
Constructor: A System for the Induction of Probabilistic

Models

Robert M. Fung and Stuart L. Crawford zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Advanced Decision Systems

1500 Plymouth Street

Mountain View, CA 94043-1230

Abstract

The probabilistic network technology is a knowledge-

based technique which focuses on reasoning under

uncertainty. Because of its well defined semantics

and solid theoretical foundations, the technology is

finding increasing application in fields such as med-

ical diagnosis, machine vision, military situation as-

sessment , petroleum exploration, and information re-

trieval. However, like other knowledge-based tech-

niques, acquiring the qualitative and quantitative in-

formation needed to build these networks can be highly

labor-intensive.

CONSTRUCTQR integrates techniques and concepts

from probabilistic networks, artificial intelligence, and

statistics in order to induce Markov networks (i.e.,

undirected probabilistic networks). The resulting net-

works are useful both qualitatively for concept orga-

nization and quantitatively for the assessment of new

data.

The primary goal of CONSTRUCTOR is to find quali-

tative structure from data. CONSTRUCTOR finds struc-

ture by first, modeling each feature in a data set as a

node in a Markov network and secondly, by finding

the neighbors of each node in the network. In Markov

networks, the neighbors of a node have the property of

being the smallest set of nodes which “shield” the node

from being affected by other nodes in the graph. This

property is used in a heuristic search to identify each

node’s neighbors. The traditional x2 test for indepen-

dence is used to test if a set of nodes “shield” another

node. Cross-validation is used to estimate the quality

of alternative structures.

Introduction

The probabilistic networks technology is a new

knowledge-based approach for reasoning under uncer-

tainty. Because of its well-defined semantics and solid

theoretical foundations, it is finding increasing appli-

cation in fields such as medical diagnosis, machine vi-

sion, military situation assessment, petroleum explo-

ration, and information retrieval. However, like other

knowledge-intensive approaches, acquiring the qualita-

tive and quantitative information needed to build these

networks is a highly labor-intensive task which requires

trained personnel (i.e., knowledge engineers). In an

effort to address this problem, techniques for network-

induction [4, 141 have been explored. However these

techniques are limited to the recovery of tree structures

and these structures are often not expressive enough to

represent real-world situations.

In this paper, we describe CONSTRUCTOR-a sys-

tem designed to more fully address this “ knowledge

acquisition bottleneck” . CONSTRUCTOR induces dis-

crete, Markov networks of arbitrary topology, from

data. These networks contain a quantitative (i.e.,

probabilistic) characterization of the data but, perhaps

more importantly, also contain a qualitative structural

description of the data. By qualitative structure we

mean, loosely, the positive and negative causal rela-

tionships between factors as well as the positive and

negative correlative relationships between factors in

the processes under analysis. CONSTRUCTOR has as

a primary focus the recovery of qualitative structures

since these structures not only determine which quan-

titative relationships are recovered, but also because

such structures are readily interpretable and thus are

valuable in explaining the real world processes under

analysis.

The CONSTRUCTOR algorithm is based on the con-

cept of “ constructing” a network from a data set by

instantiating a node for each attribute in the data set

and identifying the neighbors of each node in the net-

work. Identifying the neighbors of a particular node is

operationalized by heuristically searching for the small-

est set of nodes which makes the node independent of

all other nodes in the network. Independence is tested

through the use of the x2 test of independence. The

resulting network is a Markov network.

Throughout this paper we illustrate concepts with

variations on a single problem, which was originally

described in [l]. This problem involves an LED dis-

play connected to a numeric keypad. The display is

fuulty, however, since the output of the display may

not always match the key that was depressed. Figure

1 shows the numerical digit display unit, and illustrates

the components of the display that must be illuminated

762 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMACHINE LEARNING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Rebane & Pearl, 1987

This research [14] extended the MWST algorithm of

Chow and Liu to include the partial recovery of singly-

connected graphs. ’ The basic idea is to first run the

Chow and Liu algorithm to determine node neighbors.

