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Abstract 

The probabilistic network technology is a knowledge- 

based technique which focuses on reasoning under 

uncertainty. Because of its well defined semantics 

and solid theoretical foundations, the technology is 

finding increasing application in fields such as med- 

ical diagnosis, machine vision, military situation as- 

sessment , petroleum exploration, and information re- 

trieval. However, like other knowledge-based tech- 

niques, acquiring the qualitative and quantitative in- 

formation needed to build these networks can be highly 

labor-intensive. 

CONSTRUCTQR integrates techniques and concepts 

from probabilistic networks, artificial intelligence, and 

statistics in order to induce Markov networks (i.e., 

undirected probabilistic networks). The resulting net- 

works are useful both qualitatively for concept orga- 

nization and quantitatively for the assessment of new 

data. 

The primary goal of CONSTRUCTOR is to find quali- 

tative structure from data. CONSTRUCTOR finds struc- 

ture by first, modeling each feature in a data set as a 

node in a Markov network and secondly, by finding 

the neighbors of each node in the network. In Markov 

networks, the neighbors of a node have the property of 

being the smallest set of nodes which “shield”  the node 

from being affected by other nodes in the graph. This 

property is used in a heuristic search to identify each 

node’s neighbors. The traditional x2 test for indepen- 

dence is used to test if a set of nodes “shield”  another 

node. Cross-validation is used to estimate the quality 

of alternative structures. 

Introduction 

The probabilistic networks technology is a new 

knowledge-based approach for reasoning under uncer- 

tainty. Because of its well-defined semantics and solid 

theoretical foundations, it is finding increasing appli- 

cation in fields such as medical diagnosis, machine vi- 

sion, military situation assessment, petroleum explo- 

ration, and information retrieval. However, like other 

knowledge-intensive approaches, acquiring the qualita- 

tive and quantitative information needed to build these 

networks is a highly labor-intensive task which requires 

trained personnel (i.e., knowledge engineers). In an 

effort to address this problem, techniques for network- 

induction [4, 141 have been explored. However these 

techniques are limited to the recovery of tree structures 

and these structures are often not expressive enough to 

represent real-world situations. 

In this paper, we describe CONSTRUCTOR-a sys- 

tem designed to more fully address this “ knowledge 

acquisition bottleneck” . CONSTRUCTOR induces dis- 

crete, Markov networks of arbitrary topology, from 

data. These networks contain a quantitative (i.e., 

probabilistic) characterization of the data but, perhaps 

more importantly, also contain a qualitative structural 

description of the data. By qualitative structure we 

mean, loosely, the positive and negative causal rela- 

tionships between factors as well as the positive and 

negative correlative relationships between factors in 

the processes under analysis. CONSTRUCTOR has as 

a primary focus the recovery of qualitative structures 

since these structures not only determine which quan- 

titative relationships are recovered, but also because 

such structures are readily interpretable and thus are 

valuable in explaining the real world processes under 

analysis. 

The CONSTRUCTOR algorithm is based on the con- 

cept of “ constructing”  a network from a data set by 

instantiating a node for each attribute in the data set 

and identifying the neighbors of each node in the net- 

work. Identifying the neighbors of a particular node is 

operationalized by heuristically searching for the small- 

est set of nodes which makes the node independent of 

all other nodes in the network. Independence is tested 

through the use of the x2 test of independence. The 

resulting network is a Markov network. 

Throughout this paper we illustrate concepts with 

variations on a single problem, which was originally 

described in [l]. This problem involves an LED dis- 

play connected to a numeric keypad. The display is 

fuulty, however, since the output of the display may 

not always match the key that was depressed. Figure 

1 shows the numerical digit display unit, and illustrates 

the components of the display that must be illuminated 
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Rebane & Pearl, 1987 

This research [14] extended the MWST algorithm of 

Chow and Liu to include the partial recovery of singly- 

connected graphs. ’ The basic idea is to first run the 

Chow and Liu algorithm to determine node neighbors. 

A test is then made for each node to determine which 

of the node’s neighbors are pairwise independent. If 

a set of mutually pairwise independent nodes exists, 

then they are labeled as predecessors of the node in 

question and the remainder are labeled as successors. 

