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Abstract

I incorporate loss aversion in a consumption-based asset pricing model with recursive pref-
erences and solve for asset prices in closed-form. I find loss aversion increases expected returns
substantially relative to the standard recursive utility model. This feature of my model im-
proves the ability to match moments on asset prices. Further, I find loss aversion induces
important nonlinearities into the expected excess returns as a function of the exposure to the
consumption shocks. In particular, the elasticities of expected returns with respect to the ex-
posure to the consumption shocks are greater for assets with smaller exposures to the shocks,
thus generating interesting predictions for the cross-section of returns. I provide empirical
evidence supporting this outcome. The model with loss aversion correctly predicts both a
negative premium for skewness and a security market line, the excess returns as a function of
the exposure to market risk, flatter than the CAPM.

Introduction

Loss-averse agents value consumption outcomes relative to a reference point, and losses relative

to the reference create more disutility than comparable gains. I add such loss aversion features to

a preference model with recursive utility, in which the value of the consumption stream depends

on current consumption and next period’s value for future consumption. I suppose agents are loss

averse and thus suffer additional disutility if the realization of next period’s value disappoints (i.e.,

falls below their expectation). My model of loss aversion allows me to find tractable solutions to

the consumption-based asset pricing model with homogeneous agents.

Loss aversion has a “first-order risk aversion” impact: the certainty equivalents of small gambles

around the reference point depend on first-order volatility terms in contrast to the second order
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terms of smooth utility models. The smaller the volatility, the more dominant these first order

terms are: agents appear more risk averse for small gambles than for large ones, in line with

evidence from the micro and experimental literature. Accordingly, I find loss aversion in the

preferences has a first-versus-second order impact on asset prices, so that, compared to the standard

recursive utility model, expected returns are substantially higher (level effect), even more so for

assets with small rather than large underlying risk (cross-sectional effect).

Consider first the cross-sectional effect. The loss aversion specification induces important

nonlinearities in the expected excess returns: the price of risk, represented by the elasticities of

expected returns with respect to the exposure to the consumption shocks, varies with the exposures

to the shocks, in contrast to the standard recursive utility model, which yields a constant pricing

of risk across assets, in the cases I consider. My model with loss aversion thus generates novel

predictions for the cross section of returns, which differentiate it from the standard recursive utility

model. Two well-known results in finance provide empirical support for my model. First, Black,

Jensen, and Scholes (1972) and more extensively Frazzini and Pedersen (2010) show the asset

returns line (the excess returns as a function of beta, the exposure to market risk) is persistently

flatter over time than the CAPM, for a wide class of assets (U.S. equities, 20 global equity markets,

Treasury bonds, corporate bonds, and futures). Second, Harvey and Siddique (2000) show assets

with the same volatility but different skewness in their returns distributions yield different expected

returns: they find a negative premium for skewness. My model with loss aversion offers a novel

theoretic explanation for these results.

Consider now the level effect. With loss aversion, my model generates higher expected excess

returns and lower risk-free rates than in the standard recursive utility model. The recursive

utility model, which allows one to disentangle the risk aversion and the intertemporal elasticity

of substitution, is central to the consumption-based asset pricing literature, notably the long-run

risk models (e.g., Bansal and Yaron (2004); Hansen, Heaton, and Li (2008); Bansal, Kiku, and

Yaron (2007, 2009)). However, its calibration using moments on asset returns requires high levels

of risk aversion. The level effect my model with loss aversion generates allows me to improve on

such calibration exercises.

Beyond the contribution of developing a fully tractable consumption-based asset pricing model

with loss aversion, my analysis of the cross-sectional risk-price elasticities, as well as the impact of

loss aversion on the security market line relative to the CAPM, is novel to the behavioral finance

and the asset pricing literature.
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Previous papers analyze the impact on asset prices of preferences with loss aversion (e.g., Be-

nartzi and Thaler (1995); Barberis et al. (2001); Yogo (2008); Barberis and Huang (2009)). I add

to this literature by defining a new model of preferences with loss aversion that allows me to solve

the asset pricing model with recursive utility in a tractable way. The advantage of using recursive

preferences in consumption-based asset pricing models is well established, and combining behav-

ioral models and recursive utility gives rise to interesting results. Other authors have adopted this

approach. Routledge and Zin (2010) present a model of generalized disappointment aversion, an

extension of the disappointment aversion of Gul (1991). They analyze the asset pricing implica-

tions of Epstein-Zin preferences with generalized disappointment aversion and obtain closed-form

solutions and interesting results in a simple two-state Markov economy. Bonomo et al. (2011)

extend the analysis to a four-state Markov adapted from Bansal, Kiku, and Yaron (2007). They

match first and second moments on the market returns and risk-free rate, predictability patterns,

and autocorrelations, for realistic parameters. The tractable features of my model allow me to

find closed-form solutions for more general economies, to extend the analysis to the cross-section

of returns, and to analyze and derive solutions for various novel reference-point models, while

remaining close in spirit to disappointment aversion. Barberis and Huang (2009) use a recursive

utility model with loss aversion narrowly framed on the stock market returns and find closed-form

solutions for both partial and general equilibria. My model differs from theirs in two crucial ways.

First, I make the more conservative choice of not opting for narrow framing on financial risks,

which makes the results I obtain all the more robust. Second, Barberis and Huang (2009) choose

the constant risk free rate as the reference point for market returns. In contrast, to better re-

flect the empirical evidence on the reference point, I model it as endogenously determined as an

expectation.

The rest of the paper is organized as follows: In section 1, I model loss aversion in a recursive

model of preferences. In section 2, I analyze the consumption-based asset pricing model and obtain

tractable solutions for the model of preferences with loss aversion. I then analyze the asset pricing

implications of the model. The predictions of the model are brought to the data in section 3.

1 Preferences with Loss Aversion

I define a new model of preferences that display loss aversion, with a reference point endogenously

specified as an expectation of the future utility of consumption. I focus on CRRA preferences and
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a log-linear specification, which allows me to obtain closed-form solutions when adapted to the

consumption-based asset pricing model with unit intertemporal elasticity of substitution.

For illustrative purposes, I start with a two-period model in section 1.1. In section 1.2, I extend

the loss aversion specification to the multi-period, recursive utility model, and I fully describe my

choice of preferences. In section 1.3, I derive the Euler Equation corresponding to my model of

preferences.

1.1 Two-Period Model

At period t = 1, the agent receives consumption C, the level of which is uncertain at period t = 0.

The standard CRRA model for this two-period setting is:

U0 = E

�
C1−γ

1− γ
| I0

�
,

where I0 is the information set at time t = 0 and γ > 1 is the coefficient of risk aversion.

I modify the standard model by adding loss aversion around a reference point, which I define

later as the agent’s endogenous expectation for next-period consumption (see Eq. (4)). The

reference point depends on the time t = 0 distribution for time t = 1 consumption, and is noted

R (C). The two-period model is now given by:

U0 = E (U (C,R (C)) | I0) ,

and in Figure 1, I illustrate how the modified utility from consumption U (C,R (C)) incorporates

loss aversion into the standard CRRA model.

Because loss averse agents dislike losses more than they value gains, the modified utility func-

tion displays a kink at the reference point, with a steeper slope below the reference than above.

As a modeling choice, the utility function is unchanged from the standard CRRA model with risk

aversion γ above the reference point. Below the reference point, the loss aversion specification

results in a decrease in utility relative to the standard model.

The decrease in utility below the reference is determined by the sharpness of the kink. The

more loss averse the agent, the sharper the kink in the preferences. I therefore define a loss aversion

coefficient α ∈ [0, 1), where 1 − α determines the ratio of the right-hand slope to the left-hand

slope. In the limit case α = 0, the agent displays no loss aversion (the ratio of the slopes is exactly

one) and the model reverts to the standard CRRA model. As α increases, so does the sharpness
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Figure 1: Loss Aversion in the Two-period Model

of the kink at the reference point.1

To ensure tractability in the asset pricing model, I choose to maintain the homogeneous CRRA

specification below the reference point.

Proposition 1 If preferences U (C,R (C)) satisfy:

1) preferences are continuous

2) preferences display a kink at a reference point R (C), with a right-hand to left-hand slope

ratio equals to 1− α with α ∈ [0, 1)

3) preferences are homogeneous CRRA above and below the reference point,

Then:

U (C,R (C)) =

�
aC1−γ̄

1−γ̄
for C ≤ R (C)

bC
1−γ

1−γ
for C ≥ R (C)

,

with b
a
= 1−γ

1−γ̄
(R (C))γ−γ̄ and 1−γ

1−γ̄
= 1− α.