A test is then made for each node to determine which

of the node’s neighbors are pairwise independent. If

a set of mutually pairwise independent nodes exists,

then they are labeled as predecessors of the node in

question and the remainder are labeled as successors.

However, if no pairwise independent nodes are found,

no labeling can take place.

Although this algorithm keeps all the positive fea-

tures of the MWST algorithm, it does little to address

its major drawback-the accurate representation of sit-

uations which do not have a singly-connected network

representation.

Xl

x2

3

x3

x4

x5 X6

x7

Xl X2 X3 X4 X5 X6 X7 -
-

ON ON OFF ON OFF ON ON

Figure 1: The LED Display

to generate the number 5. Since each component of the

display has a 0.9 probability of illuminating in error,

a training set can be generated in which each example

consists of the key that was depressed and the actual

state of the LED. The example task is to use CON-

STRUCTOR to recover a probabilistic model which can

be used both qualitatively to understand the workings

of the LED display and quantitatively to assess the in-

tended digit given new LED displays.

Related Work

This section describes a number of alternative ap-

proaches to the model construction task addressed by

CONSTRUCTOR.

Chow & Liu, 1968

This research [4] was concerned with reducing the

significant amounts of memory needed to represent

large discrete probability distributions. The research

resulted in the Maximum Weight Spanning Tree

(MWST) alg or1 ‘th m. The algorithm takes as input a

training set and produces as output a probabilistic net-

work with a tree topology.

The algorithm has several desirable properties.

First, if the underlying distribution from which the

training set is sampled has a tree structure, then the

MWST algorithm will find the “optimal” tree. Sec-

ondly, the algorithm is computationally tractable-it

runs in O(n2) where it is the number of attributes in

the training set. Thirdly, since the algorithm only uses

pairwise statistics, the size of the training set can be

modest and still achieve good results.

The major drawback of this algorithm is that sit-

uations with more complex structures (i.e., non-tree

topologies) cannot be accurately represented. This is

a serious drawback since most real problems do not

have “tree” structures.

Concept Formation Research

The CONSTRUCTOR approach to structure learning

shares some similarities with the more widely known

machine learning work on concept formation [5,11,12].

The clearest similarity relates to the goals of the algo-

rithms: the CONSTRUCTOR and concept formation al-

gorithms are both designed “to help one better under-

stand the world and to make predictions about its fu-

ture behavior.“ [7]. In addition, both approaches learn

in an unsupervised manner-no advice or intervention

is required from a “teacher” and like the AutoClass sys-

tem [3], Constructor is inherently Bayesian in spirit,

making use of probability distributions over the at-

tributes of the observations in the training set. Fur-

thermore, the networks generated by Constructor are

not strictly hierarchical, as are the knowledge repre-

sentations produced by many of the concept formation

techniques.

Component Techniques

CONSTRUCTOR makes use of traditional techniques of

artificial intelligence as well as recent advances in both

probabilistic representation and inference and statis-

tical analysis. The probabilistic network technologies

provide an intuitive representation for a joint prob-

ability distribution as well as efficient techniques of

probabilistic inference. From AI, we use techniques of

heuristic search in order to efficiently find the structure

which best represents the data. From statistics, we use

the x2 test to decide when attributes are probabilisti-

tally independent and cross-validation for selecting the

“best connected” network.

Probabilistic Networks: Probabilistic networks [S,

131 are used for representing and reasoning with un-

certain beliefs, and are based on the well-established

'A singly connected

(undirected) cycles.
graph is one in Which there are no

FUNG AND CRAWFORD 763

Figure 2: Probabilistic Network for the LED Problem

theory of Bayesian probability. The primary inno-

vation of probabilistic networks is the explicit repre-

sentation of conditional independence relations. The

representation of conditional independence relations in

a probabilistic network is encoded in the topology of

the network and can be illustrated with an example.

