chi': I \to C(m, \Lambda)$ where $\chi'(\alpha)$ is the transform of $\chi(\alpha)$ by $C(\alpha)$ (Def. 1.17.4). This we denote by $\chi' \to \chi$ and π is said to be a *permissible transformation* with center C.

A point $x \in \chi$ consists of a closed point $x_{\alpha} \in \text{Sing}(\mathscr{A}(\chi(\alpha)) \subset W(\chi(\alpha))$ (for some $\alpha \in I$) together with all those $x_{\beta} \in \text{Sing}(\mathscr{A}(\chi(\beta)) \subset W(\chi(\beta))(\beta \in I)$ such that x_{α} and x_{β} are equivalent (Def. 1.17.3).

DEFINITION 1.18.3. — A *m*-dimensional idealistic space $\chi: I \to C(m, \Lambda)$ is said to be restrictive to an *n*-dimensional idealistic space if $n \leq m$ and there are idealistic spaces $\chi_m: \overline{I} \to C(m, \Lambda)$ and $\chi_n: \overline{I} \to C(n, \Lambda)$ such that:

1. Points of χ are locally equivalent to points of χ_m and the converse also holds (local equivalence always as in Def. 1.17.3).

2. For each $\alpha \in \overline{I}$ there is a strong immersion (Def. 1.11), disregarding the weighted

structure, induced by $W(\chi_n(\alpha)) \stackrel{i(\alpha)}{\hookrightarrow} W(\chi_m(\alpha))$ such that two points

$$x_i \in \operatorname{Sing}(\mathscr{A}(\chi_n(\alpha_i)) \subset W(\chi_n(\alpha_i)),$$

i=1,2 are equivalent points at $C(n, \Lambda)$ (Def. 1.18.2) if and only if $i(\alpha_i)(x_i)$ are equivalent as points of χ_m [at $C(m, \Lambda)$].

Remark 1.18.4. — Given χ_n and χ_m as before, permissible center for χ_n and χ_m coincide (via *i*) and if $\chi'_m \to \chi_m$ and $\chi'_n \to \chi_n$ are the permissible transforms at an identified center, then (1) and (2) hold for χ'_n and χ'_m .

Remark 1.18.5. – Suppose that for each $\alpha \in I$,

$$\chi_m(\alpha) = (W(\chi_m(\alpha)), \mathscr{A}(\chi_m(\alpha)), E_{\Lambda\alpha}, A_{\Lambda\alpha}))$$

is such that all functions $\alpha(\lambda)$ (Def. 1.17.1) [for all $\lambda \in \Lambda(\alpha)$] are constant functions equal to zero *i. e.*

4° série – tome 22 – 1989 – n° 1

 $\alpha(\lambda): E_{\lambda} \to \mathbb{Q}$ is such that $\alpha(\lambda)(x) = 0$, $\forall x \in E_{\lambda}$, $\forall \lambda \in \Lambda(\alpha)$. Assume that this also holds for any $\alpha \in \overline{I}$ at $\chi_n(\alpha)$, then (2) of Def. 1.18.3 can be replaced by:

(2') For each $\alpha \in \overline{I}$ there is a strong immersion, disregarding the weighted structure, induce by:

$$W(\chi_n(\alpha)) \underset{i(\alpha)}{\varsigma} W(\chi_m(\alpha))$$

1.19. When we consider a fixed idealistic space $\chi: I \to C(m, \Lambda)$, and $\alpha \in I$ we denote $\chi(\alpha) = (W(\chi(\alpha)), \mathscr{A}(\chi(\alpha)), E_{\Lambda_{\chi(\alpha)}}, A_{\Lambda_{\chi(\alpha)}})$ by $(W(\alpha), \mathscr{A}(\alpha), E_{\Lambda\alpha}, A_{\Lambda\alpha})$.

DEFINITION 1.19.1. — An idealistic space $\chi: I \to C(m, \Lambda)$ is said to be *quasi-compact* if there is a finite subset $\{\alpha_1, \ldots, \alpha_n\} \subset I$ such that for any $\alpha \in I$ and any closed point $x \in \operatorname{Sing}(\mathscr{A}(\alpha)) \subset W(\alpha)$ there is an index $i, 1 \leq i \leq n$ and a point $y \in \operatorname{Sing}(\mathscr{A}(\alpha_i))$ such xand y are locally equivalent (Def. 1.17.3).

If x is a point of χ (Def. 1.18.2), say that $x_1 \in W(\alpha_1)$ belongs to the class of x, then we define the order of χ at x

$$\operatorname{ord}_{x}(\chi) = v_{x_{1}}(\mathscr{A}(\alpha_{1}))$$
 (Def. 1.2)

and

$$\tau(\chi, x) = \tau(\mathscr{A}(\alpha_1), x_1), \text{ (Def. 1.13.2)}$$

the consistency of these definitions are given by Theorems 1.13.1 and 1.13.2.

The order of χ is:

ord
$$\chi = \max_{\alpha \in I} \{ \text{ ord } \mathscr{A}(\alpha) \}$$
 (Def. 1.2)

The weighted order of χ is:

w-ord
$$(\chi) = \max_{\alpha \in I} \{ w \text{-ord} (\mathscr{A} (\alpha)) \}$$
 (Def. 1.17.1)

and

$$\tau(\chi) = \inf_{\alpha \in I} \{ \tau(\mathscr{A}(\alpha), x) \mid x \in \operatorname{Sing}(\mathscr{A}(\alpha)) \}.$$

1.19.2. One can check that the following are closed subsets of χ in the sense of Definition 1.18.2.

- 1. Sing χ : (Sing χ) (α) = Sing (χ (α)) = Sing (\mathscr{A} (α)) \subset W(α), $\forall \alpha \in I$.
- 2. w-Sing χ : (w-Sing χ) $(\alpha) = w$ -Sing $(\mathscr{A}(\alpha)) \subset W(\alpha), \forall \alpha \in I.$
- 3. If $\tau = \tau(\chi)$ then $F(\tau)(\chi)$:

$$F(\tau)(\chi)(\alpha) = \{ x \in \operatorname{Sing} \mathscr{A}(\alpha) \mid \tau(\mathscr{A}(\alpha), x) = \tau \}$$

4. If $\tau = \tau(\chi)$ then $R(\tau)(\chi)$:

 $R(\tau)(\chi)(\alpha) = \{ x \in \text{Sing } \mathscr{A}(\alpha) \mid \tau(\mathscr{A}(\alpha), x) = \tau \}$

and

x is regular at Sing
$$\mathscr{A}(\alpha)$$
 (Def. 1.15) }.

Remark 1.19.2. - R(τ)(χ) is a component of Sing χ in the sense that $\forall \alpha \in I$, R(τ)(χ)(α) is a union of connected components of (Sing χ)(α) = Sing($\mathscr{A}(\alpha)$) (see Proposition 1.16.4).

DEFINITION 1.19.3. — Given $\chi: I \to C(m, \Lambda)$ such that w-ord $(\chi) > 0$ (Def. 1.19.1), define $w(\chi): I \to C(m, \Lambda)$ by:

$$w(\chi)(\alpha) = (W(\alpha), w(\mathscr{A}(\alpha)), E_{\Lambda\alpha}, A'_{\Lambda\alpha})$$

 $w(\mathscr{A}(\alpha))$ as in 1.17.6 and all functions of $A'_{\Lambda\alpha}$ being constantly equal to zero (see Remark 1.17.8).

Now one can check that $w(\chi)$ is an idealistic space for which:

(i) ord $(w(\chi)) = 1$ (Def. 1.19.1).

(ii) $\operatorname{Sing}(w(\chi)) = w - \operatorname{Sing}(\chi)$.

(iii) If $\pi: \chi_1 \to \chi$ is a permissible transformation (Def. 1.18.2) then w-ord $\chi_1 \leq w$ -ord χ .

(iv) If the equality holds at (iii) then naturally $\pi: w(\chi_1) \to w(\chi)$ is a permissible transformation.

THEOREM 1.20. — Let $\chi: I \to C(m, \Lambda)$ be a quasi-compact m-dimensional idealistic space of order 1 (Def. 1.19.1). If $E_{\Lambda\alpha} = \emptyset \forall \alpha \in I$, then $\tau(\chi) > 1$, and χ is restrictive to a quasicompact idealistic space of dimension m - 1 (Def. 1.18.3).

Proof. - Follows from theorems 1.16.1 and 1.12.

§ 2. Constructive Resolutions

2.1. Recall from 1.19.3 that if $\pi: \chi_1 \to \chi$ is a permissible transformation of idealistic spaces, then .

w-ord
$$(\chi_1) \leq w$$
-ord (χ) .

DEFINITION 2.1. — Fix a sequence of idealistic spaces and permissible transformations (1.18.2):

(2.1.1)
$$\chi_0 \stackrel{\pi_1}{\leftarrow} \chi_1 \stackrel{\pi_2}{\leftarrow} \chi_2 \leftarrow \ldots \stackrel{\pi_r}{\leftarrow} \chi_r$$

and assume that w-ord $(\chi_0) = w$ -ord $(\chi_r) > 0$, we shall say that χ_0 is a new space and χ_0 is the birth of χ_r .

In this case [(2.1.1) being fixed], we define $\tau(w\chi_r)$ to be $\tau(w(\chi_0))[\tau(\chi_0)$ as in Def. 1.19.1 and $w(\chi_i)$ as in 1.19.3].