Without loss of generality, I can set b = 1 or a = 1. As I discuss below, I model the reference

point R (C) as an expectation of future consumption outcomes, and it is thus endogenously deter-

mined by the agent’s optimal consumption choice. Because the agent is loss averse for outcomes

1Using micro evidence, Kahneman and Tversky (1979) estimate the ratio of the slopes at 1/2.25, which cor-
responds to α = 0.55, and I present several quantitative results with this value. This estimation concerns loss
aversion on individual gambles, and is therefore mainly illustrative in the context on a representative agent with
loss aversion on total wealth.
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below the reference point, choosing a consumption path that results in a low reference point rather

than a high reference point at period t+1, thus decreasing the probability of disappointment, could

be in her best interest. In such a case, the agent would sometimes reject first-order dominating

outcomes. Some empirical evidence exists regarding such behavior.2 However, in the context of

asset pricing, first-order stochastic dominance should be preserved to avoid direct violations of the

no-arbitrage condition.

Consequently, I ensure, in my model of preferences, the expected utility U0 is increasing in

R (C). This is satisfied when a = 1 and:

U (C,R (C)) =
1

1− γ̄





C1−γ̄ for C ≤ R (C)

C1−γ × (R (C))γ−γ̄

� �� �
scaling factor

for C ≥ R (C) . (1)

In that regard, I follow Kahneman and Tversky (1979), in which direct violation of dominance

is prevented in the first stage of editing.

The ratio of the slopes above and below the reference point is given by

1− γ

1− γ̄
= 1− α .

This equation makes explicit γ̄ as an increasing function of both γ and α, with γ̄ ≥ γ. In

my model, the curvature is stronger, and the agent is more risk-averse below the reference point

than above. This is to be contrasted with the prospect theory model of Kahneman and Tversky

(1979), in which agents display loss aversion in their preferences, with risk aversion above and risk

seeking below the reference point. Agents have been documented to display risk-seeking below the

reference point in the context of narrow-framing, in which gambles are evaluated independently

from other sources of risk. This evidence does not contradict my model, in which agents display

loss aversion over the total value of consumption.

1.2 Multi-Period Model, Recursive Utility

I now consider a multi-period model with consumption stream {Ct}.

As in the model of Epstein and Zin (1989), at each period t, the agent’s valuation for the

future consumption stream is given by Vt, which is defined recursively as:

Vt =
�
(1− β)C1−ρ

t + β (h (Vt+1))
1−ρ

� 1

1−ρ
,

2Frederick and Loewenstein (1999) consider cases in which a prisoner is better off not trying for parole in order
to avoid being disappointed. Gneezy, List, and Wu (2006) observe cases in which an agent chooses a worst outcome
for certain rather than a lottery outcome. See also Akerlov and Dickens (1982) and Matthey (2010).
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with ρ > 0 the inverse of the EIS (elasticity of intertemporal substitution) and 0 < β < 1 the

discount factor (with − log β the rate of time discount).

The period t = 1 consumption of the two-period model is replaced by next-period value Vt+1,

which is uncertain at time t, and impacts current value Vt via a standard CRRA model:

h (Vt+1) =
�
Et

�
V 1−γ
t+1

�� 1

1−γ
,

where γ > 1 is the coefficient of risk aversion.

I modify h by introducing loss aversion around a reference point, similarly to the two-period

model of section (1.1). At each period t, the reference point depends on the conditional distribution

for next period value Vt+1, and is noted Rt (Vt+1). I obtain:

h (Vt+1) = {Et [U (Vt+1,Rt (Vt+1))]}
1

1−γ̄ ,

where

U (Vt+1,Rt (Vt+1)) =





V 1−γ̄
t+1 for Vt+1 ≤ Rt (Vt+1)

V 1−γ
t+1 × (Rt (Vt+1))

γ−γ̄

� �� �
scaling factor

for Vt+1 ≥ Rt (Vt+1) , (2)

and
1− γ

1− γ̄
= 1− α . (3)

Eq. (2) is the multi-period extension to the two-period model of Eq. (1).

As in the two-period model, loss aversion is represented by one coefficient, α ∈ [0, 1) which

determines the sharpness of the kink in the preferences, with a ratio of slopes given by Eq. (3).

As before, this relation makes explicit γ̄ as an increasing function of both γ and α, with γ̄ ≥ γ.

When α = 0, the agent displays no loss aversion and my model reverts to the standard recursive

utility model. When α > 0, the agent is loss averse and expects at time t to experience additional

disutility at time t + 1 if the value of the future consumption stream Vt+1 is disappointing, that

is, falls below her time t reference point Rt (Vt+1).

Notice I did not include loss aversion on the contemporaneous consumption Ct. The one-period

discount rate is sufficiently low that most of the value in Vt comes from the second term in Vt+1 and

not from the first term in Ct. Simplifying the model by restricting the loss aversion specification

to the second term in Vt+1 is a valid choice.

Further, I did not include loss aversion over changes in the reference point Rt (Vt+1). Adding

loss aversion over changes in the news about future outcomes, and thus over changes in the reference

point is left for future research.
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Reference Point

In line with the benchmark model of Koszegi and Rabin (2006), I define a reference point en-

dogenously determined by the agent’s expectation of outcomes. As a modeling choice, I opt for a

log-linear specification for the reference point: in my model, the agent is disappointed and registers

additional disutility from loss aversion when log V ≤ E (log V ).

The log-linear specification for the reference point is a natural choice for the consumption-

based asset pricing model with unit intertemporal elasticity of substitution. However, the model

can be analyzed with other choices of the reference point as an expectation. In particular, the

predictions of my model are largely unchanged by the more general CRRA model of R (V ) =
�
E
�
V 1−ψ | I0

�� 1

1−ψ , with ψ ≥ 0. I derive the solutions for this model and compare them to the

log-linear case corresponding to ψ = 1 in the online Appendix C.3

There is ample empirical evidence for a reference point as an expectation (see for example

Sprenger (2010), Crowford and Meng (2011), Pope and Schweitzer (2011), Abeler et al. (2011),

Card and Dahl (2011) and Gill and Prowse (2012)), but none regarding which expectation model

is most relevant. Consequently, Koszegi and Rabin (2006) model the reference point as stochastic.

My choice of a deterministic reference point simplifies the model greatly. Allowing for uncertainty

on the reference point is left for future research.

In the multi-period framework, the agent updates her reference point as an expectation when

new information about future outcomes becomes available. However, the manner with which the

agent updates the reference point is a modelling choice.

For most of the asset pricing analysis I present, I suppose the agent fully updates her reference

point at each period, such that the reference point at time t is an expectation of outcomes at time

t+ 1 given the information It:

Rt (Vt+1) = exp [E (log Vt+1 | It)] .

In section 2.3.2, I consider a more general, but less tractable, model in which the agent’s

reference point at time t depends on past expectations of the period t+1 outcomes. Her reference

point adjusts slowly as a weighted average of current and past expectations as in:

Rt (Vt+1) =

�
T�

n=0

(expE (log Vt+1 | It−n))
ξn

� 1
�T

0
ξn

, (4)

3http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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where ξ ∈ [0, 1) and T is the number of past periods impacting the reference point. The case

ξ = 0 reverts to the model where the reference point is fully updated at each period and only

current expectations matter.4 When ξ > 0, the agent gradually upgrades the reference point

following positive shocks to the consumption process and thus the risk of disappointment dimin-

ishes. Conversely, the reference point is gradually downgraded in a recession and thus the risk of

disappointment increases. This mechanism introduces some counter-cyclicality in the pricing of

risk, even when the consumption process has constant volatility.5

Characteristics of the Model

Combining the model of Eq. (2) and the modeling choice for the reference point of Eq. (4):

Vt =
�
(1− β)C1−ρ

t + β (h (Vt+1))
1−ρ

� 1

1−ρ
(5)

h (Vt+1) = Et

�
Vt+1

1−γ̄
� 1

1−γ̄

log Vt+1 = log Vt+1 − αmax

�
0, log Vt+1 −

�T
n=0 ξ

n
Et−n (log Vt+1)�T
n=0 ξ

n

�
.

Proposition 2 h has the following properties:6

1) if the outcome Vt+1 is certain, h (Vt+1) = Vt+1

2) h is increasing (first-order stochastic dominance)

3) h is concave (second-order stochastic dominance)

4) h is homogeneous of degree one (and therefore Vt is homogeneous of degree one in (Ct, Vt+1))

These characteristics of my model allow me to use most of the results from Epstein and

Zin (1989), notably the uniqueness of the solution to the optimization problem. The concavity

in the preferences justifies the use of first-order conditions at the optimum, such as the Euler

Equation. Because at time t, Vt is increasing in Vt+1 (first-order stochastic dominance), the agent

simultaneously optimizes the current value Vt and the continuation value Vt+1, and my model of

preferences is time consistent.7

4Dillenberger and Rozen (2011) argue for a history-dependent risk attitude (past disappointments and elation
have an impact on risk aversion), which would support a model of “sticky” updating of the reference point, and
ξ > 0. On the other hand, price-dividend ratios are not well predicted in the data by past consumption growth
(which is also a critique of all habit models), which tends to suggest the degree of “stickiness” ξ must remain small.

5In contrast to models in which time-varying risk aversion is exogenously enforced (see the habit model of
Campbell and Cochrane (1999), as well as Barberis, Huang, and Santos (2001) and Yogo (2008)), counter-cyclical
risk prices endogenously obtain in my model with “sticky” updating of the reference point.