In the network topology shown in Figure 2, the De-

pressed Key node separates all of the LED segments

from each other. This topology implies that the state

of any of the LED segments is independent of the state

of every other segment in the display given that it

is known what key has been depressed. This inde-

pendence is conditional however, since the LED states

are dependent if it is not known which key has been

depressed. The three-place relation symbol I will be

used to denote conditional independence. For example,

I(n;, nk, ni) denotes that ni is conditionally indepen-

dent of nj given ?&k.

There are two types of probabilistic networks:

Bayesian and Markov. A Bayesian network contains

directed arcs whereas a Markov network contains undi-

rected arcs. Networks of both types represent a joint

state space and a probability distribution on that

space. Each node of a probabilistic network represents

one component of the joint state space (i.e., a mutually

exclusive and exhaustive set of states). For example,

the Depressed Key node in Figure 2 represents the set

of states (0 1 2 3 4 5 6 7 8 9). Each arc of a proba-

bilistic network represents a relationship between the

nodes it connects. For example, the arc between the

Depressed Key node and the LED1 node indicates that

the top element of the LED is probabilistically related

to the key that is depressed (i.e., if there is no failure,

it will turn on if the depressed key is 0, 2, 3, 5,7, 8, or

9).
The form of the probability distribution for a net-

work depends on its type. In a Bayesian network, a

conditional probability is stored at each node where the

conditioning variables are the node’s predecessors. In a

Markov network, the nodes are grouped into cliques.2,

and probabilistic quantities are associated with the

cliques of a network instead of with the nodes them-

selves.

Useful inferences can be made given a probabilistic

network that represents a situation and evidence about

the situation. For example, given the evidence that

LED2 LED4 LED6 and LEDrare illuminated, and the

network shown in Figure 2, one could infer updated be-

liefs about the “ depressed key” . As one would expect

for this example, the result would be relatively strong

beliefs for “5” and “6” and relatively weak beliefs for

the other possible values for “ depressed key” . Several

algorithms for inference have been reported, [2,10,13].

While each of these algorithms has significantly differ-

ent methods for inference, they are equivalent in that

given a probabilistic network and a particular query,

they will infer exactly the same result.

Every node in a probabilistic network has a Markov

boundary that “ shields” it from being affected by ev-

ery other node outside the boundary. In other words,

given the Markov boundary of a node, that node is

conditionally independent of every other node in the

network. Formally, the Markov boundary of a node ni

in a network U is a subset of nodes S such that:

I(ni,S, u\s\W) (1)

and no proper subsets of S satisfy Equation 1. (The op-

erator “\n denotes set difference.) The Markov bound-

ary of a Bayesian network node is simply the union

of the node’s predecessors, the node’s successors, and

the predecessors of the node’s successors. The Markov

boundary for a Markov network node is simply its

neighbors. Figure 3 shows the Markov boundary for

a Bayesian network node. The Markov boundary con-

cept is crucial to the development of the CONSTRUC-

TOR algorithm.

Statistical Methods: When attributes take on cat-

egorical values, the degree to which two attributes are

statistically independent can be ascertained via the

well known x 2 test of independence. For this test,

the data are arranged in a two-way contingency table

such that the possible values of one attribute make up

the rows of the table, the possible values of the other

attribute make up the columns, and the data propor-

tions of the various attribute/value combinations fill

the cells of the table. The conditional independence of

attributes ai and aj given attribute c&k can be tested

by preparing a three-way contingency table so that the

values of oi and aj make up the rows and columns of

the table, and the values of ok make up the layers.

2A clique is a s et of nodes in which every node

set is a neighbor of every other node iu the set.

in the

764 MACHINELEARNING

Figure 3: A Markov Boundary

Conditional independence is tested by computing sep

arate x2 statistics for each layer and summing. The

conditional independence of attributes ai and aj given

a set of attributes (ok, ul, . . .} can be tested by simply

forming a “macro” attribute, h, whose values consist

of all combinations of values of the attributes in the

conditioning set.