However, if no pairwise independent nodes are found, 

no labeling can take place. 

Although this algorithm keeps all the positive fea- 

tures of the MWST algorithm, it does little to address 

its major drawback-the accurate representation of sit- 

uations which do not have a singly-connected network 

representation. 
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Figure 1: The LED Display 

to generate the number 5. Since each component of the 

display has a 0.9 probability of illuminating in error, 

a training set can be generated in which each example 

consists of the key that was depressed and the actual 

state of the LED. The example task is to use CON- 

STRUCTOR to recover a probabilistic model which can 

be used both qualitatively to understand the workings 

of the LED display and quantitatively to assess the in- 

tended digit given new LED displays. 

Related Work 

This section describes a number of alternative ap- 

proaches to the model construction task addressed by 

CONSTRUCTOR. 

Chow & Liu, 1968 

This research [4] was concerned with reducing the 

significant amounts of memory needed to represent 

large discrete probability distributions. The research 

resulted in the Maximum Weight Spanning Tree 

(MWST) alg or1 ‘th m. The algorithm takes as input a 

training set and produces as output a probabilistic net- 

work with a tree topology. 

The algorithm has several desirable properties. 

First, if the underlying distribution from which the 

training set is sampled has a tree structure, then the 

MWST algorithm will find the “optimal”  tree. Sec- 

ondly, the algorithm is computationally tractable-it 

runs in O(n2) where it is the number of attributes in 

the training set. Thirdly, since the algorithm only uses 

pairwise statistics, the size of the training set can be 

modest and still achieve good results. 

The major drawback of this algorithm is that sit- 

uations with more complex structures (i.e., non-tree 

topologies) cannot be accurately represented. This is 

a serious drawback since most real problems do not 

have “tree”  structures. 

Concept Formation Research 

The CONSTRUCTOR approach to structure learning 

shares some similarities with the more widely known 

machine learning work on concept formation [5,11,12]. 

The clearest similarity relates to the goals of the algo- 

rithms: the CONSTRUCTOR and concept formation al- 

gorithms are both designed “to help one better under- 

stand the world and to make predictions about its fu- 

ture behavior.“ [7]. In addition, both approaches learn 

in an unsupervised manner-no advice or intervention 

is required from a “teacher”  and like the AutoClass sys- 

tem [3], Constructor is inherently Bayesian in spirit, 

making use of probability distributions over the at- 

tributes of the observations in the training set. Fur- 

thermore, the networks generated by Constructor are 

not strictly hierarchical, as are the knowledge repre- 

sentations produced by many of the concept formation 

techniques. 

Component Techniques 

CONSTRUCTOR makes use of traditional techniques of 

artificial intelligence as well as recent advances in both 

probabilistic representation and inference and statis- 

tical analysis. The probabilistic network technologies 

provide an intuitive representation for a joint prob- 

ability distribution as well as efficient techniques of 

probabilistic inference. From AI, we use techniques of 

heuristic search in order to efficiently find the structure 

which best represents the data. From statistics, we use 

the x2 test to decide when attributes are probabilisti- 

tally independent and cross-validation for selecting the 

“best connected”  network. 

Probabilistic Networks: Probabilistic networks [S, 

131 are used for representing and reasoning with un- 

certain beliefs, and are based on the well-established 

'A singly connected 

(undirected) cycles. 
graph is one in Which there are no 
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Figure 2: Probabilistic Network for the LED Problem 

theory of Bayesian probability. The primary inno- 

vation of probabilistic networks is the explicit repre- 

sentation of conditional independence relations. The 

representation of conditional independence relations in 

a probabilistic network is encoded in the topology of 

the network and can be illustrated with an example. 

In the network topology shown in Figure 2, the De- 

pressed Key node separates all of the LED segments 

from each other. This topology implies that the state 

of any of the LED segments is independent of the state 

of every other segment in the display given that it 

is known what key has been depressed. This inde- 

pendence is conditional however, since the LED states 

are dependent if it is not known which key has been 

depressed. The three-place relation symbol I will be 

used to denote conditional independence. For example, 

I(n;, nk, ni) denotes that ni is conditionally indepen- 

dent of nj given ?&k. 

