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Abstract

We propose a consumption-investment decision model where past consumption peak h plays
a crucial role. There are two important consumption levels: the lowest constrained level and a
reference level, at which the risk aversion in terms of consumption rate is changed. We solve this
stochastic control problem and derive the value function, optimal consumption plan, and optimal
investment strategy in semi-explicit forms. We find five important thresholds of wealth, all as
functions of h, and most of them are nonlinear functions. As can be seen from numerical results
and theoretical analysis, this intuitive and simple model has significant economic implications,
and there are at least three important predictions: the marginal propensity to consume out
of wealth is generally decreasing but can be increasing for intermediate wealth levels, and it
jumps inversely proportional to the risk aversion at the reference point; the implied relative risk
aversion is roughly a smile in wealth; the welfare of the poor is more vulnerable to wealth shocks
than the wealthy. Moreover, locally changing the risk aversion influences the optimal strategies
globally, revealing some risk allocation behaviors.
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1 Introduction

It is intuitive that the historical peak of past consumption has great impact on individual con-
sumption decision. For example, to consume below a certain ratio of the historical peak brings an
impulsion to “reclaim the past glory”. If the consumption is forced to further decline to a level
that is far below the historical peak, it becomes unbearable and people will try to increase their
wealth (by financing, borrowing or selling illiquid assets) at any cost to satisfy consumption at a
certain (but low) ratio of past peak. Therefore it is not surprising that there has been literature
studying so-called drawdown constraint (Dybvig (1995) and Arun (2012)).
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We develop a theoretical model based on dynamic portfolio choice theory to incorporate afore-
mentioned psychological insights and study the effects of them on consumption and risky invest-
ment decisions. In our model, the process of standard of living represented by running maximum
of consumption, ht = h0 ∨ sup

0≤s≤t
{cs}, plays a central role. Here c , {cs, s ≥ 0} is the process of

consumption rate, and h0 is the inherited running maximum level, which is usually determined by
exogenous factors, say, family fortunes. To be specific, the consumption is constrained to be no
less than λht, and the preference on consumption is assumed to be of the form:

U(c, h) =

{
1
β1

[
1− e−β1(c−αh)

]
, λh ≤ c < αh,

1
β2

[
1− e−β2(c−αh)

]
, αh ≤ c,

where λ and α with 0 < λ < α < 1 are exogenous constants, representing two important thresholds
of consumption level, and β1 and β2 with β1, β2 > 0 are absolute risk aversions. We allow β1 > β2,
β1 < β2 or β1 = β2.

In our model, the utility is produced by the difference between the agent’s instantaneous con-
sumption and a reference point αh. Besides, we also consider a change of risk aversions on different
sides of the reference point. This reflects psychological effects when consumption rises above or
falls below the reference point. In economical literature, changes of the individual risk aversions
are discussed and empirical evidences have been found. On the one hand, based on both natu-
rally occurring data and lab data, it is acknowledged that people become more risk averse when
experiencing crisis or fear, see Cohn et al. (2015), Guiso et al. (2018) and references therein. In
this paper, choosing β1 > β2, we model such crisis as the decline of consumption level. In this
case, people are more risk averse in crisis (c < αh). On the other hand, as an important part of
the Nobel-wining prospect theory, loss aversion is an effect that people become risk seeking when
the pay-offs fall below some certain reference point. When incorporating such extreme gambling
behavior into consumption decision, somewhat extreme optimal decisions are derived: people never
consume between 0 (or lowest constrained level) and the reference point, see Van Bilsen et al.
(2020) and Li et al. (2022) for examples. One possible reason is that consumption falling below
certain reference level is not generally treated as loss, but rather as bad luck or temporary crisis.
To incorporate gambling effect into consumption decision, we can conveniently choose β1 < β2 in
our model. In this case, people are willing to take more risk when their consumption is in danger
(c < αh). Our main interests are investigating consumption and portfolio behaviors under the
aforementioned preference change at the reference point. The reference point itself, however, can
be further generalized from the particular choice αh. We just list main results of this generalization
in Appendix D because solution techniques we use are still applicable.

It turns out that our simple risk-aversion-changing preference leads to consumption and invest-
ment decisions with significant economic implications.