In most instances of model fitting algorithms (e.g.,

CONSTRUCTOR), the eventual goal is to uncover a

model that will be useful for prediction. It is an un-

fortunate fact that the predictive performance of such

data-derived models often falls short of expectations.

The model will often be highly predictive when test

cases are drawn from the data used to formulate the

model, but less predictive when new data are pre-

sented. This phenomenon is called “ statistical over-

fitting” and indicates that, on average, the fit of the

model to the data used to build the model is much

closer than the fit to new data. A simple mecha-

nism for addressing the problem of overfitting is cross-

validation [15], often characterized as a “leave some

out” technique in which a model formed from a por-

tion of the data is subsequently tested against the data

left out of the model formation process. The use of

cross-validation is not restricted to model assessment,

however, since the approach can also be used to assist

with model selection. Breiman et al. [l] describe a

powerful use of cross-validation for model selection in

the context of finding the “right sized” classification

tree. Cross-validation is used in a similar manner in

CONSTRUCTOR for finding the “ best-connected” net-

work.

The input to the CONSTRUCTOR algorithmis

ing set X consisting of N examples, {Zr , &, .

Constructor Algorithm

a train-

Each example, z’i, consists of P discrete values

{Xil,ee*,Xij,.e., Zip}, one for each of the P attributes

uj in a set of attributes A. The value set vj is the pos-

sible set of values for attribute oj. The value set can

either be input by the user or derived from the training

set, Ui Xij*

In the faulty LED example, the first attribute, al,

is an integer-valued attribute indicating the numeric

key that was depressed. The rest of the attributes

ca2 . . .a83 are boolean-valued attributes to indicate

whether or not a particular LED component is illumi-

nated. Therefore, vr is (0, 1, . . . ,9), and vr...s is (on

dT3*
The output of the CONSTRUCTOR algorithm is a

Markov network U. For each attribute a!j in X, the

network contains a node ni whose state space is the

value set vi of %. Qualitatively, the network repre-

sents the relevance relationships between attributes in

the training set. Quantitatively, the network repre-

sents an estimate of the joint probability distribution

from which the samples are derived.

The CONSTRUCTOR algorithm takes as its starting

point the simple theoretical notion that the structure

of the probabilistic network 24 can be identified if the

neighbors (i.e., Markov boundary) of each node of the

network are found. The Markov boundary Bi of a node

ni in the network U is found by searching for the set

of nodes which correspond to the smallest set of at-

tributes S such that:

(2)

and no proper subsets of S satisfy Equation 2. In CON-

STRUCTOR the determination of conditional indpen-

dence is made with the x2 test. However, finding such

relations in large data sets is computationally complex

since every such test will include the consideration of

every feature of the data set.

CONSTRUCTOR therefore limits its attentions to dis-

tributions which are “ composable” . Such distributions

have the property that

I(& C, D) a (Vb E B)(Vd E D) I(b, C, d). (3)

where b, d represent individual discrete random vari-

ables and B, C, D represent sets of such variables. This

property states that finding whether two sets of el-

ements are conditionally independent of a third set

can be determined by the much simpler computational

task of checking whether every pairwise combination of

elements in the two sets is conditionally independent

of the third set and therefore simplifies the finding of

Markov boundaries to finding the smallest set of at-

tributes S such that:

(VUj E U\S\ai) I(aitSs uj)

“ Composable” models are a much broader class of

models topologically and contain the previously ex-

plored Utreen models of [4, 141.

FUNG AND CRAWFORD 765

begiu Constructor: (Training Set)

compute list of o-levels;

initialize;

for each o-level do:

select cross-validation sample;

initialize frequency tables;

find network;

estimate network error;

compute network complexity;

end for

report networks, errors, complexities;

end Constructor.

begin Find-Network: (o-level)

find mutually independent attribute subsets;

for each subset do:

for each attribute do:

find neighbors;

end for

end for

instantiate Bayesian network;

find cliques;

estimate clique potentials;

return network;

end Find-network.