There are two types of probabilistic networks: 

Bayesian and Markov. A Bayesian network contains 

directed arcs whereas a Markov network contains undi- 

rected arcs. Networks of both types represent a joint 

state space and a probability distribution on that 

space. Each node of a probabilistic network represents 

one component of the joint state space (i.e., a mutually 

exclusive and exhaustive set of states). For example, 

the Depressed Key node in Figure 2 represents the set 

of states (0 1 2 3 4 5 6 7 8 9). Each arc of a proba- 

bilistic network represents a relationship between the 

nodes it connects. For example, the arc between the 

Depressed Key node and the LED1 node indicates that 

the top element of the LED is probabilistically related 

to the key that is depressed (i.e., if there is no failure, 

it will turn on if the depressed key is 0, 2, 3, 5,7, 8, or 

9). 
The form of the probability distribution for a net- 

work depends on its type. In a Bayesian network, a 

conditional probability is stored at each node where the 

conditioning variables are the node’s predecessors. In a 

Markov network, the nodes are grouped into cliques.2, 

and probabilistic quantities are associated with the 

cliques of a network instead of with the nodes them- 

selves. 

Useful inferences can be made given a probabilistic 

network that represents a situation and evidence about 

the situation. For example, given the evidence that 

LED2 LED4 LED6 and LEDrare illuminated, and the 

network shown in Figure 2, one could infer updated be- 

liefs about the “ depressed key” . As one would expect 

for this example, the result would be relatively strong 

beliefs for “5” and “6” and relatively weak beliefs for 

the other possible values for “ depressed key” . Several 

algorithms for inference have been reported, [2,10,13]. 

While each of these algorithms has significantly differ- 

ent methods for inference, they are equivalent in that 

given a probabilistic network and a particular query, 

they will infer exactly the same result. 

Every node in a probabilistic network has a Markov 

boundary that “ shields”  it from being affected by ev- 

ery other node outside the boundary. In other words, 

given the Markov boundary of a node, that node is 

conditionally independent of every other node in the 

network. Formally, the Markov boundary of a node ni 

in a network U is a subset of nodes S such that: 

I(ni,S, u\s\W) (1) 

and no proper subsets of S satisfy Equation 1. (The op- 

erator “\n denotes set difference.) The Markov bound- 

ary of a Bayesian network node is simply the union 

of the node’s predecessors, the node’s successors, and 

the predecessors of the node’s successors. The Markov 

boundary for a Markov network node is simply its 

neighbors. Figure 3 shows the Markov boundary for 

a Bayesian network node. The Markov boundary con- 

cept is crucial to the development of the CONSTRUC- 

TOR algorithm. 

Statistical Methods: When attributes take on cat- 

egorical values, the degree to which two attributes are 

statistically independent can be ascertained via the 

well known x 2 test of independence. For this test, 

the data are arranged in a two-way contingency table 

such that the possible values of one attribute make up 

the rows of the table, the possible values of the other 

attribute make up the columns, and the data propor- 

tions of the various attribute/value combinations fill 

the cells of the table. The conditional independence of 

attributes ai and aj given attribute c&k can be tested 

by preparing a three-way contingency table so that the 

values of oi and aj make up the rows and columns of 

the table, and the values of ok make up the layers. 

2A clique is a s et of nodes in which every node 

set is a neighbor of every other node iu the set. 

in the 
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Figure 3: A Markov Boundary 

Conditional independence is tested by computing sep 

arate x2 statistics for each layer and summing. The 

conditional independence of attributes ai and aj given 

a set of attributes (ok, ul, . . .} can be tested by simply 

forming a “macro”  attribute, h, whose values consist 

of all combinations of values of the attributes in the 

conditioning set. 

In most instances of model fitting algorithms (e.g., 

CONSTRUCTOR), the eventual goal is to uncover a 

model that will be useful for prediction. It is an un- 

fortunate fact that the predictive performance of such 

data-derived models often falls short of expectations. 