Let $\chi_0: I \to C(m, \Lambda)$, then (2.1.1) induces for each $\alpha \in I$ a sequence of w-permissible transformations of weighted idealistic situations

$$(\mathbf{W}^{(0)}(\alpha), \mathscr{A}^{(0)}(\alpha), \mathbf{E}^{(0)}_{\Lambda(\alpha)}, \mathbf{A}^{(0)}_{\Lambda(\alpha)}) \stackrel{\pi_1}{\leftarrow} (\mathbf{W}^{(1)}(\alpha), \mathscr{A}^{(1)}(\alpha), \mathbf{E}^{(1)}_{\Lambda(\alpha)}, \mathbf{A}^{(1)}_{\Lambda(\alpha)}) \dots$$

$$\stackrel{^{n_r}}{\leftarrow} (\mathbf{W}^{(r)}(\alpha), \, \mathscr{A}^{(r)}(\alpha), \, E^{(r)}_{\Lambda(\alpha)}, \, \mathbf{A}^{(r)}_{\Lambda(\alpha)})$$

For each $\alpha \in I$ we define $(E_{\Lambda(\alpha)}^{(r)})^+$, $(E_{\Lambda(\alpha)}^{(r)})^-$ such that

$$\mathbf{E}_{\Lambda(\alpha)}^{(r)} = (\mathbf{E}_{\Lambda(\alpha)}^{(r)})^{+} \cup (\mathbf{E}_{\Lambda(\alpha)}^{(r)})^{-}.$$

(i) $(E_{\Lambda(\alpha)}^{(r)})^{-}$ consists of the strict transform at $W^{(r)}(\alpha)$ of elements of $E_{\Lambda(\alpha)}^{(0)}$ [as in (i) of Def. 1.4].

(ii) $(E_{\Lambda(\alpha)}^{(r)})^+$ consists of the strict transforms at $W^{(r)}(\alpha)$ of the exceptional locus of π_j , $j=1,2,\ldots,r$ [as in (ii) Def. 1.4].

A partial resolution of χ consists of a sequence of permissible transformations

$$\chi = \chi_0 \stackrel{\pi_1}{\leftarrow} \chi \stackrel{\pi_2}{\leftarrow} \chi_2 \dots \stackrel{\pi_r}{\leftarrow} \chi_r \stackrel{\pi_{r+1}}{\leftarrow} \chi_{r+1}$$

such that w-ord $(\chi) = w$ -ord $(\chi_r) > w$ -ord (χ_{r+1}) . And a resolution is a sequence

$$\chi_0 \leftarrow \ldots \leftarrow \chi_s$$

of permissible transformations, and Sing $\chi_s = \emptyset$.

2.2. At this point we want to establish the meaning of a constructive resolution of quasi compact idealistic spaces of dimension m.

On any partially ordered set (D, <) consider the discrete topology, then a constructive resolution of χ consists of:

(i) An upper semicontinuous function φ : Sing $\chi \rightarrow D$ such that

 $Max \phi = \{ x \in Sing \chi | \phi(x) \text{ is maximum} \}$

is the center of a permissible transformation

$$\pi_1: \quad \chi_1 \to \chi.$$

(ii) If $\pi_1: \chi_1 \to \chi$ [as in (i)] is not a resolution of χ (Def. 2.1), then there is an upper semicontinuous function $\varphi_1: \text{Sing } \chi_1 \to D$, such that:

(a) $\varphi(\pi_1(x)) \ge \varphi_1(x), \forall x \in \operatorname{Sing} \chi_1$

- (b) If $\pi(x) \notin \operatorname{Max} \varphi$ then $\varphi_1(x) = \varphi(\pi(x))$
- (c) Max φ_1 is permissible at χ_1

(iii) Assume that a sequence

$$\chi = \chi_0 \leftarrow \chi_1 \leftarrow \chi_2 \ldots \leftarrow \chi_r$$

has been defined, that Sing $\chi_r \neq \emptyset$, and also that the functions $\varphi_i: \chi_i \to D$ are given $i=0, \ldots, r$. Then Max (φ_r) is the center of a permissible transformation say π_{r+1} :

$$\chi_r \stackrel{\pi_{r+1}}{\leftarrow} \chi_{r+1}$$

such that either χ_{r+1} is a resolution of χ_r or there is an upper semicontinuous function $\varphi_{r+1}: \chi_{r+1} \to D$ and conditions (a), (b) and (c) of (ii) (with the obvious adjustement of subindices) hold.

(iv) For some r, Sing $\chi_r = \emptyset$ *i.e.*

$$\chi = \chi_0 \stackrel{\pi_1}{\leftarrow} \chi_1 \stackrel{\pi_2}{\leftarrow} \dots \stackrel{\pi_r}{\leftarrow} \chi_r$$

is a resolution (Def. 2.1).

(v) Suppose that $\operatorname{ord}(\chi) = 1$, that $\operatorname{Sing}(\chi) = \mathbb{R}(\tau)(\chi)$ (1.19.2) and $\chi \stackrel{\pi_1}{\leftarrow} \chi_1 \leftarrow \ldots \leftarrow \chi_r$ have been constructed, and assume that only hypersurfaces arising as exceptional locus from this sequence of permissible transformations intersect $\operatorname{Sing}(\chi_r)$ [which is also regular (Prop. 1.16.4)], then

$$\operatorname{Max} \varphi_r = \operatorname{Sing} \chi_r$$

i. e. φ_r is constant at Sing χ_r .

Remark 2.2.1. – Let χ_r be as in (v) then φ_r is constantly equal to some $c \in D$. If

$$\chi_r \stackrel{\pi_r}{\leftarrow} \chi_{r+1}$$

is any permissible transformation and $\operatorname{Sing} \chi_{r+1} \neq \emptyset$ then all conditions on χ_r hold also on χ_{r+1} , and if we define φ_{r+1} : $\operatorname{Sing} \chi_{r+1} \to D$ by $\varphi_{r+1} = c$ (the constant function), then condition (iii) still holds.

Remark 2.2.2. – On a ordered set (D, \leq) we may assume the existence of an element $\infty_D \in D$ such that $\lambda < \infty_D$, $\forall \lambda \in D$, $\lambda \neq \infty_D$. If not we can "add" such an element to D.

Given D_1 and D_2 as before we consider on $D_1 \times D_2$ the lexicographic order, then $\omega_{D_1 \times D_2} = (\omega_{D_1}, \omega_{D_2})$.

 \mathbb{Z} (or $\mathbb{Z} \cup \{\infty\}$) will be considered with the usual order.

2.3. We begin by constructing an upper semicontinuous function T from which ϕ will derive.

First we consider the case of an idealistic space of dimension m, say $\chi: I \to C(m, \Lambda)$ and weighted order zero (Def. 1.19.1).

2.3.1. Case dim $\chi = m$ and $w - \operatorname{ord} \chi = 0$.

 4^{e} série – tome 22 – 1989 – n° 1

At each closed point $x \in \text{Sing } \chi$ define $\Lambda_x = \{ \alpha \in \Lambda \mid x \in E_\alpha \}$ [see Def. 1.17.1 (ii)] and recall that $\notin \Lambda_x \leq m$.

Let now T: Sing $\chi \to \mathbb{Z}^3 \times \Lambda^m$ be defined as follows

$$T(1)(x) = 0$$

$$T(2)(x) = -\mathscr{B}(x) \quad \text{where} \quad \mathscr{B}(x) = \min\{k \mid \exists i_1 < i_2 < \ldots < i_k \mid i_i \in \Lambda_x \\ j = 1, 2, \ldots, k \quad \text{and} \quad \alpha(i_1)(x) + \ldots + \alpha(i_k)(x) \ge 1\}.$$

If $\mathscr{B} = \mathscr{B}(x)$ then

$$\Gamma(3)(x) = \max \left\{ \alpha(i_1)(x) + \ldots + \alpha(i_{\mathscr{R}})(x) \middle| i_1 < \ldots < i_{\beta} \right\}$$

and

$$\mathbf{E}_{i_j} \in \Lambda_x, i = 1, 2, \ldots, \mathscr{B} \}.$$

Now consider $\Lambda_x^{\mathscr{B}} = \Lambda_x \times \ldots \times \Lambda_x$ (\mathscr{B} -times) with the lexicographic ordering, and:

$$\beta = (\overline{\beta}_1, \ldots, \overline{\beta}_{\mathscr{B}}) = \max \left\{ (\beta_1 \ldots \beta_{\mathscr{B}}) \middle| \begin{array}{c} \beta_1 > \beta_2 \ldots > \beta_{\mathscr{B}}, \\ \beta_i \in \Lambda_x \end{array} \right.$$

 $i = 1, 2, \ldots, \mathscr{B} \quad \text{and} \quad \alpha(\beta_1)(x) + \ldots + \alpha(\beta_{\mathscr{B}})(x) = T(3)(x) \right\}.$

Define:

$$T(4)(x) = (\beta, \infty) \in \Lambda^m (\beta \in \Lambda^{\mathscr{B}}_x \subset \Lambda^{\mathscr{B}} \text{ and } \infty = \infty_{\Lambda^{m-\mathscr{B}}} \in \Lambda^{m-\mathscr{B}})$$

We shall now define at $\text{Img } T \subset \mathbb{Z}_3 \times \Lambda^m$ a partial order, without a notion of order at Λ , but extending the lexicographic order at \mathbb{Z}^3 .

It suffices to defines a notion of T(x) < T(y) at closed points x, $y \in \text{Sing } \chi$ for which $T(j)(x) = T(j)(y) = a_j$, j = 1, 2 and $3(a_1 = 0$ by assumption).

Let $J = \{x \in \text{Sing } \chi \mid T(j)(x) = a_j, j = 1, 2, 3\}$. One can check (at each $\alpha \in I$) that the irreducible components of J are open subset of irreducible components of Sing χ of dimension $m + a_2$ [at W(α)]. Now we say that T(4)(x) < T(4)(y) if there are closed points $\{x_0 = x_1, \ldots, x_2 = y\} \subset J$ such that:

(a) $T(4)(x_i) \in \Lambda_{x_{i+1}}^{-a_2}, i=0, \ldots, l-1$

(b) for some *i* as before $T(4)(x_i) < T(4)(x_{i+1})$ at $\Lambda_{x_{i+1}}^{-a_2}$.