We find five important thresholds of wealth, all depending on h and denoted respectively by
Wbkrp(h),Wlow(h),Wref(h),Wpeak(h) and Wupdt(h), which are crucial to describe the derived con-
sumption and investment decisions. For those with x ≥ Wupdt(h), i.e., the very wealthy ones, the
best choice of consumption is to update the consumption peak in order to move to or main-
tain on the line x = Wupdt(h). If x < Wbkrp(h), the wealth of the agent is insufficient for
keeping a consumption rate c ≥ λh considering his standard of living in the past and leads to
bankruptcy, hence is not allowed in our discussion. The above results indicate that only those
x ∈ [Wbkrp(h),Wupdt(h)] are of special interests, and they are said to be in the effective region.
For the wealthiest and poorest people in effective region, the optimal consumption rate is clear:
the wealthiest (Wpeak(h) < x ≤Wupdt(h), named as satisfactory region) revisit the historical peak
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gloom depression recovery satisfactory bliss

gloom depression recovery satisfactory bliss

Figure 1: Optimal consumption (above) and optimal risky investment proportion (below) when
fixing an h.
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c = h, and the poorest (Wbkrp(h) ≤ x ≤ Wlow(h), named as gloom region) choose to consume at
the lowest level c = λh. As for the region of intermediate wealth Wlow(h) < x ≤ Wpeak(h), by
the reference threshold Wref(h), we divide it into two sub-regions: depression and recovery. We
document two important phenomena. First, the (instantaneous) marginal propensity to consume
(MPC) out of wealth ∂c∗

∂x is decreasing for people in lower part of depression-recovery region (most
or all part of depression, sometimes plus part of recovery), which is consistent with empirical studies
(e.g. Arrondel et al. (2015)), and we predict that it is increasing for wealthier people, i.e., those
in the rest of depression-recovery region. However, if the wealth level is x = Wupdt(h), called bliss
curve by us, the MPC out of wealth is then decreasing again. Second, the MPC out of wealth
jumps by a fixed proportion β1/β2 at the threshold Wref(h), at which the risk aversion is changed.
This fact reveals one of salient features of our model and indicates that, generally, when getting
wealthier, people have lower or higher MPC based on its particular type of risk attitude (gambling
type or stop-loss type). See Figure 1 for a graphic illustration of optimal consumption decision.

We also obtain the optimal investment strategy π∗, representing the amount of wealth invested
in risky assets, and optimal investment proportion π∗/x is obtained as a by-product. Recall that
in classical Merton’s problem, the optimal investment proportion is µ−r

σ2γ
if relative risk aversion is

γ. Therefore, the inverse of π∗/x can be treated equivalently as relative risk aversion, which we
call implied relative risk aversion (see also Jeon and Park (2020)). Keeping this in mind, we find
decreasing relative risk aversion (DRRA) and increasing relative risk aversion (IRRA) are both
possible even for a single agent and the implied relative risk aversion is roughly a U -shaped curve
(smile) in variable x with trough around Wref(h). Equivalently, risky investment proportion is a
hump with peak around Wref(h). We further predict that this effect is more pronounced for poorer
people. In economic literature, there has been long standing debate on how relative risk aversion
varies in wealth distribution, and evidence for both DRRA and IRRA are found (Siegel and Hoban
(1982) and Bellante and Green (2004)). We provide an explanation for this: the RRA can decrease
in wealth because there is impulsion to get back to a higher consumption above αh if x is not so
large; the RRA can also increase in x if x has been enough for maintaining a satisfactory standard
of living. As for the portfolio choice itself, although it is widely admitted that for macro data, the
wealthier people tends to invest more proportion of their wealth in risky assets, there is no solid
agreement on the same question in micro aspect. That is to say, what happens to risky investment
if the wealth increases for a given household? Our model predicts that it is very likely that people
proportionally reduce risky investment if their wealth grows, which is consistent with empirical
studies (Brunnermeier and Nagel (2008) and Paya and Wang (2016)) or other possible alternative
models (Wachter and Yogo (2010)). Our model also allows opposite result, provided that the wealth
is not enough, which provides explanations for co-existence of both phenomena in some literature
such as Brunnermeier and Nagel (2008). See Figure 1 for a graphic illustration of optimal risky
assets allocation.