The model will often be highly predictive when test 

cases are drawn from the data used to formulate the 

model, but less predictive when new data are pre- 

sented. This phenomenon is called “ statistical over- 

fitting”  and indicates that, on average, the fit of the 

model to the data used to build the model is much 

closer than the fit to new data. A simple mecha- 

nism for addressing the problem of overfitting is cross- 

validation [15], often characterized as a “leave some 

out”  technique in which a model formed from a por- 

tion of the data is subsequently tested against the data 

left out of the model formation process. The use of 

cross-validation is not restricted to model assessment, 

however, since the approach can also be used to assist 

with model selection. Breiman et al. [l] describe a 

powerful use of cross-validation for model selection in 

the context of finding the “right sized”  classification 

tree. Cross-validation is used in a similar manner in 

CONSTRUCTOR for finding the “ best-connected”  net- 

work. 

The input to the CONSTRUCTOR algorithmis 

ing set X consisting of N examples, {Zr , &, . 

Constructor Algorithm 

a train- 

Each example, z’i, consists of P discrete values 

{Xil,ee*,Xij,.e., Zip}, one for each of the P attributes 

uj in a set of attributes A. The value set vj is the pos- 

sible set of values for attribute oj. The value set can 

either be input by the user or derived from the training 

set, Ui Xij* 

In the faulty LED example, the first attribute, al, 

is an integer-valued attribute indicating the numeric 

key that was depressed. The rest of the attributes 

ca2 . . .a83 are boolean-valued attributes to indicate 

whether or not a particular LED component is illumi- 

nated. Therefore, vr is (0, 1, . . . ,9), and vr...s is (on 

dT3* 
The output of the CONSTRUCTOR algorithm is a 

Markov network U. For each attribute a!j in X, the 

network contains a node ni whose state space is the 

value set vi of %. Qualitatively, the network repre- 

sents the relevance relationships between attributes in 

the training set. Quantitatively, the network repre- 

sents an estimate of the joint probability distribution 

from which the samples are derived. 

The CONSTRUCTOR algorithm takes as its starting 

point the simple theoretical notion that the structure 

of the probabilistic network 24 can be identified if the 

neighbors (i.e., Markov boundary) of each node of the 

network are found. The Markov boundary Bi of a node 

ni in the network U is found by searching for the set 

of nodes which correspond to the smallest set of at- 

tributes S such that: 

(2) 

and no proper subsets of S satisfy Equation 2. In CON- 

STRUCTOR the determination of conditional indpen- 

dence is made with the x2 test. However, finding such 

relations in large data sets is computationally complex 

since every such test will include the consideration of 

every feature of the data set. 

CONSTRUCTOR therefore limits its attentions to dis- 

tributions which are “ composable” . Such distributions 

have the property that 

I(& C, D) a (Vb E B)(Vd E D) I(b, C, d). (3) 

where b, d represent individual discrete random vari- 

ables and B, C, D represent sets of such variables. This 

property states that finding whether two sets of el- 

ements are conditionally independent of a third set 

can be determined by the much simpler computational 

task of checking whether every pairwise combination of 

elements in the two sets is conditionally independent 

of the third set and therefore simplifies the finding of 

Markov boundaries to finding the smallest set of at- 

tributes S such that: 

(VUj E U\S\ai) I(aitSs uj) 

“ Composable”  models are a much broader class of 

models topologically and contain the previously ex- 

plored Utreen models of [4, 141. 
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begiu Constructor: (Training Set) 

compute list of o-levels; 

initialize; 

for each o-level do: 

select cross-validation sample; 

initialize frequency tables; 

find network; 

estimate network error; 

compute network complexity; 

end for 

report networks, errors, complexities; 

end Constructor. 

begin Find-Network: (o-level) 

find mutually independent attribute subsets; 

for each subset do: 

for each attribute do: 

find neighbors; 

end for 

end for 

instantiate Bayesian network; 

find cliques; 

estimate clique potentials; 

return network; 

end Find-network. 

Figure 4: Overall CONSTRUCTOR Algorithm. 

Figure 5: The Network Identification Algorithm. 

Besides its use to find Markov boundaries, CON- 

STRUCTOR makes use of “ composability”  in a pre- 

processing step to separate attributes into mutually- 

independent sets. 

I(S,t@,S2)~(V% E Si)(Vaj E S2)I(ai,Q,aj) (5) 

Figure 4 shows the overall CONSTRUCTOR algo- 

rithm. In this and subsequent listings, a step is un- 

derlined and shown in more detail in a later figure. 