Figure 4: Overall CONSTRUCTOR Algorithm.

Figure 5: The Network Identification Algorithm.

Besides its use to find Markov boundaries, CON-

STRUCTOR makes use of “ composability” in a pre-

processing step to separate attributes into mutually-

independent sets.

I(S,t@,S2)~(V% E Si)(Vaj E S2)I(ai,Q,aj) (5)

Figure 4 shows the overall CONSTRUCTOR algo-

rithm. In this and subsequent listings, a step is un-

derlined and shown in more detail in a later figure.

Network identification is the heart of the CON-

STRUCTOR algorithm and is designed to find the prob-

abilistic network that best represents the training set

given an input parameter, cy. This parameter is

the standard statistical measure of type I error and

controls how much confirmation is needed before in-

dependence relations can be concluded in the pro-

cess. Network identification works by searching for

the Markov boundary of each attribute in the training

set. Wrapped around network identification is cross-

validation-used to select a level of cy: that will deliver

the “best connected” network. The function of cross-

validation in CONSTRUCTOR is to assess the perfor-

mance of a set of induced networks, each of which has a

different degree of “ connectivity” . Each network in the

set is obtained via the use of a different setting of the a!

parameter. The network with the best cross-validated

performance is then selected as the “best connected”

network.

Network Identification: Network identification in-

volves successively finding the neighbors of each at-

tribute in the training set. Unfortunately, the problem

of finding the neighbors of an attribute involves search-

ing through the power set of a set of possible neigh-

bors and the computational complexity for exhaustive

search thus grows exponentially with problem size.

Managing the exponential process of finding neigh-

bors is the primary challenge for the network identi-

fication task. This is accomplished by a number of

diverse mechanisms which include heuristic search.

In addition, the CONSTRUCTOR algorithm uses other

mechanisms to minimize the size of the set of possi-

ble neighbors of an attribute. For’ example, the net-

work identification process uses findings of previous

search results in order to reduce the possible neighbors

set. This is possible because neighbor relationships are

symmetric: Neighbor-op(ni, nj) e Neighbor-of(nj, ni).

In this way, finding the neighbors and non-neighbors

for one attribute adds to the knowledge about the

neighborhood relationships of every other attribute in

the training set.

In spite of these mechanisms, there will be cases in

which the search process will be lengthy. There are,

however, two immediate observations which can be

made about such cases. First, we do not expect to face

such situations very often. It has been claimed that

training sets derived from real world situations will

usually yield sparse graphs (i.e., only a few neighbors

per attribute) since real world situations are inherently

structured. In these cases, attribute neighbors can be

found quickly. In cases which do not have this prop-

erty, the resulting network will be densely connected

and will probably be of little use since little qualitative

information will be extractable from the network.

Secondly, a feasible solution (i.e., set of neighbors)

always exists- the whole set of possible neighbors.

Therefore, in hard subproblems the process can always

be terminated successfully by returning as a solution

the full set of possible neighbors.

The network identification algorithm is outlined in

Figure 5 and described in more detail below.

Subset Selection: The first step in network identi-

fication requires using the x2 test to assess the pair-

wise independence of all attributes in the training set.

With these results, the attributes can be partitioned

into independent sets of attributes. That is, for any

pair of independent sets, each attribute in one set will

be independent of every attribute in the other set. Lo-

cating these subsets helps to reduce the complexity of

the neighbor search process.

766 MACHINELEARNING

begin Find-Neighbors: (attribute oj)

root + p;

known-neighbors + Nk;

shortest-path t nl” ;

shortest-path t aj;

spawn first level;

repeat:

select node to expand;

current-path t current-path + node;

when shortest-path > current-path:

spawn and coalesce children;

for each child do:

if independent (uj ,intervening nodes,child)

then prune child;

if all children pruned

then shortest-path +- current-path;

end for

end when

until: no nodes can be expanded;

return shortest-path;

end Find-neighbors.

