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The purpose of the present study is to investigate whether the effectiveness of a

new ad on digital channels (YouTube) can be predicted by using neural networks and

neuroscience-based metrics (brain response, heart rate variability and eye tracking).

Neurophysiological records from 35 participants were exposed to 8 relevant TV

Super Bowl commercials. Correlations between neurophysiological-based metrics,

ad recall, ad liking, the ACE metrix score and the number of views on YouTube

during a year were investigated. Our findings suggest a significant correlation between

neuroscience metrics and self-reported of ad effectiveness and the direct number

of views on the YouTube channel. In addition, and using an artificial neural network

based on neuroscience metrics, the model classifies (82.9% of average accuracy) and

estimate the number of online views (mean error of 0.199). The results highlight the

validity of neuromarketing-based techniques for predicting the success of advertising

responses. Practitioners can consider the proposed methodology at the design stages

of advertising content, thus enhancing advertising effectiveness. The study pioneers the

use of neurophysiological methods in predicting advertising success in a digital context.

This is the first article that has examined whether these measures could actually be used

for predicting views for advertising on YouTube.

Keywords: neuromarketing, YouTube, artificial neural networks, eye tracking, heart rate variability, brain response

INTRODUCTION

Advertising effectiveness is still challenging academics and practitioners. Neuroimaging and
physiological measurement tools are becoming popular within marketing (Daugherty et al., 2016).
Their primary uses are related to unconscious measures based on eye movement, heart rate and
brain activity, among others (see Venkatraman et al., 2015 for more details). Such tools aim
to provide better understanding of the impact of affect and cognition on memory (Vecchiato
et al., 2013). Furthermore, neurophysiological methods can capture the dynamics of television
commercials content because they provide continuous data unlike traditional measures, such as
interviews and surveys that only reflect a global indicator for every commercial.

Global expenditure on media has been rising over the years and digital advertising is the fastest-
growing category (McKinsey, 2015). Marketers are still calling for accurate assessments about
advertisement effectiveness and about the return on advertising expenditure (McAlister et al.,
2016). Nowadays, Internet advertising has evolved dramatically and a platform like YouTube is
a good example on how to reach viewers at a global scale.
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Advertisers pursue the attention of viewers and seek ad recall,
brand recall and positive emotions. If this occurs, ads will be
stored in the viewers’ long-term memory. Humans may not
remember each advertisement they have been exposed to, but
neuroscience techniques can detect conditions that lead to the
memorization of advertising.

The usage of neuro metrics in measuring advertising
effectiveness overcome some of the weaknesses associated with
traditional measures (Varan et al., 2015). Despite the benefits of
using such measurements, the key question is the choosing of
the variables of advertising effectiveness. Among the different
types of effects pursue by advertising (see Moriarty et al., 2012),
three types of effects have been considered. First, perception, and
particularly exposure to the ad is recognized as the first step in
any evaluation process. In this study, we adopt the online views
as themeasure of advertising effectiveness of online ads; secondly,
the emotional dimension is typically used in evaluating the effects
of advertising, thus we adopt the liking as an emotional metric;
lastly, the cognition effect of advertising is measured through ad
recall.

Neurophysiological methods offer richer data than self-report
measurements of particular interest in advertising research.
Firstly, physiological measurements of emotion allow researchers
to analyze emotional activity without cognitive bias. Secondly,
neurophysiological methods provide instant and continuous data
that allow researchers to decompose the data analysis into small
pieces of study. Lastly, physiological measurements typically
offer a myriad of metrics. In the present study several metrics
are compared and two new metrics derived from eye tracking
(ET) are also proposed: “number of quadrants per second”
(Quad_sec) and “gaze brand effectiveness ratio” (Brand_ratio).
However, physiological measures have their own limitations: a
strong reliance on physiological data to measure emotions leaves
room for misinterpretation of physiological noise (e.g., natural
changes in body status) and burdens researchers with the difficult
task of attributing specific physiological changes (e.g., increase
in heart rate) to complex and subjectively experienced emotions
(e.g., hate, love, or fear).

Scholar research has recently adopted neurophysiological
measures to better understand consumer responses to advertising
(Astolfi et al., 2009). To the best of our knowledge, no articles
in marketing have previously examined whether these measures
could actually be transferred into real life views on advertising
on YouTube. The work by Venkatraman et al. (2015) was
one of the first pieces of research that tried to establish
correlations between brand performance and physiological
responses whilst viewers watched ads. So far it has been hard
to gauge the number of viewers who will watch an ad, which
in turn is one of the main objectives for marketers. However,
digital platforms overcome this situation enabling researchers to
measure consumer unconscious reactions to ads and the number
of views.

Neurophysiological methods to measure advertising
effectiveness are becoming popular including consolidated tools
such as ET and facial reader (Wedel and Pieters, 2014), EGG
(Ohme et al., 2010) and more recently sophisticated tools such
as fMRI (Venkatraman et al., 2015; Couwenberg et al., 2017).

New extensions to sales are emerging, Thus, biomarkers can, to
some extent, predict sales figures (see Kühn et al., 2016) and even
in virtual reality experiments have been developed (see Bigné
et al., 2016).

This paper aims to answer whether neurophysiological
methods contribute anything beyond traditional methods in
predicting ad success in a digital context. Specific research
goals are listed below. Firstly, to analyze whether three of
the most cited neurophysiological and behavioral techniques:
electroencephalogram (EEG), heart rate variability (HRV) and
ET correlate with common cognitive states typically used
in advertising research (e.g., liking and recall measures)
(Morin, 2011; Ruanguttamanun, 2014; dos Santos et al., 2015).
Secondly, we aim to explain whether the variance in the
number of views on a brand’s official YouTube channel is
related to any of the neurophysiological measures and their
metrics.

A study to assess subjects’ responses to nine 30-s online
television ads was conducted. Data gathered from 47 subjects
were split into six datasets based on three conditions: recall
(RMB) vs. no-recall (FRG), liking (LIKE vs. DISLIKE) and
Internet views (>5M vs. <5M). All the metrics extracted from
physiological and behavioral responses were compared and
correlated between these groups.