The consistency of this definition follows from (1.17.1.1) and Def. 1.17.2 (ii).

This order is not a total order at Img T, and the existence of maximal elements follows from the hypothesis of quasi-compactness on χ .

The maximal elements might not be unique as shown in the following examples:

Examples. - Consider at W = Spec(C[x, y, z]) hypersurfaces

$$E_1 = \{x = 0\}, E_2 = \{x = 1\}, E_3 = \{y = 0\}, E_4 = \{z = 0\},$$

and given $\{i, j\} \in \Lambda_x$, let i < j iff i < j (at \mathbb{Z}).

Define also $T_{ii} = E_i \cap E_i$.

Example 1. – Let (J, b) be defined at W by $J = \langle x(x-1)z \rangle$ and b=2. Then $\operatorname{Sing}^{(b)}(J) = T_{14} \cup T_{24}$, T is maximal along $\operatorname{Sing}^{b}(J)$ and

$$\max T = \{ (0, -2, 1, (1, 4, \infty)); (0, -2, 1, (2, 4, \infty)) \}.$$

Example 2:

$$J = \langle x (x-1), y, z \rangle, \qquad b = 2.$$

Sing^b J = T₁₄ \cup T₂₄ \cup T₃₄ \cup T₁₃ \cup T₂₃

in this case max T = { $(0, -2, 1, (3, 4, \infty))$ } is reached exactly along T₃₄.

Remark 2.3.1. – One can check that T is upper semicontinuous, moreover for a fixed $d \in \mathbb{Z}^3 \times \Lambda^m$ the condition T > d is closed at Sing χ .

Recall now from Def. 1.17.4 the notion of total order at Λ_x after a permissible transformation and check that $T = \varphi$ satisfies all conditions of 2.2.

2.3.2. Case of dim $\chi = m$ and $w - \operatorname{ord}(\chi) > 0$. Consider χ together with a fixed sequence

$$\chi^{(-r)} \stackrel{\pi_{-r}}{\leftarrow} \chi^{(-r+1)} \leftarrow \ldots \chi^{(-1)} \stackrel{\pi_{-1}}{\leftarrow} \chi^{(0)} = \chi$$

in the conditions of the sequence (2.1.1) of Def. 2.1, so that $\chi^{(-r)}$ is the birth of χ and $E_{\Lambda} = E_{\Lambda}^{+} \cup E_{\Lambda}^{-} (E_{\Lambda}(\alpha) = E_{\Lambda}^{+}(\alpha) + E_{\Lambda}^{-}(\alpha), \forall \alpha \in I)$ are defined.

Now let T: w-Sing $\chi \to \mathbb{Z}^3 \times \Lambda^m$ be defined for each $x \in w$ -Sing χ by:

$$T(1)(x) = w - \operatorname{ord}(\chi) \quad (\text{Def. 1.9.1})$$

$$T(2)(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R}(\tau)(w(\chi)) \quad (1.19.2 \text{ and } 1.19.4) \\ 1 & \text{if } x \notin \mathbb{R}(\tau)(w(\chi)) \end{cases}.$$

OBSERVATION 2.3.2. $- R(\tau)(w\chi)$ is a "component" of $w - \operatorname{sing} \chi$ (Remark 1.19.2), this fact can be checked at any $\operatorname{Sing}(w(\mathscr{A} \alpha))) \subset W(\alpha)(\alpha \in I)$. Moreover the definitions of $\tau(\chi)$ (Def. 2.1) together with Proposition 1.16.4 and 1.19.3 assert that a point $x \in R(\tau)(w(\chi))$ if and only if the final imagen of such point at $\chi^{(-r)}$ is a point of $R(\tau)(w(\chi^{(-r)}))$.

Now define:

$$n(x) = \not \in \{ \alpha \in \Lambda_x \mid E_\alpha \in E_\Lambda^- \}$$

$$m(x) = \not \in \{ \alpha \in \Lambda_x \mid E_\alpha \in E_\Lambda^- \text{ and } w\text{-Sing}(\chi) \notin E_\alpha \text{ locally at } x \}$$

and finally

$$T(3)(x) = \begin{cases} n(x) & \text{if } x \notin R(\tau) \\ m(x) & \text{if } x \in R(\tau) \end{cases}$$

And T(4) $(x) = \infty \in \Lambda^m$.

 $4^{\text{e}} \text{ série} - \text{tome } 22 - 1989 - \text{n}^{\circ} 1$

The function T_1 takes values at \mathbb{Q} , but since we assume that χ is quasi-compact there is $n \in \mathbb{Z}$ such that $\text{Img } T_1 \subset 1/n \mathbb{Z} \subset \mathbb{Q}$, and $1/n \mathbb{Z} \simeq \mathbb{Z}$ as ordered sets.

Remark 2.3.2. – The fact T is well defined follows from the notion of equivalence of points at weighted idealistic situations (Def. 1.17.3) and Theorems 1.13.1 and 1.13.2.

OBSERVATION 2.3.3. – If dim $\chi = m = 1$ (Def. 1.18.2) then T = φ satisfies all conditions of 2.2.

Remark 2.3.4. – If $w - \operatorname{ord} \chi > 0$ then T reaches a unique maximal value along w-Sing(χ). And for a fixed element $d \in \mathbb{Z} \times \Lambda^m$ both $\{x \in w - \operatorname{Sing} \chi \mid T(X) \ge d\}$ and $\{x \in w - \operatorname{Sing} \chi \mid T(X) > d\}$ are closed subsets (Def. 1.18.2) included in w-Sing χ . In fact the values of T are taken in the totally ordered discrete subset $\mathbb{Z}^3 \times \infty$ ($\subset \mathbb{Z}^3 \times \Lambda^m$).

DEFINITION 2.4. — A preparation procedure of an idealistic space χ of weighted order bigger than zero, constists of a sequence of permissible transformation

$$\chi \stackrel{\pi_1}{\leftarrow} \chi_1 \ldots \leftarrow \chi_s \stackrel{\pi_{S+1}}{\leftarrow} \chi_{s+1}$$

such that $w - \operatorname{ord} \chi = w - \operatorname{ord} \chi_s$ and either $w - \operatorname{ord} \chi_{s+1} < w - \operatorname{ord} \chi_s$ or, if $w - \operatorname{ord} \chi_{s+1} = w - \operatorname{ord} \chi_s$ then T(3)(x) = 0, $\forall x \in w - \operatorname{Sing}(\chi_{s+1})$.

DEFINITION 2.5. — Let

$$\beta: \chi^{(-r)} \stackrel{\pi_{-r}}{\leftarrow} \chi^{(-r+1)} \leftarrow \ldots \leftarrow \chi^{(0)} = \chi$$

be as in 2.3.2, *i. e.* $\chi^{(-r)}$ is the birth of χ (Def. 2.1), and let $\pi: \chi \to \chi^{(-r)}$ denote the composition of the intermediate transformation. Then given $x \in w$ -Sing (χ) we define the birth of x to be the point $\pi(x) \in w$ -Sing $(\chi^{(-r)})$.

2.6. Here we define a notion of an *inductive procedure*. Let the assumptions and notation be as in Def. 2.5. Assume also that T(3)(x) = 0, $\forall x \in w$ -Sing (χ) , and that this condition does not hold at $\chi^{(-1)}$.

Now fix $x \in w$ -Sing (χ) and let $y \in w$ -Sing $(\chi^{(-r)})$ denote the birth of $x \cdot \chi^{(-r)} \colon I \to C(m, \Lambda)$. Choose $\alpha \in I$ such that

$$y \in w$$
-Sing $(\mathscr{A}^{(-r)}(\alpha)) \subset W^{(-r)}(\alpha)$.

Now w-Sing $(\mathscr{A}^{(-r)}(\alpha)) = \text{Sing}(w(\mathscr{A}^{(-r)}(\alpha)) \text{ (Remark 1.17.6), and } \operatorname{ord}(w(\mathscr{A}^{(-r)}(\alpha))) = 1 \text{ (Remark 1.17.7).}$

So Theorem 1.16.1 asserts that there is a regular hypersurface H, such that $y \in H \subset W^{(-r)}(\alpha)$, having maximal contact with $W(\mathscr{A}^{(-r)}(\alpha))$ locally at y.

After a convenient restriction assume that H has maximal contact with $W(\mathscr{A}^{(-r)}(\alpha))$.

The sequence of permissible transformations $\beta : \chi^{(-r)} \leftarrow \ldots \leftarrow \chi^{(0)}$ gives rise to:

(1) a sequence of w-permissible transformations over

$$(W^{(-r)}(\alpha), \mathscr{A}^{(-r)}(\alpha), E_{\Lambda}(-r), A_{\Lambda}(-r)) \quad (\text{Def. 1.17.4}):$$

$$(W^{(-r)}(\alpha), \mathscr{A}^{(-r)}(\alpha), E_{\Lambda^{(-r)}(\alpha)}, A_{\Lambda^{(-r)}(\alpha)}) \leftarrow \dots$$

$$\leftarrow (W^{(0)}(\alpha), \mathscr{A}^{(0)}(\alpha), E_{\Lambda(\alpha)}(0), A_{\Lambda(\alpha)}(0)).$$

(2) a sequence of permissible transformations over

$$(W^{(-r)}(\alpha), w(\mathscr{A}^{(-r)}(\alpha)), E_{\Lambda(-r)})$$
 (Def. 1.8).