6Proof of these properties is provided in Appendix A.
7Proposition 2 remains valid when the reference point is specified in the more general CRRA framework as

R (V ) =
�
E
�
V 1−ψ | I0

�� 1

1−ψ , with ψ ≥ 0.
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This is a discrete time model in which the length of time intervals can greatly influence the

impact of loss aversion. Indeed, for any time period T , the probability that the agent experiences

some loss aversion increases with the frequency of the model. For a given coefficient of loss aversion

α, the agent would refuse to take any form of risk at the continuous time limit. It might be more

realistic, however, for the agent not to allow herself to be greatly affected by small high frequency

losses, and thus for the coefficient of loss aversion α to decrease with the frequency of the model,

and for the continuous time limit to remain well behaved. Loss aversion models in continuous time

are left for future research.

My model of loss aversion is similar in spirit to the disappointment aversion model. However,

I explicitly define the reference point as an expectation, whereas, in the disappointment aversion

model, it is the solution to a recursive problem. This greatly simplifies the solutions to the asset

pricing model, while yielding similar quantitative results, in the model with full updating of the

reference point. It also allows for great flexibility and the analysis of models such as the one with

“sticky” updating (ξ > 0) in the reference point.

1.3 Stochastic Discount Factor

I now turn to the asset pricing implications of the model. At time t, all uncertain returns Rt+1

must satisfy the Euler Equation:

Et [Rt+1St,t+1] = 1 , (6)

where St,t+1 is the stochastic discount factor between time t and t+ 1.

Suppose ξ = 0.8

Proposition 3 For Vt+1 < Rt (Vt+1):

S−
t,t+1 = β

�
Vt+1

h (Vt+1)

�ρ−γ̄ �Ct+1

Ct

�−ρ

� �� �
standard recursive utility model


1 + α

Et

�
1Vt+1≥Rt(Vt+1)Vt+1

1−γ̄
�

Vt+1
1−γ̄


 .

For Vt+1 > Rt (Vt+1):

S+
t,t+1 = β

�
Vt+1

h (Vt+1)

�ρ−γ �Ct+1

Ct

�−ρ

� �� �
standard recursive utility model

�
Rt (Vt+1)

h (Vt+1)

�γ−γ̄


(1− α) + α

Et

�
1Vt+1≥Rt(Vt+1)Vt+1

1−γ̄
�

Vt+1
1−γ̄


 .

8The details of the derivation for both ξ = 0 and ξ > 0 are in Appendix A. The case ξ > 0 is analyzed in the
online Appendix E, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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The first terms in the stochastic discount factor are those of the standard recursive utility

model, with risk aversion γ̄ below the reference point and risk aversion γ above the reference point.

As in the standard recursive utility model, the covariations of cash-flows with the consumption

growth and with the shocks to the value function determine prices. Shocks to all future realizations

of consumption have an immediate impact on the value function. The recursive utility specification

thus allows the pricing of such shocks. In contrast, in the expected utility CRRA model, the

covariations with the immediate consumption shock only determine prices.

Note that if α = 0, the stochastic discount factor reverts to the standard model with risk

aversion γ.

At the reference point Vt+1 = Rt (Vt+1),

S+
t,t+1

S−
t,t+1

= 1− α
Rt (Vt+1)

Rt (Vt+1) + αEt

�
1Vt+1≥Rt(Vt+1)Vt+1

1−γ̄
� ≤ 1 .

Because of the kink in the preferences due to loss aversion, the stochastic discount factor is

discontinuous at the reference point, when α > 0. The starkly different pricing effects I obtain for

the model with loss aversion in section 2 mostly derive from this discontinuity.

2 Risk Pricing with Loss Aversion

I assume all agents have identical preferences with loss aversion, given by Eq. (5), and they differ

only in their wealth.9 Because preferences are homothetic, the representative agent assumption is

justified.

As a special case of the multi-period model of section 1.2, I start with a simple expected utility

framework in section 2.1. I find the loss aversion specification has (i) a level effect: the expected

excess returns are higher and the risk-free rate is lower than in the standard model; and (ii) a

cross-sectional effect: depending on the exposures to the consumption shocks, the impact of loss

aversion is more or less intense.

However, the quantitative implications of the expected utility model do not allow for a correct

calibration of asset pricing moments. I therefore solve for asset prices in the model with both

recursive utility and loss aversion in sections 2.2 and 2.3.

9Discussing the possible impact of heterogeneity in preferences is not in the scope of this paper, but would be
worth exploring. The equilibrium existence, representative agent, and PDE solutions of Duffie and Lyons (1992)
and Skiadas and Schroder (1999) cannot be used because the preferences are not continuously differentiable in the
interior domain.
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2.1 Expected Utility Model

I start with the special case ρ = γ = 1, and ξ = 0, of the multi-period model of Eq. (5), and I

suppose the optimal consumption follows the process:

logCt+1 − logCt = µc + σcwt+1 ,

where {wt} is iid N (0, 1).10 Preferences are thus given by the expected utility model:

Ut = logCt + Et

� ∞�

τ=1

βτ (logCt+τ − αmax (0, logCt+τ − Et+τ−1 (logCt+τ )))

�
. (7)

Define the value function Vt as log Vt = (1− β)Ut, for all t, and write logC = c and log V = v.

Proposition 4 The unique solution for the value function has a closed-form solution given by:11

vt − ct =
β

1− β

�
µc − α

σc√
2π

�
. (8)

Loss aversion has a clear dampening effect on the value of the consumption stream. Higher

amounts of risk in the consumption process amplify the impact of loss aversion, so that, in contrast

with the standard expected utility model, the value function varies with the volatility σc. With

loss aversion α = 0.55 (as in Kahneman and Tversky (1979)), the log value-to-consumption ratio

is about 75% of the initial value of the standard model.

Consider an asset with time t + 1 return Rt+1, which is uncertain at time t and follows the

log-normal process

logRt+1 =

�
r̄ − 1

2
|σR|

2 − 1

2
|�σR|2

�
+ σRwt+1 + �σR�wt+1 , (9)

where {wt+1} are the shocks to the consumption process,
�
�wt+1

�
are independent shocks, and r̄

is the log expected return of the asset.12

The covariations of asset returns with the consumption shocks determine how “risky” the asset

is and thus the expected returns the agent requires. Applying the Euler Equation of Eq. (6) to

10In all the empirical results I present in this section, I use the quarterly data (1947 to 2010) on the seasonally
adjusted aggregate consumption of non-durables and services from the National Income and Product Accounts
(NIPA) to estimate µc and σc.

11Proof is given in Appendix B
12I choose to model the returns directly as log-normal to obtain closed-form solutions on the expected returns and

risk-price elasticities as functions of the exposure to the consumption shocks. Another choice would be to model the
asset’s cash-flows, rather than the returns, as log-normal. Such a modeling choice would generate returns with close
to log-normal distributions and would yield numerical results in line with the closed-form solutions of my model.
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the returns of Eq. (9) yields r̄ as a function of σR. Increasing the exposure of the log returns to

the log-consumption shocks has a price, which is reflected in a change in the log expected returns.

The risk-price elasticities, given by rp (σR) = ∂r̄ (σR) /∂σR, measure such changes, and therefore

quantify the pricing of risk in the model.

Proposition 5 The risk-free rate, expected excess returns and risk-price elasticities are given by:13

rf = − log β + µc −
1

2
σ2
c − log

�
1 + α

�
1

2
− Φ (−σc)

��
, (10)

r̄ (σR)− rf = σcσR + log

�
1 + α

�
1

2
− Φ (−σc)

��
− log

�
1 + α

�
1

2
− Φ (σR − σc)

��
, (11)

and

rp (σR) = σc +
α√
2π

exp
�
−1

2 (σR − σc)
2
�

1 + α
�
1
2 − Φ (σR − σc)

� , (12)

where Φ is the cumulative normal function.

The first three terms in Eq. (10) are those of the standard recursive utility model and the

usual comparative statics obtain. The risk-free rate is (i) increasing in the mean consumption

growth µc (when the expected consumption growth is high, agents are less inclined to save); (ii)

decreasing in β (with a lower rate of time discount, the agents are more willing to substitute

between immediate and future consumption and thus to save); and (iv) decreasing in the amount

of risk in consumption.

Loss aversion results in an additional precautionary savings term that lowers the risk-free rate

and amplifies its sensitivity to the amount of risk in the consumption process. Nonetheless, the

calibration of the risk-free rate is dominated by the choice of the discount rate β, and the impact

of loss aversion is somewhat small: loss aversion with α = 0.55 reduces the annual risk-free rate

from 2.3% to 1.9%, for a choice of β = (0.999)
1

4 .

In both Eq. (11) and Eq. (12), the first term corresponds to the standard log-utility model,

which yields a linear relation between returns and risk, and thus a constant pricing of risk, equal

to σc, the volatility of the consumption process.

In addition, loss aversion has, first, a level effect on prices: it unambiguously increases the

expected excess returns that the agent requires for a given amount of risk. Second, the additional

13Proof is given in Appendix B
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terms due to loss aversion break down the linear relation between returns and risk, resulting in a

cross-sectional effect on asset prices.