Figure 6: The Neighbor Identification Algorithm.

Neighbor Identification: Finding the neighbors

for every attribute in a training set is an iterative

search process based on finding the Markov boundary

for each attribute. As discussed earlier, the Markov

boundary is the smallest set of attributes that makes

the target attribute conditionally independent of every

other attribute in the training set.

Finding the neighbors of a particular attribute aj,

outlined in Figure 6, begins with the instantiation of

an attribute tree, consisting of attribute nodes, each of

which represents an attribute in the training set. The

root node of an attribute tree always represents the

target attribute aj (i.e., the attribute for which neigh-

bors are being sought). Each branch of a partial at-

tribute tree (Le., the path from the root node to a

leaf attribute node) represents a hypothesis that the

attributes associated with the attribute nodes in that

branch make up the Markov boundary for the target

attribute.

The search for the Markov boundary of attribute oj

begins by instantiating the root node of the attribute

tree as oj. An attribute node for each member of the

set of known neighbors, nf’, is then sequentially added

to the attribute tree in a single branch rooted at oj.

The set of candidate new neighbors, n/“, is initialized to

J\C?j3\Mk\=@, where Sal” is the set of nodes kn

not to be neighbor

‘For the very first attribute to be explored, n/& = a/” =

and so the initial set of candidate neighbors consists of

AP = A\(cLj).

The first step of the search process is to choose a leaf

node for expansion. Initially there will only be one leaf

node-the end of the A/k branch. Expansion of a node

simply means that a child node is instantiated for every

member of nl” and takes place only if expansion will

not create a branch whose length exceeds that of the

current shortest path. Note that to avoid duplication,

each new branch is merged with any existing branch

that contains exactly the same attributes. After ex-

pansion, a x2 test is then carried out to determine if

aj is conditionally independent of each of the new at-

tribute leaf nodes given the intervening branch. If so,

a new shortest path has been found. If not, the newly

instantiated nodes are pruned away and another leaf

node is chosen for expansion. The search continues

until there are no leaf attributes to expand and the

shortest path is then returned as the set of neighbors

for the attribute.

This search is performed for each attribute in the

training set. Once completed, a probabilistic network

is instantiated in which each attribute is represented

by a node whose state space is the value set of its

associated attribute. The structure (i.e., connectivity)

of the network is determined by placing an undirected

arc between each pair of neighbors.

Given the network structure, arcs are added which

‘KU-in” [16] the network and then the nodes in the net-

work are grouped into cliques. A joint probability dis-

tribution for each node in the clique is then estimated

using the empirical distribution found in the training

set.

Search Heuristics: The computational efficiency

and therefore the viability of CONSTRUCTOR depends

on the overall strength of the search heuristics that can

eventually be identified. We discuss two of the more

powerful heuristics which have been identified.

First, since computational cost grows exponentially

with the number of attributes that must be examined

in the neighbor search, it makes sense to first explore

those attributes which are likely to have only a few

neighbors. Because it is unlikely that attributes that

are pairwise independent of the target node are neigh-

bors of the target node, this heuristic simply states

that neighbors should first be located for those at-

tributes with the largest number of pairwise indepen-

dencies. Note that, because of the neighbor symmetry

relationship described earlier in this section, locating

any neighbor relationships will reduce the search space

for subsequent neighbor relationships and so it is eI%i-

cient to do the shorter searches first.

network is a fu

expansion, first select that node with the largest de-

FUNG AND CRAWFORD 767

Table 1: LED1 Dependency On LED2 and LED3

11

pendency on the target node given the current state of

the tree.