The contributions of this paper are listed hereafter. First,
we show how different metrics from three neurophysiological
devices correlate in an attempt to select themost accurate ones for
digital commercials. Second, Artificial Neural Networks (ANN),
using biometric data can predict digital views of ads, hence
common physiological patterns related to unconscious responses
can predict when an ad is going to be remembered or liked.
Finally, two new metrics are proposed to measure advertising
effectiveness in digital advertising, which show a high level of
accuracy in predicting digital views. In this paper, we build on the
later works that reviewed Super Bowl ads with ET and heart rate
(Christoforou et al., 2015), and brain response (Deitz et al., 2016),
but adding for the first time joined in neural networks models,
three of the most employed signals in advertisement research
(EEG, HRV and ET) and proposing two novel metrics based only
on eye-tracking data that predicts viewer’s preferences in video
advertisements.

The rest of the paper is organized as follows. Firstly,
we provide a brief literature review of advertising research
effectiveness and we introduce neurophysiological methods
related to ad recall and ad likeability. Secondly, we describe
the experimental design and signal recording and processing
techniques used to extract biometric data. Then, we describe
the study results in three parts. In the first part, a comparison
of the metrics from neurophysiological signals related to
likeability of the ad and ad recall. In the second one, the
correlations between these biometrics, the score given by
participants in a poll (e.g., ACE_score) and the number of
views on YouTube are exposed; and thirdly, by applying ANN
to these biometric datasets, we predict the number of views
on YouTube for each ad tested during the study. Finally, we
discuss the contributions and implications for researchers and
practitioners.

Frontiers in Psychology | www.frontiersin.org 2 October 2017 | Volume 8 | Article 1808

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Guixeres et al. Biometrics Ad Effectiveness

Established Methods in Advertising
Research
Despite the diverse approaches used in advertising research
(Vakratsas and Ambler, 1999), advertising success on ad
execution has focused on traditional measures such as
liking, excitability, and recall (Venkatraman et al., 2015).
Acknowledging the established literature (Astolfi et al., 2009;
Kim et al., 2014), this paper focuses on liking and recall
as traditional measures. Online polls have been adopted in
academic research as a valuable data source (see Strach et al.,
2015). Based on a US national-representative Internet sample
of 500 respondents, Ace Metrix has been providing advertising
effectiveness scores since January 2009 and it is used in this study.

Advertising Research in a Digital Setting
Digital channels have changed advertising research dramatically
and, as a result, a new paradigm is emerging (Ha, 2008; Bigné,
2016). One of the major gains is that analytics are available at ad
level, including exposure measured through number of views and
likeability through “likes.”

Neurophysiological Tools in Advertising
Research
This study focuses on three neurophysiological methods, aiming
to collect data from different angles: eye movements, heart
variability and brain responses.

Eye tracking is a well-established measure of visual attention
(Wedel and Pieters, 2014; Venkatraman et al., 2015) to different
stimuli, such as product choice (Guerreiro et al., 2015), static
images (Mould et al., 2012), printed ads (Elsen et al., 2016)
banner ads (Lee and Ahn, 2012) and videos of the Super Bowl
(Christoforou et al., 2015).

Heart rate variability is the physiological phenomenon of
variation in the time interval between heartbeats. It is measured
by the variation in the beat-to-beat interval (Task Force of
the European Society of Cardiology and The North American
Society of Pacing and Electrophysiology, 1996). This variability
of the heart is related to activations of the sympathetic and
parasympathetic systems of the autonomic nervous system. HRV
provides an independent measure of attention (Lang et al., 1999)
and it has been applied to television commercials (Acharya et al.,
2006; Grandjean et al., 2008; Geisler et al., 2010; Bellman et al.,
2013; Valenza et al., 2014; Venkatraman et al., 2015).

Electroencephalogram is an electrophysiological monitoring
method to record the electrical activity of the brain. The
relationship between affection, engagement and brain activation
in frontal brain activity has been well documented in psychology
and neuroscience research (Harmon-Jones et al., 2010; Khushaba
et al., 2013). Emotional frontal asymmetry as hypothesized by
Davidson (2004) has been applied to analyze commercials (Ohme
et al., 2010; Vecchiato et al., 2011), including Super Bowl ads
(Deitz et al., 2016) and advertising success (Venkatraman et al.,
2015). Vecchiato et al. (2011, p. 582) showed that “activity”
in the left-frontal cortex related to “pleasant” commercials and
activity in the right-frontal cortex associated with “unpleasant”
commercials.

Hypothesis Development
As briefly discussed earlier, ET, HRV and EEG provide measures
of responses to advertising stimuli and might be related to ad
performance. This study attempts to examine the relationship
between three types of data from neurophysiological tools, ET,
HRV and EEG, and three advertising variables typically used
in advertising research, such as ad recall, ad likeability and
ad views. Hypotheses will be anchored in three streams of
research aiming to integrate them into a single approach: (i)
theoretical advertising literature; (ii) online advertising; (iii)
neurophysiological research related to advertising. An integrative
approach is useful because neurophysiological primary data
per se are non-meaningful for advertising research. Therefore,
this type of data must be interpreted in relation to classic
advertising assumptions in order to prove their validity. Most of
the data gathered in this type of studies are based on a different
methodological paradigm that derives from psychophysiology
(Bolls et al., 2012).

1. Advertising research shows a positive relationship between
recognition and attention. Donthu et al. (1993) found
a positive relationship between attention and recall for
outdoor advertising. In an ET study, Pieters et al. (2002)
found that attention led to ad recognition. Baack et al.
(2008) posit that recognition is considered an immediate
measure of attention.

2. As discussed earlier, ET and some metrics from EEG can
capture attention, hence if attention leads to recall, it could
be argued that each neurophysiological tool can capture
attention.