The literature most closely related to the present paper is Deng et al. (2022). In the aspect
of reference point, we adopt the setting of Deng et al. (2022) and rely on their solving techniques
as well as other celebrated tools such as dynamic programming, dual transformation and region-
wise solving method. Our choice of the reference point is for simplicity. It turns out that the
set of solving techniques we have used, inspired by Deng et al. (2022), is widely applicable to
other forms of reference point, see Appendix D. In addition to the reference point itself, our main
interests include investigating consumption and portfolio behaviors under the preference change at
the reference point. There are several distinctive features of our model, serving as complement to
the one proposed and solved in Deng et al. (2022). First of all, the preference change leads to an
upward or downward turn of optimal consumption at the threshold Wref(h), instead of a relatively
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smooth curve in Deng et al. (2022). Moreover, we emphasize that the influences of preference
change on optimal consumption choice are global. For example, adjusting the risk aversion from
β2 to β1(< β2) in the region x < Wref(h) even changes the consumption behavior in the region
x > Wref(h), revealing a kind of strategical risk allocation among different states of economics. In
terms of risky investment proportion, the preference change results in significant increase or decrease
with a wide range of wealth level. The preference change together with drawdown constraint leads to
a totally different optimal investment proportion curve comparing with Deng et al. (2022). Another
advantage of the present model is that considering preference change highlights the importance
of the wealth threshold Wref(h) that has been more or less neglected before. For example, the
risky investment proportion attains its maximum around Wref(h), and the value function has very
different sensitivity to wealth shock on different sides of the curve x = Wref(h). The detailed
differences between our paper and Deng et al. (2022), as well as other implications of our model,
will become clear in Section 5.

To sum up, the model studied in this paper has considered and combined three aspects of the
economical and psychological background of the consumption and investment problem: (1) the
running maximum of past consumption is taken as the habit formation process; (2) a drawdown
constraint is imposed on consumption; (3) risk aversion is changing in the model and a reference
point is added. We have applied the solution method inspired by Deng et al. (2022) as well as other
celebrated tools. We have used dynamic programming principle to derive the HJB equation of the
problem, solved the optimal consumption and portfolio strategy thanks to the duality method and
numerically analyzed the solution and sensitivity of thresholds to certain parameters. From this
simple and intuitive model, we have found several interesting economic implications such as MPC
jump and RRA smile.

The rest of the paper is organized as follows: Section 2 is devoted to mathematically formulating
the optimal consumption and investment problem focused in this paper. We deduce the HJB
equation and obtain the feedback form of solution in dual form in Section 3. In Section 4, the
verification theorem is established and the optimal strategy is obtained in primal form. Numerical
analysis with fixed parameters are in Section 5, while in Section 6 we present sensitivity analysis.
Section 7 gives a brief conclusion. Technical proofs and some generalizations are presented in
Appendices.

Related literature. Our model is based on dynamic consumption-investment decision model,
whose classical form dates back to Merton (1969). A wide range of literature extends this problem
by taking habit formation into account, see Pollak (1970), Detemple and Zapatero (1992) and
Chapman (1998) for instance. The habit formation is usually modelled through habit formation
process and habit formation preference. Habit formation process is a process whose value at time
t is determined by the consumption process up to time t. Habit formation preference suggests that
the decision maker’s utility is depending on both the consumption process and the habit formation
process, which sketches how consumption habit affects current consumption behavior.

One may just set the habit formation process as the average of the past consumption process.
A more reasonable and flexible choice of the habit formation process is the so-called linear habit
formation, i.e., the weighted average of the past consumption where more weight is placed on
the recent consumption. Such form of habit formation process has dominated the research in habit
formation setting since early literature such as Ryder and Heal (1973). Recently, taking the running
maximum process of past consumption as the habit formation process has opened another stream
of research in the study of habit formation. The running maximum process is non-decreasing
and only updates if the consumption level exceeds the historical running maximum, which brings
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about mathematical challenges because of the connection to singular control theory. We follow
the running maximum habit formation model recently studied by Guasoni et al. (2020) and Deng
et al. (2022). However, our model takes into account more factors that may influence the decision
maker’s consumption and portfolio choice, including the constraint on consumption and the change
of risk aversion.