For |σR| large, the pricing of risk is approximately unchanged from the standard model with

rp (σR) ≈ σc: loss aversion has virtually no impact on the pricing of risk for assets that carry large

risks. On the other hand, for |σR| very small, a first-order approximation yields:

rp (σR) ≈
α√
2π

+ σc

�
1− α2

2π

�
+

α2

2π
σR ,

where I take σc as approximately zero, with same order of magnitude as |σR|.
14 Even for moderatly

loss averse agents, the constant term α/
√
2π dominates over the first-order terms in σR and σc,

which reflects the “first-order risk aversion” characteristic of preferences with kinks.15 Loss aversion

has a large, first-order, impact on the expected returns of assets that carry small risks.

The qualitative implications of loss aversion, with both a level and a cross-sectional impact

on the pricing of risk, are well illustrated in the expected utility model. Quantitatively, however,

this model cannot explain the asset pricing moments we observe. In particular, because of the low

covariation between aggregate consumption and market returns, the model generates an equity

premium of 0.65% annually, when α = 0.55.16 In the next section, I analyse the asset pricing

implications of loss aversion, when combined with the recursive utility model which yields realistic

moments in the distributions of prices, as evidenced by the long-run risk literature.

2.2 Recursive Utility with Loss Aversion

I suppose the representative agent has recursive preferences with loss aversion as in Eq. (5), with

full updating of the reference point. Following the methodology of Hansen, Heaton, Lee, and

Roussanov (2007), the model is first solved in closed-form for a unit elasticity of intertemporal

substitution (case ρ = 1).17 A first-order Taylor expansion around ρ = 1 allows me to analyze the

model for ρ �= 1, and I show in the online Appendix B18 that the asset pricing predictions of the

14Empirically, the aggregate consumption has very low volatility and this is a valid approximation.
15Since all terms decrease with the model’s frequency except for the constant term due to loss aversion, the

solution for the pricing of risk highlights the sensitivity to frequency of my discrete time model. Calibrating the
model at different frequencies would yield different values for α, which further highlights that the choice of α = 0.55,
as in Kahneman and Tversky (1979), is mostly illustrative.

16The equity premium reaches 1.15%, when α is pushed to one, relative to 6.09% in the data, for the 1926-2011
period.

17This is not an additional restriction due to loss aversion. In the standard recursive utility model also, closed-form
solutions only obtain when ρ = 1.

18http://home.uchicago.edu/mandries/lossaversion_appendix.pdf
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model are robust to small changes around ρ = 1.19

Write logC = c, log V = v , log V = v .When ρ = 1 and ξ = 0, the model of Eq. (5) becomes:

vt = (1− β) ct +
β

1− γ̄
logEt [exp (1− γ̄) vt+1] (13)

vt+1 = vt+1 − αmax (0, vt+1 − Et (vt+1)) .

Because v is increasing in v, this recursive problem trivially follows Blackwell conditions, and

thus admits a unique solution.

I suppose the optimal consumption follows a log-normal process with time-varying drift, stan-

dard to the long-run risk literature:

logCt+1 − logCt = µc + φcXt + ΣcWt+1 (14)

Xt+1 = AXt + ΣXWt+1 ,

where {Wt} is a two-dimension vector of shocks, iid N (0, I), and A is contracting (all eigen values

have module strictly less than one): the state variable {Xt} has stationary distribution with mean

zero.

Proposition 6 The unique solution for the value function v is:20

vt − ct = µv + φvXt , (15)

where

φv = βφc (I − βA)−1 ,

and µv is a decreasing function of α.

The solution for φv shows the log-value-to-consumption ratio is pro-cyclical: above average

in good times (φcXt > 0) and below average in bad times (φcXt < 0). The dependence on the

time varying {Xt} is increasing in the persistence of the consumption growth drift, and decreasing

19There is some debate concerning the value of the elasticity of intertemporal substitution. Both the long-run
risk model of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2007, 2009) and the disaster model of Barro
et al. (2011) require EIS ≥ 1 to explain the equity returns. A large number of papers (Hansen and Singleton
(1982), Attanasio and Weber (1989), Beaudry and van Wincoop (1996), Vissing-Jorgensen (2002), Attanasio and
Vissing-Jorgensen (2003), Mulligan (2004), Gruber (2006), Guvenen (2006), Hansen, Heaton, Lee, and Roussanov
(2007), Engegelhardt and Kumar (2008)) argue the data supports EIS ≥ 1. On the other hand, Hall (1988),
Campbell (1999), and more recently Beeler and Campbell (2009) argue for small values of elasticity of intertemporal
substitution (EIS < 1).

20The details of the calculation are in the online Appendix A, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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in the rate of time discount (increasing in β).21 The dependence in the state variable {Xt} is

unchanged from the standard recursive utility model.

The mean value-to-consumption ratio µv is increasing in the mean consumption growth µc,

decreasing in the rate of time discount (increasing in β), decreasing in both the risk aversion γ and

the underlying risk in the consumption process given by |Σc|and |ΣX |, and decreasing in α, the loss

aversion coefficient. I find loss aversion lowers µv below the levels of the standard recursive utility

model with either γ, or γ̄, even though the agent has risk aversion γ ≤ γ̄ on the non-disappointing

outcomes. The discontinuity in the marginal utility, due to the kink in the preferences, results

in agents that are particularly averse to taking small risks around the reference point, and thus

display an effective risk aversion that is higher than both γ, the risk aversion above the reference,

and γ̄, the risk aversion below the reference, in the valuation of the consumption stream.

Proposition 7 The risk-free rate has a closed-form solution rft = rft (α), which is strictly de-

creasing in the loss aversion coefficient α.22

As a second-order approximation around φvΣX = 0, and Σc = 0:23

rft ≈ − log β + µc + φcXt −
1

2
|Σc|

2 + (1− γ) (Σc + φvΣX)Σ�
c (16)

− α

�
1√
2π

Σc(Σc+φvΣX)�

|Σc+φvΣX |

�
1− 1

2
√
2π
α

Σc(Σc+φvΣX)�

|Σc+φvΣX |

�

+1
2α

�
1− 1

π

�
(γ̄ − 1) (Σc + φvΣX)Σ�

c

.

� �� �
loss aversion terms

The first four terms are those of the standard expected utility model (see Eq. (10)), and

the earlier comparative statics obtain. Because of time-varying in the drift of consumption, the

risk-free rate is pro-cyclical. It is also decreasing in both the risk aversion γ and the risk of con-

sumption, immediate (|Σc|) and long-term (|φvΣX |), due to the additional precautionary savings

term (1− γ) (Σc + φvΣX)Σ�
c of the standard recursive utility model.

Loss aversion lowers the risk-free rate and amplifies its sensitivity to both the risk aversion

and the risk of consumption. Its impact is displayed in Figure 2. Observe the risk-free rate in

the model with loss aversion is lower than in the standard recursive utility model, with either risk

aversion γ or high risk aversion γ̄: the discontinuity in the stochastic discount factor results in the

21Shocks to {Xt} impact next-period consumption the most (with impact φcΣXWt) and the impact slowly fades
over time (with impact φcA

τ
ΣXWt after τ periods). The cumulative impact on all the future realizations of

consumption is immediately reflected in the present value of the future consumption stream, the value function Vt,
through the term φvXt with φv = βφc

�
∞

0
βiAi = βφc (I − βA)−1.

22The details of the calculation are in the online Appendix A, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
23Empirically, the aggregate consumption growth is a low volatility process, and this approximation is justified.
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Figure 2: Risk-Free Rate
The annual risk-free rates with and without loss aversion (standard recursive utility model with risk aversions γ and γ̄) are

plotted as functions of the coefficient of loss aversion α. γ̄ increases with α as in Eq. (3): γ̄ = γ + α
1−α

(γ − 1). Because the

dependence on the state variable {Xt} is the same with and without loss aversion, I plot the risk-free rates for Xt = E (Xt) = 0.

I use the parameters from Hansen, Heaton, and Li (2008) for the consumption process of Eq. (14) and β = 0.999, γ = 10.

only first-order term, α√
2π

Σc(Σc+φvΣX)�

|Σc+φvΣX | , in the risk-free rate of Eq. (16), which dominates over the

standard precautionary savings term.

The standard recursive utility model tends to overvalue the risk-free rate. As a result, the

model with loss aversion improves on the calibration of the risk-free rate, even when compared to

the standard recursive utility model with high risk aversion γ̄.24

In Figure 3, I display the expected excess returns and risk-price elasticities of assets with

log-normal returns as in Eq. (9), and exposures ΣR to the consumption shocks.25 These graphs

illustrate the fundamental differences for asset pricing between the model with loss aversion and

the standard recursive utility model. As in the expected utility framework, loss aversion has (1)

a level effect: the expected excess returns for assets that covary positively with the consumption

shocks are increased by the loss aversion specification; and (2) a cross-sectional effect: the risk-

price elasticities decrease sharply between small exposures and large exposures (in absolute value)

to the consumption shocks.