The Advertising Research Foundation’s Copy Research
Validity Project (CRVP) showed in the early nineties that
advertising likability is the single best measure of effectiveness
(Rossiter and Eagleson, 1994). Furthermore, likeability has been
considered relevant and important in measuring commercial
effectiveness in the ads aired in the Super Bowl, showing stable
scores between 1990 and 1999 (Tomkovick et al., 2001). The
positive influence of likeability has also been highlighted recently
in online settings. Thus, likeability of online video ads has
successfully linked to intention to share them (Shehu et al.,
2016), which can be interpreted as a successful performance.
Recent literature in neuromarketing also highlights a relationship
between liking and HRV, ET measurements and fMRI signals
(Venkatraman et al., 2015).

Online video platforms, such as YouTube, have been largely
approached from the user-generated content perspective (see
Smith et al., 2012). However, its dimension as a digital channel
for watching commercials has almost been neglected, with some
related exceptions (Verhellen et al., 2013). The number of views
of each online video, including commercials, is available on
YouTube, and it is commonly seen as a valid measure of its
popularity. Given its social media nature, recent research is
addressing two main fields of interest: the sources that drive
views to a video and the preferred type of content. A recent
study by Zhou et al. (2016) identified YouTube search and
related video recommendation as the major view sources. In
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adopting YouTube views, the age of the video and the potential
replays must be considered. Research shows that user’s preference
seems relatively insensitive to the video’s age (Cha et al., 2007).
More recently, Chen et al. (2014) analyzed a lifetime model of
online video popularity that features the following three main
characteristics of interest here, adopting views as a potential
variable in explaining our intended relationships: (i) views follow
a Zipf distribution; (ii) replay percentage is very low; (iii) and only
video content on news and sports are strongly dependent on age,
with popularity being much less sensitive to age in music videos,
which can be considered closer to ads. Therefore, views can be
adopted as a valid measure over time of ad exposure.

Based on previous reasoning on recall, likeability and number
of views, and their relationship with neurophysiological tools,
therefore:

– H1: Eye tracking, HRV and brain activity capture (a)
recalled and non-recalled online ads, (b) liked and disliked
online ads, and (c) ads with high numbers vs. low numbers
of YouTube views.

1. Online polls (e.g., Ace Metrix, YouGov) are becoming
popular in the industry and have been used for academic
purposes. Established scores in the market are considered
by marketers as a valuable source of information. Ace
Metrix is a company that tests ads within 24–48 h of
each ad’s initial airing and provides meaningful scores.
Ace Metrix component scores range between 1 and 950.
Scores for the general population are normally distributed
and approximately centered around 530. For obtaining Ace
Score, every ad is shown to a unique set of 500 respondents
who complete standardized surveys that assess the ad both
quantitatively and qualitatively providing rich insights by
demographic segment. All ads are scored on 6 factors
most likely to influence consumer behavior including
relevance, likeability, information, change, attention and
desire—as well as re-watch ability, purchase intent and
brand linkage. After respondent scores are collected, Ace
Metrix component scores are computed and assigned to
each ad, creating an overall score called the Ace Score.
Since its inception, Ace Metrix has consistently used the
same methodology to measure the effectiveness of every
ad they have tested. As a result, they are in a unique
position in the field of advertising effectiveness to assess
relative advertising performance between any competitive
set of ads imaginable, both across different industries and
different time periods.

2. In addition, the digital world is changing data availability
and triggering new analytical research methods where
new research avenues for unstructured data, including
neurodata, and new methods like ANN call for new
research (Wedel and Kannan, 2016). Venkatraman et al.
(2015) conducted a similar study but in the offline context.
They found that deceleration correlated with liking
(r = 0.37, p < −05) and recognition (r = 0.34, p < 0.05).
The current study differs in two ways: (i) we parse
neurophysiological correlations in a different context,

such as digital exposure featured by searching rather
and displaying; (ii) Venkatraman et al. (2015) captured
advertising effort, through GRPs, and advertising outcome,
through advertising elasticities; however, our study
attempts to find out the correlates of neurophysiological
metrics from ET, HRV and EEG with independent
variables of ad effectiveness based on both, survey data and
digital views. Therefore, we predicted:

– H2: Eye tracking, HRV and brain activity capture correlate
with (a) self-reported score of ad effectiveness and (b)
online views on YouTube.

As stated before, YouTube as a digital channel to watch
commercials has almost been neglected with some related
exceptions (Verhellen et al., 2013). Our aim here is to use ANN
to predict the number of online views of ads placed in YouTube,
where the input variables are metrics from ET, HRV, and EEG.
ANN is useful for parsing non-linear relationships and adopt
feed forward and back propagation approaches (West et al.,
1997). ANN has been successfully applied in advertising since
the mid-nineties (Curry and Moutinho, 1993). Research posits
the superiority of these methods over other statistical approaches.
Surprisingly, this is the first attempt to use ANN to predict online
views. In our study, we aim to classify and to predict online
views based on metrics from ET, HRV, and EEG. Therefore, we
predicted:

– H3: Artificial neural networks based on mixed data from
ET, HRV and brain activity predict the number of online
views on YouTube.

MATERIALS AND METHODS

Participants and Design
Final sample consisted of 35 randomly healthy volunteers (15
women and 20 men, mean age = 25; SD = 5 years) recruited
from the city where the lab is located. Initial samplemeasured was
47 subjects but after an examination of the dataset was carried
out, 12 participants were removed due to corrupted data from
experimental sessions in some of the acquired signals. All of
the participants showed corrected-to-normal vision and hearing.
They were asked to pay attention to the documentary as in a
common situation. No mention of the importance of the ads was
made. The study was approved by the Institutional Review Board
of the Polytechnic University of Valencia with written informed
consent from all subjects in accordance with the Declaration of
Helsinki.

The experiment was conducted in a neuromarketing lab of a
large European university and comprises the three parts shown
in Figure 1. In Parts 1 and 2, participants sat comfortably on a
reclining chair with a 32-channel EEG device, with two electrodes
to measure heart variability and an eye-tracker (Figure 1). In
Part one, participants were exposed to a mindfulness audio
designed by experts to help them relax and disconnect from
past experiences of the day (Fjorback et al., 2011; Demarzo
et al., 2014). Then, in Part two they were shown a 30-min long
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FIGURE 1 | Participant in the study. (Top: The EEG cap is visible. ECG electrodes placed on the chest and TMSI equipment). (Bottom: Eye tracking equipment is

shown).