Since $\operatorname{ord}(w(\mathscr{A}^{(-r)}(\alpha))) = 1$ (Remark 1.17.7), it can be interpreted as a sequence of w-permissible transformations (see Remark 1.17.8).

$$(W^{(-r)}(\alpha), w(\mathscr{A}^{(-r)}(\alpha)), E_{\Lambda^{(-r)}(\alpha)}, \bar{A}_{\Lambda^{(-r)}(\alpha)}) \leftarrow \dots \\ \leftarrow (W^{(0)}(\alpha), w(\mathscr{A}^{(0)}(\alpha)), E_{\Lambda^{(0)}(\alpha)}, \bar{A}_{\Lambda^{(0)}(\alpha)}).$$

Let H_1 denote the final strict transform of $H(\subset W^{(-r)}(\alpha))$ at $W^{(0)}(\alpha)$, and let $E_{\Lambda^{(0)}(\alpha)} = E_{\Lambda^{(0)}(\alpha)}^{+} \bigcup E_{\Lambda^{(0)}(\alpha)}^{-}$ be as in 2.3.2.

Now we consider two cases

2.6 (a) Case T(2)(y)=1. In this case, $y \notin R(\tau(w(\mathscr{A}^{(-r)})))$. Since $R(\tau(w(\mathscr{A}^{(-r)})))$ is a connected component of w-Sing $(\mathscr{A}^{-r}) = \text{Sing}(w(\mathscr{A}^{-r}))$ (Proposition 1.16.4), we may assume after shrinking that $R(\tau(w(\mathscr{A}^{(-r)})) = \emptyset$ (at $W^{(-r)}(\alpha)$).

Now one can check at $W^{(0)}(\alpha)$ that $\overline{E}_{\lambda} = E_{\lambda} \cap H_1$ is empty or a smooth hypersurface for $E_{\lambda} \in E_{\Lambda}^{+_0}(\alpha)$, and $\overline{E}_{\lambda} = \emptyset$ if $E_{\lambda} \in E_{\Lambda}^{-_0}(\alpha)$ [at least locally at w-Sing(χ)].

Let $\bar{E}_{\Lambda} = \{ \bar{E}_{\lambda} | \lambda \in \Lambda \}$, then the inclusion $H \subseteq W^{(0)}(\alpha)$ and (H_1, \bar{E}_{Λ}) , $(W^{(0)}(\alpha), E_{\Lambda})$ satisfy the condition 1.11.1.

On the other hand H_1 has maximal contact with $w(\mathscr{A}^{(0)}(\alpha))$ at $W^{(0)}(\alpha)$. One can check that the conditions are given for Theorem 1.15, (b) to hold, so that there is an idealistic situation (Def. 1.8) (H_1 , \mathscr{B} , \overline{E}_A) such that $i : H_1 \subseteq W^{(0)}(\alpha)$ is a strong immersion from (H_1 , \mathscr{B} , \overline{E}_A) to ($W^{(0)}(\alpha)$, $w(\mathscr{A}^{(0)}(\alpha))$, E_A) (Def. 1.11).

 \mathscr{B} might have order bigger than $1 = \operatorname{ord}(w(\mathscr{A}^{0}(\alpha)))$ (Remark 1.17.7). We define the weighted idealistic situation (H₁, \mathscr{B} , \overline{E}_{Λ} , \overline{A}_{Λ}) where $\overline{A}_{\Lambda} = \{\alpha(\lambda) | \lambda \in \Lambda\}$ such that $\alpha(\lambda)(x) = 0, \forall x \in \overline{E}_{\lambda}(\forall \overline{E}_{\lambda} \in \overline{E}_{\Lambda}).$

Arguing as before at each point y, we construct a restriction of $w(\chi)$ to an m-1 dimensional idealistic space $\overline{\chi}^{(0)}$ (Def. 1.18.3). Theorem 1.12 asserts that $\overline{\chi}^{(0)}$ is quasi-compact (Def. 1.19.1). And $\operatorname{Sing} \overline{\chi}^{(0)} = (\operatorname{Sing} w(\chi^{(0)})) - \mathbb{R}(\tau) (w(\chi^0))$ which consists of "connected components" of $\operatorname{Sing} w(\chi^{(0)})$ (Remark 1.19.2).

In this case we define the restriction of $w(\chi^0)$ to be $\overline{\chi}^{(0)}$.

2.6 (b) Case T(2)(y)=0 *i.e.* $y \in \mathbb{R}(\tau)(w(\chi^{(-r)}))$.

After a convenient restriction we may assume that $R(\tau)(w(\chi^{(-r)})) = Sing(w(\chi^{(-r)}))$ (Def. 1.19.3).

 4° série – tome 22 – 1989 – n° 1

Let α and $H \subset W^{(-r)}(\alpha)$ be as before. Since H has maximal contact with $w(\mathscr{A}^{(-r)}(\alpha))$, apply Theorem 1.15 case (b) if possible (see Remark I below) and let $(H, \mathscr{B}, E_{\emptyset}, A_{\emptyset})$ induce a strong immersion with $(W^{(-r)}(\alpha), w(\mathscr{A}^{(-r)}(\alpha)), E_{\emptyset}, A_{\emptyset})$ (we do not assume that $E_{\Lambda}^{(-r)} = \emptyset$ at $\chi^{(-r)}(\alpha)$).

One can check that, by this procedure an m-1 dimensional idealistic space $\overline{\chi}^{(-r)}$ has been defined such that:

(i) $\bar{\chi}^{(-r)}$ is quasi-compact

(ii) Sing $\overline{\chi}^{(-r)} = \operatorname{Sing} w (\chi^{(-r)} = w - \operatorname{Sing} (\chi^{(-r)}))$

(iii) The permissible sequence $\beta: \chi^{(-r)} \leftarrow \ldots \leftarrow \chi$ induces a permissible sequence

$$\overline{\beta}: \quad \overline{\chi}^{(-r)} \leftarrow \ldots \leftarrow \overline{\chi}^{(0)}.$$

(iv) $\operatorname{Sing} \overline{\chi}^{(j)} = \operatorname{Sing} w(\chi^{(j)}), j = -r, \ldots, 0.$

(v) $w(\chi^0)$ is restrictive to $\overline{\chi}^0$ (Def. 1.18.3).

In this case we define the restriction of $w(\chi^0)$ to be $\bar{\chi}^0$ (with birth $\bar{\chi}^{(-r)}$).

Remark 2.6.1. - Let $\overline{\chi}^0$ be the restriction of $w(\chi^0)$ as in 2.6 (a) or 2.6 (b), then:

(i) $\operatorname{Sing}(\overline{\chi}^0) = w - \operatorname{Sing}(\chi)$ (disregarding eventually connected components of the second term).

(ii) the function T : w-Sing(χ) $\rightarrow \mathbb{Z}^3 \times \Lambda^m$; is constant along Sing($\overline{\chi}^{(0)}$)

Remark I. – The procedure of 2.6 is not defined at x if and only if

(i) $\tau(\chi^{(-r)}) = 1$

(ii)
$$T(2)(y)(=T(2)(x))=0$$

since, in that case and only in that case Theorem 1.15 b) does not apply.

2.7

2.7.1. Before going into the development of this section we sketch the strategy to follow in a simplified form.

So we start with a pair (J, b) and $E = \{E_1, \ldots, E_n\}$ hypersurfaces with only normal crossings in a regular scheme W of dimension m (as in § 1). Recall that if χ is the induced idealistic space, then permissible transformations over χ correspond to w-permissible transformations over (J, b), E (Def. 1.18.2). Say

where: (i) (J_i, b) is the transform of (J_{i-1}, b) (Def. 1.3).

(ii) $J_i = MJ^{(i)}$, M a monomial (Def. 1.17.1).

- (iii) w-ord $(J) \ge \ldots \ge w$ -ord (J_r) (Remark 1.17.6 (iii)).
- (iv) w-Sing $\chi_i = \text{Sing}(w \chi_i) = \text{Sing} w(J_i, b) [w(J_i, b) \text{ as in } 1.17.6].$

The notion of birth of χ_r (and of $E_r = E_r^- \cup E_r^+$) of Def. 2.1 corresponding to the smallest index k for which w-ord((J_k, b)) = w-ord((J_r, b)).

If the weighted order of (J_r, b) is zero *i. e.* if J_r is locally a monomial, the resolution of (J_r, b) will follow easily. So assume that w-order $(J_r, b) > 0$ (as in 2.3.2).

For further simplification we restrict our attention to the functions on w-Sing χ_r , defined by T(1) [constantly equal to w-order (J_r, b)] and T(3), T(3)(x) = n(x) (as in 2.3.2).

These two functions turn out to be substantial for this procedure of resolution.

In 2.7.2 we study the maximal value of this function (in a lexicographic sense) along w-Sing(χ_r), say Max T_r = (ω , n). We set

$$\operatorname{Max} \mathbf{T}_{r} = \{ x \in w \operatorname{-Sing}(\chi_{r}) / \mathbf{T}(x) = (\omega, n) \}.$$

Fix $x \in Max(T_r)$, then n(x) = n, and say $\{E_1, \ldots, E_n\} = \{E_i \in E_r^- | x \in E_i\}, E_i$ locally defined by $x_i = 0$.

Then Max T_r is the singular locus of a new pair of order 1 (Def. 1.2), say T_r(J_r, b), where:

$$\mathbf{T}_r(\mathbf{J}_r, b) \sim w(\mathbf{J}_r, b) \cap (\langle x_1 \rangle, 1) \cap \ldots \cap (\langle x_n \rangle, 1)$$

or equivalently, if $w(J_r, b) = (\mathcal{A}, d)$

$$T_r(J_r, b) \sim (\mathscr{A} + (x_1^d) + \ldots + (x_n^d), d)$$

 $[\sim: isomorphic in the sense of idealistic situations (Def. 1.9)].$

If n=0, in 2.6 we showed that the problem of resolution of $\omega(J_r, b)$ (the problem of "lowering" the weighted order), is a problem of resolution of an idealistic space of dimension smaller then m.

n is to be thought of as an obstruction in this sense.