I also find the risk-price elasticities are higher for negative exposure to the consumption shocks

24As long as γ ≤ 25, using the parameters of Hansen, Heaton, and Li (2008).

25logRt+1 =

�
r̄t −

1

2
|ΣR|

2
−

1

2

����ΣR

���
2
�
+ ΣRWt+1 + �ΣR

�Wt+1, where {Wt+1} are the shocks to the consumption

process,
�
�Wt+1

�
are independent shocks.

17



−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1
Expected Excess Returns

Exposure to immediate consumption shock !
R

 

 

standard model

"=0.10

"=0.25

"=0.55

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Risk−Price Elasticities

Exposure to immediate consumption shock !
R

 

 

standard model

"=0.10

"=0.25

"=0.55

Figure 3: Asset Prices with Constant Volatility
The two graphs display the expected excess returns and the risk-price elasticities for assets with exposure to the immediate

consumption shock
�

ΣR 0
�
Wt+1 in the model with constant volatility, for various values of α, the coefficient of loss

aversion. The case α = 0 reverts to the standard recursive utility model. The graphs display the same characteristic shapes

for assets that vary in their exposures to the second shock
�

0 ΣR

�
Wt+1. I use the parameters from Hansen, Heaton, and

Li (2008) for the consumption process of Eq. (14) and β = 0.999, γ = 10.

(hedges) than for positive ones. Hedges generate positive returns when the shocks are negative and

the agent is disappointed, and are thus mostly priced in a model with high risk aversion γ̄ ≥ γ. In

contrast, assets with positive exposure to the consumption shocks generate positive returns when

the agent is not disappointed, and are thus mostly priced in a model with risk aversion γ, thereby

resulting in lower risk-price elasticities. This feature would extend to option prices, with higher

implied volatilities on the put options than on the call options.

The closed-form solution for the expected returns is not conductive to direct interpretation.

To better understand how these effects arise, I therefore analyze the returns behavior at the

asymptotes (|ΣR| −→ +∞) and around zero.

Proposition 8 At the asymptotes:26

r̄t (ΣR)− rft ≈|ΣR|−→+∞ (γΣc + (γ − 1)φvΣX)Σ�
R (17)

− log

��
Φ

�
− (φvΣX+Σc)Σ�

R

|(φvΣX+Σc)|

�
exp (−α (γ̄ − 1) (φvΣX + Σc)Σ

�
R)

+αΦ (− (γ − 1) |φvΣX + Σc|) exp ((γ − 1) (φvΣX + Σc)Σ
�
R)

�

� �� �
loss aversion term

.

26The details of the calculation are in the online Appendix A, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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Around zero, as a second-order approximation:27

r̄t (ΣR)− rft ≈|ΣR|≈0 (γΣc + (γ − 1)φvΣX)Σ�
R (18)

+α







1√
2π

ΣR(φvΣX+Σc)
�

|φvΣX+Σc|

�
1− α√

2π

Σc(φvΣX+Σc)
�

|φvΣX+Σc|

�

+1
2α (γ̄ − 1)

�
1− 1

π

�
ΣR (φvΣX + Σc)

� + 1
4πα

�
ΣR(φvΣX+Σc)

�

|φvΣX+Σc|

�2




� �� �
loss aversion terms

.

In both Eq. (17) and Eq. (18), the first term corresponds to the standard recursive utility

model, which yields a linear relation between returns and risk, and thus a constant pricing of risk,

equal to γΣc + (γ − 1)φvΣX , and therefore increasing in the coefficient of risk aversion γ, in the

level of risk (given by |Σc| and |ΣX |), in the persistence of the consumption process, and in β.28

The extra terms due to loss aversion introduce important non-linearities in the relation between

the log expected returns and the log exposure to consumption shocks, and thus variations in the

pricing of risk.

Below the reference point, the agent behaves as in the standard model with risk aversion γ̄

and, accordingly, I find r̄t (ΣR) − rft ∼ (γ̄Σc + (γ̄ − 1)φvΣX)Σ�
R when (φvΣX + Σc)Σ

�
R → −∞.

Far and above the reference point, I find the direct contribution to the value function of the

reference point dominates.29 The log-utility reference point model yields r̄t (ΣR) − rft ∼ ΣcΣ
�
R

when (φvΣX + Σc)Σ
�
R → +∞.30 Notice, on either asymptotes, the kink in the preferences due to

loss aversion has no direct impact on the pricing of risk.

In contrast, for ΣR ≈ 0 in Eq. (18), the clearly dominating constant term α√
2π

ΣR(φvΣX+Σc)
�

|φvΣX+Σc|

reflects the “first-order risk aversion” characteristic of preferences with kinks. Notice this term does

not depend on the risk aversion γ nor on the volatility |φvΣX + Σc|. As in the expected utility

model, loss aversion has a large, first-order, impact on the expected returns of assets that carry

small risks, particularly when the risk aversion and the consumption risk are low, thus resulting

in the hump shape of Figure 3: the risk-price elasticities for small exposures to the consumption

shocks are above both asymptotes.31 In particular, they are above the risk-price elasticities of the

27I am taking |Σc| as approximately zero, with same order of magnitude as |ΣR|. Empirically, the aggregate
consumption has very low volatility and this is a valid approximation.

28The first term, γΣc, is identical to the expected utility CRRA model with risk aversion γ. The additional term,
(γ − 1)φvΣX , comes from the recursive specification, and reflects the pricing of the long-run consumption shocks.

29Above the reference point, the agent behaves as in the standard model with risk aversion γ, with a scaling
factor that depends on the the reference point.

30Choosing another reference point model has a direct impact on the right-hand asymptote, as I show in on-
line Appendix C, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf. However, this barely affects the
range of empirically reasonable assets.

31Using the parameters of Hansen, Heaton, and Li (2008) for the aggregate consumption, the hump-shape persists
for risk aversion coefficients up to γ = 25.
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standard recursive utility model with risk aversion γ̄.

The pricing of risk in this model has striking empirical implications as I show in section (3),

but it is constant in time, as can be seen in Eq. (17) and Eq. (18). I analyze models with dynamic

pricing of risk in the next section.32

2.3 Dynamic Risk Pricing with Loss Aversion

In section 2.3.1, I replicate the analysis of the recursive utility model with loss aversion and full

updating of the reference point, but with time varying volatility in the consumption process. In

section 2.3.2, I present tractable solutions for the model with “sticky” updating, ξ > 0.

2.3.1 Risk Prices with Stochastic Volatility

As before, I suppose the representative agent has preferences with recursive utility and loss aver-

sion, with full updating of the reference point (ξ = 0) and unit elasticity of intertemporal substi-

tution (ρ = 1), as in Eq. (13). This time, however, I let both the drift and the volatility of the

optimal consumption process be time varying:

logCt+1 − logCt = µc + φcXt + σtΣcWt+1 (19)

Xt+1 = AXt + σtΣXWt+1

σt+1 = (1− a) + aσt + ΣσWt+1 ,

where {Wt} is a three-dimension vector of shocks, iid N (0, I), and Eq. (19) is the stochastic

volatility equivalent of Eq. (14). Both the immediate consumption shocks {σtΣcWt+1}, and the

long-run consumption shocks {σtΣXWt+1}, now have time varying volatility, which is affected by

the iid shocks {ΣσWt+1}. To simplify the model, volatility shocks are modeled as independent

from expected consumption shocks: ΣσΣ
�
X = ΣσΣ

�
c = 0. A and a are contracting (all eigen values

have module strictly less than one): both state variables have stationary distributions, with mean

zero for {Xt} and mean one for the scalar {σt}.

Proposition 9 When the consumption process is smooth (Σc, ΣX and Σσ close to zero), as we

observe in the data, the unique solution for the value function v has closed-form approximation:33

vt − ct ≈ µv + φvXt + φv,σσt + φv,σ2σ2
t . (20)

32The need for asset pricing models with a counter-cyclical price of risk is illustrated in Melino and Yang (2003).
In this paper, the authors show that in a two-state economy, the empirical pricing kernel that matches asset prices
displays a higher price of risk in the bad state.

33See the online Appendix D, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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Figure 4: Risk-Free Rate
The annual risk-free rate with and without loss aversion (standard recursive utility model for risk aversion γ and γ̄) are

plotted on the left axis. γ̄ increases with α as in Eq. (3): γ̄ = γ + α
1−α

(γ − 1). Because the dependence on the state variable

{Xt} is the same with and without loss aversion, I plot the risk-free rates for Xt = E (Xt) = 0. On the right axis, I plot the

distribution of σt. I use the parameters from Hansen, Lee, Polson, and Yae (2011) for the consumption process of Eq. (19)

and β = 0.999, γ = 10, α = 0.55.

where

φv = βφc (I − βA)−1 ,

and µv, φv,σ and φv,σ2are functions of α.

As in the constant volatility case, I find µv is a decreasing function of α, and the value

function is lower than in the standard recursive utility model, with either risk aversion γ or γ̄.