How utility depends on the consumption c and habit h is another topic in habit formation. The
habit formation preference usually refers to the case that the utility is a function of c − h, which
suggests that the habit has an inverse impact on the utility. A wide range of literature, Chapman
(1998) for instance, adopts the above habit formation preference setting. A more flexible model,
in Deng et al. (2022), requires the utility to depend on c− αh where α may vary in [0, 1]. Guasoni
et al. (2020) uses a different approach by setting the utility to be a function of c

hα where α ∈ (0, 1).
All the above settings insure the inverse impact of the habit. How consumption is constrained,
on the other hand, is also important when studying habit-related model. Usually, the constraint
imposes a lower bound on consumption. In the extreme case, the consumption is prohibited from
falling below the habit (Muraviev (2011) and Yu (2015) for linear habit, Dybvig (1995) and Jeon
and Park (2020) for running maximum), which is termed as addictive habit formation. In other
literature it is required instead that the consumption is at least a fraction of the habit, such as Arun
(2012) and Angoshtari et al. (2022). In this paper, we also impose such drawdown constraint, in
which we require c ≥ λh, where λ ∈ (0, α). We assume λ < α to ensure the validity of the reference
point αh where risk aversion changes. For λ = 0, our model reduces to a model with no drawdown
constraint; for λ = α, our model reduces to a model with no risk aversion change. It is worth
mentioning that both Arun (2012) and Angoshtari et al. (2022) obtain a threshold of wealth/habit
ratio below which the agent chooses to consume the lowest. We derive similar phenomenon, but
with a rather complicated threshold curve (x = Wlow(h)) of wealth-habit pair, instead of a simple
ray.

The paradigm of our setting is utility with reference points, which has been widely studied in
different economical problems, such as Jin and Zhou (2008) and He and Yang (2019). Another
common model under this paradigm is the S-shaped utility developed by D. Kahneman and A.
Tversky. Li et al. (2022) has studied such S-shaped utility in the context of running maximum
habit formation. However, such non-concave utility results in an extreme optimal strategy where
the decision maker never consumes between 0 and the reference point. Instead, we analyze a utility
with risk aversion change but in a concave form. As a result, we obtain a more reasonable optimal
strategy where the optimal consumption varies from the lower bound λh to the running maximum
h in continuous values. Another related work is Van Bilsen et al. (2020), which permits the agent
to be risk averse in loss domain (setting γL > 1 therein). This setting is consistent with ours, but
they model risk aversion change in terms of relative risk aversions.

2 Model Formulation

The financial market consists of one risk-free asset and one risky asset in our model. The risk-free
asset {S0

t , t ≥ 0} satisfies the dynamic

dS0
t = S0

t rdt,

where r > 0 is the constant interest rate. The risky asset {S1
t , t ≥ 0} satisfies

dS1
t = S1

t [µdt+ σdBt] ,
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where µ ≥ r is the expected return and σ > 0 is the volatility. The Brownian motion B is defined
on the filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual conditions.

The decision maker determines his dynamic spending rate c , {ct, t ≥ 0} and the dynamic
amount of his wealth invested in the risky asset denoted by π , {πt, t ≥ 0}. Let x0 be the investor’s
initial wealth, then his wealth process {Xt, t ≥ 0} follows the following stochastic differential
equation (abbr. SDE): {

dXt = rXtdt+ πt(µ− r)dt+ πtσdBt − ctdt,
X0 = x0.

(2.1)

Given the consumption process {ct, t ≥ 0}, the running maximum process of past consumption
is defined as h = {ht, t ≥ 0}:

ht = h0 ∨ sup
s≤t

cs, t > 0 (2.2)

and h0 is the inherited running maximum level. It is naturally required that the wealth level is
always non-negative under any admissible strategy to avoid bankruptcy. Thus we now introduce
the admissible strategies.

Definition 2.1. Process (c, π) =
{

(ct, πt), t ≥ 0
}

is an admissible strategy of Problem (2.3) if it
is adapted w.r.t {Ft}t≥0 with

∫ t

0
csds <∞, a.s.,∫ t

0
π2sds <∞, a.s.,

ct ≥ λht, a.s.,
Xt > 0, a.s.,

for all t ≥ 0, where {ht, t ≥ 0} is the corresponding running maximum process given by (2.2)
and {Xt, t ≥ 0} is the corresponding wealth process governed by SDE (2.1). We denote by A the
set of admissible strategies.

