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1 Introduction

The choice of an optimal portfolio of assets is a classic problem in financial economics.
In a single-period setting the problem is well understood and analytical solutions
for optimal portfolio weights are available in important special cases. When mean-
variance analysis is appropriate, for example, optimal portfolio weights are known
functions of the first and second moments of asset returns.

In a multi-period setting the problem is far less tractable. Explicit solutions for
portfolio weights are available in the special cases where investment opportunities
are constant or the investor has log utility and hence acts myopically; but these
cases are tractable precisely because they reduce to the familiar single-period prob-
lem. Merton (1969, 1971) and Samuelson (1969), followed more recently by Cox and
Huang (1989), have shown that in general shifting investment opportunities can have
important effects on portfolio choice. They have characterized some properties of
optimal portfolios, but their work does not deliver analytical solutions for portfolio
weights as functions of state variables. Recently a few papers (Barberis 1996, Bren-
nan, Schwartz, and Lagnado 1995) have used discrete-state numerical methods to
find solutions for portfolio weights; but their results, while illuminating, depend on
the particular parameter values they assume.

This gap in the literature is particularly unfortunate because there is now con-
siderable evidence that the conditions under which the multi-period portfolio choice
problem reduces to the single-period problem do not hold. Many authors have found
evidence that expected asset returns vary through time so that investment opportu-
nities are not constant; the evidence for predictable variation in the equity premium,
the excess return on stock over Treasury bills, is particularly strong (see Campbell
1987, Campbell and Shiller 1988a,b, Fama and French 1988, 1989, Hodrick 1992, or
the textbook treatment in Campbell, Lo, and MacKinlay 1997, Chapter 7). Also, the
large literature on the equity premium puzzle finds that average excess stock returns
are too high to be consistent with a representative-investor model in which the investor
has log utility (see Campbell 1996b, Cecchetti, Lam, and Mark 1994, Cochrane and
Hansen 1992, Hansen and Jagannathan 1991, Kocherlakota 1996, Mehra and Prescott
1985, or the textbook treatment in Campbell, Lo, and MacKinlay 1997, Chapter 8).

In this paper we consider the canonical version of the multi-period portfolio choice
problem in which an infinitely-lived investor has Epstein-Zin-Weil utility (a general-
ization of power utility due to Epstein and Zin (1989) and Weil (1989)) and must
finance all consumption from the costlessly tradable assets in the portfolio. We work
in discrete time and assume that there are two assets: a riskless asset with a constant
return, and a risky asset whose expected return, the single state variable for the prob-



lem, follows a mean-reverting AR(1) process. The assumption that the riskless return
is constant simplifies our analysis and enables us to study the effects of time-variation
in the equity premium.

Our strategy is to find an approximation to the portfolio choice problem that
can be solved using the method of undetermined coefficients. We approximate the
Euler equations of the problem using second-order Taylor expansions, and we replace
the investor’s intertemporal budget constraint with an approximate constraint that
is linear in log consumption and quadratic in the portfolio weight on the risky asset.
This enables us to find approximate analytical solutions for consumption and the
portfclio weight. The portfolio weight solution is linear in the state variable, while
the solution for the log consumption-wealth ratio is quadratic in the state variable.

Our paper builds on the work of Campbell (1993). Campbell considers the simpler
problem where only one asset is available for investment and so the agent need only
choose consumption. He shows that this problem becomes tractable if one replaces
the intertemporal budget constraint by a loglinear approximate constraint. Ile uses
the solution in a representative-agent model to characterize the equilibrium prices of
other assets that are in zero net supply, in the spirit of Merton’s (1973) intertemporal
CAPM. Campbell (1996b) estimates the parameters of the model from US asset mar-
ket data, while Campbell and Koo (1997) evaluate the accuracy of the approximate
analytical solution by comparing it with a discrete-state numerical solution.

This paper is also related to recent work by Kim and Omberg (1996). Kim and
Omberg work in continuous time and study the choice between a riskless asset with
a constant return and a risky asset whose expected return follows a continuous-time
AR(1) (Ornstein-Uhlenbeck) process. They assume that a finite-lived investor has
HARA utility of terminal wealth, so their problem does not involve a choice of con-
sumption over time. Kim and Omberg find, without the use of any approximations,
that the optimal portfolio weight is linear and the value function is quadratic in the
state variable.

The organization of the paper is as follows. Section 2 states the problem we would
like to solve, while Section 3 explains our approximate solution method. Section 4
calibrates the model to postwar quarterly and long-run annual US stock market data,
and Section 5 concludes.
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2.1

Setup of the problem

Assumptions

We consider a partial-equilibrium problem in which:

(A1)

(A2)

Wealth consists of two tradable assets. Asset 1 is risky, with one-period log
(continuously compounded) return given by ry,,1; asset f is riskless, with con-
stant log return given by 7;. Therefore, the one-period return on wealth from
time t to time t + 1 is

Rp,H—l = (Rl,t+1 - ﬁf) + ﬁf, (1)

where R; 1 = exp{ri 1}, I_{f = exp {7}, and the portfolio weight «; is the
proportion of total wealth invested in the risky asset at time t.

The expected excess log return on the risky asset is state-dependent. There is
one state variable x;, such that

Elrl,H—l — -T_'f = Iy. (2)
The state variable follows an AR(1):

Tesr = p+ @ (20 — p) + Mg, (3)

where 7,,; is a conditionally homoskedastic gaussian martingale difference se-
quence, i.e., N1 ~ N (0, ag).

The unexpected log return on the risky asset, denoted by u.y,, is also condi-
tionally homoskedastic and correlated with innovations in the state variable,

Vart (ut+1) = (712“ (4)

Covy (uet1, Met1) = Oun, (5)



(A4) The investor’s preferences are described by the recursive utility proposed by
Epstein and Zin (1989) and Weil (1989):

1=y o
U(Ct,EtUHl):{(l—(S)Ct" +6 (BULY) } , (6)

where 6 < 1 is the discount factor, ¥ > 0 is the coefficient of relative risk
aversion, ¥ > 0 is the elasticity of intertemporal substitution and the parameter
6 is defined as @ = (1 —v) ,/ (1 —¢™1). It is easy to see that (6) reduces to
the standard time-separable, power utility function with relative risk aversion
v when 1) = 4~!; in this case § = 1 and the nonlinear recursion (6) becomes
linear.

(A5) The investor is infinitely-lived.

Assumptions (A1) and (A2) on the number of risky assets and state variables are
simplifying assumptions, which we adopt for expositional purposes. The approach of
this paper can be applied to a more general setting with multiple risky assets and
state variables, at the cost of greater complexity in the analytical solutions to the
problem. Assumption (A3) is also a simplification that can be relaxed in order to
study the effects of conditional heteroskedasticity on portfolio choice. Assumption
(A4) on preferences allows us to separate the effects on optimal consumption and
portfolio decisions of the investor’s attitude towards risk from the investor’s attitude
towards consumption smoothing over time. Finally, assumption (A5) allows us to
ignore the effects of a finite horizon on portfolio choice, but this assumption too can
be relaxed in future work.

2.2 Euler Equations

The individual chooses consumption and portfolio policies that maximize (6) subject
to the budget constraint

Wi = Bpen (W — G) (7)
where W, is total wealth at the beginning of time t and R, ;1; is the return on wealth

(1).

Epstein and Zin (1989, 1991) have shown that with this form for the budget
constraint, the optimal portfolio and consumption policies must satisfy the following
Euler equation for any asset i:

/]
Coii\"% 1
1=E {6< gl) } ,§1+19)Ri,t+1 : (8)
i
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When i = p, (8) reduces to:
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3 Approximate Solution Method

Our proposed solution method builds on the log-linear approximations to the Eu-
ler equation and the intertemporal budget constraint proposed by Campbell (1993,
1996b). By combining the approximations to these equations we can characterize the
properties of oy, the optimal allocation to the risky asset. We then guess a form for
the optimal consumption and portfolio policies, we show that policies of this form
satisfy the approximate Euler equation and budget constraint, and finally we show
that the parameters of the policies can be identified from the primitive parameters of
the model.

3.1 Log Euler Equations

The first step in our proposed solution method is to log-linearize the Euler equation
(9) to obtain

¥

where lowercase letters denote variables in logs and A is the first-difference operator.
This expression holds exactly if consumption growth and the return on wealth have
a joint conditional lognormal distribution. In our model the return on wealth is
conditionally lognormal, because the portfolio weight is known in advance and so the
return on wealth inherits the assumed lognormality of the return on the risky asset.
Consumption growth, however, is endogenous in our model and so we cannot assume
at the outset that it is conditionally lognormally distributed. In fact, our approximate
solution implies that consumption growth is not conditionally lognormal unless the
elasticity of intertemporal substitution, 1, is one or the expected return on the risky
asset is constant. When these conditions do not hold we must derive the log Euler
equation using both a second-order Taylor approximation around the conditional
mean of {r,;11, Aci41} and the approximation log(1 + z) = x for small z.
Reordering terms we obtain the well-known equilibrium linear relationship be-
tween expected log consumption growth and the expected log return on wealth:

EtACH_l = ’ll) logé -+ Up,t + ",/)Et'rp,t-{-la (10)

where the term v, is a time-varying intercept proportional to the conditional variance
of log consumption growth in relation to log portfolio returns:

1/6
Upt = E (E) Vart (ACn+1 - '(/)T'p’H_l) . (11)

0 1 0
0= 910g6 and —?ZEtACt—H + GEtT‘p,H_} + EV&I} (_ACC—H — GTP,H-I) s
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In a similar fashion we can loglinearize the Euler equation for a general asset, (8).
If we subtract the resulting loglinear Euler equation for the riskless asset from the
loglinear Euler equation for the risky asset we find:

1 0
Eirige — 75 + 501 = Eal,c,t +(1—-6)o1pe (12)
where 0, . = Covy (zt41 — ErZe41, 2e41 — Eeze41). Under assumption (A3) the con-
ditional variance of the risky asset return, o;;; = o2, but we avoid making this

substitution until we use (A3) to solve the model in section 3.4. Equation (12) is the
starting-point for our analysis of optimal portfolio choice.

3.2 Log-linear budget constraint

Following Campbell (1993, 1996b), we also log-linearize the budget constraint (7)
around the mean consumption-wealth ratio, and we obtain:

1
Ath N Tpt+1 + (]. — ;) (Ct — ’lUt,) + k, (13)

where £ = log(p) + (1 —p)log(l—p)/p, and p = 1 — exp{E (¢, — w¢)} is a log-
linearization parameter. Note that p is endogenous in that it depends on the average
log consumption-wealth ratio which is unknown until the model has been solved.

Campbell (1993) and Campbell and Koo (1997) have shown that the approxi-
mation (13) is exact when the consumption-wealth ratio is constant over time, and
becomes less accurate as the variability of the ratio increases. In our model the
consumption-wealth ratio is constant when the elasticity of intertemporal substitu-
tion is one or the expected risky asset return is constant; when these conditions do
not hold, the consumption-wealth ratio varies and we can only solve for it by using
the approximation (13). Hence to check the accuracy of the approximation we would
need to compare our solution with a numerical solution of the model.

The log-linearization (13) takes the return on the wealth portfolio as given, and
does not relate it to the returns on individual assets. We can push the approach
further by using an approximation to the log return on wealth:

1
TP,H-I = ¢ (7‘1,H.1 - Tf) +Ff -+ Eat (1 - at) T1,1,t- (14)

This approximation holds exactly in a continuous-time model with an infinitesimally
small trading interval, where Ito’s Lemma can be applied to equation (1).
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Combining (13) and (14) we get
_ _ 1 1
A’LUH_I ~ (v (Tl,H-l — 7'_{) + Tf + (1 — ;) (Ct - 'LUt) + k + §at (1 - O.’t) 01,1, (15)

which is linear in log returns and log consumption, and quadratic in the portfolio
weight ;.

3.3 Characterizing the optimal portfolio rule

The next step in our solution method is to characterize the optimal portfolio rule by
relating the current optimal portfolio choice to future optimal portfolio choices. This
will then allow us to guess a functional forri for the optimal portfolio policy and to
identify its parameters.

Our strategy is to characterize the covariance terms o, ., and oy, that appear in
the loglinear portfolio-choice Euler equation (12). We first note that, using the trivial
equality

Aciy1 = (Cr41 — Weg1) — (€ — wy) + Awyyy (16)

and the budget constraint (15), we can write 0y, as
Olet = Cov, (7‘1,t+1,ACt+1)

= Cove (71441, Cep1 — Weq1) + Vary (rie41)

= Olec—wt + 01,1t

where to obtain the second equality we use the fact that Cov,(z¢y1, 2t) = 0.
Similarly, equation (14) implies that

1
og1pe = Covy (rl,tﬂ, arie1 + (1 — o) Ty + Eat (1 — ) al,u)

= 01,1t

These expressions can be substituted into (12) to get

1
Eirie1 —mrep + EUI,I,t = E (O1,cowt + o11e) + (1 = 0) oy 1,
which can be rearranged, using the fact that § = (1 —«) / (1 —¢™1), to get
1Exr —Fs+ 30 1-— —w
a: A 22 f T 3911t Y Olec-wt (17)

Y O11t ‘/(T»Z’—l) 011, .



This equation was first derived by Restoy (1992). It has two terms, each one
capturing a different aspect of asset demand. The first term captures that part of
asset demand induced exclusively by the current risk premium, hence the adjective
“myopic” often used to describe it in the finance literature. The myopic component
of asset demand is directly proportional to the asset risk premium and inversely
proportional to the individual’s relative risk aversion. QOur expression for myopic
asset demand is the same as the standard solution in those few particular cases in
which an exact, closed-form solution for the optimal portfolio policy is known, i.e.,
when returns are unpredictable, so 01 ._: = 0, or preferences belong to the log-
utility class, so v = 1. In fact, (17) generalizes those results, since it says that the
only restriction on preferences we need to obtain optimality of the myopic portfolio
policy is a coefficient of relative risk aversion equal to unity.? Log utility is the special
case in which, besides v = 1, we also have ¢ = 1.

The second term is the “intertemporal hedging demand” of Merton (1969, 1971,
1973). It reflects the strategic behavior of the investor who wishes to hedge against fu-
ture adverse changes in investment opportunities, as summarized by the consumption-
wealth ratio.

Although equation (17) gives us meaningful information about the nature of the
investor’s demand for the risky asset, it is not a complete solution of the model,
because the current optimal portfolio allocation in (17) is a function of future portfolio
and consumption decisions, which are endogenous to the problem.

The dependence of today’s portfolio allocation on future portfolio and consump-
tion choices operates through the conditional covariance ;... To see this, note
that the the log consumption-wealth ratio can be written, up to a constant, as the
discounted present value (with discount factor p) of the difference between expected
future log returns on wealth and consumption growth rates (Campbell, 1993):

o0

. pk

Cerr = Wisr = Een1 D 07 (rpesieg = Deryryg) + 1-p
Jj=1

This equation follows from combining the log-linear budget constraint (13) with (16),
solving forward the resulting difference equation, and taking expectations. If we

substitute the expression for expected consumption growth (10) into this equation we
obtain:

cry1 — Wi = (1 —Y) By ijrp,t+1+j —En Z pjvp.t—i-j + Tpp (k —logd). (18)
j=1 i=1

2See Giovannini and Weil (1989) for a clear statement of this result.
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Hence, 0} c_w, becomes

Ole—wt — Cov, (Tl,t+1 - Etrl,t+1, (1 - ’4/)) (Et+1 - Et) Z Pij,t+1+j)

i=1

oo
—Cov; (7“1 t+1 = Eer1 o1, (Beer — E) Zp”’p,tﬂ')

1/(6

= (1=9¥) o1 — 5 (E) O1,h2,t (19)

which depends on the individual’s future portfolio and consumption decisions. The
second equality in (19) simplifies the notation in the first equality.