The value function varies with both the drift of consumption, as before, and with the volatility of

consumption. I find |φv,σ| and
��φv,σ2

�� are increasing (i) in β; (ii) in the persistence of the volatility

process a; (iii) in the risk aversion coefficient γ; and (iv) in the volatility of the consumption process

given by |Σc|, |ΣX |, and |Σσ|. Further, I find the impact of changes in volatility is stronger, and

thus the pro-cyclical variations in the value function are greater, in the model with loss aversion

than in the standard recursive utility model.

This result extends to the risk-free rate, as can be observed in Figure 4: loss aversion results

in a risk-free rate that is more strongly pro-cyclical, and below the levels of the standard recursive

utility model with either γ or γ̄.
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Figure 5: Asset Prices with Time-varying Volatility- Immediate Consumption Shock
The two graphs display the risk-price elasticities for an exposure

�
σtΣR 0 0

�
Wt+1, for the loss aversion model with

loss aversion α = 0.55 and the standard recursive utility model with risk aversion γ (the plane in the first graph and the

lower dotted line in the second graph) and γ̄ (the higher dotted line in the second graph). γ̄ increases with α as in Eq.

(3): γ̄ = γ + α
1−α

(γ − 1). The second graph displays the three cases, σt ≈ 0, σt = 1 (mean value), and σt = 2. The

graphs display the same characteristic shapes for assets that vary in their exposures to the second consumption shock,
�

0 σtΣR 0
�
Wt+1. I use the parameters from Hansen, Lee, Polson, and Yae (2011) for the consumption process of Eq.

(19) and β = 0.999, γ = 10, α = 0.55.
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Figure 6: Asset Prices with Time-varying Volatility- Volatility Shock
The two graphs display the absolute value of the risk-price elasticities for an exposure

�
0 0 ΣR

�
Wt+1 (or

−RPt

��
0 0 ΣR

��
), for the loss aversion model with loss aversion α = 0.55 and the standard recursive utility model

with risk aversion γ (the plane in the 1st graph and the lower dotted line in the second graph) and γ̄ (the higher dotted line

in the 2d graph). γ̄ increases with α as in Eq. (3): γ̄ = γ + α
1−α

(γ − 1). The second graph displays the three cases, σt ≈ 0,

σt = 1 (mean value), and σt = 2. I use the parameters from Hansen, Lee, Polson, and Yae (2011) for the consumption process

of Eq. (19) and β = 0.999, γ = 10, α = 0.55.
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In Figure 5 and Figure 6, I display the risk-price elasticities of assets with conditionally log-

normal returns and exposures ΣR,t to the consumption shocks.34 The results derived in the

constant volatility model extend to the model with stochastic volatility: the risk-price elasticities

display asymmetrical bell shapes and both a level effect and a cross-sectional effect obtain.35

Compared to the standard recursive utility model, the pricing dynamics are impacted by two

channels of influence. The first derives from the amplification in the value function’s variations

and generates additional counter-cyclicality in the pricing of risk. The second derives from the

dampening effect of higher consumption volatilities on the first-order impact of loss aversion (assets

are not priced as close to the kink when the underlying volatility is high), and generates less

counter-cyclicality in the pricing of risk. I find the first channel dominates for the pricing of assets

that vary in their exposures to the consumption shocks, as in Figure 5: for small exposures to the

consumption shocks, the pricing of risk increases with σt at a faster rate, and is thus more strongly

counter-cyclical in the model with loss aversion than in the standard recursive utility model. In

contrast, I find the second channel can dominate for assets that vary in their exposures to the

volatility shocks, as in Figure 6, depending on the risk aversion and loss aversion coefficients. For

γ ≤ 20 and α = 0.55, my loss aversion model results in a pricing of risk for the volatility shocks

that is pro-cyclical, for assets with small exposures to the shocks, and counter-cyclical for assets

with large exposures to the shocks. These striking predictions of my model can be contrasted with

those of the standard recursive utility model, in which the risk-price elasticities are counter-cyclical

for all the shocks. Exploring their empirical application is left for future research.

2.3.2 History Dependence in the Updating of the Reference Point

I now consider the model with history dependence in the updating of the reference point. I

restrict the analysis to the constant consumption volatility case of Eq. (14), which allows me to

disentangle the time variations due to the history dependence in the reference point from those

due to time-varying consumption volatilities. I solve the model with unit intertemporal elasticity

34I model the exposure {ΣR,t} as ΣR,t = ΣR




σt 0
σt

0 1


, such that the aggregate volatility of the asset

returns has same time dependence as the consumption risk.
35The risk-price elasticities are negative and the asymmetry is reversed, with a higher right-hand side asymptote,

for the volatility shocks, which impact the value function negatively.
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of substitution (EIS = 1), and time dependence on the past two periods (T = 1):

vt = (1− β) ct +
β

1− γ̄
logEt [exp (1− γ̄) vt+1] (21)

vt+1 = vt+1 − αmax
�
0, vt+1 − �Eξ,t (vt+1)

�

�Eξ,t (vt+1) =
Et (vt+1) + ξEt−1 (vt+1)

1 + ξ
.

Proposition 10 The unique solution for the value function v is:36

vt − ct = µv,s + φvXt + f

�
ξ

1 + ξ
ΣsWt

�
, (22)

where φv and Σs are independent from α and ξ, in contrast to µv,s and f , and f has the following

properties:

1) f is decreasing

2) f (0) = 0

3) f converges to a constant in −∞

4) f (x) ∼+∞ −αβx .

Wt, the shocks to consumption between t − 1 and t, affect the time t value function through

two channels, one increasing, φvXt, and one decreasing, f
�

ξ
1+ξ

ΣsWt

�
. I find the first channel

dominates (the value function increases following positive shocks to consumption), and Eq. (22)

can be rewritten as vt − ct−1 = g (Xt−1,Wt), with g increasing in both Xt−1 and Wt.

The pricing of risk is time varying and, in Figure 7, I display the risk-free rate and the expected

excess returns of a risky asset, as they vary with the past consumption shocks.

Like the value function, the risk-free rate can be written as grf (Xt−1,Wt), with grf increasing in

both terms. When Xt = 0, strictly positive and strictly negative shocks to consumption (Wt �= 0)

both decrease the probability of being close to the reference point, and thus diminish the impact

of loss aversion. For this reason, I find the risk-free rate is at a local minimum when Wt = 0.

Following negative shocks to consumption, the probability of disappointment increases. Fol-

lowing positive shocks to consumption, the probability of disappointment decreases. The model

with history dependence in the reference point thus yields mostly counter-cyclical expected excess

returns. Non-zero shocks, however, decrease the probability of being close to the reference point,

and thus diminish the impact of loss aversion. I find this effect dominates over the increase in

the probability of disappointment following unusually large and negative shocks (more than two

36The details of the calculation are in the online Appendix E, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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Figure 7: Asset Prices: History-dependent Reference Point
The two graphs display the annual (in %) risk-free rate and the expected excess returns of an asset with same characteristics

(volatility and skewness) as the market portfolio, for various values of α, the coefficient of loss aversion (the case α = 0 reverts

to the standard recursive utility model), as functions of the past shock wt = ξ
1+ξ

ΣsWt. For the risk-free rate, I assume

Xt = E (Xt) = 0. I use the parameters from Hansen, Heaton, and Li (2008) for the consumption process of Eq. (14) and

β = 0.999, γ = 5, ξ = 0.5. Other values of ξ yield similar asset pricing results.

standard deviations below zero), thus resulting in lower expected excess returns.37 The analysis

of empirical evidence regarding such effects, which differ from those of other models with history

dependent preferences, such as the habit formation model, is left for future research.38

In both dynamics models, with stochastic volatility or with “sticky” updating of the reference

point, loss aversion has non-trivial implications for the pricing of risk. The counter-cyclical influ-

ence on pricing is occasionally reversed when assets are priced further and further away from the

reference point. This feature is unique to the model with loss aversion and would not obtain in

either the standard recursive utility model or in habit formation-type models.

3 Empirics

In this section, I bring my model to the data and find strong support for the recursive utility

model with loss aversion. In section 3.1, I evaluate the risk-free rate, the value premium, and the

equity premium and I find my model improves on the calibration of the standard recursive utility

37For the parameters used in Figure 7
38The empirical analysis of this model is complicated by the fact that large negative shocks to consumption are

usually associated with changes in volatility.
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model with both risk aversion γ and high risk aversion γ̄. In sections 3.2 and 3.3, I show how the

cross-sectional effect of the model with loss aversion can offer a novel theoretical justification for

two important results of the empirical finance literature: the negative premium for skewness and

the security market line (the excess returns as a function of beta, the exposure to market risk)

flatter than the CAPM.39

3.1 Asset Returns

To quantitatively analyze the asset returns in the model with loss aversion, I use the results

of Hansen, Heaton, and Li (2008) for the consumption process of Eq. (14) and the recursive

utility model with unit elasticity of intertemporal substitution (ρ = 1). The state variable {Xt}

is explicitly determined by consumption and earnings, which are assumed cointegrated.40 The

loadings on the shocks {Wt} of any dividend process are obtained directly from the macro data,

and are not influenced by the modeling choice for preferences. They can therefore be used to

contrast the implications for asset returns of the standard recursive utility model and those of the

model with loss aversion.41

In Table 1, observe loss aversion improves on the calibration of the risk-free rate, all the more

so if the coefficient of risk aversion remains reasonably low.42 To match the historical level on the

risk-free rate, the model with loss aversion still requires a low rate of time discount (β close to

one). In the rest of the calibrations, I use β = (0.999)
1

4 , which generates reasonable levels for the

risk-free rate.