FIGURE 2 | Stimuli and experimental design.

documentary with three commercial breaks of three ads lasting
about 30 s each; the first break occurred after 7 min, the second
in the middle of the documentary, and the third 7 min before
the end as Figure 2 depicts. At the end of this second part,
participants were informed that an interview would be held 2 h
later (Part 3).

Pretesting and Stimuli
Television commercials from the final of the Super Bowl 2015
were chosen because they are a good representation of the most
searched high impact ads. We wait for a year to get results of
number of views on the brand’s official YouTube channel and
a final selection of eight from 47 ads was made to represent
a uniform distribution of ads ranked by number of views and

also to represent a distribution of different commercial products
(Table 1). In addition to the number of views, the ACE Metrix1

score was also obtained for some ads. The ACE Metrix is the
most employed US scale drawn up by consumers that evaluates
the ad creative effectiveness based on viewer’s reaction to national
TV ads. The results are presented on a scale of 1–950. The
selected television commercials belong to international brands
of commercial products such as drinks (3), food (1), cars (2),
textiles (1) and services (1). None of the ads had been broadcasted
in the country where the experiment was performed in order
to remove previously unchecked exposure of the subjects to
the proposed stimuli. These videos were randomly distributed

1http://www.acemetrix.com/
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during the sessions with participants to avoid bias in data
analysis.

Data Recording and Processing
Cerebral Recording (EEG)

Electrical activity of the brain was recorded by a stationary
32-channel system (REFA 32, TMSI hardware). EEG activity was
gathered at a sampling rate of 256 Hz. The experiment used 30
Ag/AgCl water-based electrodes and bracelets attached to the
opposite wrist of the subjects’ dominant hand. The montage of
brain electrodes followed the international 10–20 system (Jasper,
1958).

The EEG baseline was removed and channels detected as
having corrupted data were rejected and interpolated from the
closest electrodes (ColomerGranero et al., 2016).When a channel
with erroneous data was identified, kurtosis was employed
computing the fourth standardized moment in the signal of each
electrode. This kurtosis is defined in Equation 1

K(x) =
µ4

σ4
=

E[(x − µ)4]

E[(x − µ)2]2
(1)

whereµ4 was the fourth moment of the mean, σwas the standard
deviation and E[x] was the expected value of signal x. The EEG
signal was segmented in one second acquired accordingly to the
experiment events. The intra-channel kurtosis level of each epoch
was used to reject the epochs with high levels of noise.

To detect artifacts from eye movements, blinking and
muscular activation, Independent Component Analysis (ICA)
(Gao et al., 2010) and automatic method (ADJUST) (Mognon
et al., 2011) were implemented. Each EEG artifact-free trace was
band pass filtered twice in order to isolate only the spectral
components in delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz),
beta (13–24 Hz), beta extended (13–40 Hz) and gamma bands
(25–60 Hz).

To quantify the cerebral activity in each band, the Global
Field Power (GFP) (Wackermann et al., 1993) was calculated as
explained in previous work (Colomer Granero et al., 2016).

Recent studies have shown that the main areas involved
in the phenomena of memorization and pleasantness are the
frontal areas (Astolfi et al., 2009). For that reason, calculation

TABLE 1 | ACE metrix score, number of visits on a brand’s official YouTube

channel during a year and ranking of visits established for the selected video

advertisements regarding number of visits.

ACE_score No. visits Rank of visits∗

Drink 2 665 12,037,414 D

Car 2 394 10,583,315 D

Drink 3 Non-evaluated 10,356,789 D

Drink 1 641 6,652,069 C

Food 626 4,594,507 B

Textile 362 2,952,014 B

Car 1 611 1,453,022 B

Service 167 15,340 A

∗VISIT_RANK: A: = <1M views; B = 1M–5M views; C = 5M–10M views;

D = >10M views.

of electrodes in frontal lobe were taken into account. A GFP
signal was then calculated for each frequency band considered
in the experiment. GFP associated with each ad analyzed and
GFP during a period taken as the baseline of watching a 2-min
neutral documentary before the block of ads were compared and
normalized to obtain the corresponding z-score index.

In addition to the z-score of GFP for each EEG band, two
metrics applied in advertising research were also calculated: The
Pleasantness Index (PI), and the Interest Index (II). The PI is a
metric calculated over time that provides information about the
pleasantness of the stimuli presented (Vecchiato et al., 2011).
Brain activity gathered by left-frontal electrodes is compared with
brain activity registered by the right-frontal electrodes (frontal
asymmetry). These comparisons are made with GFP in the theta
and alpha bands, comparing asymmetric pairs of electrodes.

The questionnaire generated the likeability score for each ad
under study. Using this information, participants were segmented
into two groups: “LIKE” and “DISLIKE.” Then, the brain
Pleasantness Index, PI was calculated for each group as describes
(Colomer Granero et al., 2016).

The II, enables an advertising evaluation of user interest in
theta and beta bands (Vecchiato et al., 2010). The most relevant
peaks of these signals are selected. Two parameters were obtained:
the number of peaks during a particular ad (PNtotal) and the
number of peaks during the periods the brand name appeared
in that particular ad (PNbrand). Accordingly, the II was calculated
as describes (Colomer Granero et al., 2016).

Heart Rate Variability

To analyze HRV, the electrocardiogram, ECG signal needs to
be filtered (Blanco-Velasco et al., 2008), analyzed to detect
QRS zones (Pan and Tompkins, 1985) and revised manually
by an expert, because the appearance of a single ectopic can
produce variations in certain key parameters extracted from this
analysis (Clifford, 2006). HRV analysis can generate a set of
metrics that can be extracted from different dimensions: time,
frequency, time-frequency and non-linear. Parameters extracted
from the time domain used in this study were: average heart
rate (t_meanHR), standard deviation of continuous HR values
(t_sdHR), the square root of the sum of successive differences
between adjacent RR intervals (t_RMSSD) and the number of
successive pairs of RR intervals showing a difference of more than
50 ms between them (t_NNx).