Equation (19) gives us a further decomposition of the hedging component of risky
asset demand, since we can now write (17) as:

— 1 2
o 1B =Tr+30110 1 —young N 1 (1 - ’Y) T1h2,t (20)

af =
t 0 01,1t Y Oi1g 27 1/} -1

This equation says that the hedging component of the total risky asset demand has
two terms. The first term arises from the covariance between unexpected stock re-
turns and changes in expectations of future investment opportunities, oy s+, and it is
influenced only by the agent’s attitude towards risk. Depending on the magnitude of
the agent’s relative risk aversion, a positive covariance o 4+ may increase or decrease
her portfolio holdings of the risky asset, relative to her position when she acts myopi-
cally. The second term arises from the covariance between unexpected stock returns
and changes in expectations of the conditional variance of log consumption growth
less 9 times the log wealth return, oy 42,, and it is influenced by the agent’s attitude
towards both risk and intertemporal substitution. The influence of preference param-
eters is non-linear in both terms. Of course, in our setting o3 41, and g1 42, are both
endogenous so (20) still falls short of a complete solution to the model.

011

3.4 Guessing the optimal consumption and portfolio policies

The final step in solving the dynamic optimization problem is to guess a functional
form for the optimal consumption and portfolio policies and to identify the parameters
of these policies. We guess that the optimal portfolio weight on the risky asset is linear
in the state variable, and that the optimal log consumption-wealth ratio is quadratic

10



in the state variable. Hence, we guess that:

(i) Qpy; = Qg+ 01Ty j

e 2
( 11 ) Ctyj — Wit; = b(] + b1$t+j + b2mt+j ,

where {ag, ay, bo, b1, b2} are fixed parameters to be determined.

Under assumptions (A1)-(A5) we can show that guesses (i)-(ii) are indeed a so-
lution to the intertemporal optimization problem of the recursive-utility-maximizing
investor, and we can solve for the unknown parameters {ag, a1, by, b1, bo}. Details are
provided in Appendices A and B; here we give a brief intuitive explanation of the
solution.

The linear portfolio rule (i) has the simplest form consistent with time-variation
in the investor’s portfolio decisions. This portfolio rule implies that the expected
return on the portfolio is quadratic in the state variable z;, because an increase in
x; increases the expected portfolio return both directly by increasing the expected
return on existing risky-asset holdings and indirectly by increasing the investor’s
allocation to the risky asset. Since the log consumption-wealth ratio is linearly related
to the expected portfolio return (see equation (18)), it is natural to guess that the
log consumption-wealth ratio is quadratic in the state variable z;.

Of course, variances and covariances of consumption growth and asset returns also
affect the optimal consumption and portfolio decisions. But the homoskedastic linear
AR(1) process for z; implies that all relevant variances and covariances are cither
linear or quadratic in the current state variable, and thus second-moment effects do
not change the linear-quadratic form of the solution. Appendix A states seven lemmas
that express important expectations, variances, and covariances as linear or quadratic
functions of the state variable.

We now state two propositions that enable us to solve for the unknown coefficients
of the model. The propositions are proved in Appendix B, using the lemmas from
Appendix A.

Proposition 1 The parameters defining the linear portfolio policy (i) satisfy the fol-
lowing two-equation system:

= i _ 1_7 % _ 1""7 % B
ao_(27) b1(7(¢—1>03) bz(v(w—maa wit ¢)>’

1
“T\e2)
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Proof. See Appendix B.

By inspection of the system above we see that, were the terms involving {b, b,}
zero, we would obtain the following optimal portfolio rule:

1 1

a, = — + 21)
2y yol (

Ly = a;,myopic
That is, we would obtain the myopic component of (20) for the optimal portfolio rule.
Therefore, those terms involving {b), b2} give the hedging component of the demand
for the risky asset. The sign and magnitude of the hedging component depend on the
sign and magnitude of {b;, by}, which govern the sensitivity of consumption to changes
in the state variable, as well as on o,, /02 and (1 — v) /v (¢ — 1). It is interesting to
note that this last factor equals one when the investor has power utility, so in this
case preference parameters influence hedging demand only through {b;,b,}. When
the expected excess gross return is zero, so x; = —o2/2, we have o} ., pc = 0, and
the demand for the risky asset is entirely hedging demand. We discuss the effects
of the parameters on portfolio selection in more detail in our calibration exercise in
Section 4.

Lemmas 6 and 7, in Appendix A, and Proposition 1 imply a non-linear equation
system for the unknown parameters governing the optimal consumption rule.

Proposition 2 The parameters defining the consumption policy (ii), {bo, b1, be}, are
gwen by the solution to the following recursive non-linear Fundamental Equation
System:

0 = Ao + A11bo + Ap2by + Awa + Aqaby + Alsbg + Agbibo,
0 = Agg + Ag1by + Aggby + Agzba + Azgbybo,
0 = A30 + A31b2 + Aggbg,

where {A;;;1=1,2,3,7=1,...,6} are known constants given in Appendiz B.

Proof. See Appendix B.

The Fundamental Equation System can be solved recursively. The last equation
of the system is a quadratic equation whose only unknown is be. It has two possible
roots. We show in the next section that one of these roots implies a portfolio weight
on the risky asset that is monotonically increasing in z;; we use this root in our
analysis. Once we have solved for by, the second equation in the system becomes a

12



linear equation in b;. Finally, given {by, b}, the first equation of the system is also
linear in by. Using the known values of {by, b1, b2} in Proposition 1, we can find
{ag,a;} and complete the solution of the problem.

3.5 Properties of the solution

Propositions 1 and 2 completely identify the parameters of the optimal policies. They
also imply some general properties of the solution that we state below and prove in
Appendix C.

Property 1 When v > 1, the roots of the third equation of the Fundamental Fqua-
tion System, defining by, are always real and have opposite sign. Moreover,
by — 0 as v — oo. If we select the positive root of the discriminant in the
third equation of the Fundamental Equation System, by is negative if ¢ > 1 and
positive if ¥ < 1, while if we select the negative root, by is negative if ¥ < 1
and positive if 1 > 1.

When v < 1, the roots of the equation are real if the following condition holds:

2
oot g) etion (9 s -t 20 e

Provided this condition holds, the roots always have the same sign. They are
positive if 1 < 1 and negative if 1 > 1.

When v = 0, the discriminant of the equation is zero, so by is always real and
equals (v —1)/2¢0,,.

Property 1 tells us when our guessed solution of the approximate model is valid.
Real solutions for the parameters can be substituted into the objective function to
obtain the value function for the approximate infinite-horizon maximization problem
as a quadratic function of the state variable. Thus Property 1 tells us when the value
function is finite, that is, it tells us when our approximate problem is well defined. It
is the equivalent in our approximate, discrete-time model with time-varying expected
returns of the conditions given in Merton (1971) and Svensson (1989) for finite value
functions in continuous-time models with constant expected returns.

Property 2 The slope of the optimal portfolio rule—the coefficient a,—is always
positive when we select the positive root of the discriminant in the third equation
of the Fundamental Equation System. Also, lim,_,ca; = 0 and lim,_,oa, =
+00, regardless of which root we choose.

13



Property 2 generalizes a known comparative-statics result for an investor with
power utility facing constant expected returns in a continuous-time model. In that
setting the allocation to the risky asset is constant over time and it increases with
the expected excess return on the risky asset. In static models with general utility
functions, however, it is possible for the allocation to the risky asset to decline with
the expected excess return on the risky asset, because the income effect of an increase
in the risk premium can overcome the substitution effect. Property 2 shows that
this does not happen in our dynamic model when we pick the positive root of the
discriminant in the quadratic equation for b;. With that root the coefficient a, is
always positive and increases from zero when + is infinitely large to infinitely large
values as y approaches zero. All the results in our calibration exercise are based on
this choice for the root.

Property 3 The optimal portfolio rule does not depend on 1 for given p.

This property shows that the main preference parameter determining portfolio
choice is the coefficient of relative risk aversion v and not the elasticity of intertempo-
ral substitution . Conditioning on p, ¢ has no effect on portfolio choice. However, p
itself is a function of yy—recall that p = 1—exp { E [¢; — w,]}—so0 the optimal portfolio
rule depends on % indirectly through p. Our calibration results in the next section
show that this indirect effect is rather small.

Property 4 Ja,/0u =0 and 0by/Ou = 0. That is, neither the slope of the portfolio
policy nor the curvature of the consumption policy depend on u for given p.

Property 4 shows that some aspects of the optimal policy—the sensitivity of the
risky asset allocation to the state variable and the quadratic sensitivity of consumption
to the state variable—are independent of the average level of the excess return on the
risky asset. Of course, other aspects—the average allocation to the risky asset, the
average consumption-wealth ratio, and the linear sensitivity of consumption to the
state variable—do depend on the average risk premium.

3.6 Some special cases

Having characterized the general solution to the problem, we now consider some spe-
cial cases. When a closed-form solution has been already obtained using alternative
methods, we show that our solution method delivers exactly the same solution.
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3.6.1 Log Utility

In this case v = 9 = 1 . Taking limits as v approaches one, Lemma 6 in Appendix A
implies that vg = v; = v = 0, 50 vp; = 0. Also, from Lemmas 8 and 9, the covariance
terms in (19) are both zero, so 0y c—¢ = 0. Substituting v,; = 0 and ¥ = 1 in (18),
we obtain

Ct+1 — W1 =

P
l—p(k log 8) .

After substituting for the value of k, this result simplifies to

i1 — Wiey1 = log (1 — p). (23)

Moreover, we know from standard arguments that p = 6.

We can also obtain this result by solving the Fundamental Equation System in
the limit as ) approaches 1. In this case, the system delivers b; = by = 0 and by equal
to the expression above. Following Giovannini and Weil (1989), we call this optimally
constant propensity to consume out of wealth a myopic consumption policy.

Substituting log-utility values of v, b/ (1 — ), and bs/ (1 — 1) into Proposition
1, we see that

ap =

3

N =

1

a = -O'—E,

so the optimal portfolio policy is the myopic portfolio policy (21) with v = 1. The
intercept term in (21) is a Jensen’s inequality effect. We can see this by rewriting the
optimal portfolio rule as

. _ ot (04/2)

At myopic = T

and noting that the expected excess gross return is equal to

2
E; l%} = exp {a:t + %}

Hence, when z; = — 02/2, which is the value of the expected log excess return
consistent with a zero gross excess return, we have af = 0. Also, if the expected
return on the risky asset is constant, then «; is constant. In general, when the log
excess return is time-varying, the portfolio weight on the risky asset is proportional
to the expected excess return next period, and inversely proportional to the variance

15



of the unexpected return on the risky asset. It is positive whenever there is a positive
expected excess gross return—z; > — a;‘: /2.

Finally, we note that the optimal portfolio policy for the log-utility investor maxi-
mizes the conditional expectation of the log return on wealth, (14). All other policies
result in lower expected log portfolio returns.

3.6.2 Unit Elasticity of Intertemporal Substitution

When 7 is equal to one, we have shown above that the Fundamental Equation System
implies b; = b, = 0, s0 ¢;;1 — w41 = by and the myopic consumption policy (23)
obtains. Therefore, it is optimal for the individual to consume each period a fixed
fraction of her wealth.

However, the agent’s optimal portfolio policy is not myopic. This is because, from
equation (45) in the proof of Property 3 in Appendix C, we have that b,/ (¢ — 1)
and b;/ (¢ — 1) are non-zero constants independent of v for given p. Therefore, when
1) = 1 the terms in {b1,bo} in the system defining the optimal portfolio policy in
Proposition 1 do not vanish, and a non-myopic portfolio policy obtains.

This can also be understood in another way. Setting ¢ = 1 and noting from
(45) that b2/ (v» — 1) — 0 and byby/ (¥ ~ 1) — 0 as ¥y — 1, Lemma 6 in Appendix
A implies vg = v; = vy = 0, so the intercept v,, in the log Euler equation (10) is
constant and equal to zero. The covariance terms in Lemmas 8 and 9 are zero too, so
from (19) 01 c—w¢ = 0. However 0y ¢ ¢ = 0 does not imply a myopic portfolio policy
in this case, because from (17) in order to have a myopic portfolio policy we need

1- Y Ol,c—w,t _
7(1/) - 1) 11t ’

and it turns out that o, ./ (¢ — 1)does not approach zero as ¥y — 1. Giovannini
and Weil (1989) emphasize this result.

3.6.3 Unit Relative Risk Aversion

When v is equal to one, Lemma 6 in Appendix A implies that vg = v; = v, = 0 so
the intercept term v, in the Euler Equation (10) is zero. We also see this by noticing
that v = 1 implies # = 0. From Proposition 1 we obtain the same myopic portfolio
rule as with log utility. This rule is again the rule that maximizes the conditional
expectation of the log portfolio return. However, the consumption-wealth ratio is no
longer constant unless 1 = 1, as we can see from Lemma 7 in Appendix A. Therefore,
unit relative risk aversion implies a myopic optimal portfolio policy and a non-myopic
optimal consumption policy. Giovannini and Weil (1989) emphasize this result.
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3.6.4 Constant Expected Returns

With constant expected returns, z; = p Vi, so or,% = 0p = 0 and ¢ = 0. From
Lemma 6 in Appendix A we obtain the same portfolio policy as in the log utility
case, except that v # 1:

1
ap = —,
0 3

1
ay = .
o3,

This is the well-known result for the optimal portfolio rule when returns are i.i.d.
Since z; is constant, from (ii) and Lemma 6 we see that both v,; and ¢, — w, are
trivially constant.

3.6.5 Zero Covariance between Expected and Unexpected Returns

Another interesting case arises when the covariance between unexpected returns on
the risky asset and the innovations in the state variable is zero, i.e. g4, = 0. In this
case Proposition 1 delivers again a myopic optimal portfolio rule, as in the previous
example. We can also see this result by noting that the covariance terms in Lemmas
8 and 9 in Appendix A are both zero, and so (19) implies that ¢y ., = 0. However,
from Lemmas 6 and 7, v, and ¢, — w; are not constant, so {bo, b1, by} are obtained
as the solution to the Fundamental Equation System, where the A,; parameters are
modified tc take into account that o,,, = 0. Similarly {vo,v:,v2} are obtained from
Lemma 6 after substituting in the optimal values of {ag, a1, b, b1, b2}

3.6.6 Non-Persistence in Stock Returns

When ¢ = 0 expected returns over the next period are time-varying, but expected
returns in the more distant future are constant. In this case, Proposition 1 implies the
same portfolio slope coefficient a; as in the constant-expected-returns case. However,
ap and the optimal consumption policy are not the same as in that case.
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4 Calibration exercise

4.1 The data

An important advantage of our approach is that we can calibrate our model using
real data on asset returns. To illustrate this, we use US financial data at a quarterly
and annual frequency. In our calibration exercise, the risky asset is the US stock
market, and the riskfree asset is a short-term debt instrument. The sample period
for quarterly data is 1947.1 - 1995.4. To measure stock returns and dividends we use
quarterly returns, dividends and prices on the CRSP value-weighted market portfolio
inclusive of the NYSE, AMEX, and NASDAQ markets. The short-term nominal
interest rate is the 3-month Treasury bill yield from the Riskfree File on the CRSP
Bond tape. To compute the real log riskfree rate, the beginning-of-quarter nominal
log yield is deflated by the end-of-quarter log rate of change in the Consumer Price
Index from the Ibbotson files on the CRSP tape. Log excess returns are computed as
the end-of-quarter nominal log stock return minus the beginning-of-quarter log yield
on the riskfree asset. The annual data set is an updated version of the Campbell-
Shiller data set on the US stock market, standard in the asset pricing literature. It
contains data from 1872 to 1993 on total returns and dividends on the S&P Index,
a riskfree rate based on rolling 6-month commercial paper, and the Producer Price
Index. Since data on consumption are available only from 1890, we use the sample
1890-1993 in our calibration exercise. A full description of this annual data set can
be found in the Data Appendix to Campbell (1996a).