Network identification is the heart of the CON- 

STRUCTOR algorithm and is designed to find the prob- 

abilistic network that best represents the training set 

given an input parameter, cy. This parameter is 

the standard statistical measure of type I error and 

controls how much confirmation is needed before in- 

dependence relations can be concluded in the pro- 

cess. Network identification works by searching for 

the Markov boundary of each attribute in the training 

set. Wrapped around network identification is cross- 

validation-used to select a level of cy: that will deliver 

the “best connected”  network. The function of cross- 

validation in CONSTRUCTOR is to assess the perfor- 

mance of a set of induced networks, each of which has a 

different degree of “ connectivity” . Each network in the 

set is obtained via the use of a different setting of the a! 

parameter. The network with the best cross-validated 

performance is then selected as the “best connected”  

network. 

Network Identification: Network identification in- 

volves successively finding the neighbors of each at- 

tribute in the training set. Unfortunately, the problem 

of finding the neighbors of an attribute involves search- 

ing through the power set of a set of possible neigh- 

bors and the computational complexity for exhaustive 

search thus grows exponentially with problem size. 

Managing the exponential process of finding neigh- 

bors is the primary challenge for the network identi- 

fication task. This is accomplished by a number of 

diverse mechanisms which include heuristic search. 

In addition, the CONSTRUCTOR algorithm uses other 

mechanisms to minimize the size of the set of possi- 

ble neighbors of an attribute. For’ example, the net- 

work identification process uses findings of previous 

search results in order to reduce the possible neighbors 

set. This is possible because neighbor relationships are 

symmetric: Neighbor-op(ni, nj) e Neighbor-of(nj, ni). 

In this way, finding the neighbors and non-neighbors 

for one attribute adds to the knowledge about the 

neighborhood relationships of every other attribute in 

the training set. 

In spite of these mechanisms, there will be cases in 

which the search process will be lengthy. There are, 

however, two immediate observations which can be 

made about such cases. First, we do not expect to face 

such situations very often. It has been claimed that 

training sets derived from real world situations will 

usually yield sparse graphs (i.e., only a few neighbors 

per attribute) since real world situations are inherently 

structured. In these cases, attribute neighbors can be 

found quickly. In cases which do not have this prop- 

erty, the resulting network will be densely connected 

and will probably be of little use since little qualitative 

information will be extractable from the network. 

Secondly, a feasible solution (i.e., set of neighbors) 

always exists- the whole set of possible neighbors. 

Therefore, in hard subproblems the process can always 

be terminated successfully by returning as a solution 

the full set of possible neighbors. 

The network identification algorithm is outlined in 

Figure 5 and described in more detail below. 

Subset Selection: The first step in network identi- 

fication requires using the x2 test to assess the pair- 

wise independence of all attributes in the training set. 

With these results, the attributes can be partitioned 

into independent sets of attributes. That is, for any 

pair of independent sets, each attribute in one set will 

be independent of every attribute in the other set. Lo- 

cating these subsets helps to reduce the complexity of 

the neighbor search process. 
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begin Find-Neighbors: (attribute oj) 

root + p; 

known-neighbors + Nk; 

shortest-path t nl” ; 

shortest-path t aj; 

spawn first level; 

repeat: 

select node to expand; 

current-path t current-path + node; 

when shortest-path > current-path: 

spawn and coalesce children; 

for each child do: 

if independent (uj ,intervening nodes,child) 

then prune child; 

if all children pruned 

then shortest-path +- current-path; 

end for 

end when 

until: no nodes can be expanded; 

return shortest-path; 

end Find-neighbors. 

Figure 6: The Neighbor Identification Algorithm. 

Neighbor Identification: Finding the neighbors 

for every attribute in a training set is an iterative 

search process based on finding the Markov boundary 

for each attribute. As discussed earlier, the Markov 

boundary is the smallest set of attributes that makes 

the target attribute conditionally independent of every 

other attribute in the training set. 

Finding the neighbors of a particular attribute aj, 

outlined in Figure 6, begins with the instantiation of 

an attribute tree, consisting of attribute nodes, each of 

which represents an attribute in the training set. The 

root node of an attribute tree always represents the 

target attribute aj (i.e., the attribute for which neigh- 

bors are being sought). Each branch of a partial at- 

tribute tree (Le., the path from the root node to a 

leaf attribute node) represents a hypothesis that the 

attributes associated with the attribute nodes in that 

branch make up the Markov boundary for the target 

attribute. 