Power spectral density (PSD) analysis provides information
about the amount of power in the frequency bands defined
for the beat-to-beat interval signal generated. In this case, we
employed the Lomb-Scargley method (Castiglioni and Di Rienzo,
1996). The frequency bands defined (low frequency, LF and high
frequency, HF) are stated by Task Force of the European Society
of Cardiology and The North American Society of Pacing and
Electrophysiology (1996). Power metrics can be presented in
absolute values (aLF, aHF, aTotal), normalized to total energy
(nLF, nHF) or in a percentage value of total energy (pLF, pHF).
The ratio established between the LF and HF band provided
information on the sympathetic/parasympathetic balance. The
power value of the peak in the fundamental frequency (peakLF,
peakHF) was also extracted.
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Non-linear analysis was run using techniques such as the
Poincaré graph that give us SD1 and SD2 metrics (Fishman
et al., 2012). Sample entropy (sampen) is another non-linear
technique that attempts to quantify the complexity or degree of
new information generated (Richman and Moorman, 2000). If
entropy is equal to zero, then consecutive sequences are identical.
Similarly, bigger values show higher complexity of the analyzed
signal.

To summarize, for each ad analyzed by subject, HRV metrics
were computed by means of a computational analysis plug-in
based on Matlab (Guixeres et al., 2014). For the purpose of this
study, the seventeen most relevant metrics employed in HRV
analysis (Task Force of the European Society of Cardiology and
The North American Society of Pacing and Electrophysiology,
1996) were selected based on time, frequency and non-linear
domains.

Eye Tracking

The Tobii TX300 eye tracker2 was used in this experiment
as Figure 1 depicts. This eye-tracker collects gaze data at
300 Hz. The subsequent analysis of raw data used Tobii Studio
3.2 software. For each commercial the following metrics were
obtained from the gaze data: (i) number of fixations during
each ad (Fix_Count_Advert); (ii) average duration of fixations
during an ad (Fix_Dur_Advert); Furthermore, we obtained
several metrics from the times the brand appeared in each ad.
To calculate such metrics, a dynamic Area of Interest (AOI) that
followed the brand was created using TOBII studio software to
obtain (iii) the average duration of fixations exclusively focused
on the brand (Fix_Dur_Br); (iv) the number of fixations during
the brand appearance that focused on it (Fix_Count_Br); (v) the
time from the appearance of the brand until it was fixated on for
the first time (FFIX_Dur_Br); (vi) the number of visits inside the
brand’s AOI (Visit_Count_Br); and (vii) average duration of visits
to the brand’s AOI (Visit_Dur_Br). For the last two metrics, it
should be remembered that a visit is the event that starts when
the eye enters an AOI until it leaves such AOI. In addition to
these metrics, two new metrics are proposed in this study: (viii)
Number of Quadrants per second (Quad_sec); and (ix) the Gaze
Brand Effectiveness Ratio (Brand_ratio).

Quad_sec enables the way the user explores a space with his
eyes to be quantified. To calculate this metric, the screen surface
was divided into a grid of 4 × 4 equal-sized quadrants. Then,
the average quantity of different quadrants that the eye visited
per second was calculated for each commercial. Higher values
for this metric meant that the subject explored the space in
“ambient mode,” covering all the space with his eyes, whilst lower
values meant that the subject explored the space in “focus mode,”
centering his visual attention on specific zones. These two modes
of watching an image stimulus have been reported in previous
works (Bradley et al., 2011; Holmqvist et al., 2011).

Quadseg=
Nq

ts
(2)

2Tobii.com

where Nq is the number of visits to quadrants during stimulus
presentation and ts is the duration in seconds of the stimulus.

Brand_ratio enables the effectiveness of visual attention
toward the brand during the ad to be quantified. To calculate
Brand_ratio, brand appearance was controlled by setting an AOI
around the brand every time it appeared in the commercial.
Then this metric was defined as the number of seconds that the
subject looked directly at the brand divided by the total time
that the brand was present on the screen during the commercial.
This metric could be related to the participant’s interest in and
familiarity with the brand as it relates to the time that eye and
brain are able to identify a brand, a concept related to familiarity
(Kent and Allen, 1994).

Brandratio=
tbf

tb
(3)

where tbf is the time in seconds that the gaze fixed on the brand
and tb is the total time in seconds that the brand appeared during
the ad.

Questionnaire

Data were sorted using three criteria: (i) spontaneous ad recall;
(ii) ad liking; (iii) the number of online views was used as a
control variable. The criterion for ad recall was to remember
without clues brand names of the commercials 2 h after the study.
Accordingly, participants were split into two subgroups. The first
dataset was related to the biometric activity collected during the
observation of the recalled commercials 2 h after being exposed
to them. This dataset was named RMB. The second subset
included the biometric activity collected during observation of
the non-recalled commercials, (FRG). The ad liking criterion was
related to the biometric activity collected during observation of
the television commercials that the subjects rated 5 or above
on a 10-point Likert scale, being this subset named LIKE and
DISLIKE, respectively.

Statistical Methods
In order to test comparisons of means of the metrics calculated,
a set of Shapiro-Wilk tests (W) were conducted to test whether
dependent variables deviated from normality. Then a statistical
analysis was carried out using ANOVA for metrics with normal
distribution and the Mann Whitney non-parametric test for
metrics that did not show a normal distribution. A corrected
p-value less than p = 0.005 was chosen to correct multiple
comparisons effect (Feise, 2002).

To get the correlation of neurometrics with the ACE score and
the number of online views of the ads on YouTube, a Pearson
correlation was applied to the number of visits so it could be
considered as a linear scale. However, Spearman’s correlation was
applied to the ACE score so it could be considered as a rank
variable instead of a linear scale.

Artificial Neural Networks

We adjusted two neural networks with SPSS statistics using all
metrics defined for EEG, HRV and ET, and including gender, as
our input variables. The first network was adjusted to classify
advertising responses into a ranking for the number of views
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on YouTube (RANK_VISITS). This ranking divided ads into
four clusters (<1M: ads with less than 1 million visits, 1M–5M,
5M–10M, and >10M: ads with more than 10 million visits). The
second network was adjusted to predict the real number of visits
for each ad.