The state variable is taken to be the log dividend-price ratio—for quarterly data
it i1s measured as the log of the total dividend on the market portfolio over the last
four quarters divided by the end-of-period stock price. Campbell and Shiller (1988a),
Fama and French (1988), Hodrick (1992} and others have found this variable to be a
good predictor of stock returns. We estimate the following restricted VAR(1) model:

Tit+l — Tf o 0 €141
= + di ~ pi) + : 24
( diy1 — Peia ) ( Bo ) ( o) ) ( ' pt) ( €2.t+1 ) ( )
where (€1¢41, €2¢41) ~ N (0,12), and report the maximum likelihood estimation results
in Table 1. Since (24) is equivalent to a multivariate regression model with the same
explanatory variables in all equations, ML estimation is identical to OLS regression
equation by equation. The standard errors for the slopes, intercepts and the residual

variance-covariance matrix are based on Proposition 11.2 in Hamilton (1994); using
these standard errors, which assume that the variables in the model are stationary, the
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slopes and the elements.of the variance-covariance matrix all appear to be statistically
different from zero.

Since 31 is high in both data sets, a unit-root test is in order. The Dickey-Fuller
unit-root test for the slope of the second equation does not reject the null Hy : 3; = 1
at a 10% significance level when applied to the quarterly data set, while it rejects it
at the 2.5% level when applied to the annual data set. There are theoretical reasons
to believe that the log dividend-price ratio should be stationary (since it will be
stationary if real interest rates, excess stock returns, and real dividend growth rates
are stationary), but the failure to reject the unit-root null hypothesis suggests that
there is at least a near-unit root in this variable in postwar quarterly data.

Elliott and Stock (1992) have shown that the test Hy : ; = 0 is not independent
of the test Hy : 31 = 1 when Corr(ey ¢41,€2441) # 0. In that case, they have shown
that the t-ratio that tests Hy : 6; = 0 is asymptotically normally distributed when
B < 1, while it has an asymptotic non-standard distribution (see equation (2.5) in
Elliott and Stock, 1992) when 3; = 1 or §; = 1 — ¢/T —where c is an arbitrarily
small positive constant and T is the sample size—that is, when the log dividend-price
ratio follows a unit-root or near-unit-root process.

In our data sets, Corr(e; 411, €2,41) is estimated to be about —0.7, so the presence
of a unit root can affect the distribution of the test statistic for Hy : 6; = 0. Since
we have rejected a unit root in the log dividend-yield process in the annual data set,
the t-statistic that tests Hy : 6, = 0 is asymptotically normal in that data set and its
value of 2.803 enables us to reject that 8, is zero. In the quarterly data set we cannot
reject that the log dividend-yield process follows a unit root process, which implies
that the t-statistic for testing Hy : #; = 0 has a non-standard distribution. The value
of the t-statistic is 2.130. This value may not be large enough to reject Hy : §; = 0 at
the 5% significance level under the alternative non-standard asymptotic distribution,
because this distribution has critical values larger than those of the standard normal
when Corr(€ 441,€2441) 18 negative}. We do not pursue this issue further here, and
proceed to calculate standard errors under the assumption that the estimated system
is stationary, but we note that the standard errors for the postwar data should be
treated with some caution.

The parameters in (3), (4), and (5) that define the stochastic structure of our

3When Corr(ey ¢+1,€2¢41) = —1 and B; = 1, the negative of the t-ratio has a Dickey-Fuller
distribution. When 0 < |Corr (€4 ¢+1,€2,.¢+1)] < 1 and f1 = 1, the t-ratio is a linear combination
of the Dickey-Fuller distribution—with coefficient equal to Corr(€y ¢41,€2,¢+1)—and the standard
Gaussian distribution, so the critical values are closer to those of the Dickey-Fuller distribution the
closer is Corr(€1,¢41,€2,041) to —1.
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model can be recovered from the VAR system (24) as follows:

Bo
p o= bp+6; -4 (25)
¢ = b (26)
0,2, 62 Var (€2,441) (27)
o2 = Var(e41) (28)
o = 01Cov (1,441, €2041) (29)

Table 1 reports these implied parameters in the quarterly and annual data, along with
standard errors computed using the delta method. All of the derived parameters are
statistically different from zero. The table also reports the mean log real riskfree rate
of interest.

The implied annualized unconditional expected log excess return p is 5.37% (four
times 1.343) in the quarterly post-war period while it is 4.17% in the annual data
for the period 1890-1993. On the other hand, the mean log real riskfree rate in the
post-war quarterly period is a meager .28% (in annual terms) as compared to the
1.99% average for the annual 1890-1993 period. The higher equity premium in the
post-war period reflects the lower short-term real interest rates in the post-WWII
era relative to the previous period. These numbers are similar to those reported in
Campbell (1996a) and Siegel (1994).

4.2 The benchmark case

Using the parameter estimates in Table 1, we compute the individual’s optimal port-
folio allocation and consumption-wealth ratic for a range of values of relative risk
aversion and elasticity of intertemporal substitution. We set §, the time discount
parameter under time-additive utility, to .94 in annual terms. This is equivalent to
a 6.2% log time discount rate in annual terms. We call the optimal portfolio and
consumption policies based on these parameters the “benchmark case”.

4Campbell’s Table 2 reports a higher post-war quarterly log real rate, because it is based on
quarterly averages of real log yields on a portfolio of 30-day bills, while ours uses the log yield on
the bill with maturity closest to 90 days. Campbell’s (1996a) risk-free rate is based on the Treasury
bill rates in the SBBI File of the CRSP-Indices tape, while our 90-day riskfree rate is taken from
Fama's Riskfree File in the CRSP-Bond tape. The former is based on the yield of a portfolio of
Treasury bills with maturity closest to 30 days, and then continuously compounded to 90-day rates,
while the latter is based on the yield of the single issue with lowest default risk and maturity closest
to 90 days. See CRSP manuals (1996) for more detailed information about the data.
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We consider relative risk aversion coefficients v = {.75, 1, 1.50, 2, 4, 10, 20, 40},
and elasticity of intertemporal substitution coefficients ¢ = {1/.75, 1, 1/1.50, 1/2,
1/4, 1/10, 1/20, 1/40}. The literature on the equity premium puzzle has shown
that high levels of risk aversion are needed to reconcile aggregate consumption data
with asset market data in the standard power-utility framework; here we are able
to compare the portfolio allocations and consumption rules implied by low and high
risk aversion coefficients. We consider low elasticities of intertemporal substitution,
both because we want to include the power-utility cases in which the elasticity of
intertemporal substitution is the reciprocal of risk aversion, and because low elastic-
ities of intertemporal substitution seem to be required to explain the insensitivity of
consumption growth to real interest rates in postwar US data (Hall 1988, Campbell
and Mankiw 1989).

The calibration of the model also requires us to set a value for p, the log-linearization
parameter in the budget constraint. However, this value is exogenous only when
¥ = 1. In this case the optimal consumption policy is myopic and p = §. In all other
cases, p is endogenous because it is a monotonic function of the endogenous optimal
expected log consumption-wealth ratio — p = 1 —exp {E (¢; — wy)}. For given values
of 1 and v, we use a recursion to compute p jointly with {ag, a1, by, b1, b2}. We first
set p = 6 and then find the optimal values of {ao,as, by, by, b2} given this value of p.
For these optimal values we then compute F (¢; — w;) and a new value of p, for which
a new set of optimal policies is computed. We proceed with this recursion until the
absolute value of the difference between two consecutive values of p is less than 107,

Tables 2 to 9 and Figures 1 to 6 report the results of this exercise. To make
it easier to interpret our results, we have normalized the parameters defining the
optimal portfolio and consumption policies (i) and (ii), so that the intercepts of
the optimal policy functions are the optimal allocation to stocks and the optimal
consumption-wealth ratio when the expected gross excess return, E, [RUH /Ff}, is
zero. The expected gross excess return is zero when the expected log excess return
x; is equal to —o2/2. Therefore, the parameters reported in the tables are ag, a;, b,
b} and b in

0,2
oy = aa + a, (IL‘t + “22) (30)
and
o? o2\*
ct—w¢=b3+b’1' (x¢+?">+bz (-rt'*'_zi) ) (31)

where a} = ap — a, (02/2), by = by — by (02/2) + by (02/4), b} = by — b2, and a; and
by are not starred because they coincide with the original parameters.
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Each table contains two panels. Panel A is based on the postwar quarterly return
process estimated in Panel A of Table 1. Panel B is based on the long-run annual
return process estimated in Panel B of Table 1. The main diagonal of each panel
corresponds to standard power-utility preferences, since the elasticity of intertemporal
substitution is the reciprocal of risk aversion along the main diagonal.

The parameters given in the tables summarize the optimal decisions of a recursive-
utility individual who observes the true process for returns. Since we do not observe
the true process but must estimate it, we also report standard errors for these pa-
rameters, calculated using the delta method. The delta method requires the compu-
tation of derivatives of the parameters of interest (for example, a;) with respect to
{60, 01, Bo, B1,2}. Since no analytical formulae are available, we use two-sided numer-
ical derivatives based on a proportional perturbation parameter equal to 10~*. These
standard errors are reported in the lower part of each panel.

4.3 The optimal portfolio rule

Tables 2 to 5 and Figure 1 summarize the optimal portfolio decision. Table 2 reports
ay, the optimal allocation to stocks when the expected gross excess return is zero,
while Table 3 reports a;, the slope of the optimal portfolio policy ;. Table 4 reports
the mean total demand for stocks as a fraction of wealth, while Table 5 reports the
mean hedging demand for stocks as a fraction of the mean total demand for stocks.

Figure 1, which is divided into four panels, illustrates the portfolio rule o using
the parameter values estimated from the annual data set. Figure la fixes v at 1/0.75
and plots a} for a wide range of v values; Figure 1b repeats this exercise fixing 7 at
1/4. Figures 1c and 1d, on the other hand, fix v at 0.75 and 4, respectively, and plot
a; for a wide range of ¢ values. In all these figures we consider values of x; in the
interval ( — 202, + 202), and the horizontal axis is the log of the expected gross
excess return, i.e., log E; [Rl,p,l/ﬁf] = 1, +02/2. All figures are based on parameter
estimates from the annual data set. The right vertical line intersects the horizontal
axis at log E[Rl’t+1/ﬁf] = pu+02/2+ad%)2.

The most striking lesson from the tables, and from Figure 1, is that relative risk
aversion is far more important than the elasticity of intertemporal substitution in
determining the optimal portfolio allocation to stocks. The variation in parameters
across rows of the tables, as vy changes, is far greater than the variation across columns,
as 1 changes. Similarly, the o} lines in Figures lc and 1d are all close together,
whereas those in Figures la and 1b vary widely in both slope and intercept. This
result can be understood by recalling Property 3 of our solution, i.e., that o} depends
on 1 only through the dependence of p on . Our calibration results show that this
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indirect effect through p is rather small.

Table 2 shows that the intercept of of, af, is negative when v < 1, while it is
positive when v > 1. It is zero when v = 1, as we already know from the analysis of
the special case with unit relative risk aversion. These results hold regardless of the
value of 1.> To understand this behavior, recall that a}, is the optimal allocation to
stocks when the excess gross return is zero. Since (21) implies that the myopic demand
for stocks is zero at this level of the expected excess gross return, aj is completely
determined by hedging demand. Thus with our return-generating process the investor
has positive hedging demand when she is more risk averse than a logarithmic investor,
and negative hedging demand when she is less risk-averse than a logarithmic investor.®

This result can be explained in intuitive terms as follows. We have estimated a
return-generating process which has a negative sign for o,,, the covariance between
unexpected stock returns and revisions in expected future stock returns. This implies
that stocks tend to have high returns when expected future returns fall, that is, when
the investment opportunity set deteriorates. There are offsetting considerations that
determine an investor’s attitudes towards such assets. On the one hand an investor
with low risk aversion (v < 1) will want to hold assets that deliver wealth when wealth
is most productive, that is, when investment opportunities are good. The negative
covariance o,, will give this investor a negative hedging demand. On the other hand
an investor with high risk aversion (y > 1) will want to hold assets that deliver wealth
in unfavorable states of the world, that is, when investment opportunities are poor.
The negative covariance o, will give this investor a positive hedging demand.” Inter-
estingly, the hedging demand is not monotonic in risk aversion because an extremely
risk-averse investor will limit her exposure to the risky asset in all states of the world;
thus the coefficient af, first rises and then falls with risk aversion.

The sign of hedging demand is sensitive to the average level of excess stock re-
turns, . We have estimated u to be positive and quite large; hence the investor
normally has a long position in stocks and a decrease in the expected stock return
represents a deterioration in investment opportunities. If x4 were negative, however,

5The lower part of panel A shows that a} is significantly different from zero in the quarterly
model. In the annual model we cannot reject the hypothesis that aj = 0 in most cases.

6Kim and Omberg (1996) describe the case of negative hedging demand as positive “speculative”
demand for the risky asset, since the individual is “speculating” rather than “hedging” against
changes in the opportunity set.

"Campbell (1993, 1996b) makes a similar point in the context of a model with an exogenons
portfolio return process. He points out that for a given level of risk aversion greater than one, the
equilibrium equity premium will be lower when stocks have a negative covariance o,,. Kim and
Omberg (1996) derive a related result in their model with HARA preferences over terminal wealth;
they show that the sign of aj is the same as the sign of (1 — ¥) oyu.
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the investor would normally have a short position in stocks. In this case a decrease
in the expected stock return would represent an improvement in investment opportu-
nities and the sign of hedging demand would reverse. An investor with v < 1 would
have a positive hedging demand for stocks (equivalently, a negative hedging demand
for the risky portfolio with a short position in stocks) while an investor with v > 1
would have a negative hedging demand for stocks (a positive hedging demand for the
short position).

Table 3 shows that the coefficient a;, the slope of the af function, is positive for
all levels of v and 1 as implied by Property 2 of our solution. Like the intercept ag,
the slope a; varies substantially across -y for a given level of 1, but changes very little
across 1 for a given level of v. As + increases, a; rapidly approaches zero, indicating
that the optimal portfolio rule is very responsive to changes in expected excess returns
when the individual is close to risk neutral but is almost flat when the individual is
highly risk averse. This finding is also implied by Property 2 of our solution. The
standard errors in tihe lower part of each panel show that a; is much more precisely
estimated than the intercept of the optimal portfolio rule. One reason for this greater
precision is that, as we showed in Property 4, the slope of the portfolio rule is not
sensitive to the mean excess stock return u whereas the intercept does depend on p.

Table 4 reports the mean optimal allocation to stocks as a percentage of total
wealth. The mean allocation is positive at all levels of v and 1. Both the quarterly
and annual models imply that, on average, a recursive-utility individual with low or
moderate levels of risk aversion will short the riskless asset in order to hold more
than 100% of her wealth in the risky asset. Large levels of relative risk aversion are
needed to keep mean stock demand below 100%; this is a manifestation of the equity
premium puzzle in our model with exogenous asset returns and endogenous portfolios.

Table 5 shows that on average hedging demand is a very important part of total
stock demand for investors whose relative risk aversion coefficients are not close to
one. Mean hedging demand is calculated using (21), by setting x; = p and subtracting
from the total risky-asset allocation the total allocation when v = 1 divided by the
level of relative risk aversion:

a;,hedging (/—l‘v Ys "4/)) = a; (.u‘a Y, ’L/j) - at*,myopz’c (ﬂ‘; Y5 ’Lp)
* 1 *
= o (u57,%) - pot (5 1,9)

Mean hedging demand is negative, and often large, for investors with risk aversion
coefficients of 0.75; for the illustrated risk aversion coefficients above one it is positive
and accounts for at least 20% of stock demand and often above 50%. Thus intertem-
poral hedging motives can easily double the equity demand of risk-averse investors.
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This makes it harder to explain the equity premium puzzle with moderate levels of
risk aversion, a point emphasized by Campbell (1996b).