The main results in this section are: [see conditions (1), (2), (3) and (4) of 2.7.3 for precise statements].

(a) The lowering of n [or of ω = weighted order of (J_r, b)], is equivalent to the resolution of the pair $T_r(J_r, b)$.

(b) The problem of resolution of $T_r(J_r, b)$ is a problem of resolution of idealistic spaces of dimension smaller then m.

Of course the number n, or any n(x) is bounded by m. There cannot be more then m-hypersurfaces with normal crossings at $x \in W$.

2.7.2. Consider a sequence

$$\beta: \chi^{(-r)} \stackrel{\pi_{-r}}{\leftarrow} \chi^{(-r+1)} \leftarrow \ldots \chi^{(-1)} \stackrel{\pi_{-1}}{\leftarrow} \chi^{0} = \chi$$

of permissible transformations over an *m*-dimensional idealistic space $\chi^{(-r)}$: $I \to C(m, \Lambda)$ such that

w-ord
$$(\chi^{(-r)}) =$$
 w-ord $(\chi) > 0$.

 4^{e} série – tome 22 – 1989 – n° 1

We assume, inductively on r, that each π_j is a permissible transformation with center C_j , uniquely determined by an upper semicontinuous function on the "closed" sets w-Sing (χ^j) .

In 2.3.2 we have constructed a function T on each w-Sing $(\chi^{(j)})$ which is upper semicontinuous. Now define for each such T : Max $(T(\chi^{(j)}))$ or simply.

Max (T) = maximum value of T at w-Sing $(\chi^{(j)})$, and

 $Max(T) = \{x \in w\text{-Sing}(\chi^{(j)}) \mid T(x) = MaxT\}$

(see Remark 2.3.4).

Assume that the following conditions hold:

(i) $C_i \subset Max T \subset w$ -Sing $\chi^{(j)}$

(ii) for any $x \in w$ -Sing $(\chi^{(j+1)})$; $T(\pi_j(x)) \ge T(x)$.

DEFINITION 2.7.2. — When these conditions hold then for each $x \in Max(T) \subset w$ -Sing(χ) we define:

1. m-Sing(x) = T(x) (= Max(T)).

2. the *m*-birth of x as the image y of x by the natural map $\pi : \chi \to \chi^{(-j)}$ where -j is the smallest index for which $T(x) = Max(T(\chi^{(-j)}))$.

Remark. – Given x as before, let y be the m-Sing birth of x and z the birth of x (Def. 2.5). Then z is also the birth of y.

2.7.3. In 2.6 we studied a sequence β (as before) such that w-ord $(\chi^{(-r)}) = w$ -ord $(\chi) > 0$ and the additional hypothesis that T(3)(x) = 0, $\forall x \in w$ -Sing (χ) . In this section we consider the case that Max $T = (d_1, d_2, d_3, \infty)$ (T : w-Sing $(\chi) \to \mathbb{Z}^3 \times \Lambda^m$) where $d_3 > 0$ and we want to construct now a preparation procedure (Def. 2.4).

Let -j and y be as before and $F^{(-j)} = \underline{Max}(T) \subset w$ -Sing $(\chi^{(-j)})$, let z denote the birth of y and let $\alpha \in I$ be such that $z \in w$ -Sing $(\mathscr{A}^{(-r)}(\alpha)) \subset W^{(-r)}(\alpha)$ where $\chi^{(-r)}(\alpha) = (W^{(-r)}(\alpha),$ $\mathscr{A}^{(-r)}(\alpha), E_{\Lambda^{(-r)}(\alpha)}, A_{\Lambda^{(-r)}(\alpha)})$.

Now w-Sing $(\mathscr{A}^{(-r)}(\alpha)) = \text{Sing}(w(\mathscr{A}^{(-r)}(\alpha)) \text{ and } \text{ord}(w(\mathscr{A}^{(-r)}(\alpha))) = 1$ (Remark 1.17.1). Again by theorem 1.16.1 there is a smooth hypersurface $H^{(-r)} \subset W^{(-r)}(\alpha)$ such that $z \in H^{(-r)}$ and $H^{(-r)}$ has maximal contact with $w(\mathscr{A}^{(-r)}(\alpha))$ [after shrinking $W^{(-r)}(\alpha)$].

If $H^{(-j)}$ denotes the strict transform of $H^{(-r)}$ at $W^{(-j)}(\alpha)$ by the maps induced over $W^{(-r)}(\alpha)$, then $y \in H^{(-j)}$ and $H^{(-j)}$ has maximal contact with $w(\mathscr{A}^{(-j)}(\alpha))$ (which is the transform of the idealistic exponent $w(\mathscr{A}^{(-r)}(\alpha))$) at $W^{(-j)}(\alpha)$ [Remark 1.17.6 (iii)]. Recall (as in 2.6) that $H^{(-j)}$ has normal crossings with $E^{+}_{\Lambda^{(j)}(\alpha)}(2.1)$. If $w(\mathscr{A}^{(-j)}(\alpha))$ is defined locally at y by a pair (J, b), then consider the idealistic exponent

$$\mathbf{K} = ((\mathbf{J} + \sum_{y \in \mathbf{E}_s \in \Gamma} \mathbf{P}_s^b, b)), \qquad \Gamma = (\mathbf{E}_{\Lambda^{(j)}})^{-1}$$

(2.1) where $P_s \subset O_{W^{(j)}(\alpha)}$ is the sheaf of ideals $O(-E_s)$.

One can check that:

(a) Sing $K = F^{(-j)}$ (locally at y).

(b) K is well defined independently of the election of (J, b).

Remark. - Assume that T(2)(y) = (=T(2)(z)) = 0 then

$$(\mathbf{J} + \sum_{\mathbf{y} \in \mathbf{E}_s \in \Gamma} \mathbf{P}_s^b, b) \sim (\mathbf{J} + \sum_{\mathbf{y} \in \mathbf{E}_t \in \Gamma'} \mathbf{P}_t^b, b) \quad (\text{Def. 1.1})$$

where $\Gamma' = \{ E_t \in (E_{\Lambda^{(j)}})^- | w - \operatorname{Sing}(\chi^{(-j)}) \notin E_t \}$ (locally at y).

Since $H^{(j)}$ has maximal contact with $w(\mathscr{A}^{(-j)}(\alpha)) = ((J, b))$, then it also has maximal contact with K.

Now consider at $W^{(-j)}(\alpha)$ the weighted idealistic situation $(W^{(-j)}(\alpha), K, (E_{\Lambda^{(-j)}(\alpha)})^+, \overline{A}_{\Lambda^{(-j)}(\alpha)})$ where $(E_{\Lambda^{(-j)}(\alpha)})^+$ is as before and $\overline{A}_{\Lambda^{(-j)}(\alpha)}$ consists of functions $\alpha(\lambda) : E_{\lambda} \to \mathbb{Q}$, for each $E_{\lambda} \in (E_{\Lambda^{(-j)}(\alpha)})^+$ where $\alpha(\lambda)(x) = 0, \forall x \in E_{\lambda}$.

Now for each $E_{\lambda} \in (E_{\Lambda^{(j)}(\alpha)})^+$ let $\overline{E}_{\lambda} = E_{\lambda} \cap H^{(-j)}$ and define $E_{\overline{\Lambda}} = \{\overline{E}_{\lambda} \text{ (as before)}\}$ and $A_{\overline{\Lambda}} = \{\alpha(\lambda) : \overline{E}_{\lambda} \to \mathbb{Q} \ (\overline{E}_{\lambda} \text{ as before) such that } \alpha(\lambda)(x) = 0, \forall x \in \overline{E}_{\lambda}\}.$

 $E_{\overline{\Lambda}}$ consists of hypersurfaces (at $H^{(-j)}$) with only normal crossings.

We claim that the conditions of Theorem 1.15 (b) are given (see Remark II below), so that there is an idealistic exponent \mathscr{B} at $H^{(-j)}$ and a strong immersion

$$(\mathbf{H}^{(-j)}, \mathscr{B}, \mathbf{E}_{\overline{\Lambda}}) \subseteq (\mathbf{W}^{(-j)}(\alpha), \mathbf{K}, (\mathbf{E}_{\Lambda^{(-j)}(\alpha)})^+).$$

Arguing in the same way for all points $x \in Max(T) \subset \chi^0 = \chi$ and all election of hypersurfaces $H^{(-r)}$, we construct an m-1 dimensional idealistic space $\overline{\chi}^{(-j)}$ which is quasi-compact and satisfies the following conditions:

- (1) $\operatorname{Sing} \overline{\chi}^{(-j)} = \operatorname{Max}(T) \subset w \operatorname{Sing}(\chi^{(-j)}).$
- (2) The permissible sequence

$$\chi^{(-j)} \stackrel{\pi_{-j}}{\leftarrow} \chi^{(-j+1)} \leftarrow \ldots \stackrel{\pi_{-1}}{\leftarrow} \chi^{(0)} = \chi$$

induces a permissible sequence

(A):
$$\overline{\chi}^{(-j)} \leftarrow \overline{\chi}^{(-j+1)} \leftarrow \ldots \leftarrow \overline{\chi}^{(0)}$$

over $\overline{\chi}^{(-j)}$ such that $\operatorname{Sing}(\overline{\chi}^{(l)}) = \operatorname{Max}(T) \subset w$ -Sing $(\chi^{(l)})$ for all $l = -j, -j+1, \ldots, 0$.