Two kinds of network were compared with the same
data. Multi-layer Perceptron networks (MLP) and Radial Basis
Function networks (RBF). Regarding accuracy for classification
and estimation of the data,MLP networks were selected finally for
the two purposes instead of RBF. After testing results changing
several parameters in MLP architecture, a final structure was
chosen for the both neural networks (see Appendix). To validate
accuracy of networks, cross-validation technique was employed.
Entire sample was divided into two groups (70% of cases for
training the network and 30% of cases to assess classification
accuracy) and that validation was repeated 10 times (k = 10),
selecting each time different groups for training and assessing.
Final results were averaged from the 10 turns.

RESULTS

Biometric Mean Comparison
In order to test H1, we conducted a comparison among means
of the metrics calculated from EEG, HRV and ET. As stated
earlier, these metrics were compared by means of the following
two conditions, recall vs. non-recall after 2 h (RMB vs. FRG) and
by likeability (LIKE vs. DISLIKE).

Brain Response Comparison
Figure 3 shows the comparison amongmeans for z-score indexes
in each frequency band for the different factors chosen. In the case
of remembered ads, the RMB group shows significant differences
compared to the FRG group with higher values in the delta, theta,
beta ext. and gamma bands. The LIKE group showed significant
differences compared to the DISLIKE group with higher values in
the delta, theta, beta ext. and gamma bands.

In the pleasant index (PI) and II, there were no significant
differences in the comparison between the recalled and liked
groups.

HRV Response Comparison
Table 2 shows the comparison of means for HRV metrics for the
different factors chosen. In the case of the remembered ads, the
RMB group showed significant differences compared to the FRG
group, with higher values in the non-linear SD2 Poincaré index
(p_SD2) that reflect higher continuous beat-to-beat variability
(Piskorski and Guzik, 2007). The LIKE group showed significant
differences compared to the DISLIKE group with higher values
in the energy of the low frequency band (f_aLF_lomb) which
is associated with sympathetic activation (Task Force of the
European Society of Cardiology and The North American Society
of Pacing and Electrophysiology, 1996).

ET Response Comparison
Table 3 shows the comparison of means for eye-tracking
metrics for the different classic metrics and the two-new metrics

proposed. In the case of the recalled ads, the RMB group showed
significant differences vs. the FRG group, generating lower values
in (Visit_Dur_Br). The LIKE group did not show significant
differences compared to the DISLIKE group.

Hypothesis 1 is confirmed, as there are significant differences
in each signal (EEG, HRV and ET) between ads (i) recalled and
non-recalled (22% of comparisons) and (ii) liked and disliked
(16% of comparisons).

As regards H2, centered on the correlation of neurometrics
with the ACE score and the number of online views of the ads
on YouTube, 19 of the 25 metrics showed significant (p < 0.01)
correlation with the ACE score and 15 of the 25-metrics showed
significant correlation with the number of online views. In
EEG, the z-score in the delta band correlated with both indexes
and the z-score in the theta band correlated with the ACE
score. Both indexes, pleasantness and interest, showed high
values in terms of significant correlation with the ACE score.
In particular, there was a high level of correlation between
PI_theta and the number of visits. In terms of ET, the proposed
metric (Brand_ratio) showed significant correlations with both
indexes, PI and II. In addition, Quad_sec showed significant
correlation with the ACE_score. Visit duration and Fixation
count on the brand showed significant correlation with the
number of visits. Fixation duration showed a negative correlation
with the ACE score and the value of the correlations of the
Fixation count during the ad for both indexes was relevant.
Focusing on HRV, t_NN50 showed significant correlations with
both indexes. The total energy band; LF and HF bands, also
showed correlations with both indexes. The normalized values
of LF and HF and the sympathovagal index (LFHF) showed
significant correlations with the ACE score. Frequency with
the maximum peak on the HF band (peakHF) and the SD2
Poincaré index also showed significant correlations with the
number of visits. The type 1 non-linear parameter sample entropy
index (sampen1) showed significant correlations with both
indexes whilst sampen2 only correlated with number of visits.
Therefore, H2 is confirmed, showing significant correlations
between metrics for EEG, HRV and ET with ACE score and
number of visits on YouTube.

Predicting Ad Effectiveness on the
Internet with ANN
ANN to Rank Visit Classification

Two kinds of ANNs were compared with the same data: MLP and
RBF. In terms of accuracy when classifying data, MLP networks
worked better than RBF. After testing results and changing
several parameters in the MLP architecture, the final structure
chosen had one hidden layer with a tangent hyperbolic activation
function and an output layer with a softmax activation function.
All the co-variables were typified (see Appendix for more details).

Table 4 shows the final results for the classification of the
training and the test dataset using the neural network. The
percentage of correct predictions in the test dataset was 82.9%.
Three higher ranking levels (1M–5M, 5M–10M, and >10M)
showed high effectiveness ratios of classification (88.5, 100, and
90%, respectively). Only the first group (<1M) showed a poor
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FIGURE 3 | Results from brain response (EEG) comparing GFP results for 5 specific bands (∗values with significant differences p < 0.005; NP, non-parametric test

carried out).

effectiveness ratio of 36.4%, mistaking more than 54% of cases
for second level (1M–5M).

Of the 37 input variables used in neural networks, the
importance of each normalized metric to predict was extracted
from the neural network. This metric shows the most relevant
variables for classifying each case according to the correct
ranking. The pleasantness index extracted from the theta band
(PI_theta, 100%) was the most important parameter for brain
metrics, followed by II_theta (56.6%) and PI_ alpha (56.5%).
Regarding HRV metrics, the mean of HR (64.20%) was the most
representative parameter, followed by SD1 Poincaré (61.40%) and

t_RMSSD (58.30%). In terms of eye-tracking metrics, the fixation
count during the ads (59.30%) was the most important index,
followed by the average fixation count during brand appearance
(59.30%), and the average duration of fixations during brand
appearance (45.30%). Gender inclusion and whether the ad was
consciously remembered came last in the ranking with very little
importance. The proposed metrics from ET showed medium
importance (Ratio_Brand: 40.80% andQuad_sec: 40.20%).When
comparing the frequency brain bands, the theta band behaved
best, in the PI index (100%), II index (56.6%) and z-score
(37.50%).