The search for the Markov boundary of attribute oj 

begins by instantiating the root node of the attribute 

tree as oj. An attribute node for each member of the 

set of known neighbors, nf’, is then sequentially added 

to the attribute tree in a single branch rooted at oj. 

The set of candidate new neighbors, n/“, is initialized to 

J\C?j3\Mk\=@, where Sal”  is the set of nodes kn 

not to be neighbor 

‘For the very first attribute to be explored, n/& = a/” = 

and so the initial set of candidate neighbors consists of 

AP = A\(cLj). 

The first step of the search process is to choose a leaf 

node for expansion. Initially there will only be one leaf 

node-the end of the A/k branch. Expansion of a node 

simply means that a child node is instantiated for every 

member of nl”  and takes place only if expansion will 

not create a branch whose length exceeds that of the 

current shortest path. Note that to avoid duplication, 

each new branch is merged with any existing branch 

that contains exactly the same attributes. After ex- 

pansion, a x2 test is then carried out to determine if 

aj is conditionally independent of each of the new at- 

tribute leaf nodes given the intervening branch. If so, 

a new shortest path has been found. If not, the newly 

instantiated nodes are pruned away and another leaf 

node is chosen for expansion. The search continues 

until there are no leaf attributes to expand and the 

shortest path is then returned as the set of neighbors 

for the attribute. 

This search is performed for each attribute in the 

training set. Once completed, a probabilistic network 

is instantiated in which each attribute is represented 

by a node whose state space is the value set of its 

associated attribute. The structure (i.e., connectivity) 

of the network is determined by placing an undirected 

arc between each pair of neighbors. 

Given the network structure, arcs are added which 

‘KU-in”  [16] the network and then the nodes in the net- 

work are grouped into cliques. A joint probability dis- 

tribution for each node in the clique is then estimated 

using the empirical distribution found in the training 

set. 

Search Heuristics: The computational efficiency 

and therefore the viability of CONSTRUCTOR depends 

on the overall strength of the search heuristics that can 

eventually be identified. We discuss two of the more 

powerful heuristics which have been identified. 

First, since computational cost grows exponentially 

with the number of attributes that must be examined 

in the neighbor search, it makes sense to first explore 

those attributes which are likely to have only a few 

neighbors. Because it is unlikely that attributes that 

are pairwise independent of the target node are neigh- 

bors of the target node, this heuristic simply states 

that neighbors should first be located for those at- 

tributes with the largest number of pairwise indepen- 

dencies. Note that, because of the neighbor symmetry 

relationship described earlier in this section, locating 

any neighbor relationships will reduce the search space 

for subsequent neighbor relationships and so it is eI%i- 

cient to do the shorter searches first. 

network is a fu 

expansion, first select that node with the largest de- 
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Table 1: LED1 Dependency On LED2 and LED3 

11 

pendency on the target node given the current state of 

the tree. 

Examples 

To illustate the algorithm’s operation, we describe the 

results obtained when CONSTRUCTOR is applied to the 

digit recognition training set. In particular, we focus 

on the search to discover the neighbors of attribute 

LEDI. The pairwise independence relationship be- 

tween LED1 and all other attributes is first exam- 

ined and it is discovered that LED1 is independent 

(at ar = 0.001) of all attributes save for LED7, LED5, 

and Depressed Key. All other attributes are therefore 

pruned from the search tree. The remaining attributes 

(children of the LED2 node) are examined and an ex- 

pansion order is computed. The “ dependence”  heuris- 

tic forms an order based upon the degree of depen- 

dence between children and parent. Since LED7shows 

the highest degree of dependence with LEDl, it is ex- 

panded first. It is found that LED1 and LED2 through 

LED6 are conditionally independent given LED7, but 

since LED1 and LED7 are found to be conditionally 

independent given Depressed Key, LED7 cannot be 

a neighbor of LED1 and so it, and its children are 

pruned. The Depressed Key node is expanded next 

and it is found that all other attributes are condition- 

ally independent given Depressed Key and are there- 

fore pruned from consideration. The Depressed Key 

attribute makes up a feasible set of Markov neighbors 

for the LED1 attribute and since no other path can 

possibly be shorter than this one (a path of length l), 

the search is terminated. 