The results in Tables 4 and 5 can be related to the argument of Siegel (1994)
that long-run investors should not try to time the stock market, but should buy
and hold large equity positions because these positions involve little risk at long
horizons. Siegel’s estimates of long-run stock market risk are low because of the mean-
reversion in stock returns that we have captured with our VAR system. In our model
rational investors should time the market (the coefficient a; is always positive), but
as risk-aversion increases the propensity to time the market declines (a; approaches
zero) while intertemporal hedging demand remains an important component of total
equity demand. Thus our model might provide an approximate rationalization for
the investment strategy advocated by Siegel.

4.4 The optimal consumption-wealth ratio

Tables 6 to 9 and Figure 2 summarize the optimal consumption policy, following
a structure similar to that used to present the optimal portfolio policy. Table 6
presents exp {b}}, and Tables 7 and 8 report b and b,. We report exp {b;} rather
than b} because exp {b}} equals the optimal consumption wealth-ratio C;/W; when

the expected excess gross return, E; [R]J.{.l/_R—f}, is zero. Finally, Table 9 reports the
exponentiated mean of the optimal log consumption-wealth ratio. Figure 2 is similar
to Figure 1, but it plots C,/W; = exp {¢; — w,} instead of a;.

The tables and figure reveal an important difference between the optimal con-
sumption ruale and the optimal portfolio rule: The optimal consumption-wealth ratio
is very sensitive to both the level of the elasticity of intertemporal substitution and the
level of risk aversion, while the optimal portfolio rule moves noticeably only with the
level of risk aversion. Consider for example the exponentiated intercept of the optimal
consumption rule shown in Table 6. This corresponds to the optimal consumption-
wealth ratio when E, [Rl,t+1 /-R-f] = 1. The variation as one moves along a row of
Table 6 is just as great as the variation as one moves up or down a column; this is
not true in Tables 2 to 4. More specifically, Table 6 displays interesting patterns. At
low levels of risk aversion <, the optimal consumption-wealth ratio decreases as the
elasticity of substitution v rises (a movement along a row from right to left). At high
levels of risk aversion, on the other hand, the optimal consumption-wealth ratio in-
creases with 1. Similarly, at low levels of the elasticity of substitution ¥»—specifically,
1) < 1—the optimal ratio rises with risk aversion -, while at high levels of v, it de-
clines with v. The optimal ratio is independent of v when ¢ = 1, as we already know
from our analysis of this special case in Section 3.6.2. These patterns are repeated
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in Table 9, which reports the exponentiated mean optimal log consumption-wealth
ratio, and they are illustrated in Figures 2a through 2d, where the vertical sorting of
the C;/W, curves is reversed as we move from ¢ = 1/0.75 in Figure 2a to ¢ = 1/4 in
Figure 2b, and from v = 0.75 in Figure 2c to v = 4 in Figure 2d.

Tables 7 and 8 summarize the behavior of b7 and b;, the parameters that deter-
mine the slope and curvature of the optimal log consumption-wealth ratio. These
parameters both decline with 1; they are positive for iy < 1, at the right of the
table, while they are negative for 1y > 1, at the left. They are zero when 3 = 1, as
we already know from our analysis of the case with unit elasticity of intertemporal
substitution in Section 3.6.2.

The sensitivity of the optimal log consumption-wealth ratio to the state variable
is given by

0 (¢ — wy)

— " b 2 % -
O(x +02/2) b1+ 20 (:Ct + 0"/2) = b7 + 20y log By [R1,c+1/Rf] -

Figure 2 shows that this sensitivity is modest for most parameter values; the curves
for the optimal consumption policies tend to be rather flat. This is particularly true
for high values of risk aversion 7. One can reach the same conclusion by comparing
the consumption-wealth ratios given in Tables 6 and 9. The ratio in Table 6 is the
optimal consumption-wealth ratio when the expected excess gross return on stock is
zero (an unusually low value), while the ratio in Table 9 is a measure of the “average”
optimal consumption-wealth ratio. These ratios are generally close to one another.

The standard errors in the tables follow the same pattern as those in the tables
describing the optimal portfolio choice. That is, the intercepts are estimated with
less precision than the parameters determining the slope and curvature of the optimal
policy, and the quarterly data set generally offers more precise estimates than the
annual data set.

To interpret these results, it is useful to recall the log-linear equation for the
log consumption-wealth ratio, (18), which we reproduce here for convenience with a
one-period shift in time index from ¢ + 1 to ¢:

a—w = (1-9)E ZPij,Hj - Etzpjvp,t—l+j + if—p (k —logé).
j=1 j=1

Using this equation, we can distinguish three different effects that operate on the
optimal consumption-wealth ratio. The first is the intertemporal substitution effect,
which works through expected future portfolio returns E;r,.;; and is controlled by
the elasticity of intertemporal substitution . This effect is present even when there
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is no uncertainty and all asset returns are riskless. The second is the precaution-
ary savings effect, the willingness to save because returns are uncertain. This works
through expected future variances of consumption growth in relation to portfolio re-
turns Eqvp 14, where equation (11) gives v, as vp; = (8/2¢)Var,(Aciy1 — Yrpi41).
This effect is controlled by both risk aversion 7 and the elasticity of intertemporal
substitution 1. These two effects interact with a third effect, the portfolio compo-
sition effect, which arises because in our setup the individual can control either the
expected portfolio return E;r, ;11 or the variability of return Varyr,:,; through her
investment decision. The literature on growth has traditionally considered the in-
tertemporal substitution effect in a framework in which the rate of return on wealth
is given to the individual. Similarly, the literature on precautionary savings has tra-
ditionally considered an uncertain income stream over which the individual has no
control. In our model, however, the expected return on wealth and the degree of
return uncertainty are endogenous, even though the individual cannot control both
simultaneously. She faces a trade-off, familiar in the asset pricing literature, between
risk and return.

Equation (18) also illustrates the fact that the consumption-wealth ratio is de-
termined by long-run considerations. The terms that appear on the right-hand side
of the equation are expected discounted values of all future expected returns and
variances, not current expected returns and variances. This explains why the current
value of the state variable has only a small effect on the optimal consumption-wealth
ratio, as shown in Figure 2.

We can now interpret the detailed patterns in Tables 6 and 9. Consider first
the right-hand column of Table 9. This gives the exponentiated mean optimal log
consumption-wealth ratio for an individual who is extremely reluctant to substitute
consumption intertemporally (¢ = 1/40, close to zero). Such an individual wishes to
maintain a constant expected consumption growth rate regardless of current invest-
ment opportunities. She can do this by consuming the long-run average return on her
portfolio, with a precautionary-savings adjustment for risk. But both the risk and the
average return are endogenous here. If the investor is highly risk-averse, as she is at
the bottom of the column (7 = 40), then she holds almost all her wealth in the riskless
asset and earns a low return with little risk; if she is close to risk-neutral, as she is
at the top of the column (y = 0.75), she borrows at the riskless interest rate to earn
a high but risky leveraged return. This explains why the mean consumption-wealth
ratio is so much higher at the top of the column than at the bottom.

To clarify this interpretation, Table 10 reports the unconditional mean log port-
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folio return, E[r,;1].> The mean log returns in the right-hand column of Table 10
are close to the optimal consumption-wealth ratios given in the right-hand column
of Table 9. They are particularly close at high levels of risk aversion, shown at the
bottom of the tables; at the top of the tables the two variables diverge because the
mean log return reaches a maximum when the coefficient of relative risk aversion
v = 1, and starts to fall when risk aversion declines from this level, whereas the
optimal consumption-wealth ratio keeps on rising as +y falls below one. We have al-
ready emphasized the fact that the investor with unit risk aversion maximizes the
conditional expectation of the log portfolio return; hence this investor must also have
the highest unconditional expected log portfolio return. The increase in the average
consumption-wealth ratio as v falls below one is caused by the precautionary savings
effect, which turns negative when v and v are on the same side of unity. We explore
this effect in more detail in the next section.

Now consider what happens as the individual becomes more willing to substitute
intertemporally, that is, as ¢ increases and we move to the left in Table 9. If we
hold fixed the variance terms in (18), the derivative of ¢, — w, with respect to
is —[p/(1 = P)](Ee[(1 — p)/p] 521 p'7p 45 + log 6), which is negative if the long-run
expected portfolio return exceeds the rate of time preference and positive otherwise.
Ignoring precautionary savings effects, an individual who is willing to substitute in-
tertemporally will have higher saving and lower current consumption than an indi-
vidual who is unwilling to substitute intertemporally if the time-preference-adjusted
rate of return on saving is positive, but will have lower saving and higher current
consumption if the adjusted return on saving is negative.

Table 9 illustrates this pattern very well. Investors with low risk aversion v at
the top of the table choose portfolios with high average returns, so a higher elasticity
of intertemporal substitution ¢ corresponds to a lower average consumption-wealth
ratio. Highly risk-averse investors at the bottom of the table choose safe portfolios
with low average returns, so for these investors a higher ¢ corresponds to a higher
average consumption-wealth ratio.

Our discussion so far has concentrated on the average level of consumption in

8We can compute the long-term or unconditional expected log return on wealth by taking un-
conditional expectations in Lemma 4, i.e., by calculating E[E;(7p ++1)], which gives:

Elrperi] = 7f+PO+P1E$t+P2E$?
= Ff'f'lﬂo-l-Pl»‘H‘Ih(034?#2)

where pg, p1, and p; are functions of ag and a; defined in Lemma 4. We can rewrite pg, p;1, and po
as functions of the normalized parameters a§ and a; by noticing that a§ = ap — a; (02/2).
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relation to wealth. We now give some intuition about the sensitivity of the optimal
ratio to the state variable ;. Although we have noted that the slope of the optimal
consumption policy is always small in absolute value relative to the intercept, it is
negative when ¢ > 1, and positive when ¢ < 1. Moreover, it increases in absolute
value as -y decreases. The intertemporal substitution effect and the portfolio com-
position effect explain this pattern. As z; increases so does the expected return on
wealth, causing income and substitution effects on consumption. When ¢ > 1 the
substitution effect dominates and the investor will cut consumption to exploit favor-
able investment opportunities. When 1 < 1 the income effect dominates and the
investor will increase consumption because a given quantity of wealth can sustain a
greater flow of consumption. The effect of risk aversion appears because the state
variable z; increases only the expected return on the risky asset, not the expected
return on the riskless asset. An investor with a low risk aversion coefficient is more
heavily invested in the risky asset and thus her portfolio return is more sensitive to
changes in z;.

4.5 The optimal growth rates of consumption and wealth

So far we have characterized the level of consumption in relation to wealth, and have
seen that this is determined primarily by long-run considerations. In order to get a
clearer view of precautionary savings effects, we now turn to a short-run analysis of
expected portfolio returns and consumption growth over a single period. Lemmas 4
and 5 in Appendix A show that the expected single-period portfolio return E,rp, ;11 and
the expected single-period consumption growth rate E;Acyy; are quadratic functions
of ;. Figures 3a and 4a plot the E;r,.41 function, and Figures 3b and 4b plot
the E;Ac;;; function, using the annual return-generating process and the preference
parameters {¢p = 1/0.75,v = 4} and {¢ = 1,4, = 4}, respectively. The figures show
that both functions are convex.

We have already noted that the conditional expected log portfolio return E;rp ;11
is maximized by an investor with unit risk aversion who sets a, = (1/2) + (z:/02).
In this case min{E;r,:+1} = 7y. Hence, whenever v # 1, the minimum expected log
portfolio return must be lower than 7;. Figures 3a and 4a illustrate this possibility.
Similarly, the minimum expected gross portfolio return must be less than the simple
gross riskless interest rate R; whenever v # 1. The explanation is that an investor
whose relative risk aversion is greater than one has a positive intertemporal hedging
demand for the risky asset when its gross expected excess return is zero (a state
indicated by a vertical line in Figures 3a and 4a). By continuity, this investor also
has a positive demand for the risky asset when its gross expected excess return is
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slightly negative, and this will imply a negative gross expected excess return on the
portfolio. Conversely, an investor whose relative risk aversion is less than one has a
negative hedging demand and will short the risky asset even when its gross expected
excess return is slightly positive, again implying a negative gross expected excess
return on the portfolio.

The E;Ac; 4, curve has a similar shape to the E;rp.41 curve. Expected consump-
tion growth rates are negative around the point x; = —¢;/2¢;, where ¢; and ¢, are
parameters defined in Lemma 5 in Appendix A; this is the value of z; at which the
curve reaches its minimum. The convexity of the curve varies with both ¢ and 7.
For the particular cases plotted in Figures 3b and 4b, the convexity decreases with
1, for a given value of v (v = 4). This is generally true, because as 1) decreases
the individual cares more about smoothing consumption and expected consumption
growth becomes less sensitive to the state variable.

A precautionary savings effect is also driving the behavior of the curve. To un-
derstand this effect it is useful to analyze the Euler equation (10), and particularly
its intercept v, as given in (11), which are reproduced here for convenience:

EiAciiy = vpt + % (Eerp iy + logé),

Upy = % (?1[——_71-) Var; (Aciyy — YTpit1) -
The intercept v,,; shows how the conditional variance of optimal consumption growth
relative to wealth growth affects expected consumption growth. When the investment
opportunity set is constant, this intercept is constant, but in our model with time-
varying investment opportunities it moves with the state variable x;. Proposition 1
shows that v, is a quadratic function of the state variable, with coefficients that are
non-linear functions of the underlying parameters of the model. Figures 3c and 4c plot
EiAciq and ¢ (Egrpiq1 + log 8) against (Egrpeqq +logéd). Thus vy, is the distance
between the two curves in the figures. Because both E;Aciy; and (E¢rp et + log 6)
are quadratic functions of z;, a plot of one against the other gives a hyperbola whose
vetex is (min E;rp 41, min E¢Acii). Nevertheless, the arms of the hyperbola appear
to be very close, rendering the relationship very close to linear.

Figures 3c and 4c show that precautionary savings, as measured by v, ., can have
either sign. From (11), we have that sign(vp.) = sign({(1 — v)/(¥ — 1)), s0 vy, is
positive whenever v and v are on opposite sides of unity, but negative whenever
they are on the same side of unity. When preferences are isoelastic, ¥ = v~!, and
vpe > 0. But as we move away from isoelastic preferences, precautionary savings
may be negative. It is important to notice that the sign of v,, does not depend
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on having a state-dependent investment opportunity set—we have already shown in
section 3.6.4 that v, # 0, but constant, when expected returns are constant as long
as v # 1 and ¢ # 1. Therefore, the sign of precautionary savings must be related to
the preference structure rather than to the stochastic structure of the model. From
standard results on the power-utility model we know that precautionary savings are
positive because these preferences exhibit prudence, i.e. a positive third derivative
of the utility function. We have not characterized the general value function under
recursive-utility preferences, but the sign of v,, suggests that the third derivative of
the value function may be negative when « and 1 are simultaneously above or below
one.

Figures 3¢ and 4c also show that the magnitude of precautionary savings (in
absolute value) increases with E,r,;1—that is, as z, moves away from —c, /2¢c;.
However, for the range of values of x; considered here, the magnitude of v,; does
not increase dramatically—the maximum value of v, is slightly below 2 percentage
points—which is consistent with our earlier result that short-term effects do not have
a large impact on the optimal consumption-wealth ratio.