In Table 2, and Table 3, I display the long-run value premium, and equity premium, for the

standard recursive utility model with risk aversion γ and γ̄, and for the model with loss aversion.43

The model with loss aversion α = 0.55 can explain the value premium for a risk aversion coefficient

39The empirical methods are described in online Appendix ??, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
40Both variables have quarterly time series (1947 to 2010) taken from the National Income and Product Accounts

(NIPA). Consumption is the seasonally adjusted aggregate consumption of non-durables and services. Corporate
earnings are converted to real terms using the implicit price deflator for non-durables and services.

41In contrast, in Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2007, 2009), the state variable {Xt}
is a hidden variable and its evolution, as well as the loadings of the asset returns on the shocks, are chosen to
match moments on both consumption and asset returns. The calibration is thus partly tailored to fit the standard
recursive utility model.

42Risk aversion must be pushed all the way up to γ = 25 for the model with loss aversion α = 0.55 to yield a
risk-free rate that is no longer lower than in the standard model with high risk aversion γ̄ (but still improves on
the standard model with risk aversion γ).

43The value premium is calculated as the difference in long-run returns between the portfolio with the highest
book-to-market ratio (value portfolio) and the portfolio with the lowest book-to-market ratio (growth portfolio)
using five portfolios sorted on book-to-market ratios as in Fama and French (1992). As documented in Bansal,
Dittmar, and Lundblad (2005) as well as in Hansen, Heaton, and Li (2008), value stocks have a higher covariance
with long-run consumption than growth stocks, thus justifying the higher returns they yield.
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model with loss aversion standard model
α = 0.10 α = 0.25 α = 0.55 risk aversion γ risk aversion γ̄ |α=0.55

γ = 5

β = (0.99)
1

4 3.02% 2.91% 2.67% 3.10% 2.97%

β = (0.999)
1

4 2.12% 2.01% 1.77% 2.19% 2.07%

γ = 15

β = (0.99)
1

4 2.76% 2.63% 2.29% 2.84% 2.39%

β = (0.999)
1

4 1.85% 1.72% 1.38% 1.93% 1.49%

Risk free rate in the data (1947-2010)= 1.14%
(From CRSP 30-day-Treasury-bill returns)

Table 1: Risk-Free Rate

model with loss aversion standard model
α = 0.10 α = 0.25 α = 0.55 risk aversion γ risk aversion γ̄ |α=0.55

γ = 3 1.45% 2.68% 5.20% 0.65% 1.37%
γ = 5 2.04% 3.29% 5.98% 1.23% 2.66%
γ = 10 3.53% 4.85% 8.05% 2.70% 5.92%

Value Premium in the data (1947-2010) = 4.22%
(From the five Fama-French portfolios sorted on book-to-market in Kenneth French’s website)

Table 2: Value Premium

of γ = 3 (and γ̄ = 5.5), compared to γ = 15 in the standard model. Loss aversion also improves

on the calibration of the equity premium even when compared to the standard recursive utility

model with high risk aversion γ̄.44 The model with loss aversion α = 0.55 explains 35% of the

historical equity premium when γ = 10. For this level of risk aversion, the standard recursive

utility model explains only 10% of the equity premium, and the standard model with high risk

aversion γ̄ explains 25% of the equity premium.

The covariation between the market returns and the shocks to aggregate consumption, both

immediate and long-term, is too low in the data to generate the equity premium at reasonable

levels of risk aversion, even with loss aversion. Increasing the frequency of the consumption process

would increase the implied equity premium values, both through the loss aversion specification,

44The relative impact of loss aversion is all the more salient if the coefficient of risk aversion remains reasonably
low (γ ≤ 20). For γ ≥ 25, the model with loss aversion α = 0.55 no longer improves on the standard model with
high risk aversion γ̄ (but still improves on the standard model with risk aversion γ).

27



model with loss aversion standard model
α = 0.10 α = 0.25 α = 0.55 risk aversion γ risk aversion γ̄ |α=0.55

γ = 10 0.94% 1.29% 2.14% 0.72% 1.57%
γ = 15 1.34% 1.72% 2.74% 1.11% 2.44%
γ = 20 1.74% 2.16% 3.39% 1.50% 3.31%

Equity Premium in the data (1947-2010) = 6.09%
(From CRSP value-weighted portfolio returns minus CRSP 30-day-Treasury-bill returns)

Table 3: Equity Premium

as noted in Benartzi and Thaler (1995), and through the persistence of the consumption drift,

as in Bansal, Kiku, and Yaron (2009). Because the relevant macro-data is available for quarterly

frequency, I limit the analysis to the empirical set up of Hansen, Heaton, and Li (2008), while

keeping in mind that higher frequencies would improve the empirical fit of my model. Adapting

the empirical set-up to stockholders’ consumption, as in Malloy et al. (2009), would also improve

on the calibration of the equity premium.

This calibration exercise does not allow one to separate a model with loss aversion α and risk

aversion γ from a model with standard recursive utility and risk aversion �γ > γ̄ = γ+ α
1−α

(γ − 1).

In the next sections, I turn to the truly differentiating feature of my model, the cross-sectional

effect of loss aversion.

3.2 Negative Premium for Skewness

I show loss aversion offers a novel theoretic justification for the negative premium for skewness that

obtains in the data.45 In my consumption-based asset pricing framework, the assets’ skewnesses

are the ones implied by the loadings on the aggregate shocks (co-skewnesses).

Consider a cross-section of assets with log-normal returns {Ri,t+1} as in Eq. (9), and positive

loadings {ΣR,i} on the aggregate shocks to consumption, ordered such that |ΣR,1| ≤ |ΣR,2| ≤

... ≤ |ΣR,N |. The same ordering applies for the aggregate volatilities, σ1 ≤ σ2 ≤ ... ≤ σN , and

co-skewnesses, s1 ≤ s2 ≤ ... ≤ sN . To isolate the impact of skewness on the expected returns, I

wish to compare assets with same aggregate volatility. Choose a reference asset i0. In the cross-

section of assets I consider, assets {i ≤ i0} have lower, and assets {i ≥ i0} have higher, aggregate

volatilities {σi} and skewnesses {si} than the reference asset. I lever-up assets {i ≤ i0}, and lever-

45For same volatility, assets with lower skewness in the returns distribution yield higher expected returns than
assets with higher skewness in the returns distribution.
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Figure 8: Leveraging on the Cross-Section of Assets

down assets {i ≥ i0}, so as to obtain a cross-section of assets with the same aggregate volatility

σi0 , but expected excess returns {ki (Ri −Rf )} and aggregate skewnesses {si} that vary in the

cross-section.46

In Figure 8, I display the expected excess returns {Ri −Rf} as they vary with the aggregate

volatilities {σi}, and I illustrate the leverage methodology described above, in the loss aversion

model with α = 0.55.47 I lever-up asset 1 with (σ1 = 8%) < (σi0 = 16%) (and k1 = 2), and

lever-down asset 2 with (σ2 = 32%) > (σi0 = 16%) (and k2 = 0.5). The returns k1 (R1,t+1 −Rf,t),

k2 (R2,t+1 −Rf,t), and Ri0,t+1 − Rf,t have same aggregate volatility but different co-skewnesses

s1 < si0 < s2. Because of the concave relation between returns and risk in the model with loss

aversion, I obtain k1 (R1 −Rf ) > Ri0 − Rf > k2 (R2 −Rf ), and thus a negative premium for

skewness. With a reference asset similar to the market portfolio (same volatility and skewness),

the model results in a negative premium for skewness equal to 17% of the equity premium.48

In a vastly different portfolio choice model, with the cumulative prospect theory of Tversky-

46When leveraging asset i by a factor ki, I modify its aggregate volatility and expected excess returns linearly to
kiσi and ki (Ri −Rf ), while keeping its aggregate skewness si unchanged.

47For a cross-section of assets with loadings
�
Σi 0

�
, with Σi positive and increasing in i. I use the quarterly

parameters from Hansen, Heaton, and Li (2008) with γ = 5, β = (0.999)
1

4 .
48Harvey and Siddique (2000) find a higher measure for the negative premium for skewness, but they use a

different measure for co-skewness, and a shorter time series.

29



0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16
Annual Expected Excess Returns 

R
i−

R
f i

n
 %

CAPM !