(3) If $\overline{\chi}^{(-j)} \leftarrow \overline{\chi}^{(-j+1)} \leftarrow \ldots \leftarrow \overline{\chi}^{(0)} \leftarrow \ldots \overline{\chi}^{(k)}$ is a permissible sequence [extending that of (2)] then it induces a permissible sequence

$$(\chi^{(-r)} \ldots \leftarrow) \chi^{(-j)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(k)}$$

at permissible centers $C_l(-r \le l \le k)$ such that (i) and (ii) of 2.7 hold. Moreover $\operatorname{Sing} \overline{\chi}^{(l)} = \operatorname{Max}(T) \subset w$ -Sing $(\chi^{(l)}) \ 0 \le l \le k$ and

$$Max(T: w-Sing(\chi) \to \mathbb{Z}^3 \times \Lambda^m) > Max(T: w-Sing(\chi^k) \to \mathbb{Z}^3 \times \Lambda^m)$$

if and only if $\operatorname{Sing} \overline{\chi}^{(k)} = \emptyset$.

(4) Conversely, if $\chi^{(-r)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \chi^{(k)}$ is an extension of $\chi^{(-r)} \leftarrow \ldots \leftarrow \chi^0 = \chi$ by permissible transformations at centers

$$C_j \subset Max T \subset w$$
-Sing $(\chi^{(j)}), \quad 0 \leq j \leq k$

 4^{e} série – tome 22 – 1989 – n° 1

such that (i) and (ii) of 2.7 hold, and if

$$Max(T: w-Sing(\chi^{(k)}) \to \mathbb{Z}^3 \times \Lambda^m) = Max(T: w-Sing(\chi) \to \mathbb{Z}^3 \times \Lambda^m)$$

then it induces a sequence of permissible transformations

$$\overline{\chi}^{(-j)} \leftarrow \ldots \leftarrow \overline{\chi}^{(0)} \leftarrow \overline{\chi}^{(1)} \leftarrow \ldots \leftarrow \overline{\chi}^{(k)}$$

and $\operatorname{Sing}(\overline{\chi}^{(l)}) = \operatorname{Max} T \subset w$ -Sing $\chi^{(l)} l = 0, \ldots, k$.

Remark II. — The construction of the restricted situation at y would not be possible if and only if:

- (1) $\tau(\chi^{(-r)}) = 1$
- (2) T(2)(y) = 0
- (3) T(3)(y) = 0

(see Remark I) but we assumed in the construction of 1.7.2 that $T(3)(y) \neq 0$.

2.8. Now let $D_m = Z^3 \times \Lambda^m$, $J_m = D_m \times D_{m-1} \times \ldots \times D_1$ and suppose that the theorem of constructive resolutions (2.2) holds in dimension smaller then m.

We assume that the sequence (A) is a constructive sequence, *i. e.* that there is a resolution

$$\chi^{(-j)} \leftarrow \chi^{(-j+1)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(l)}, \ \chi^{(0)} = \chi$$

together with functions $\psi_{m-1}^{(k)}$: Sing $\overline{\chi}^{(k)} \to J_{m-1}$, $-j \leq k < l$ satisfying the conditions at 2.2 (see observation 2.3.3). Recall that Sing $(\overline{\chi}^{(k)}) = \underline{Max}(T) \subset w$ -Sing $(\chi^{(k)})$ where now:

$$\chi^{(-k)} \leftarrow \ldots \leftarrow \chi^{(0)} \leftarrow \chi^{(1)} \leftarrow \ldots \leftarrow \chi^{(l)}, \chi^{(0)} = \chi$$

is the permissible sequence constructed with these centers.

Moreover this maximum value of T along w-Sing $(\chi^{(-s)})$ is the same, say c, for all $-j \leq s \leq l$.

So if c_1 is the maximum of T along w-Sing $(\chi^{(l)})$ (assuming that the birth of $\chi^{(l)}$ is still $\chi^{(-k)}$), then $c_1 < c$. But this simply means that

$$\max \{ T(3)(x) | x \in w\text{-Sing}(\chi^{(l)}) \} < \max \{ T(3)(x) | x \in w\text{-Sing}(\chi^{(-k)}) \}$$

But $T(3)(x) \leq m = \dim \chi^{(l)}$ (Def. 1.18.2). So repeating this argument we are left in the situation at which either w-ord($\chi^{(l)}$) < w-ord($\chi^{(-k)}$) orw-ord($\chi^{(l)}$) = w-ord($\chi^{(-k)}$) and T(3)(x) = 0, $\forall x \in$ w-Sing($\chi^{(l)}$). In this way we have constructed a preparation procedure (Def. 2.4) and now the inductive procedure of 2.6 can be applied.

In either case at $F^{(s)} = \{x \in w\text{-Sing } (\chi^{(s)}) | F(x) \text{ is maximum} \} = \underline{Max} (T)$ define $\psi_m^{(k)}(x) = (T(x), \psi_{m-1}^{(k)}(x))$; this defines a map:

$$\psi_m^{(k)}: \mathbf{F}^{(k)} \to \mathbf{D}_m \times \mathbf{J}_{m-1} (= \mathbf{J}_m)$$

We are still left with the case (within w-ord $(\chi) > 0$) where:

$$T(2)(x) = 0, \qquad \forall x \in w\text{-Sing}(\chi)$$
$$T(3)(x) = 0, \qquad \forall x \in w\text{-Sing}(\chi)$$

and $\tau(w(\chi)) = 1$.

In this case and only in this case, the procedure introduced before are of no use. But then w-Sing χ is regular at each point and w-Sing χ itself is a center of a permissible transformation and such transformation defines a resolution of $w(\chi)$. On the other hand the function T : w-Sing(χ) $\rightarrow D_m$ is constant. So we define

$$\psi_m(x) = (\mathbf{T}(x), \ \infty) \in \mathbf{D}_m \times \mathbf{J}_{m-1} = \mathbf{J}_m$$

Finally, if w-ord $(\chi) = 0$ define

 Ψ_m : Sing $\chi \to J_m$

by

$$\psi_m(x) = (T(x), \infty)$$

(Remark 2.3.1 asserts that a resolution of χ can be "constructed").

2.9. With the assumption of constructive resolutions of singularities for idealistic spaces of dimension smaller then m, we have produced in 2.8, for any *m*-dimensional idealistic space χ a unique resolution:

(A)
$$\begin{array}{c} \chi_0 \leftarrow \chi_1 \dots \leftarrow \chi_r \xleftarrow{\Pi_r} \leftarrow \chi_n \\ Y_0 \quad Y_1 \qquad Y_r \end{array}$$

where each $\chi_r \leftarrow \chi_{r+1}$ is a permissible transformation with center $Y_r \subset \text{Sing }\chi_r$.

DEFINITION 2.9.1. — Given a point $x \in \operatorname{Sing} \chi_r$, if $x \notin Y_r$ we identified it with a point $x \in \operatorname{Sing} \chi_{r+1}$ in such a way that Π_r : $\operatorname{Sing} \chi_{r+1} \to \operatorname{Sing} \chi_r$ is locally an isomorphism (at x). Since (A) is finite there is a well defined number $r' \ge r$ which is maximal with the condition that Π_r' : $\operatorname{Sing} \chi_{r'} \to \operatorname{Sing} \chi_r$ (the composition of all intermediate maps) is an isomorphism locally at x. We say that " $x \in \operatorname{Sing} \chi_{r'}$ ". In this case $x \in Y_{r'} \subset \operatorname{Sing} (\chi_{r'})$, because of the maximality of r', r' is called the *level of* x.

DEFINITION 2.9.2. — Given an upper semicontinuous function $h: F \to (D, \leq)$, if (D, \leq) is totally ordered then set $Max h = \{maximal value of h\}$ (a unique element) and $\underline{Max} h = \{x \mid h(x) = Max(h)\}$. If D is not totally ordered, then Max h might consist of more than one element. We will assume moreover that for each $x \in F$, there is a totally ordered subset $(D_x, <) \subset (D, <)$ and that $Im g(h) \subset D_x$ locally at x.

Examples of these maps are given by

T: Sing $w(\chi) \rightarrow D$ as pointed out in 2.3.1 and 2.3.2.

4° série – tome 22 – 1989 – n° 1

Now Max h becomes a disjoint union of closed sets

$$\underline{\operatorname{Max}}_{d \in \operatorname{Max}} h = \bigcup_{d \in \operatorname{Max}} \underbrace{\operatorname{Max}}_{h}(h)(d), \qquad \underline{\operatorname{Max}}(h)(d) = \{x \mid h(x) = d\}$$

LEMMA 2.9.3. — Suppose we are given the following data:

and upper semicontinuous functions h_r : $F_r \rightarrow (D, \leq)$ such that:

(i) the data (B) is a resolution of χ .

(ii) $F_r \subset \text{Sing } \chi_r$ is closed, Y_r is the center of Π_r and $Y_r \subset \underline{Max}(h_r)$.

(iii) if $x \in F_{r+1}$ and $\Pi(x) \in F_r$ then $h_{r+1}(x) \leq h_r(\Pi_r(x))$ and the equality holds if moreover $\Pi(x) \notin Y_r$.

(iv) ST (F_r) \subset F_{r+1} [ST(F_r) strict transform of F_r], (ST(F_r) = Ø if Y_r = F_r).

(v) If $x \in Y_s(s > r)$ and $\prod_r^s(x) \in Y_r$ than $h_s(x) \leq h_r(\prod_r^s(x))$.

(vi) If s > r, $\forall x \in F_s \exists d \in Max h_r$ such that $h_s(x) \leq d$ and if equality holds then $\Pi_r^s(x) \in Max h_r$ (Π_r^{s} : the composition of all intermediate maps).

Define now H_r : Sing $\chi_r \to (D, \leq)$ as follows: given $x \in \text{Sing } \chi_r$ let r' be the level of x (Def. 2.9.1) then $x \in Y_r$, and we define $H_r(x) = h_{r'}(x)$. We claim that

(a) If $x \in F_r$, $H_r(x) = h_r(x)$ *i.e.* H_r extends h_r .

(b) $H_r(x) \leq H_{r-1}(\Pi(x))$ and equality holds if $\Pi(x) \notin Y_{r-1}$.