As a final way to explore the implications of our model for short-run consumption
behavior, in Table 11 we report the unconditional standard deviation of consumption
innovations for each set of preferences we have considered. The table shows that
investors with low risk aversion have extremely volatile consumption growth, for their
consumption inherits the volatility of their portfolios. Investors with unit elasticity
of substitution in consumption have constant consumption-wealth ratios and so their
consumption volatility equals their portfolio volatility. Investors with low elasticity
of intertemporal substitution have somewhat less volatile consumption, because they
react to mean-reversion in stock returns by cutting their consumption-wealth ratios
when the stock market rises. A 1% innovation in wealth causes these investors to
increase consumption by less than 1%; they know that a 1% increase in consumption
could not be sustained, even with 1% greater wealth, because the increase in wealth is
accompanied by a decrease in expected portfolio returns. Investors with high elasticity
of intertemporal substitution respond to the decrease in expected returns by cutting
saving, so their consumption is more volatile than their portfolio returns. Similar
results are reported by Campbell (1996a) for a model with an exogenous portfolio
return process.

4.6 Portfolio allocation and consumption over time

Our results can also be summarized by plotting the optimal equity allocations and
consumption-wealth ratios over time. Figure 5 does this for our quarterly model, while
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Figure 6 does it for our annual model. We use preference parameters {¢) = 1/4,v = 0.75}
in Figures 5a and 6a, and {¢ = 1/4,~ = 4}, corresponding to power utility with mod-
erate risk aversion, in Figures 5b and 6b. The left hand part of each figure shows the
optimal equity allocation, while the right hand part shows the optimal consumption-
wealth ratio. The solid lines are the point estimates, while the dotted and dashed
lines are 95% asymptotic confidence intervals based on asymptotic standard errors
(conditional on z;) calculated using the delta method. The horizontal lines in the
equity-allocation plots represent 0% and 100% holdings.

The figures show that stock holdings are highly volatile while the optimal ratio of
consumption to wealth ratio is more stable, but spikes up in periods where expected
returns and optimal stock holdings are unusually high. The investor with lower risk
aversion, in Figures 5a and 6a, holds on average a much larger proportion of her
wealth in stocks and her consumption-wealth ratio is also larger on average. But
both investors are keen stock-market investors. In our model investors do not face
restrictions on shorc sales, so we allow the optimal allocation to stocks to be either
larger than 100% or negative. Figure 5 shows that in the postwar quarterly model
both investors usually want to short the riskless asset and invest more than 100% of
their wealth in the market, except in periods of unusually low dividend yields such
as the early 1970’s and the 1990’s.

Barberis (1995) has obtained similar results for a Bayesian investor who maximizes
power utility defined over terminal wealth and uses the log dividend-price ratio as a
state variable; with a 10-year investment horizon and access to historical data over
the period 1927-1993, Barberis’ investor, who is not allowed to short assets, is mostly
100% invested in stocks. Brennan, Schwartz, and Lagnado (1995) have studied a
similar problem with power utility of terminal wealth, three state variables, three
assets, and weekly portfolio rebalancing. They also do not allow short sales, and
their optimal strategy for the period 1972-1992 frequently switches between 100%
cash and 100% stocks. Their optimal strategy is more volatile than Barberis’ or ours
because they allow for a larger number of state variables. Both Barberis and Brennan,
Schwartz, and Lagnado also include long-term bonds in their analysis, but bonds do
not play a major role in the optimal portfolio.
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5 Conclusion

One of the major objectives of modern financial economics has been to put investment
advice on a scientific basis. This task has been accomplished for investors who have
short horizons or constant investment opportunities. Unfortunately most investors
have long horizons, and there is considerable evidence that they face time-varying
expected returns on risky assets. Financial economists have not been able to give
such investors precise quantitative advice about their portfolio strategies.

Our goal has been to remedy this situation. Because the intertemporal consump-
tion and portfolio choice problem is highly intractable when expected returns are time
varying, we have resorted to an approximation. We have replaced the Euler equa-
tions and budget constraint of the exact problem with approximate equations that
are much easier to solve, and we have explored in detail the analytical solution of
the approximate problem. We have shown, for example, that in our model investors
always increase their risky asset allocations when the expected return on the risky as-
set increases, and that portfolio allocations depend on the elasticity of intertemporal
substitution only indirectly through the effect of this elasticity on the average level
of consumption relative to wealth.

Our approximate solution is exact when the elasticity of intertemporal substi-
tution is one and the time interval between consumption and portfolio decisions is
infinitesimally small. As a next step in this research agenda, we plan to check the
accuracy of the analytical approximate solution in other cases by comparing it with a
discrete-state numerical solution for a wide range of parameter values. We hope that
the approximate solution will prove to be workably accurate, but we also believe that
it gives economic insight into the nature of the problem, and should provide useful
starting values for more precise numerical solutions in particular cases.

We have used our model to assess the quantitative importance of intertemporal
hedging demand for risky assets by long-lived investors. After calibrating the model
to US stock market data, we find that intertemporal hedging motives can easily
double the average total demand for stocks by investors whose coefficients of relative
risk aversion exceed one. This implies that static models of portfolio choice can be
seriously misleading, and should be used only with great caution.

The approach of this paper can be applied to many related problems. For simplic-
ity we have considered only a single risky asset and a single state variable, but it is
straightforward to consider multiple risky assets and state variables. We can explore
horizon effects, in the manner of Barberis (1995), by assuming that the investor has
a finite rather than infinite horizon. We can allow the riskless interest rate to vary
over time, and can consider investor choices among indexed or nominal bonds of dif-
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ferent maturities. We may be able to allow for time-variation in the volatility of risky
asset returns, and even for the presence of exogenous labor income in the investor’s
budget constraint. We believe that in all these cases, there is much understanding
to be gained by taking an analytical rather than a purely numerical approach to the
problem.
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A Appendix A: Some Useful Lemmas

In this appendix we state as lemmas and prove nine useful results. We use some of them to prove,
in Appendix B, the main propositions of the paper.

Lemma 1 The conditional expectation of future values of the state variable is a linear function of
its current value, while the conditional expectation of future values of the squared state variable is a
quadratic function of the current state variable:

Bep1Tep; =p+ ¢ (@ — )+ ¢ i

2 2 N2 1= ; ; 252
By =p (1—4)]) +T—¢2—'Uq+2u¢'7 (1—¢7)$t+¢‘ I
+¢2(j_1)7h2+1 + 20200 (g — pY Mgy + 20 neg

Proof. By simple forward recursion of z, and z? in (3) we have

J-1
T —p=¢ (T — )+ Y i
=0

and
j=1 -1
(2o — 1) = 9% (z, — p)* + Z¢2tn?+j—l + 2¢Z¢21 (Tepjo1—1— ) Mgt - (32)
=0 =0

The results stated in the lemma follow from the expressions above, after taking conditional
expectations at time (t + 1), E¢+1, and the martingale assumption (A2), which implies E (411741 =
0, E¢1Me41 =0, and E g1 [Teg i1} =0, VI > 1.0

Lemma 2 The innovation in next period’s squared state wvariable is linear in the current state
variable:
zpyy — Baly = (nf, - 0127) + (20 (1 — @) + 202¢) Neg1-

Proof.  The proof for this lemma is similar to that for Lemma 1. From (32), find zZ_, by setting
j=L
2
zip =40 (1= ¢) + 206 (1 - @) ze + d%2f +nfyy + 26 (2 — 1) + 2] Mo
Lemma 2 then follows by applying the conditional expectations operator E; to this expression, under
the martingale assumption (A2).0

Lemma 3 The unexpected return on the risky asset and the conditional variance of the risky asset
are given by
T1t41 — Byrip41 = gt

2
Ul,l,t =0, -

38



Proof. This result follows trivially from (A2) and (A3). It is stated here as a Lemma for
completeness.[]

Lemma 4 The expected portfolio return next period is quadratic in the current state variable, and
the unezxpected portfolio return is linear in the current state variable:

Eyirpie1 =T5 +po + p12y + Pzt

Tpt+1 — Barpes1 = (G0 + @12 wsyy

where
2
o
Po=a0(1~*ao)7ﬂ,
o2
P =(Lo+a,1(1—2ao)—21i ,
2
o
P2 =0 —ij‘ .

Proof. From (14) and our guess (i) on the optimal portfolio rule, we have that
o2
Etrpes1r = Eg[rie —Ffl +75+ 7“at (1— )

2
o
= (ao+a1x) T +Tp + ?” ((ao +ayxy) ~ (ag + almt)z) ,

where the last line follows from (2). Reordering terms we get a quadratic expression in z; whose
coefficients are those given in the statement of the proposition.

The expression for rp;11 — E¢Tp 41 also follows from (14) and guess (i), as well as (Al) - -
constant ry — and (A2)—(2),

Tpit+l — E Tpt+1 = ((rl,t-l-l - Ff) - Et, [T]’t,+1 - Ff])
(a0 + a12¢) wry1 - (33)

Il

O

Lemma 5 Ezxpected optimal consumption growth over the next period is quadratic in the current
state variable, and unexpected consumption growth is linear in the current state variable:

1
EtACH-l = Eﬂ‘p,z+1 + Ey [Ct+1 - wc+1} - ; (Ct - wt) +k

2
=c¢o + C1T¢ + C2xy

Aciir — BAcyyy = (a0 + a1xe) upgr + bimesr + b2 (21 (1 — @) + 20z ) neyy
+ba (nf, — 0727) )
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where

_ ol 1 5 2
co =Ty +ao (1 ~ao) * +k+bo <1—;)+b1(ﬂ(1—¢))+b2<ﬂ (1-9) +0n) ,

2
1 = ag + a1 (1 — 2a0) 2% + b, (¢—%)+52(2#¢(1—¢)) ,
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Proof. From (16) and (13), we can write
1
Act+1 = Tp|f.+l + (CH—I - wt+1) — ; (Ct — wt) + k . (34)
Therefore,

1
EcActy1 = Ei7perr +Ee(Cer1 — wep1) — ;(Ct —w) +k

ol o2 AT
= dap (1 - (L()) —Zy‘ + (ao+a1—2ﬂ — a0a103> Ty + aq <1 - (Ll?u> Ty +Tf

1 1 1
+bo (1 — ;) +b (Et Teypy — ;M) + by (EL $g2+1 - 518?) +k

= aoxy +12f +T5 + by (1—%) +b [H(1*¢)+ (d)—%) xt:|
+by [u2(1—¢)2+03+2u¢(1—¢)xt+ (be—%) If} +k,

where the second equality follows from Lemma 4 and our guess (ii) on the optimal consumption
policy, and the last line follows from (3) and Lemmas 1 and 2. Re-ordering terms we get the
expression for E; Acyy; in Lemma 5 as well as {co, ¢1, c2}.

The expression for unexpected consumption growth follows from (34}, the expression for the un-
expected portfolio return in Lemma 4, and from the expression for the unexpected log consumption-
wealth ratio that obtains from guess (ii), (3) and Lemma 2:

Coy1 — Wep1 — Be (G4 — Weg1) = by (Tegr — Ee Tegr) + b2 ($?+1 - Et $?+1)
b1ty + b2 [(7}?—{»—1 - U?,) + (26 (1 = @) + 2¢z,) nys1] - (35)

I

O

Lemma 6 The time-varying intercept in the Euler equation for portfolio returns (11) is a quadratic
function of the state variable:
Upt = Vo + V1T + VoIt

where
vo=a2|(1-v)(-1) 102 + B2 1-9 102 + b2 -7 (02 422 (1 — ¢)2) o2
0 0 5% 1 v—1/2 n 2 v—1 n K n
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—aoby [(1 — ) oyu] — aobz (1 = 7) 21 (1 — @) T} + b1b2 [(H) 2u(1-9) 072;} ;

"
~a1b1((1-7)a,7u]—a1b2[(1—7)2,u(1—¢)d77u]+b1b2K; )2¢ }

vy = b2 [(-}__—71) 4ug (1 — @) 0',27] + aoay [(1—7) (¢ — 1)03] — agby [(1 —77) 2¢0,,]

w:a?[(l— )(1/)—1)%0]+b2[(1/) )2¢ J—a1b2{(1—7)2¢o,,u].

Proof. From (11), (13) and (16), we have
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If we substitute in the bracketed expression above (33) and (35) for (rp+1 — Et 7pe41) and (cp1 — wegr)—
E¢ (ce41 — wes1) and compute E; under assumptions (A2) and (A3), we find that v, is a quadratic
function of z;, with the coeflicients given in the statement of the lemma. O

Lemma 7 The parameters defining the optimal consumption rule (ii) satisfy the following three-
equation system:

2

vg=k—1/)log6+(1—1/))Ff+(lAi/))ag(l—ao)%+bo (1—/1)> + b1 (1 (1= 9)) + b2 (u2(1~(f>)2+ﬂ§),

2 1
v = ag (1= %) + (1 - ¥) a1 (1 - 2a0) % + b (¢ - ;) + by (206 (1~ ),
2
vy =a; (1—9)— (1 —19) a?g—; + by <¢? - %) ,

Proof.  This follows from the log-linearized Euler equation for the optimal portfolio given in
(10), and Lemmas 4, 5 and 6. From (10) and Lemmas 4 and 6,

EtAcirr = tlogé + vy + WErp 141

il

o2
YPlogé + YT s + vo + Yag (1 — ao) 7" (36)

o? ,
+ (vl + (ao+a1— — agay 0, ))mt + (v2+1pa1 (1 —a1§)> rf ,

which is a quadratic function of the state variable. But from Lemma 5 we have that E,Ac,, is also
quadratic in zg:
EAci ) =co+ 1z + czxf , (37)
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where co, ¢, and ¢y are given in Lemma 5. Equating coefficients on the right hand side of (36) and
(37), the lemma follows immediately.[]

Lemma 8 The covariance between unexpected stock returns and changes in expected portfolio re-
turns is linear in the state variable:

Cowy | r1e41 — Byri o1, (1 — ¢) (B — -Et)ZPjrp,H-l-{-j

Jj=1

= =) (o) 12 = e 2 Y+ (1 9) (e )

where {py,pa} are given in Lemma 4.

Proof. Lemma 4 implies:

o0 o0 o0
(Beyr — Ee) ZP”"p,HjH = N Z/f’ (Eer1 — E¢) Teqj + 12 ZP’ (Beg1 — Ef»)mf+j (38)
i=1 =1 i=t
o0
= DP1M+1 (¢2J 2= 1)) + paniyy ZPJ(/SZ(J Y
Ji=1 i=1 j=1
+P2ne+1 (T — Z ¢ + parer 1200~ ZPJW
j=t g=1
= [Pl P + P2 (xt“ﬂ) p¢ 3 +P22ﬂ P ]ﬂt+1
1 - po - po — po
p
+P2 p¢2m+1 sz% ;

where the second equality follows from Lemma 2 and the third one follows after computing the
infinite summations in the second one and reordering terms.