Examples

To illustate the algorithm’s operation, we describe the

results obtained when CONSTRUCTOR is applied to the

digit recognition training set. In particular, we focus

on the search to discover the neighbors of attribute

LEDI. The pairwise independence relationship be-

tween LED1 and all other attributes is first exam-

ined and it is discovered that LED1 is independent

(at ar = 0.001) of all attributes save for LED7, LED5,

and Depressed Key. All other attributes are therefore

pruned from the search tree. The remaining attributes

(children of the LED2 node) are examined and an ex-

pansion order is computed. The “ dependence” heuris-

tic forms an order based upon the degree of depen-

dence between children and parent. Since LED7shows

the highest degree of dependence with LEDl, it is ex-

panded first. It is found that LED1 and LED2 through

LED6 are conditionally independent given LED7, but

since LED1 and LED7 are found to be conditionally

independent given Depressed Key, LED7 cannot be

a neighbor of LED1 and so it, and its children are

pruned. The Depressed Key node is expanded next

and it is found that all other attributes are condition-

ally independent given Depressed Key and are there-

fore pruned from consideration. The Depressed Key

attribute makes up a feasible set of Markov neighbors

for the LED1 attribute and since no other path can

possibly be shorter than this one (a path of length l),

the search is terminated.

The neighbors for all attributes are located in the

same manner and the final result of this process is a

network with exactly the same topology as that illus-

trated in Figure 2.

Digit Recognition with Loop: For this training

set, we introduce an additional source of error into the

model for our already faulty display. In this model, the

state of LED1 is determined entirely by the states of

LED2 and LED.??, both of which depend upon the state

of Depressed Key. The dependencies are summarized

in Table 1.

The introduction of this additional source of error in

the digit recognition model amounts to the introduc-

tion of a loop in the Bayesian network representation

of the model, as shown in Figure 7.

Y LED7 I

Figure 7: Digit Recognition Network with Loop

CONSTRUCTOR can uncover this structure when pro-

vided with a set of training examples generated from

the probability model. The final result is a Markov

network with the same topology as the network in Fig-

ure 7 with the exception of an additional arc between

LED2 and LEDJ. This demonstrates, in the simplest

possible way, the feasibility of CONSTRUCTOR recover-

ing models with loops.

iscussion

In this paper, we have described the CONSTRUCTOR

system for inducing probabilistic models from data.

The motivation for CONSTRUCTOR is that previous

structure-finding algorithms have been limited to trees

and that such structures are often too restrictive for ad-

dressing real problems. The basic idea of CONSTRUC-

TOR is theoretically sound-it is to construct a net-

work by finding the neighbors of each node through a

heuristic search process. CONSTRUCTOR operational-

izes this theoretical idea through the application of

modern statistical techniques and addresses the com-

putational complexities of the task to make significant

progress towards a practical machine-learning system.

CONSTRUCTOR has been tested not only on train-

ing sets generated from probability models like those

in Section 4, but has been tested recently on real data

in an information retrieval application [6]. For those

training sets generated from probability models, CON-

STRUCTOR was able to reconstruct the models and for

the information retrieval spplication, CONSTRUCTOR

yielded a network which was intuitive to an expert and

performed well in practice.

Although CONSTRUCTOR can be run without user

intervention, we strongly believe that users often have

important insights that may be easy to acquire and

may significantly improve the process of structure

learning. In order to benefit from these insights, CON-

STRUCTOR allows the user to interact with the sys-

tem in every phase of the algorithm. For example, the

768 MACHINE LEARNING

user can choose to have the structure for the entire

set of attributes be discovered using the search heuris-

tics, or may wish to choose to find the neighbors for

a single attribute himself. In the search for the neigh-

bors of a particular attribute, the user can observe the

growth of the search tree and can control the order in

which attribute nodes will be expanded. The user can

also control pruning and cross-validation and can view

intermediate results such as pairwise-independencies,

neighbor relationships and the networks which have

been found.

Future Research: The primary focus of subsequent

research will focus on addressing problems created by

the exponential search space in neighbor identification

and problems imposed by the “curse” of dimension-

ality - the observation that high-dimensional space

is inherently sparsely populated. For CONSTRUCTOR,

the curse of dimensionality is manifested in low cell

counts in the contingency tables used to assess inde-

pendence via the x2 test. One approach to this prob-

lem is to reduce the dimensionality of the training set

and, to this end, some relatively new dimension re-

ducing techniques such as projection pursuit [9] will be

investigated.