(c) H_r is upper semicontinuous, $Max H_r = Max h_r$ and $Max H_r = Max h_r$.

Remark 2.9.3.1. – In the conditions of (vi), if $h_s(x) = d$ then $x \in Max h_s$.

Proof (of the Lemma). -(a) Let $x \in F_r$ and r' be the level of x. We must prove that $h_r(x) = h_{r'}(x)$, this follows from (iv) and (iii).

(b) If $\Pi(x) \notin Y_{r-1}$, then level of x and $\Pi(x)$ concide, so $H_{r-1}(\Pi(x)) = H_r(x)$. If $\Pi(x) \in Y_{r-1}$ then the level of $\Pi(x)$ is r-1 and $H_{r-1}(\Pi(x)) = h_{r-1}(\Pi(x))$. Let r' be the level of x, then $x \in Y_{r'}$ and clearly $\Pi_{r-1}^{r'}(x) = \Pi(x)$ so

$$\mathbf{H}_{r}(x) = h_{r'}(x) \leq h_{r-1}(\Pi(x)) = \mathbf{H}_{r-1}(\Pi(x))$$

[inequality due to (v)].

(c) Given $d \in D$, we define

$$U = \{x \in \operatorname{Sing} \chi_r / H_r(x) \ge d\}$$
$$V = \bigcup_{(s, d') \in \Gamma} \Pi_r^s(F(s, d'))$$
$$\Gamma = \{(s, d') / d' \in \operatorname{Max}(h_s) d' \ge d \text{ and } s \ge r\},$$
$$F(s, d) = \operatorname{Max}(h_s) (d') = \{x \in \operatorname{Max}(h_s) / h_s(x) = d'\}.$$

We claim that U=V. In which case, since each Π_r^s is proper and the F(s, d') are closed, U is a finite union of closed sets.

Fix $x \in U$, $H_r(x) = d' \ge d$ and let r' be the level of x. Then $x \in Y_{r'}(\subseteq \underline{Max} h_{r'})$ so $d' \in Max h_{r'}$ and $d' \ge d$ i.e. $(r', d') \in \Gamma$, so $x \in \Pi_r^{r'}(F(r', d'))$ i.e. $x \in V$.

If $x \in V$ there is $y \in \underline{Max}(h_s)(d')((s, d') \in \Gamma)$ such that $\Pi_r^s(y) = x$, so $h_s(y) = d' \in Max(h_s)$ and $d' \ge d$.

Let s' be the level of y and r' the level of x. Clearly $s' \ge r'$, $\Pi_{r'}^{s'}(y) = x \in Y_{r'}$ and $y \in Y_{s'}$, so

$$H_r(x) = h_{r'}(x) \ge h_s(y) = h_{s'}(y) = d' \ge d$$

[inequelity do to (v)] *i. e.* $x \in U$.

Let us show that $\operatorname{Max} h_r = \operatorname{Max} H_r$. First we prove that: $\forall d \in \operatorname{Max} H_r$, $\exists d' \in \operatorname{Max} h_r$ such that $d \leq d'$. In fact if $\operatorname{H}_r(x) = d$ for some point $x \in \operatorname{Sing} \chi_r$ of level r', then $x \in \operatorname{Y}_{r'} \subset \operatorname{F}_{r'}$ and $h_{r'}(x) = d$. By (vi) there is $d' \in \operatorname{Max}(h_r)$ such that $d \leq d'$. Since (a) is proved it follows that $\operatorname{Max} h_r = \operatorname{Max} H_r$. Again because of (a), $\operatorname{Max} h_r \subseteq \operatorname{Max} H_r$ and the equality is clear from (vi).

Remark 2.9.4. – Suppose that the sets F_r are replaced by $F^{(r)}$ satisfying:

(a) Max $(h_r) \subset F^{(r)} \subset F_r$ and $F^{(r)}$ is closed

(b) Condition (iv) of Lemma 2.9.3.

and (c) h'_r : $\mathbf{F}^{(r)} \to \mathbf{D}$ are defined by restricting h_r to $\mathbf{F}^{(r)}$.

With this conditions we assert that:

(1) the statement of the Lemma still holds.

(2) If H'_r is defined as in the Lemma then $H'_r = H_r$.

Proof of (1) is straightforwards [see Remark 2.9.3.1 for (vi)] and (2) is due to the fact that the construction of H_r depends only on $h_s|_{Y_s}, \forall s \ge r$, and $Y_s \subset \underline{Max} h_s \subset F^{(s)}$.

PROPOSITION 2.9.5. — Given the resolution (A) of 2.9, let F, be defined as:

(A) $F_r = \operatorname{Sing} w(\chi_r)$ if w-ord $(\chi_r) > 0$.

(B) $F_r = \operatorname{Sing} \chi_r$ if w-ord $(\chi_r) = 0$

and set T_r : $F_r \rightarrow D$ as in 2.3.1 and 2.3.2, then all the conditions of Lemma 2.9.3 are satisfied.

Proof. - (i) and (ii) follow by construction.

(iv): If w-ord $(\chi_r) > 0$ and the strict transform of $F_r = \operatorname{Sing} \omega(\chi_r)$ is non-empty, then the w-ord $(\chi_{r+1}) = w$ -ord (χ_r) and $w(\chi_{r+1})$ is the transform of $w(\chi_r)$ (2.7). Now (iv) is clear in this case.

If w-ord $(\chi_r) = 0$ then $F_r = \text{Sing }\chi_r$, w-ord $\chi_{r+1} = 0$ and $F_{r+1} = \text{Sing }\chi_{r+1}$, so also in this case (iv) is clear.

(iii) We prove it by considering different cases:

(a) w-ord $(\chi_{r+1}) < w$ -ord (χ_r) . In this case it is clear that w-ord $(\chi_r > 0$ and as discussed above [in the prove of (iv)], $F_r = \operatorname{Sing} w(\chi_r)$ must be Y_r , (iii) is now obvious from these remarks.

 4^{e} série – tome 22 – 1989 – n° 1

(b) w-ord $(\chi_{r+1}) = w$ -ord $(\chi_r) = \omega > 0$. The first coordinate of T_r is constant alonog F_r (equal to ω) and the some holds at F_{r+1} . The second coordinate is T(2), the good behavior of this function is given by Prop. 1.16.4 which states that $T(2)(x) = T(2)(\Pi(x))$, $\forall x \in \text{Sing}(\chi_{r+1})$. So that we are left with proving (iii) by looking at the function T(3), now the statement follows from the fact that E_{r+1}^- is the strict transform of E_r^- and by the construction of (A) in terms of T [condition (1) (2) (3) and (4) of 2.7.2].

(c) If w-ord $(\chi_{r+1}) = w$ -ord $(\chi_r) = 0$ we refer to Remark 2.3.1.

(v) (a) w-ord $(\chi_s) < w$ -ord (χ_r) there is nothing to prove. We must consider the cases.

(b) w-ord $(\chi_s) = w$ -ord $(\chi_r) > 0$ and (c) w-ord $(\chi_s) = w$ -ord $(\chi_s) = 0$ both undergo essentially the some proofs as those given above for (b) and (c) of (iii).

(vi): is clear from the construction of (A) in terms of T.

PROPOSITION 2.9.6. — Let (A), F_r , Y_r be as in Prop. 2.9.5, if each F_r is replaced by $F^{(r)} = \text{Max } T_r$, then the conditions of Remark 2.9.4 hold.

Proof. – the non trivial point is to show that condition (iv) of Lemma 2.9.3 still holds *i. e.* $ST(F'_r) \subset F'_{r+1}$.

If w-ord $(\chi_r) > 0$, there is an n-1 dimensional idealistic space $\overline{\chi}^{(l)}$ such that $\operatorname{Sing}(\overline{\chi}^{(l)}) = \operatorname{Max}(T_r)$ $(=F^{(r)})$, and if $\operatorname{Max}(T_r) = d$ then the lowering of d is equivalent to

the resolution of $\bar{\chi}^{(l)}$ [conditions (1), (2), (3) and (4) of 2.7.2], so we look at $\chi_r \stackrel{\Pi}{\leftarrow} \chi_{r+1}$.

If $\operatorname{Max} T_{r+1} < d$, Y_r must be $\operatorname{Sing} \overline{\chi}^{(l)} (=F_r)$ and there is nothing to prove. If $\operatorname{Max} T_{r+1} = d$ then $\operatorname{Max} T_{r+1}$ is the singular locus of $\overline{\chi}^{l+1}$ which is the transform of $\overline{\chi}^{l}$ by a permissible map $\overline{\chi}^{l} \leftarrow \overline{\chi}^{l+1}$, but then the $\operatorname{ST}(\operatorname{Sing} \overline{\chi}^{l}) \subset \operatorname{Sing} \overline{\chi}^{l+1}$ as was to be shown. If w-ord $(\chi_r) = 0$ then $F_r^{(r)}$ is the center *i.e.* $F^{(r)} = Y_r$ and there is nothing to prove.

2.9.7. In 2.8 we defined at $F^{(s)} = Max T_s$ a function

$$\psi_m^s = \mathbf{F}^{(s)} \to \mathbf{D} = \mathbf{D}_m \times \mathbf{J}_m$$

in such a way that $p_1^r \circ \psi_m^s = T_s (p_1^r \text{ projection on } D_m)$.

Тнеокем 2.9.7. — *The data*

(A)
$$\begin{array}{cccc} \chi_0 &\leftarrow & \chi_1 &\leftarrow & \chi_j &\leftarrow & \chi_n \\ Y_0 &\subset F^{(0)} & Y_1 &\subset F^{(1)} & Y_j &\subset F^{(j)} \end{array}$$

together with the functions $\psi_m^r: F^{(r)} \to D$ satisfies the conditions of Lemma 2.9.3. In particular there are, for each s, functions $\psi_m^s: \operatorname{Sing} \chi_s \to D_m \times J_m$ making of (A) a constructive resolution in the sense of 2.2.