Positive Intercept

0.8

Figure 9: Prediction for the fit of the CAPM

Kahneman (1992), Barberis and Huang (2008) also point out the relation between loss aversion and

the pricing of skewness in asset returns. Other papers (see Harvey and Siddique (2000)) directly

modify the stochastic discount factor so as to generate the negative premium for skewness. In

contrast, my consumption-based asset pricing model with loss aversion stems from preferences

justified by the micro and experimental literature.

3.3 Prediction for CAPM Alphas

Black, Jensen, and Scholes (1972) point out the security market line (the excess returns as a

function of beta, the exposure to market risk) for U.S. stocks is too flat relative to the CAPM

model, and has a non-zero intercept of about 1.5% annually. Frazzini and Pedersen (2010) replicate

this empirical result for a wider class of assets (U.S. equities, 20 global equity markets, Treasury

bonds, corporate bonds, and futures), accounting for value, size, momentum, and liquidity risk.

To conduct a meaningful analysis of the CAPM, in my consumption-based asset pricing frame-

work, I assume the shocks to the market returns are perfectly correlated with the immediate

consumption shocks.49 I consider a cross-section of assets ordered by their positive loadings on

the consumption shocks (0 ≤ ΣR,1 ≤ ΣR,2 ≤ ... ≤ ΣR,N ), as in section 3.2. The same ordering

49The model with ρ = 1 yields constant wealth-to-consumption ratios. This is therefore equivalent to supposing
the returns on wealth are perfectly correlated with the returns of the market portfolio.
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Small β Portfolio Market Portfolio High β Portfolio

Expected Excess Returns 7.50% 9.05% 15.34%
CAPM β 0.8 1 2
CAPM α 0.32% 0 −2.77%
Skewness 1.4 1.8 4.2

CAPM Intercept = 2.3% (= 25% of Equity premium)

CAPM Intercept in Frazzini and Pedersen (2010) = 2.7% (= 45% of Equity premium)

Table 4: CAPM intercept

Value-Weighted Portfolios Sorted on CAPM β

Low β 2 3 4 5 6 7 8 9 High β

β 0.75 0.86 0.97 1.1 1.2 1.3 1.4 1.5 1.6 1.8
Skewness 3.7 2.5 3.2 4.2 4.5 5.4 4.7 4.9 4.8 5.6

Table 5: Quarterly Skewness Results

applies for the aggregate volatilities, σ1 ≤ σ2 ≤ ... ≤ σN , and CAPM betas, β1 ≤ β2 ≤ ... ≤ βN .

For this cross-section of assets, the expected excess returns increase with the CAPM betas in a

non-linear way, in my model with loss aversion, as illustrated in Figure 9 for α = 0.55. I find

a strictly positive intercept when fitting a line between the returns of βi = 0.8 and the returns

of βi = 2, and in Table 4, I provide quantitative measures for the fit of the CAPM.50 The loss

aversion model can explain more than half of the positive intercept found in Frazzini and Pedersen

(2010).

The results of Table 4 crucially depend on the fact that, in the theoretical cross-section of

assets I consider, the CAPM betas and the co-skewnesses of the returns distributions increase

simultaneously, with the loadings on the aggregate shock. I find, using quarterly returns on all

U.S. equities in CRSP (1926-2009) in Table (5), the 10 value-weighted portfolios sorted on CAPM

betas yield a correlation between CAPM beta and skewness of 82%, which validates the choice of

the log-normal model of returns of Eq. (9) in my cross-sectional analysis.51

The model with loss aversion justifies, qualitatively and quantitatively, a security market line

50Using quarterly returns on all U.S. equities in CRSP (1926-2009), 10 value-weighted portfolios sorted on their
CAPM betas have CAPM betas between 0.75 and 1.8. I use the quarterly parameters from Hansen, Heaton,

and Li (2008) with γ = 5, β = (0.999)
1

4 .
51The are measures of skewness and not aggregate skewness however.
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flatter than the CAPM. Other models in the literature rely on external constraints and heteroge-

neous agents to obtain the desired results on the security market line (e.g., Black (1972, 1992);

Brennan (1971); Frazzini and Pedersen (2010), Hong and Sraer (2012)). My model offers a novel

justification for this central issue in financial economics.

Conclusion

In this paper, I incorporate loss aversion features in a recursive model of preferences and find

tractable solutions to the consumption-based asset pricing model with homogeneous agents. The

model with loss aversion generates risk-price elasticities that vary with the exposure to the con-

sumption shocks (cross-sectional effect) and that are generally higher than in the standard recursive

utility model (level effect). The level effect my model with loss aversion generates allows me to

match or improve on calibration exercises that use asset returns moments. More striking, I find

the empirical evidence regarding the security market line relative to the CAPM and regarding the

negative premium for skewness provide strong support for my model with loss aversion.

Appendix

A Properties of the Value Function

Let’s show the value function is both increasing and concave in (Ct, Vt+1).

Rewrite:

log Vt+1 =
�
1− α1

vt+1≥�Eξ,tvt+1

�
log Vt+1 + α1

vt+1≥�Eξ,tvt+1

�
1− ξ

1− ξT+1

� T�

n=0

ξnEt−n (log Vt+1) ,

which, for α < 1 and ξ < 1, makes explicit Vt+1 as an increasing function of Vt+1, and thus h

increasing.

Further

f (x, y) =
�
(1− β)x1−ρ + βg (y)1−ρ

� 1

1−ρ

is concave if g is concave. By Cauchy-Schwarz inequality, g (Y ) = E

�
k (Y )1−γ̄

� 1

1−γ̄
is concave if

k is concave. I just need to prove that k (Y ) = Y exp
�
−αmax

�
0, y − �Eξ,ty

��
is concave. This is

fairly straightforward.
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Let’s now derive the Euler Equation, and the stochastic discount factor, for the case with full

updating of the reference point, ξ = 0.52 For all returns Rt+1, and δ << 1, :

Vt (Ct + δ)− Vt (Ct) = δ (1− β)C−ρ
t V ρ

t ,

Vt+1 (Ct+1 + δRt+1)− Vt+1 (Ct+1) =
�
1− α1vt+1≥Etvt+1

� Vt+1

Vt+1
δRt+1dVt+1/dCt+1

+ Vt+1α1vt+1≥Etvt+1
Et

�
1

Vt+1
δRt+1dVt+1/dCt+1

�
,

and, the first order condition of the optimum consumption path is:

Et [Rt+1St,t+1] =
Vt (Ct+1 + δRt+1)− Vt (Ct+1)

Vt (Ct + δ)− Vt (Ct)
= 1 ,

so that

Et [Rt+1St,t+1] = β (h (Vt+1))
γ̄−ρ

Et

�
Vt+1

1−γ̄
�
Ct+1

Ct

�−ρ

V ρ−1
t+1

�
1− α1vt+1≥Etvt+1

�
Rt+1

�

+ β (h (Vt+1))
γ̄−ρ

Et

�
α1vt+1≥Etvt+1

Vt+1
1−γ̄

�
Et

��
Ct+1

Ct

�−ρ

V ρ−1
t+1 Rt+1

�
,

and

St,t+1 = β

�
Vt+1

h (Vt+1)

�ρ−γ̄ �Ct+1

Ct

�−ρ�Vt+1

Vt+1

�1−γ̄

×

�

1− α1vt+1≥Etvt+1

�
+ α

Et

�
1vt+1≥Etvt+1

Vt+1
1−γ̄

�

Vt+1
1−γ̄


 .

QED.

B Expected Utility Model with Loss aversion

In the model with expected utility and iid consumption growth, ρ = γ = γ̄ = 1, and vt+1 −

Et (vt+1) = ct+1 − Et (ct+1). The stochastic discount factor is thus:

St,t+1 = β

�
Ct+1

Ct

�−1 �
1 +

α

2
− α1ct+1≥Etct+1

�
.

52The case ξ > 0 is analyzed in the online Appendix E, http://home.uchicago.edu/mandries/lossaversion_appendix.pdf.
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The risk free rate rf = − logEt (St,t+1) is:

rf = − log β + µc − log
��

1 +
α

2

�
Et (exp(−σcwt+1)− αEt (1w≥0 exp(−σcwt+1)

�

= − log β + µc −
1

2
σ2
c − log

�
1 +

α

2
− αΦ (−σc)

�
.

Assets with returns

logRt+1 =

�
r̄ − 1

2
|σR|

2 − 1

2
|�σR|2

�
+ σRwt+1 + �σR�wt+1

have expected excess returns:

r̄ − rf = − logEt

�
exp

�
σRwt+1 −

1

2
|σR|

2

�
St,t+1

�
− logEt (St,t+1) .

Therefore:

r̄ − rf =
1

2
|σR|

2 − log
��

1 +
α

2

�
Et (exp((σR − σc)wt+1)− αEt (1w≥0 exp((σR − σc)wt+1)

�

+ log
��

1 +
α

2

�
Et (exp((−σc)wt+1)− αEt (1w≥0 exp((−σc)wt+1)

�
,

and

r̄ − rf = σRσc − log
�
1 +

α

2
− αΦ (σR − σc)

�
+ log

�
1 +

α

2
− αΦ (−σc)

�
.

QED.
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