Two other important areas for research are: enlarg-

ing the class of distributions which CONSTRUCTOR can

recover and exploring parallel implementations. While

CONSTRUCTOR recovers gene& graphical structures,

there are some classes of distributions that are cur-

rently not adequately recovered with CONSTRUCTOR.

To address this issue, it is possible to use the condi-

tional independence test of Equation 2 as a heuristic

and do an exact test when this heuristic is successful.

Much of the CONSTRUCTOR algorithm is inherently

parallel. It therefore appears likely that substantial

performance gains could result from implementation

of CONSTRUCTOR on a parallel architecture.

References

[l] L. Breiman, J. H. Friedman, R. A. Olshen, and

C. J. Stone. Classification and Regression l%ees.

Wadsworth, Belmont, 1984.

[2] K. C. Chang and R. M. Fung. Node aggregation

for distributed inference in bayesian networks. In

Proceedings of the Iith IJCAI, Detroit, Michigan,

August 1989.

[3] Peter Cheeseman, James Kelly, Matthew Self,

John Stutz, Will Taylor, and Don Freeman. Auto-

class: a bayesian classification system. In Proceed-

ings of the Fifth International Conference on Ma-

chine Learning, Ann Arbor, Michigan, June 1988.

[4] C. K. Chow and C. N. Liu. Approximating dis-

crete probability distributions with dependence

trees. IEEE lkans. on Info Theory, 1968.

[5] D. H. Fisher. Knowledge acquisition via incre-

mental conceptual clustering. Machine Learning,

2(2):139-172, September 1987.

[6] R. M. Fung, S. L. Crawford, L. Appelbaum,

and R. Tong. An architecture for probabilistic

concept-based information retrieval. In Proceed-

ings of the 13th International Conference on Re-

search and Development in Information Retrieval,

September 1990.

[7] John Gennari, Pat Langley, and Doug Fisher.

Models of incremental concept formation. Arti-

ficial Intelligence, 40(1-3):11-61, 1990.

[8] R.A. Howard and J.E. Matheson. Influence dia-

grams. In R.A. Howard and J.E. Matheson, edi-

tors, The Principles and Applications of Decision

Analysis, vol. 11, Menlo Park: Strategic Decisions

Group, 1981.

[9] P.J. Huber. Projection pursuit. The Annals of

Statistics, 13(2):435-475,1985.

[lo] S. L. Lauritzen and D. J. Spiegelhalter. Lo-

cal computations with probabilities on graphical

structures and their application in expert systems.

Journal Royal Statistical Society B, 50, 1988.

[ll] M. Lebowitz. Experiments with incremental con-

cept formation: UNIMEM. Machine Learning,

2(2):103-138, September 1987.

[12] R.S. Michalski and R.E. Stepp. Learning from ob-

servation: conceptual clustering. In R.S. Michal-

ski, J.G. Carbonell, and T.M. Mitchell, editors,

Machine Learning: An Artificial Intelligence Ap-

proach, Morgan Kaufman, 1983.

[13] J. Pearl. Probabilistic Reasoning in Intelligent

Systems: Networks of Plausible Inference. Mor-

gan Kaufmann, San Mateo, 1988.

[14] G. Rebane and J. Pearl. The recovery of causal

poly-trees from statistical data. Proc., 3rd Work-

shop on Uncertainty, 1987.

[15] M. Stone. Cross-validatory choice and assessment

of statistical predictions. Journal of the Royal Sta-

tistical Society, 36:111-147,1974. Series B.

[16] R. E. Tarjan and M. Yannakakis. Simple linear-

time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce

hypergraphs. SIAM J. Comput., 13:566-579,

1984.

FUNG ANDCRAWFORD 769