Proof. – After Prop 2.9.6, (i), (ii) and (iv) deserve no proof (vi) is clear from the construction of (A) [recall that $Y_s = Max \psi_m^s$, and for s > r, x and d as in (vi) then $h_s(x) < d$].

(iii) (a) If w-ord $(\chi_r) = 0$, then ψ_m^r is basically T_r and again this case is in Prop. 2.9.6.

(b) If w-ord $(\chi_r) > 0$ and Max $T_r > Max T_{r+1}$, then $Y_r = Max T_r (= F^{(r)})$ and the assertion is clear.

O. VILLAMAYOR

(c) If $\operatorname{Max} T_r = \operatorname{Max} T_{r+1}$, there is $\overline{\chi}^l$ (as in the proof of Prop 2.9.6) such that $F^{(r)} = \operatorname{Sing}(\overline{\chi}^l)$, $F^{(r+1)} = \operatorname{Sing}(\overline{\chi}^{l+1})$.

Now $T(x) = T(\Pi(x))$ so one must prove (iii) for ψ_{m-1} and now x and $\Pi(x)$ are singular points of an m-1 dimensional resolution.

But ψ_{m-1} is constructive and (iii) follows from (ii), of 2.2.

(v) Reduces immediatly to the case $T_s(x) = T_r(\Pi_r^s(x))$ and undergoes essentially the some argument of the proof of (c) given just above.

2.10

Remark 2.10.1. - Why T(2)?

As pointed out in 2.7, the role of T(2) is not essential for our constructions *i.e.* we can define T(2)(x)=1 whenever T(1)(x)>0 without affecting the general strategy. However if we consider (J, 1), E, $J = \langle x, y \rangle \subset \mathbb{C} | x, y, z |$, $E = \{E_1\}$, $E_1 = \{z=0\} \subset \mathbb{C}^3$, then one can check that the number of unnecessary quadratics transformations applied before solving the pair, will diminish if we do consider this function.

2.10.1. – At this point we give a punctual construction of the functions ψ_m defined at 2.8.

Let χ an idealistic space of dimension *m*, if *w*-ord $\chi = 0$ *i. e.* if χ is locally a monomial, ψ_m reduces to T (2.3.1).

We consider therefore the case w-ord $\chi > 0$. In order to simplify set (J, b) as in paragraph 1 and (J_r, b) aristing from $(J, b) \leftarrow (J_1, b) \ldots \leftarrow (J_r, b) \ldots \leftarrow (J_n, b)$ with the notations and assumptions of 2.7.1, where only the functions T(1) and T(3) where considered [*i.e.* T(2)(x)=1 if T(1)(x)>0].

So let (ω, n) be Max T_r, and $k \leq r$ be the smallest number for which Max T_k= (ω, n_0) . Recall from 2.7.1 that T_r(J_r, b) was an "m-1-dimension" idealistic pair such that Max T_r=Sing T_r(J_r, b) and that

$$(\mathbf{J}_k, b) \stackrel{\mathbf{\Pi}_k}{\leftarrow} \ldots \leftarrow (\mathbf{J}_r, b)$$

induces a sequence of permissible maps:

$$T_k(J_k, b) \stackrel{\Pi_k}{\leftarrow} \ldots \leftarrow T_r(J_r, b),$$

each $T_i(J_i, b)$ being the transform of $T_{i-1}(J_{i-1}, b)$ (Def. 1.3), for i > k.

Given $x \in \text{Sing}(J_p, b)$ we express $\psi_m^p(x)$ by three coordinates, the first two corresponding to T_p , the third to ψ_{m-1}^p . We begin by defining, inductively on p, sets $E_{x,p}^-$ as follows:

(i) if $\omega - v_x(J_p, b) < \omega - v_{n(x)}(J_{p-1}, b)$ ($\Pi = \Pi_{p-1}$) (Def 1.17.1), or if p = 0:

$$\mathbf{E}_{x, p}^{-} = \{\mathbf{E}_i \in \mathbf{E}_p / x \in \mathbf{E}_i\}$$

(ii) if $\omega - v_x(J_p, b) = \omega - v_{\pi(x)}(J_{p-1}, b)$

$$E_{x, p}^{-} = \{ ST(E_i) / E_i \in E_{p-1, \Pi(x)}^{-} \text{ and } x \in ST(E_i) \}$$

 4^{e} série – tome 22 – 1989 – n° 1

(as usual ST denotes the strict transform).

Now we claim that:

- (a) $T_{p}(1)(x) = \omega v_{x}(J_{p}, b)$
- (b) $T_p(3)(x) = E_{p,x}^{-}$

(c) If $q (\leq p)$ is the smallest index for which $T_q(\Pi_q^p(x)) = T_p(x)$. Consider at a neighbourhood of $y = \Pi_q^p(x)$ the pair:

$$(\mathscr{A}, d) = w(\mathbf{J}_{a, v}, b) \cap (x_1, 1) \cap (x_2, 1) \cap \ldots \cap (x_h, 1)$$

[notation as in 2.7.1, where $h = T_q(3)(y)$ and $x_i = 0$ defines $E_i \in E_{q,y}$ locally at y]. Then the third coordinate is $\psi_{m-1}^t(x)$, t = p - q and ψ_{m-1}^t arises from the constructive resolution of the m-1 dimensional pair (\mathscr{A} , d).

Let r denote the level of $x(r \ge p)$ (Def. 2.9.1) and recall the definition of $\psi_m^p(x)$ in terms of the level of x (2.9.3 and 2.9.7).

Point (a) is clear and (b) will follow by proving inductively on p, that:

(d) $E_{x, p}^{-} = \{E_i \in E_r^{-} | x \in E_i\}.$

In the case (i), either p=0 or the weighted order of (J_r, b) is smaller then that of (J_{p-1}, b) and (d) follows in this case from the definition of E_r^- in terms of the weighted orders of the pairs (2.1).

In the case (ii), if s is the level of $\Pi(x)$, clearly $s \leq r$ and (with the identifications of Def. 2.9.1)

w-ord
$$(\mathbf{J}_s) = \omega - v_{\Pi(x)}(\mathbf{J}_s, b) = \omega - v_x(J_r, b) = w$$
-ord (\mathbf{J}_r)

since $\Pi(x) \in Y_s \subset \underline{Max} \psi_m$ and $x \in Y_r \subset \underline{Max} \psi_m$. So (d) follows now from the relations between E_s^- and E_r^- given in 2.1.

Now that (d) is settled (for any p) we prove (c). So let $s (\ge q)$ be the level of y and r as before that of x. Clearly $s \le r$. On the other hand $y \in Y_s \subset Max T_s$ and $x \in Y_r \subset Max T_r$ so:

$$Max T_s = T_s(y) = T_r(x) = Max T_r = (w, n_0).$$

In particular $k \leq s$ (k defined as above).

Consider the composition of the intermediate maps: Π_k^s and the point $z = \Pi_k^s(y)$. If the level of z is the level of y, Π_k^s is the identity map locally at y and (c) follows from (d) and the construction of $T_k(J_k, b)$ (2.7.1).

If Π_k^s would not be an isomorphism at y, since $\Pi_q^s = id$, then k < q contradicting the minimality of q.

So if x is considered as a point of $\operatorname{Sing}(J_r, b)$, the point $\prod_k^r(x) \in \operatorname{Sing}(J_k, b)$ (which is the *m*-birth of x Def. 2.7.2) has the same level as y.

Suppose now that the function T_p is replaced by $T_p(1)$ and q by $q_1 (\leq p)$: the smallest index for which $y_1 = T_p(1)(\prod_{q_1}^p(x)) = T_p(1)(x)$. Then the same argument as above will show that the birth of $x \in \text{Sing}(J_r, b)$ (Def. 2.5) has the same level as y_1 . Therefore in

O. VILLAMAYOR

the construction of 2.7.3 the election of the hypersurface of maximal contact can be done locally at y_1 .

REFERENCES

- [1] S. S. ABHYANKAR and T. T. MOH, Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation (Crell Journal, Vol. 260, 1973, pp. 47-83 and Vol. 261, 1973, pp. 29-54).
- [2] J. M. AROCA, H. HIRONAKA and J. L. VICENTE, The Theory of Maximal Contact (Memo. Mat. del Inst. Jorge Juan, Vol. 29, Madrid, 1975).
- [3] J. M. AROCA, H. HIRONAKA and J. L. VICENTE, Desingularization Theorems (Memo. Mat. del Inst. Jorge Juan, Vol. 30, Madrid, 1977).
- [4] B. M. BENNETT, On the Characteristic Function of a Local Ring (Ann. Math., Vol. 91, 1970, pp. 25-87).
- [5] J. GIRAUD, Sur la théorie du contact maximal (Math. Zeit., Vol. 137, 1974, pp. 285-310).
- [6] J. GIRAUD, Remarks on Desingularization Problems (Nova acta Leopoldina, NF 52, Nr. 240, 1981, pp. 103-107).
- [7] H. HIRONAKA, Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero, I-II (Ann. Math., Vol. 79, 1964).
- [8] H. HIRONAKA, Introduction to the Theory of Infinitely Near Singular Points (Memo Math. des Inst. Jorge Juan, Vol. 28, Madrid, 1974).
- [9] H. HIRONAKA, Idealistic Exponents of Singularity (Alg. Geom., J. J. Sylvester Symp., John Hopkins Univ. Baltimore, Maryland 1976, John Hopkins Univ. Press 1977).

(Manuscrit reçu le 31 octobre 1986, révisé le 7 juillet 1988).

O. VILLAMAYOR, Algebra y geometria, Facultad de Ciencias, Universidad de Valladolid, Valladolid - Spain.

.

 4^{e} série – tome 22 – 1989 – n° 1