The result stated in the lemma follows immediately from assumptions (A2) and (A3) about the
distribution of (w41, M+1), the expression above and the properties of the covariance operator.(]

Lemma 9 The covariance between unezpected stock returns and changes in the expected value of
the intercept in the Euler equation (11) is linear in the state variable:

Cow | r1041 — Eery41, (Brg1 — Zp]va-]

= ((w + vo2u) 1 —Pp¢ — gpl ¢¢2> Onu + (wi-:%aqu) Iy,

where {vg,v1,v2} are given in Lemma 6.
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Proof. Lemma 6 implies:

(Eey1 — Ey) ijvp,t+j = ZP’ (Et41 — Ep) 245 +v2 ZP’ (Eee1 — B a7y, .

i=1 j=1 =1
But the right hand side of the equality above is identical to (38), except that we have v, and v,
instead of p; and ps. Therefore, we must have that:

pe
1 - pg?

o0
(Etr1 — Ep) ijvp,t+j = [vl + vg (zy — ) + U22M£55:’ Mt+1

i=1

P
1—-po

L2 P,
+U21_p¢27’t+1 U21_p¢20n1

from which the lemma follows, under the distributional assumptions (A2) and (A3).03

B Appendix B: Proofs of Propositions
B.1 Proof of Proposition 1

From (A2), E; 71,41 — 7 = 7; and from (A3), 01,1, = 02. Also, from guess (ii),

Ore—wt = Cove(riesr,Cee1 — Wet1)
= Covi [P1e41 — EeT1e41, b1 (Teg1 — Bezeq1) + bo (27, — Beziyy)]
= Cov¢ (w1, imesr + bz (s — 03) +b2 (20 (1 — ) + 202¢) e41]
= biogu + b2 20 (1 — @) + 2¢z,] Tnu
where the second line follows from substituting guess (ii) for ¢;41 — w41, the third line follows from
(A2) and Lemmas 2 and 3, and the last line follows from (A3) and the assumption of joint normality

of usy1 and N4
Using these results we can re-write (17) as

1z 1 1-— Y Onu
==+ —————db + by 2 (1 - 2¢ 39
,7012‘-*'27 7(1/)_1)0,12‘{1+2[/1'( ¢)+ lzt}}’ ( )
which is linear in x;. But our guess (i) on the optimal portfolio policy is that o} is linear in the
state variable,

*

ay

*
o, =ap+ a2 .

Grouping terms in {39) we obtain ag and a; as stated in Proposition 1.00

B.2 Proof of Proposition 2

The proof for this proposition follows from Lemmas 6 and 7 and Proposition 1. Lemma 6 defines a
non-linear equation system for {vg, vy, v2}, {0, a1} and {bg, by, b2}:

vo = Viiak 4 Vigh? + Vibs + Vigaobs + Visaobz + Vigbibo
v = Varb3 + Vagaoa; + Vazaoby + Vasarby + Vasaiby + Vagbibo
vz = Vaal+ Vaohd + Vazarho,
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where the coeflicients V;; are functions of the primitive parameters of the model (both those
defining the preference structure and those defining the stochastic structure of the model) and
are immediately identifiable from the statement of the system in Lemma 6. For example, Vi; =
(1 —~) (¢ —1)02/2, and so on.

Similarly, Lemma 7 defines a second system for {vo, v1,v2}, {@o, a1} and {bg, by, b2}:

vg = Bjg+ Bi1bg + Bigby + Bysby + Bisag + +Bl5(lg
v1 = Bajap + Baooby + Basba + Basar + Basagay
vy = Baja; + Bagby + Bysa? ,

where the coeflicients Bj; are functions of the primitive parameters of the model. For example,
Bio =k —ylogé+ (1 — )Ty, and so on.
Finally, Proposition 1 defines another system for {ao,a;} and {by, b1, b2 }:

ap = Aw+ Anb + Aizbo
a1 = A+ Anby,

where, again the coefficients A;; are also functions of the primitive parameters of the model and
are immediately identifiable from the statement of the system in the proposition. For example,
Ayg = 1/2v, and so on.

By equating the right-hand sides of the first and second system we obtain another system whose
unknowns are {ag, a1} and {bg,b1,b2}. But the third system defines {ag,a;} as linear combinations
of {b1, ba}. Substituting this system into the one obtained by combining the first and second systems,
we obtain the Fundamental Equation System given in the statement of the proposition, that depends
only on {bg, b1, be}, the parameters of the optimal log consumption-wealth ratio. The coefficients
A;j relate to the coefficients A;;, B;; and Vj; as follows:

0 = —Bio+ (Vi1 — Bis) A}y — BisAio + (—Bu1) bo
+[2(Viy — Bis) A1oArz — Biz + VisAio — BuaAn) br + [(Vir — Bis) A%y + Via + ViaAn | b7
+[2(Vi1 — Bis) A1oAv1z — Bis + VisAio — BiaAia) b2 + [(Vi1 — Bis) A%, + Viz + VisAra] b3
+[2(V11 — Bis) Au1 A1z + VisArz + VisAp + Vig) bibe,

0 = —BajAjg+ (Vaz — Bas) AroAoo — BagAgo + [~ B21 A1l — Bag + (Vaa — Bas) A1 Aoo + Vag Aol by

+ [~Ba1A12 — Bas + (Va2 — Bas) (A10A21 + A12A420) + VazAro + Vas A2o — BaaA21] be
+ Va1 + (Vaz — Bas) A12Aa21 + Vaz A1z + Vas Aot ] b
+ [(Vag — Bas) A11Agr + VasAqy + VagAgy + Vag) bibo,
0 = (Va1 — Bas) A%q — B31 Az + [2(Va1 — Bsz) Ao Aa1 — B31 A1 — Baa + Vaz Agol b
+ [(Va1 — Baa) A3, + Vag + VazAn | b3.
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C Appendix C: Proofs of Properties
C.1 Proof of Property 1

The third equation of the Fundamental Equation System characterizes the behavior of b;. This

equation is:
0 = Aso + Asziby + Aazb3 .

Substituting A;;’s for their values we get:

h— 1 1— ) 260 1 2(1-7)¢? [02, + 7 (0202 — 02,
0= - | +<¢2’Z)]b2+[( = ([;7—1)120’ i, o

This equation has two roots, that we denote {bg;,bo0}. A sufficient (but not necessary) condition

for these roots to be real is that
Az2A30 <0,

,27 —o2, = 0303’ (1 =Corr (u,n)) >0, {41)

and all other terms in the expression for AzaA3zg are positive.
If v < 1, As2A30 > 0, so the roots are real if

A3 — 4A32A30 >0

which gives (22) in text after simple algebraic manipulations. The case v = 1 is straightforward,
since the third equation of the Fundamental Equation System becomes linear, and delivers:

-1
)

When v = 0, it is easy to check that we can write the third equation of the Fiindamental Equation
System as

by =

0= (1 — 1)* — (¥ — 1) 4poubs + 4¢%02 b ,

which is a qunadratic equation whose discriminant is zero and delivers

_@-1
by = e (42)

Finally, the case ¥ — oo implies by = 0, since the numerator of the solution to the quadratic equation
is O(7), while the numerator is O(y?).

45



To analyze the sign of the roots, rewrite the equation as

_ (¥ -1)°
0 = 4(1—7)¢? [02, +7 (0202 - a%u)] (43)
3 (¥ = 1) o + (- 1)7‘712; (¢2 - ‘{1,) by + b%

¢ [ohu+v(odof — o))~ 20 =7 ¢ o5, + 7 (ol0F — o))

or _ -
0 = Azo + Agrby + 43 .

From standard theory on quadratic equations, the product of the roots is given by Kao, which is
negative when vy > 1 and positive when vy < 1:

N <0 ify>1
ba1 - ba2 = Aao
>0 ify<t

Therefore, when ~ > 1, the roots are real and have opposite sign and, when v < 1, the roots have
the same sign—provided they are real.
Similarly, from standard theory on quadratic equations,

bo1 + bag = —Asy

which is always positive if {¢p < 1,7 < 1,¢0,, < 0} or {t > 1,¥ > 1,d04, > 0}, and always
negative if {1 > 1,7 < 1,¢0m, < 0} or {§ < 1,7 > 1,0y, > 0}, since (¢2 — p~') < 0, because
0 < p<1,]|¢| <1 and, from (41), the term in brackets in the denominator is positive.

Hence, when v < 1 and ¢o,,, < 0, both roots are positive if 4 < 1 and negative if 1» > 1. When
v < 1 and ¢o,, > 0, the same results still obtain, provided the condition for real roots (22) holds
—this condition implies yo2(¢? — p71)2 > —(1 — 7)2¢0,u(#? — p~1), which is sufficient to obtain
the results for this case.

When v > 1, the roots of the equation alternate in sign. If ¢o,, > 0, we can write the expression
for the roots of the equation as

by = (¥ —1

|-(4+B)+ JAFBFEC
_D ’

where A, B, C, D are positive constants —provided that v > 1 and ¢o,, > 0— so choosing the
positive root of the discriminant delivers b < 0 if ¢ > 1 and by > 0 if ¥ < 1, and the opposite
obtains if we choose the negative root. If ¢o,, < 0, we can write the expression for the roots of the
equation as
(-A+B)x/(-A+B)?+C
b=y~ 1) [P+l

so the same results obtain.OJ

C.2 Proof of Property 2

To prove Property 2 we need to consider two cases, the case in which ¢op,, < 0 and the case in
which ¢op, > 0.
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C.2.1 Case ¢o,, <0

From the last part of the proof of Property 1, we have that by /() — 1) < 0 when we select the value
of by associated with the positive root of the discriminant of the third equation of the Fundamental
Equation System.

Plugging this result into the second equation of Proposition 1 we obtain immediately that a; >0
when v > 1, and ¢o,, < 0, since all the terms in the equation are positive. Also, when v =1, the
second term in the equation is zero, so a; = 1/03 > 0. However, when vy < 1, while the first term
is positive, the second is negative, so we need to prove whether the sum of both terms is positive.
Solving for the positive root in (40) and plugging the result in the second equation in Proposition
1, we find:

11620202 — 2ypoguol (62— 1)

419?07 [of, +7 (o708 — o7)]
2

\/ 2700002 (#2 = 1)] " + 16y (1 = 1) 403,02 (4 — 1) 167 (1 —7) #02,0%07

4y 202 [a?w + 7 (0,2,012‘ — 0,27“)} ’

(44)

ay

+

when ¢o,, < 0. Since the denominator is always positive, the sign of the slope depends on the
sign of the numerator. A straightforward analysis of the numerator shows that a couple of sufficient
conditions for it to be positive are

aiﬁ > —ponu
and e
T

But if the first sufficient condition is violated, the second one is immediately verified, so a; > 0.

C.2.2 Case ¢o,, >0

From the last part of the proof of Property 1, we have that b2/(y — 1) < 0 when v < 1 —provided
that the condition for for real roots (22) in (40) holds. Plugging this result into the second equation
of Proposition 1 we obtain immediately that a; > 0 when v < 1 and ¢o,, < 0, since all the terms
in the equation are positive. Therefore, the slope of the optimal portfolio policy is always positive
when v < 1 and ¢o,,, > 0 no matter what root we select for the discriminant of the third equation
of the Fundamental Equation System.

When 7 > 1, solving for the negative root of the discriminant in (40) and plugging the result in
the second equation of Proposition 1, we find again (44), which is always positive when v > 1. If we
solve for the positive root of the discriminant in (40) and we plug the result into the second equation
of Proposition 1, we find an expression similar to (44), except that the second term is subtracted.
A sufficient condition for this expression to be positive is ¢ Corr(ny1,us41) > ¢ Corr(ney1, ury1)?,
which is always true because sign(¢oy.,) = sign(¢ Corr{ng41, ue41)) and | Corr(nes1, us1)] < 1.
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C.2.3 The limiting behavior of a;

Regardless of the sign of the covariance and ¢, a; — +00 as as vy — 0 and ¢, — 0 as ¥ — +oo. To
prove the first result, we use (42), i.e. by — (¢ — 1)/2¢o,, as v — 0. Substituting this result into
the the equation for a; in Proposition 1 and taking limits as y — 0 we find :

. 1 .1 1—x
lima; = — lim - — ——
~—0 oy ¥—0 7y Y

1 .. 1
= = lim —

gy 10y
= 400

Similarly, from (44) we have that the numerator of a; is O(y), while the numerator is O(y?).
Hence, taking limits as v — oo we have that a; — 0.0

C.3 Proof of Property 3

A straightforward analy.is of the solutions to the Fundamental Equation System reveals that we can
write by and b as

by = (¥-1) fi(v,p), (45)
by = (Y1) f2(v,p),

where f (v, p) and f; (7, p) are functions that do not depend on 1. After substitution in the equa-
tion system in Proposition 2, we find that the parameters defining the optimal portfolio rule,
{ao,a1} do not depend on v for given p. However, p itself is a function of y)—recall that p =
1 — exp {E [c; — wx]}—so0 the optimal portfolio rule depends on ¢ indirectly through p.[]

C.4 Proof of Property 4

To prove this result, notice that the third equation of the Fundamental Equation System, that
determines by, is found by equating the right hand side of the third equation in Lemmas 6 and 7,
and substituting out a; using the second equation in Proposition 1. None of these equations depend
on u.[J
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TABLE 1

Stochastic Process for Returns

Estimated model:
TLt+1 — Tf 8o & €1,041
= + de — pi) +
( dey1 = Pyt ) ( Bo ) ( B )( e~ P) ( €2,64+1 )
( €1,t4+1 ) ~(0,Q), 0 < J11 012 )
€2t+1 J12 0322
Derived model:
Tig41 —Tf = Te+ Uy
Tey1 = p+¢ (T — 1) + Nt

2
( Ul,t+1 ) ~ (0, E), Y= ( T% 0'1;.'1 >
2,¢+1 Tuny T7p

l

(A) Quarterly Model: 1947.1 - 1995.4

Estimated model:

—0.027 4.610
7‘1,¢+1 - ?f _ (0020) (1953) _ €1,t+1
( dest — Pert ) =| oo |*| oesa |EmPItL
(0.000) (0.022)
5204E -3 —4.176E -5
& (0.540E — 3) (0.520E — 5) g2 — ( 0028
T | -4176E-5 6.523E -7 ~\ 0910
(0.520F — 5) (0.666E —7)
Derived model:
Te41 = 1343E -2 + 0954 (1'5 — I_l,) =+ MNe+1
(0.005) (0.022)
5.294E -3 —0.193E -3
§_ (0.540E — 3) (0.085E — 3)
| -0.193E-3 1386E -5
(0.085E — 3) (0.007E —5)
Fr=.071E-2 o0,%/0,2=2913E -2 corr(n,u) = —0.711




TABLE 1 (ctd.)
Stochastic Process for Returns

Estimated model:
Tit41 —Tf 6o 6 €141
= -+ d, — ’
(dt+1~Pz+1) (ﬂo) (ﬁl)(t pt)+(€2,t+1>
( €1,t41 ) ~ (O,Q), Q: ( Jg11 012 )
€2,t+1 012 022
Derived model:
Tit4l ~Tf = Tp+ Uy

Te41 pt+ @z — p) + e
2
(u1,t+l )N(O,E), E:( o?, U’é‘")
N2,t41 Tun Oy

(B) Annual Model: 1890 - 1993

Estimated model:

0.613 0.185
Ti,t4+1 — 7}' _ (0205) (0.066) _ €1,t+1
( div1 — ot ) =| ~o626 | *| ores |GPdH{ L
(0.192) (0.062)
3.190F -2 —-2.101E -2
G | (0445E-2) (0.361E -2) Rz (0070
- —2101F -2 2818E -2 ~\ 0613
(0.361E —2) (0.393E — 2)
Derived model:
Ty = 4165E-2 + 9798  (x,—p) 4+ Mg
(0.013) (0.062)
3.319F -2 —(0.388F -2
g_ | (045E-2) (0155E-2)
- —0.388E —2 0.096E — 2
(0.155E — 2) (0.393E — 2)
Tr=1992E -2 o0.%/0,°> =7.964E -2 corr(n,u) = —0.701




TABLE 2

Optimal Percentage Allocation to Stocks
When the Expected Gross Excess Return Is Zero

(Intercept of the Optimal Portfolio Policy)

a; = ag x 100

(A) Quarterly Model: 1947:1 - 1995:4

RR.A. E.LS.