TABLE 2 | Mean comparisons of HRV metrics in the time, frequency and non-linear domains.

RMB FRG UNLIKE LIKE

HRV Metrics Mean SD Mean SD p Mean SD Mean SD p

t_meanHR 71.9 12.3 70.6 8 69.6 8.8 71.1 7.8

t_sdHR 5.2 7.3 5.5 4.5 5.1 5.6 5.3 2.7

t_NN50 13.3 18.4 13.8 12.7 13 13.6 13.5 13.3

t_RMSSD 43.5 32.3 54.6 112.3 43.2 26 60.1 142.7

f_aLF_lomb 0.031 0.015 0.033 0.013 0.031 0.014 0.035 0.014 (∗NP)

f_aHF_lomb 0.027 0.020 0.027 0.017 0.029 0.021 0.026 0.017

f_aTotal_lomb 0.060 0.027 0.061 0.022 0.062 0.028 0.062 0.024

f_nLF_lomb 0.539 0.223 0.573 0.2 0.547 0.203 0.594 0.194

f_nHF_lomb 0.461 0.223 0.427 0.2 0.453 0.203 0.406 0.194

f_LFHF_lomb 2.022 2.156 2.121 2.057 1.786 1.545 2.412 2.412

f_peakLF_lomb 0.1 0.02 0.09 0.02 0.09 0.02 0.09 0.02

f_peakHF_lomb 0.27 0.07 0.26 0.07 0.26 0.07 0.25 0.07

p_SD1 30.7 22.8 32.8 21.4 30 18 32.9 19.8

p_SD2 66.1 28 77.6 36.7 (∗NP) 68.8 30.4 80.3 38

p_SD1vsSD2 0.497 0.382 0.441 0.192 0.462 0.224 0.423 0.154

nl_sampen1 2.175 0.227 2.141 0.243 2.179 0.25 2.143 0.217

nl_sampen2 1.803 0.486 4.19 0.532 (∗NP) 9.373 0.788 1.66 0.389

∗Values with significant differences p < 0.005; NP, non-parametric test.
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ANN for Estimating the Number of Online
Views
As described above, MLP and RBF were compared only in
terms of accuracy (time execution was extremely low in both
cases). MLP networks also worked better than RBF networks
in terms of accuracy when estimating the number of visits.
After testing results and changing several parameters in the MLP
architecture, the final structure chosen had one hidden layer with
a tangent hyperbolic activation function and an output layer
with an identity activation function. All the co-variables and the
dependent variable were typified.

For the final MLP structure, the first subset was used to train
the MLP and the estimated values of the number of visits were
obtained from the second subset to test the accuracy of the
network. Final results for the estimation of training and the test
dataset using an ANN. Relative error from the test dataset was
0.199, that is, a significant level of variance.

Of the 37 input variables used in the neural networks, the
pleasantness index extracted from the theta band (PI_Theta,
100%) was again the most relevant variable in the neural
network in predicting the number of views. Regarding brain

metrics, PI_theta was followed by PI_alpha (13.10%) and II_theta
(11.60%), though these were a long way behind. In HRV metrics,
sample entropy (53.70%) was the most important parameter,
followed by the total energy of frequency band (43.40%) and
t_RMSSD (41.70%). Regarding eye-tracking metrics, the count of
fixations during ads (44.30%) was the most important index, as
on the first occasion, followed by number of visits during brand
appearance (27%) and then followed very closely by the count
of fixations during brand appearance (26.60%). The inclusion of
gender in the model and whether the ad was consciously recalled
ranked last and do not improve prediction. The proposed new

metrics extracted from ET showed different results. Quad_sec

showed a medium-low importance (16%) and Ratio_Brand a low
importance (6.70%). Half the HRV metrics were in the upper
positions.

Figure 4 represents predicted vs. observed values as a
scatterplot for each case. Figure shows that neural network

classifier worked well in classifying real data regarding biometric

response, specifically observing the cluster of ads with higher

number of views vs. ads with poor audience. There was some

dispersion in all the ads in terms of real values.

TABLE 3 | Mean comparisons of ET metrics.

RMB FRG UNLIKE LIKE

Eye Tracking Metrics Mean SD Mean SD p Mean SD Mean SD p

Brand_ratio 0.36 0.25 0.32 0.25 0.37 0.26 0.31 0.24

Visit_Count_Br 6.7 2.42 6.65 2.33 7.29 2.53 6.32 2.38

Visit_Dur_Br 0.76 0.24 0.63 0.25 (∗NP) 0.75 0.23 0.62 0.38

FFix_Dur_Br 0.18 0.14 0.16 0.13 0.17 0.13 0.15 0.13

Fix_Dur_Br 0.18 0.12 0.17 0.11 0.18 0.15 0.17 0.12

Fix_Count_Br 28.23 28.97 23.73 22.87 33.76 37.48 21.98 19.29

Quad_sec 2.47 1.35 2.48 1.29 2.65 1.62 2.58 1.24

Fix_Dur_Advert 0.24 0.1 0.24 0.11 0.24 0.12 0.21 0.11

Fix_Count_Advert 273.32 120.34 281.8 200.12 340.73 180.73 270.83 165.43

∗Values with significant differences p < 0.005; NP, non-parametric test.

TABLE 4 | Results for the successful classification of training and test dataset applying an adjusted neural network.

Classification

Real rank order Predicted

<1M 1M–5M 5M–10M >10M % succ.