The neighbors for all attributes are located in the 

same manner and the final result of this process is a 

network with exactly the same topology as that illus- 

trated in Figure 2. 

Digit Recognition with Loop: For this training 

set, we introduce an additional source of error into the 

model for our already faulty display. In this model, the 

state of LED1 is determined entirely by the states of 

LED2 and LED.??, both of which depend upon the state 

of Depressed Key. The dependencies are summarized 

in Table 1. 

The introduction of this additional source of error in 

the digit recognition model amounts to the introduc- 

tion of a loop in the Bayesian network representation 

of the model, as shown in Figure 7. 

Y LED7 I 

Figure 7: Digit Recognition Network with Loop 

CONSTRUCTOR can uncover this structure when pro- 

vided with a set of training examples generated from 

the probability model. The final result is a Markov 

network with the same topology as the network in Fig- 

ure 7 with the exception of an additional arc between 

LED2 and LEDJ. This demonstrates, in the simplest 

possible way, the feasibility of CONSTRUCTOR recover- 

ing models with loops. 

iscussion 

In this paper, we have described the CONSTRUCTOR 

system for inducing probabilistic models from data. 

The motivation for CONSTRUCTOR is that previous 

structure-finding algorithms have been limited to trees 

and that such structures are often too restrictive for ad- 

dressing real problems. The basic idea of CONSTRUC- 

TOR is theoretically sound-it is to construct a net- 

work by finding the neighbors of each node through a 

heuristic search process. CONSTRUCTOR operational- 

izes this theoretical idea through the application of 

modern statistical techniques and addresses the com- 

putational complexities of the task to make significant 

progress towards a practical machine-learning system. 

CONSTRUCTOR has been tested not only on train- 

ing sets generated from probability models like those 

in Section 4, but has been tested recently on real data 

in an information retrieval application [6]. For those 

training sets generated from probability models, CON- 

STRUCTOR was able to reconstruct the models and for 

the information retrieval spplication, CONSTRUCTOR 

yielded a network which was intuitive to an expert and 

performed well in practice. 

Although CONSTRUCTOR can be run without user 

intervention, we strongly believe that users often have 

important insights that may be easy to acquire and 

may significantly improve the process of structure 

learning. In order to benefit from these insights, CON- 

STRUCTOR allows the user to interact with the sys- 

tem in every phase of the algorithm. For example, the 
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user can choose to have the structure for the entire 

set of attributes be discovered using the search heuris- 

tics, or may wish to choose to find the neighbors for 

a single attribute himself. In the search for the neigh- 

bors of a particular attribute, the user can observe the 

growth of the search tree and can control the order in 

which attribute nodes will be expanded. The user can 

also control pruning and cross-validation and can view 

intermediate results such as pairwise-independencies, 

neighbor relationships and the networks which have 

been found. 

Future Research: The primary focus of subsequent 

research will focus on addressing problems created by 

the exponential search space in neighbor identification 

and problems imposed by the “curse”  of dimension- 

ality - the observation that high-dimensional space 

is inherently sparsely populated. For CONSTRUCTOR, 

the curse of dimensionality is manifested in low cell 

counts in the contingency tables used to assess inde- 

pendence via the x2 test. One approach to this prob- 

lem is to reduce the dimensionality of the training set 

and, to this end, some relatively new dimension re- 

ducing techniques such as projection pursuit [9] will be 

investigated. 

Two other important areas for research are: enlarg- 

ing the class of distributions which CONSTRUCTOR can 

recover and exploring parallel implementations. While 

CONSTRUCTOR recovers gene& graphical structures, 

there are some classes of distributions that are cur- 

rently not adequately recovered with CONSTRUCTOR. 

To address this issue, it is possible to use the condi- 

tional independence test of Equation 2 as a heuristic 

and do an exact test when this heuristic is successful. 

Much of the CONSTRUCTOR algorithm is inherently 

parallel. It therefore appears likely that substantial 

performance gains could result from implementation 

of CONSTRUCTOR on a parallel architecture. 
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