Intercepts (Allocations)

1/75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 -38.00 -28.93 -2295 -20.63 -17.79 -16.34 -15.88 -15.69
1.00 0.00 0.00 0.00 000 000 000 000 0.00
1.50 25.79 2239 1955 1834 16.72 156.85 1557 15.44
2.00 31.73 2884 2628 2510 2351 22.62 2233 22.19
4.00 2742 2732 2723 2718 2711 2706 27.05 27.04
10.0 14.37 1543 1661 1724 1824 1896 19.19 19.31
20.0 7.81 8.64 959 10.11 1099 11.56 11.76 11.85
40.0 4.07 4.57 5.16 548 6.04 6.39 6.53  6.60

Standard Errors

1/75 100 1/1.5 1/2  1/4 1/10 1/20 1/40

0.75 20.11 10.57 6.32 512 411 341 3.14 3.1
1.00 0.00 0.00 0.00 0.00 0.00 000 000 0.00
1.50 11.76 8.40 5.97 5.01 412 368 3.56  3.50
2.00 14.22 11.01 8.43 735 2941 5.26 530 5.22
4.00 12.21 1093 9.68 9.06 817 7.66 7.49 741
10.0 6.48 6.47 6.46 645 646 646 646  6.47
20.0 3.55 3.70 3.87 397 415 428 433 436
40.0 1.85 1.98 2.13 2.21 2.37 248 252 254

Note: Portfolio allocations and their standard errors are given in percentage points and
are based on the parameter values for the return processes presented in Panel A and B of
Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4, while Panel
B allocations are based on estimates for the period 1890-1993. The values in the main
diagonal correspond to the power utility case.



TABLE 2 (ctd.)

Optimal Percentage Allocation to Stocks
‘When the Expected Gross Excess Return Is Zero

(Intercept of the Optimal Portfolio Policy)

ap = a(‘) x 100

(B) Annual Model: 1890 - 1993

R.R.A. E.LS.

Intercepts (Allocations)

1/75 100 1/15 1/2  1/4 1/10 1/20 1/40

0.75 -17.31 -15.35 -13.70 -12.97 -11.98 -11.44 -11.27 -11.18
1.00 0.00 0.00 0.00 000 000 000 0.00 0.00
1.50 12.16 1144 1079 1049 1005 9.81 9.73 9.69
2.00 15.08 14.55 14.06 13.82 1347 13.27 1321 13.18
4.00 13.23 1346 1368 13.79 1398 14.09 1412 14.14

10.0 7.02 7.46 7.95 8.20 8.61 8.87 8.96 9.00
20.0 3.83 4.15 4.50 4.69 5.01 5.20 5.27 5.31
40.0 2.00 2.19 2.40 2.51 2.70 2.83 2.87 2.89

Standard Errors

/.75 1.0 1/15 1/2  1/4  1/10 1/20 1/40

0.75 16.48 7.77 4.19 476 677 777 813 8.30
1.00 0.00 0.00 0.00 000 000 000 0.00 0.00
1.50 6.58 6.95 7.59 7.96 853 884 8.95 9.01
2.00 12.75 1296 13.32 1354 1391 1416 1425 14.29
4.00 19.69 2044 21.19 21.65 22.07 2239 2249 2254
10.0 13.65 1531 1713 1811 19.68 20.64 20.98 21.15
20.0 8.08 9.39 1094 11.81 13.26 1422 14.56 14.73
40.0 4.38 5.20 6.20 6.77 7.76  8.42 8.66 8.78

Note: Portfolio allocations and their standard errors are given in percentage points and
are based on the parameter values for the return processes presented in Panel A and B of
Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4, while Panel
B allocations are based on estimates for the period 1890-1993. The values in the main

diagonal correspond to the power utility case.



TABLE 3

Slope of the Optimal Portfolio Policy (a;)

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. E.LS.
Slopes

1/.75 1.00  1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 225.23 227.67 229.68 230.58 231.79 232.48 232.70 232.79
1.00 188.87 188.87 188.87 188.87 188.87 188.87 188.87 188.87
1.50 143.15 142.20 141.32 140.92 140.34 140.02 139.92 139.86
2.00 11538 11456 113.79 113.41 112.89 11258 112.48 112.43
4.00 65.01 64.98 64.95 6494 64.92 6491 64.90 64.90
10.0 28.14 2845 28.78 2895 29.21 29.39 29.45 2048
20.0 14.46 14.71 1497 1510 1533 1547 1551 15.54
40.0 7.33 7.48 7.64 7.73 7.86 7.95 7.98 8.00

Standard Errors

1/.75 1.00 1/15 1/2 1/4 1/10  1/20 1/40
0.75 24.13 24.23 24.42 2452 2467 24.77 2481 24.80
1.00 19.28 1928 19.28 19.28 19.28 19.28 19.28 19.28
1.50 1591 1551 1516 15.03 14.82 14.71 1468 14.66
2.00 14.10 1369 1331 13.13 1536 1281 1273 12.71
4.00 9.66 9.57 9.49 9.46 9.41 9.39 9.39 9.38
10.0 4.81 4.92 5.05 5.13 5.24 5.34 5.37 5.38
20.0 2.60 2.70 2.81 2.88 2.98 3.05 3.07 3.09
40.0 1.35 1.42 1.49 1.53 1.59 1.63 1.65 1.66

Note: The numbers in the upper portion of the panel report the change - in percentage
points - in the optimal allocation to stocks when the expected log excess return increases by

one percent - on a quarterly basis in Panel A and on an annual basis in Panel B -.

numbers in the lower part are their standard errors. They are all based on the parameter
estimates for the return processes presented in Panel A and B of Table 1. Panel A numbers
are based on estimates for the period 1947:1-1995:4, while Panel B numbers are based on
estimates for the period 1890-1993. The values in the main diagonal correspond to

the power utility case.



TABLE 3 (ctd.)

Slope of the Optimal Portfolio Policy (a;)

(B) Annual Model: 1890 - 1993

R.R.A. E.LS.
Slopes

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 3880 3896 39.10 39.17 3926 39.32 39.34 39.35
1.00 31.34 31.34 3134 3134 31.34 3134 3134 31.34
1.50 22.74 2269 2264 2262 2258 2256 2256 22.55
2.00 1787 17.84 1780 17.79 1776 17.75 17714 17.74
4.00 9.65 9.67 9.68 9.69 9.70 9.71 9.71 9.71
10.0 4.06 4.09 4.12 4.13 4.16 4.17 4.18 4.18
20.0 2.07 2.09 2.11 2.12 2.13 2.15 2.15 2.15
40.0 1.04 1.05 1.07 1.07 1.08 1.09 1.09 1.09

Standard Errors

1/.75 1.00  1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 6.00 5.65 5.41 5.31 5.20 5.15 5.14 5.13
1.00 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37
1.50 3.31 3.35 3.39 3.42 3.46 3.47 3.48 3.49
2.00 2.86 2.88 2.91 2.93 2.96 2.97 2.98 2.98
4.00 2.01 2.03 2.05 2.06 2.07 2.08 2.08 2.08
10.0 1.05 1.10 1.14 1.16 1.20 1.22 1.23 1.23
20.0 0.58 0.62 0.66 0.68 0.711 0.73 0.74 0.74
40.0 0.30 0.33 0.35 0.37 0.39 0.41 0.41 0.41

Note: The numbers in the upper portion of the panel report the change - in percentage
points - in the optimal allocation to stocks when the expected log excess return increases by
one percent - on a quarterly basis in Panel A and on an annual basis in Panel B -. The
numbers in the lower part are their standard errors. They are all based on the parameter
estimates for the return processes presented in Panel A and B of Table 1. Panel A numbers
are based on estimates for the period 1947:1-1995:4, while Panel B numbers are based on
estimates for the period 1890-1993. The values in the main diagonal correspond to

the power utility case.
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TABLE 4

Mean Optimal Percentage Allocation to Stocks
oy = [af + a1(p + 02 /2)] x 100

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. E.LS.
Allocations

1/.75 100 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 324.04 337.05 346.26 350.02 354.81 357.37 358.17 358.52
1.00 303.60 303.60 303.60 303.60 303.60 303.60 303.60 303.60
1.50 255.91 250.97 246.72 244.86 242.31 24092 240.48 240.26
2.00 217.19 213.00 209.18 207.41 204.97 203.59 203.15 202.93
4.00 131.92 131.78 131.64 131.57 131.46 131.40 131.38 131.37
10.0 59.61 61.17 62.87 63.77 6520 6620 66.53 66.69
20.0 31.06 3228 3365 34.38 3563 36.42 36.69 36.83
40.0 15.85 1660 1744 17.90 18.68 19.16 1936 19.45

Standard Errors

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 43.12 39.13 3883 39.05 3945 39.72 3982 39.83
1.00 30.99 30.99 30,99 30.99 3099 3099 3099 30.99
1.50 31.95 2897 2689 26.18 2528 2485 24.73 24.66
2.00 31.45 2830 2582 24.80 4843 23.08 2284 2275
4.00 23.82 2259 2148 2097 20.28 1991 19.79 19.73
10.0 12.30 1242 1256 12.66 12.83 13.00 13.05 13.08
20.0 6.71 6.95 7.23 7.38 7.67 7.86 7.92 7.96
40.0 3.50 3.68 3.89 4.00 4.20 4.33 4.39 441

Note: Portfolio allocations and their standard errors are given in percentage points and
are based on the parameter values for the return processes presented in Panel A and B of
Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4, while Panel
B allocations are based on estimates for the period 1890-1993. The values in the main

diagonal correspond to the power utility case.



TABLE 4 (ctd.)
Mean Optimal Percentage Allocation to Stocks
o = [af + a1(p + 02 /2)] x 100

(B) Annual Model: 1890 - 1993

R.R.A. EIS.
Allocations

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 206.18 209.03 211.50 212.61 214.17 215.03 215.30 215.44
1.00 180.54 180.54 180.54 180.54 180.54 180.54 180.54 180.54
1.50 142.13 142.13 141.20 140.76 140.12 139.77 139.66 139.60
2.00 118.03 117.30 116.60 116.26 115.77 115.49 115.39 115.35
4.00 68.83 69.15 6946 69.61 69.86 70.00 70.05 70.08
10.0 30.41 31.02 31.67 32.01 3255 32.89 33.01 33.07
20.0 15.74 16.17 16.64 16.89 17.30 17.56 17.65 17.69
40.0 8.01 8.26 8.54 8.69 8.94 9.10 9.15 9.18

Standard Errors

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 4497 3524 2994 2845 27.22 2690 26.85 26.83
1.00 25.16 2516 25.16 25.16 25.16 25.16 25.16 25.16
1.50 23.60 2430 25.15 25.62 2638 26.71 26.85 26.92
2.00 26.88 27.26 27.78 28.10 28.63 2899 29.11 29.17
4.00 29.77 3063 3149 31.98 3248 3283 3295 33.01
10.0 19.12 21.03 2311 2422 26.00 27.06 27.44 27.63
20.0 11.12 12,65 14.43 1542 1706 1815 18.53 18.72
40.0 5.99 6.94 8.09 8.75 9.87 1062 10.89 11.03

Note: Portfolio allocations and their standard errors are given in percentage points and
are based on the parameter values for the return processes presented in Panel A and B of
Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4, while Panel
B allocations are based on estimates for the period 1890-1993. The values in the main

diagonal correspond to the power utility case.



TABLE 5

Percentage Mean Hedging Demand Over Mean Total Demand
at,hedging (15 Y, ¥) /o (1157, ¥) = [1 — (ce(p5 1, %) /7)] X 100

(A) Quarterly Model: 1947:1 - 1995:4

RR.A. E.LS.
1/.75 100 1/15  1/2 1/4  1/10  1/20  1/40

075 —-24.92 -20.10 -1691 -15.65 -14.09 -13.27 -13.02 -12.91
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 20.91 1935 1796 17.34 16.47 1599  15.83 15.76
2.00 30.11 2873 2743  26.81 2594 2544 2527  25.19
4.00 42.47 4240 4234 4231 4226 4224 42.23  42.22
10.0 49.07 5036 51.71 5239 5343 54.14 5437 54.48
20.0 51.12 5297 54.89 55.85 57.39 5832 58.63  58.78
40.0 5212  54.27 5648 5759 5936 6039 60.79 60.97

(B) Annual Model: 1890 - 1993

RRA. E.LS.
1/.75 100 1/15  1/2 1/4 1/10  1/20  1/40

0.7 -16.75 -15.16 -13.81 -13.22 -1240 -11.95 -11.80 -11.73
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.50 1591 1532 1476 1449 14.11 13.89 13.82  13.78
2.00 23.52 23.04 2258 2236 2203 21.84 21.77 21.74
4.00 3443 3473 3502 3516 3539 3553 3557  35.59
10.0 40.64 41.80 43.00 43.60 4453 45.11 4531 45.40
20.0 42.64 44.17 45.76 46.57 47.83 4859 48.85 48.98
40.0 43.63 4536  47.16 48.08 49.51 5039 50.69  50.83

Note: The numbers in the table are based on the parameter values for the return processes
presented in Panel A and B of Table 1. Panel A allocations are based on estimates for the
period 1947:1-1995:4, while Panel B allocations are based on estimates for the period 1890-
1993. The values in the main diagonal correspond to the power utility case.



TABLE 6

Optimal Percentage Consumption-Wealth Ratio
When the Expected Gross Excess Return Is Zero

(Exponentiated Intercept of the Optimal Consumption Policy)
Ct/Wt = exp{b(‘,} x 100

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. E.IS.

Consumption-Wealth Ratios

1/.75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 0.72 1.53 2.01 220 245 258  2.63 2.65
1.00 0.94 1.53 1.91 205 224 2.34 238 239
1.50 1.25 1.53 1.74 1.82 1.92 1.97 1.99  2.00
2.00 1.41 1.53 1.63 1.66 1.71 1.73 1.74 1.74
4.00 1.68 1.53 1.40 1.34 1.26 1.21 1.19 1.18
10.0 1.87 1.53 1.21 1.06 083 070 066 0.64
20.0 1.94 1.53 1.14 094 065 048 042 039
40.0 1.98 1.53 1.09 08 055 035 029 0.26

Standard Errors

1775 100 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 0.71 0.00 0.37 0.51 070  0.82 0.86  0.85
1.00 0.56 0.00 0.34 046 049 072 075 0.77
1.50 0.37 0.00 0.26 037 051 0.59 062 0.63
2.00 0.29 0.00 0.22 032 030 052 053 0.54
4.00 0.15 0.00 0.14 020 029 034 036 037
10.0 0.07 0.00 0.07 010 015 018 019 019
20.0 0.03 0.00 0.04 005 008 010 011 0.11
40.0 0.02 0.00 0.02 003 004 005 006 0.06

Note: Consumption-Wealth ratios and their standard errors are given in percentage
points and are based on the parameter values for the return processes presented in Panel A
and B of Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4,
while Panel B allocations are based on estimates for the period 1890-1993. The values in

the main diagonal correspond to the power utility case.
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TABLE 6 (ctd.)

Optimal Percentage Consumption-Wealth Ratio
When the Expected Gross Excess Return Is Zero

(Exponentiated Intercept of the Optimal Consumption Policy)
C,/W; = exp{bg} x 100

(B) Annual Model: 1890 - 1993
R.R.A. E.L.S.