Training <1M 17 1 0 0 94.4%

1M–5M 0 60 0 0 100.0%

5M–10M 0 0 23 1 95.8%

>10M 0 0 0 67 100.0%

Overall percentage 10.1% 36.1% 13.6% 40.2% 98.8%

Test <1M 4 6 1 0 36.4%

1M–5M 2 23 0 1 88.5%

5M–10M 0 0 9 0 100.0%

>10M 0 0 3 27 90.0%

Overall percentage 7.9% 38.2% 17.1% 36.8% 82.9%

Number of cases in each possible class and percentage of successful cases.
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FIGURE 4 | Scatterplot showing predicted vs. observed-values for number of visits.

DISCUSSION

In this study, several hypotheses have been confirmed. The
first hypothesis was supported, showing significant differences
in physiological responses (EEG and HRV) and ET for each of
the three dimensions raised (i.e., recall, liking and visits). In
cases where participants remembered the ad after 2 h, results
showed higher probability that the spectral amplitude in the RMB
condition was always higher than the power spectra in the FRG
conditions (Astolfi et al., 2008). A statistical increase of PSD in
the prefrontal and parietal areas for the RMB dataset compared
with the FRG dataset was in line with the suggested role of
these regions during the transfer of sensory perceptions from
short-term memory to long-term memory storage. Specifically,
there were higher values in the theta band for the cases where the
ad was remembered, which is in line with other studies (Werkle-
Bergner et al., 2006; Boksem and Smidts, 2014; Vecchiato et al.,
2014). Regarding this condition, an interesting future analysis
should look at the biometric response differences between people
that remember the ad without remembering the brand or vice
versa.

In terms of the HRV analysis, the means of the sample entropy
parameters were significant, showing the higher complexity of
heart variability in cases where the ad was remembered. Valenza
et al. (2012), showed that Approximate Entropy, decreased
during arousal elicitation using images from International
Affective Picture Session (IAPS) but there are no studies until
now that have related HRV entropy with remember cognitive
function.

In ET, cases where ads were unrecalled showed longer
duration of visits to the brand when it appeared on screen.
Higher values for this metric are related to difficulty in identifying

an object (Goldberg et al., 2002; Wedel, 2013). This fact could
be explained by poor identification of the brand, which could
indicate that the ad will be forgotten in the short term.

Regarding cases where participants rated the ad positively
or negatively, brain activity was stronger in terms of PSD in
the LIKE group than in the DISLIKE group. These results are
congruent with another EEG studio based on the observation of
pictures from the international affective picture system (Aftanas
et al., 2004). In HRV, there were only significant differences in
energy in the LF frequency band associated with sympathetic
activation. In ET, no significant differences were found for the
proposed metrics.

The second hypothesis was supported showing significant
correlations between physiological and eye-tracking responses
with the ACE score and with the number of online visits.
All the indexes (pleasantness and interest) calculated showed
significant correlations. The pleasantness index in the theta band
presented an especially high correlation with the number of
visits and the ACE score. In ET, there were relevant correlations
with both metrics proposed in this work. Brand_ratio showed a
positive linear relation between the percentage of time watching
a brand and the number of views on the Internet. The number
of fixations for the brand showed a positive relation with the
number of views on the Internet. Regarding HRV, there was a
positive correlation with tNN50 for both outputs. All the energy
values in the frequency bands (total, LF and HF) were negatively
correlated with both outputs. The ACE score was positively
related to the normalized LF band associated with sympathetic
activation. Non-linear entropy parameters also showed a negative
correlation with both outputs revealing that an increase in the
complexity of the HRV signal is associated with less quality and
effectiveness of the ad on the Internet.
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Hypothesis three aimed to test whether ANN with relevant
biometrics could represent an interesting technique to classify
ads based on their ranking on the Internet and to estimate
the number of visits on the Internet. The results obtained
showed that the ANN were able to accurately classify and
estimate the effectiveness of each ad on the Internet via their
biometric response. The results for the first network, which
were adjusted to classify each ad based on a four-level ranking,
showed a global average accuracy of 82.9%. Poor accuracy was
obtained with ads with a lower number of views but this could
have been improved if more ads in this ranking had been
selected in the stimulus group. The relevant metrics for this
classification were the pleasantness index and II in the theta
band, the mean heart rate and the SD1 Poincare in HRV, the
number of fixations during the ad and inside the brand for
ET. Results for the second network to estimate the number
of views on the YouTube for each ad showed a relative error
of 0.199. The most important metrics for this estimate were
the pleasantness index in the theta band, entropy in HRV
and the number of fixations during advertising in ET. Despite
good results to estimate the number of views, it would seem
that classifying ads according to a ranking constitutes a better
approach, taking into account the excellent results obtained in
the first classifier.

Further research is needed, with more studies comparing
new techniques for classification, such as Linear Discriminant
Analysis, Marquardt Backpropagation Algorithm, and Deep
Learning. In addition, new metrics and new signals extracted
from biometric responses must be tested to find out which
parameters are best to evaluate the effectiveness of advertising.
The group of different categories of advertising must also
be increased. Future studies should also focus on adjusting
personalized classifiers to advertising categories (fashion, food,
social, etc.), different channels (e.g., Facebook) and formats
(desktop or mobile). Also, new metrics like facial gesture coding
(McDuff et al., 2015) and fNIRS (Kopton and Kenning, 2014)
could be mixed in new models for predicting Ad effectiveness.

CONCLUSION

This study has shown that aspects related to the impact of
advertising, such as whether the ad is going to be remembered
or whether it is going to be highly rated can be detected

from an analysis of consumers’ biometric responses during the
viewing of these ads. We also found differences in the impact
of advertising in terms of gender, which encourages the use of
these biometric data to design advertising content that is tailored
to each individual group of population. Other variables, such
as age, cultural level, and even personality could be explored in
future studies to test whether there are similar differences to the
ones found in gender. The final conclusion that this study has
yielded is that the effectiveness of a new ad on YouTube can be
predicted using metrics extracted from EEG, HRV and ET. Up
until now, there has been no evidence that biometric responses
can help to classify the numbers of views on YouTube for an
ad. This study has also contributed with two new metrics for
ET that can be used in research on advertising. These results
will help to explain the success of advertising responses showing
an interesting methodology to be use by practitioners designing
advertising content.
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