Consumption-Wealth Ratios

1/75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 4.50 6.00 7.12 7.59  8.22 8.57 868 8.73
1.00 4.84 6.00 6.87 7.23 7.70 795 8.03 8.07
1.50 5.58 6.00 6.33 6.47  6.65 6.74 6.77 6.79
2.00 5.93 6.00 6.04 606 607 6.07 6.07 6.07
4.00 6.54 6.00 5.49 524 489 469 4.62 4.59
10.0 6.98 6.00 5.04 458 389 348 335 3.28
20.0 7.14 6.00 4.87 431 347 297 280 2.72
40.0 7.22 6.00 4.77 416 3.24 269 250 241

Standard Errors

1/.75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 7.94 0.00 5.33 7.46 1025 11.75 12.23 1246
1.00 5.39 0.00 3.90 552 767 884 922 941

1.50 2.74 0.00 2.34 340 489 5.70 5.97 6.10
2.00 1.63 0.00 1.49 219 319 3.76 3.95 4.04
4.00 0.42 0.00 0.37 053 07 088 092 0.94
10.0 0.14 0.00 0.22 036 0.65 0.86 0.94 0.98
20.0 0.09 0.00 0.16 0.28 0.52 0.71 0.77 0.81
40.0 0.05 0.00 0.10 0.17 033 0.44 0.49 0.51

Note: Consumption-Wealth ratios and their standard errors are given in percentage
points and are based on the parameter values for the return processes presented in Panel A
and B of Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4,
while Panel B allocations are based on estimates for the period 1890-1993. The values in
the main diagonal correspond to the power utility case.
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TABLE 7

Linear Coefficient of the Optimal Consumption Policy (b])

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. E.LS.
Coefficients

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 -9.89 0.00 5.84 7.83 10.05 11.02 11.29 11.44
1.00 -8.98 0.00 5.80 7.90 1033 1150 11.84 12.00
1.50 -6.73 0.00 5.05 7.09 9.66 1096 11.36 11.55
2.00 -5.52 0.00 4.54 6.50 9.11 1050 1094 11.16
4.00 -3.18 0.00 3.16 4.73 7.08 8.48 8.95 9.18
10.0 -1.39 0.00 1.61 2.52 4.00 4.99 5.33 5.51
20.0 -0.72 0.00 0.88 1.40 2.29 2.89 3.10 3.21
40.0 -0.36 0.00 0.46 0.74 1.23 1.56 1.68 1.74

Standard Errors

1/.75 100 1/15 1/2 1/4 1/10 1/20 1/40
0.75 5.56 0.00 1.73 2.09 2.45 2.84 3.03 2.81
1.00 4.53 0.00 1.74 2.03 2.24 2.60 2.67 2.71
1.50 3.10 0.00 1.55 2.10 2.48 2.73 2.81 2.85
2.00 2.43 0.00 1.45 1.93 8.07 3.03 2.88 2.93
4.00 1.29 0.00 1.12 1.63 2.35 2.78 2.92 2.99
10.0 0.54 0.00 0.64 1.01 1.64 2.10 2.26 2.34
20.0 0.27 0.00 0.37 0.60 1.03 1.34 1.46 1.52
40.0 0.14 0.00 0.20 0.33 0.58 0.76 0.83 0.87

Note: The numbers in the table report the linear coefficient - and its standard error -
of the optimal consumption policy when expected log excess returns are expressed in decimal
points. They are based on the parameter values for the return processes presented in Panel
A and B of Table 1: Panel A numbers are based on estimates for the period 1947:1-1995:4,
while Panel B numbers are based on estimates for the period 1890-1993. The values in the

main diagonal correspond to the power utility case.
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TABLE 7 (ctd.)

Linear Coefficient of the Optimal Consumption Policy (b})

(B) Annual Model: 1890 - 1993

R.R.A. E.LS.
Coefficients

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 -1.06 0.00 0.80 1.13 1.53 1.74 1.80 1.83
1.00 -1.15 0.00 0.90 1.27 1.75 2.00 2.08 2.12
1.50 -0.78 0.00 0.68 0.98 1.40 1.64 1.71 1.75
2.00 -0.65 0.00 0.60 0.88 1.29 1.52 1.59 1.63
4.00 -0.39 0.00 0.40 0.61 0.93 1.12 1.19 1.22
10.0 -0.17 0.00 0.20 0.31 0.49 0.61 0.65 0.67
20.0 -0.09 0.00 0.11 0.17 0.27 0.34 0.36 0.38
40.0 -0.05 0.00 0.06 0.09 0.14 0.18 0.19 0.20

Standard Errors

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 1.11 0.00 0.27 0.52 1.12 1.56 1.72 1.79
1.00 0.54 0.00 0.43 0.77 1.42 1.88 2.04 2.12
1.50 0.46 0.00 0.58 0.92 1.53 1.85 1.98 2.04
2.00 0.65 0.00 0.69 1.05 1.63 1.99 2.12 2.18
4.00 0.68 0.00 0.74 1.12 1.74 2.12 2.25 2.31
10.0 0.39 0.00 0.50 0.7 1.30 1.63 1.75 1.81
20.0 0.22 0.00 0.30 0.49 0.83 1.07 1.15 1.20
40.0 0.12 0.00 0.17 0.27 0.47 0.62 0.67 0.70

Note: The numbers in the table report the linear coefficient - and its standard error -
of the optimal consumption policy when expected log excess returns are expressed in decimal
points. They are based on the parameter values for the return processes presented in Panel
A and B of Table 1: Panel A numbers are based on estimates for the period 1947:1-1995:4,
while Panel B numbers are based un estimates for the period 1890-1993. The values in the

main diagonal correspond to the power utility case.

13



TABLE 8

Quadratic Coefficient of the Optimal Consumption Policy (b;)

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. EIS.
Coefficients

1/.75 100 1/15 1/2 1/4 1/10 1/20 1/40
0.75 -383.39 0.00 319.16 459.37 649.61 752.96 785.69 802.37
1.00 -325.48 0.00 277.09 400.65 569.62 663.56 693.47 708.20
1.50 -248.45 0.00 222.05 324.35 467.93 548.92 575.11 588.06
2.00 -201.19 0.00 185.92 273.51 398.90 470.79 494.23 505.85
4.00 -113.97 0.00 113.61 170.28 255.12 305.93 322.85 331.30
10.0 -49.39 0.00 5279 80.56 123.98 151.40 160.70 165.39
20.0 -25.38 0.00 2793 4293 6695 8222 8746 90.11
40.0 -12.87 0.00 1439 2220 34.83 4291 4576 47.18

Standard Errors

1/.75 100 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 166.38 0.00 122.07 172.85 240.28 284.29 300.63 296.96
1.00 140.11 0.00 110.73 154.77 168.02 251.77 262.78 268.20
1.50 106.63 0.00 89.80 132.33 185.92 217.32 227.49 232.52
2.00 86.46 0.00 77.27 113.11 83.07 198.80 203.14 207.91
4.00 49.36 0.00 50.01 7536 113.94 137.45 145.36 149.32
10.0 21.61 0.00 2442 3782 5954 7T74.01 7897 81.50
20.0 11.15 0.00 13.18 20.62 33.12 4140 44.30 45.77
40.0 5.66 0.00 6.86 10.79 1747 2191 2355 24.36

Note: The numbers in the table report the quadratic coefficient - and its standard error -
of the optimal consumption policy when expected log excess returns are expressed in decimal
points. They are based on the parameter values for the return processes presented in Panel
A and B of Table 1: Panel A numbers are based on estimates for the period 1947:1-1995:4,
while Panel B numbers are based on estimates for the period 1890-1993. The values in the

main diagonal correspond to the power utility case.
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TABLE 8 (ctd.)

Quadratic Coefficient of the Optimal Consumption Policy (b;)

(B) Annual Model: 1890 - 1993

R.R.A. E.L.S.
Coefficients

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 -15.41 0.00 1389 2031 2934 3444 36.08 36.90
1.00 -12.82 000 11.67 17.12 2485 29.24 30.67 31.37
1.50 -9.50 0.00 899 13.31 19.57 23.22 2441 25.00
2.00 -7.57 0.00 7.32 1090 16.15 19.25 20.27 20.78
4.00 -4.16 0.00 4.23 6.37 9.62 11.58 12.24 12.57
10.0 -1.77 0.00 1.88 2.86 4.39 5.34 5.67 5.83
20.0 -0.90 0.00 0.98 1.49 2.31 2.82 3.00 3.09
40.0 -0.46 0.00 0.50 0.76 1.19 1.45 1.54 1.59

Standard Errors

1/.75 1.00 1/1.5 1/2 1/4 1/10  1/20 1/40
0.75 5.55 0.00 4.08 699 1271 17.08 18.63 19.42
1.00 3.42 0.00 3.85 6.34 1096 14.23 1541 16.01
1.50 3.01 0.00 3.64 5.77 9.77 11.74 1258 13.01
2.00 3.11 0.00 3.46 5.35 8.41 10.38 11.07 11.41
4.00 2.63 0.00 2.78 4.15 6.46 7.83 8.29 8.52
10.0 1.41 0.00 1.62 2.51 3.94 4.84 5.16 5.31
20.0 0.77 0.00 0.93 1.47 2.35 2.94 3.15 3.25
40.0 0.41 0.00 0.50 0.80 1.30 1.64 1.76 1.82

Note: The numbers in the table report the quadratic coefficient - and its standard error -
of the optimal consumption policy when expected log excess returns are expressed in decimal
points. They are based on the parameter values for the return processes presented in Panel
A and B of Table 1: Panel A numbers are based on estimates for the period 1947:1-1995:4,
while Panel B numbers are based on estimates for the period 1890-1993. The values in the

main diagonal correspond to the power utility case.
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TABLE 9

Percentage Exponentiated Mean Optimal
Log Consumption-Wealth Ratio
C/W; = exp{E[e; — un]} x 100

Ble. — we] = by + b (1 + 02/2) + ba(a? + p? + po? + 03/4)

(A) Quarterly Model: 1947:1 - 1995:4
R.R.A. E.LS.

Consumption-Wealth Ratios

1/.75 100 1/15 1/2  1/4 1/10 1/20 1/40

0.75 0.52 1.53 2.52 302 376 421 436  4.43
1.00 0.71 1.53 2.35 27 335 371 3.83 3.89
1.50 1.01 1.53 2.06 2.33 272 29 303 3.07
2.00 1.18 1.53 1.89 207 233 249 254 257
4.00 1.52 1.53 1.55 1.55 1.56 1.57 1.57 1.57
10.0 1.79 1.53 1.27 1.14 094 0.81 0.77 0.75
20.0 1.90 1.53 1.17 098 069 052 046 043
40.0 1.96 1.53 1.11 089 057 037 030 0.27

Standard Errors

1/75 100 1/15 1/2  1/4 1/10 1/20 1/40

0.75 0.55 0.00 0.39 056 078 090 094 095
1.00 0.44 0.00 0.36 0.51 0.71 082 085 0.87
1.50 0.31 0.00 0.28 0.41 058 0.68 0.71 0.72
2.00 0.25 0.00 0.24 035 051 059 062 0.63
4.00 0.14 0.00 0.15 022 033 040 042 043
10.0 0.07 0.00 007 0100 016 020 021 0.22
20.0 0.03 0.00 0.04 0.06 009 011 0.11 0.12
40.0 0.02 0.00 0.02 003 004 006 006 0.06

Note: Consumption-Wealth ratios and their standard errors are given in percentage
points and are based on the parameter values for the return processes presented in Panel A
and B of Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4,
while Panel B allocations are based on estimates for the period 1890-1993. The values in
the main diagonal correspond to the power utility case.
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TABLE 9 (ctd.)

Percentage Exponentiated Mean Optimal
Log Consumption-Wealth Ratio
Ct/Wt = exp{E'[ct - wt]} x 100

Elc, — we] = bg + bi (1 + 03 /2) + ba(a2 + p® + pol + ol /4)

(B) Annual Model: 1890 - 1993
R.R.A. E.I.S.

Consumption-Wealth Ratios

1/.75 100 1/15 1/2 1/4  1/10 1/20 1/40

0.75 3.86 6.00 8.10 915 1070 11.63 11.93 12.09
1.00 4.20 6.00 7.75 8.61 9.88 10.62 10.87 11.00
1.50 5.04 6.00 6.94 7.41 8.10 8.51 865 8.71
2.00 5.46 6.00 6.53 6.80 7.19 7.43 7.50 7.54
4.00 6.24 6.00 5.76 564 546 5.36  5.32 5.30
10.0 6.84 6.00 5.16 474 410 372 359  3.53
20.0 7.06 6.00 4.93 439 357 3.08 291 2.83
40.0 7.18 6.00 4.80 420 3.29 2.74 255 2.46

Standard Errors

1/75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 7.12 0.00 591 850 11.99 13.89 1449 14.79
1.00 4.79 0.00 4.13 599  8.52 991 10.36 10.58
1.50 2.34 0.00 2.25 333 490 5.81 6.11 6.26
2.00 1.27 0.00 1.28 1.91 2.86 342 3.61 3.70

4.00 0.33 0.00 034 052 079 096 1.01 1.04
10.0 0.29 0.00 039 063 1.05 1.34 1.45 1.50
20.0 0.19 0.00 027 044 075 097 1.04 1.08
40.0 0.11 0.00 016 026 044 057 0.62 064

Note: Consumption-Wealth ratios and their standard errors are given in percentage
points and are based on the parameter values for the return processes presented in Panel A
and B of Table 1. Panel A allocations are based on estimates for the period 1947:1-1995:4,
while Panel B allocations are based on estimates for the period 1890-1993. The values in
the main diagonal correspond to the power utility case.
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TABLE 10

Long-Term Expected Log Return on Wealth
E[T‘p,t+1] x 100

(A) Quarterly Model: 1947:1 - 1995:4

RR.A. E.LS.

1/75 100 1/15 1/2 1/4 1/10 1/20 1/40
0.75 391 388 38 38 3.8 382 382 381
1.00 397 397 397 397 397 397 397 397
1.50 38 38 379 379 378 317 377 3.7
2.00 3.55 3.53 3.51 3.49 3.48 3.47 347 3.47
4.00 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56
10.0 1.34 1.36 1.39 1.40 1.42 1.44 1.44 1.45
20.0 076 078 08 0.82 084 08 086 0.86
40.0 043 044 046 047 048 049 049 050

(B) Annual Model: 1890 - 1993
R.R.A. EILS.

1/75 100 1/15 1/2 1/4 1/10 1/20 1/40
0.75 10.99 1096 1093 1091 10.89 10.87 10.87 10.87
1.00 11.33 1133 1133 1133 1133 1133 1133 11.33
1.50 10.80 10.78 10.77 10.76 10.75 10.74 10.74 10.74
2.00 994 993 991 99 9.8 988 988 9.87
4.00 736 737 739 739 740 741 741 741
10.0 460 464 467 469 472 474 475 475
20.0 3.39 341 3.44 3.46 3.49 3.50 3.51 3.51
40.0 2.7 2.73 2.75 2.76 2.78 2.79 2.79 2.79
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TABLE 11

Volatility of Consumption Growth
g (ACt+1 — Et [Act+1]) x 100

(A) Quarterly Model: 1947:1 - 1995:4

R.R.A. EIS.
1/75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 37.78 3204 2852 2734 26.08 2557 2543 25.36
1.00 33.74 2793 2419 2290 21.53 2097 20.82 20.75
1.50 27.11 2234 1895 1773 1642 1592 1579 15.73
2.00 2256 1865 1572 14.64 1350 13.09 13.00 1296
4.00 13.32 1125 9.53 887 822 805 804 804
10.0 5.93 5.14 444 417 393 393 396  3.98
20.0 307 270 2.36 222 212 214 216 218
40.0 1.57 1.38 1.22 115 110 1.12 114 115

(B) Annual Model: 1890 - 1993

RRA. E.LS.
1/.75 100 1/15 1/2 1/4 1/10 1/20 1/40

0.75 58.08 51.71 47.07 4531 4328 4237 4211 41.99
1.00 4946 43.22 3866 3693 3497 34.12 33.89 33.78
1.50 37.54 3284 29.13 2767 2597 2524 25.04 24.95
2.00 3041 2659 2350 2226 20.83 20.24 20.08 20.02
4.00 17.26 1521 1344 1272 1191 11.61 11.55 11.52
10.0 7.50 6.69 5.96 566 533 524 523 523
20.0 3.86 3.47 3.10 295 279 275 276 276
40.0 1.96 1.76 1.58 1.51 1.43 1.42 1.42 1.42
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Expected Log Portfolio Return (7)
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