The goal of the decision maker is to maximize his expected total discounted utility on infinite
planning horizon [0,∞), which can be formulated as the optimization problem:

sup
(c,π)∈A

Ex0,h0
∫ ∞
0

e−γtU(ct, ht)dt, (2.3)

where γ > 0 is the discount factor. The utility function U(c, h) depends on both the consumption
c and the running maximum h. Precisely,

U(c, h) =

{
1
β1

[
1− e−β1(c−αh)

]
, λh ≤ c < αh,

1
β2

[
1− e−β2(c−αh)

]
, αh ≤ c ≤ h,

where 0 ≤ λ ≤ α < 1, β1, β2 > 0. αh is the reference point where risk aversion increases as the
consumption exceeds it. The utility is segmented with both segments taking the form of constant
absolute risk aversion (abbr.CARA) utility. The absolute risk aversion above reference αh is β2,
while the absolute risk aversion below reference is β1. The utility is concave and the marginal
utilities at the two sides of the reference point αh are equal and finite.
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Remark 1. When λ = 0, our model reduces to the model without drawdown constraint. When
α = λ or β1 = β2, our model reduces to the model without reference αh and the corresponding
risk aversion change. However, our model does not reduces to the model without reference αh if
α approaches 1 from below. The reason lies in the fact that the updating of running maximum
is under the leveled-up risk aversion coefficient β2 when α < 1 but under risk aversion coefficient
β1 when α = 1 (the case α = 1 actually reduces to the model without reference αh). In other
words, the model is somewhat “not continuous” at α = 1. Hence, we just consider the case α < 1.
Another two limiting cases β1 → 0 and β2 → 0 are discussed in Subsection 6.2.3.

Remark 2. Alternatively, we can consider more general reference point instead of αh. It turns
out that the solution techniques we used are still applicable. Base on these techniques and tools,
we give the results with an alternative reference in Appendix D, which is more general and reduces
to the current model in a special case.

For convenience, we only deal with the case that r = γ in this paper. For the general case, all
the results are paralleled to the case r = γ but more complicated. Interested readers can refer to
Appendix E for more details.

At the end of this section, we provide a lemma which gives a necessary condition for an admis-
sible strategy, which will be used later in Section 3.

Lemma 2.2. For any (c, π) ∈ A (if A 6= ∅), the corresponding wealth process {Xt, t ≥ 0} and
running maximum process {ht, t ≥ 0} must satisfy Xt ≥ λ

rht, a.s. for ∀t ≥ 0.

Proof. Suppose that (c, π) ∈ A and there exists t0 such that P(Xt0 <
λ
rht0) > 0. Then there exists

ε > 0 such that P(Xt0 < (1 − ε)λrht0) > 0. We only need to show that even for strategies with
lowest consumption, i.e., ct = λht0 , ∀t ≥ t0, there exists t1 > t0 such that P(Xt1 < 0) > 0. For
strategies with ct = λht0 , ∀t ≥ t0, the dynamic of wealth becomes

dXt = rXtdt+ πt(µ− r)dt+ πtσdBt − λht0dt, ∀t ≥ t0.

Solving this SDE, we obtain

Xt = er(t−t0)Xt0 +
λht0
r

[
1− er(t−t0)

]
+(µ−r)ert

∫ t

t0

e−ruπudu+σert
∫ t

t0

e−ruπudBu, ∀t ≥ t0. (2.4)

For t = t0 + 1
r ln(1ε ), we have

P
(
er(t−t0)Xt0 +

λht0
r

[
1− er(t−t0)

]
< 0

)
=P
(
Xt0 < (1− ε)λ

r
ht0

)
>0.

To handle the sum of last two terms, we introduce the probability measure P̃ by

dP̃
dP

∣∣∣∣
Ft

:= e−
µ−r
σ
Bt− (µ−r)2

2σ2
t, ∀t ≥ 0.
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Then {B̃t := Bt+
µ−r
σ t, t ≥ 0} is standard Brownian motion under P̃ and the sum of last two terms

equals σert
∫ t
t0
e−ruπudB̃u, which has zero expectation under P̃. Hence

P̃
(
σert

∫ t

t0

e−ruπudB̃u ≤ 0
)
> 0, ∀t ≥ 0,

then

P
(

(µ− r)ert
∫ t

t0

e−ruπudu+ σert
∫ t

t0

e−ruπudBu

)
=P
(
σert

∫ t

t0

e−ruπudB̃u ≤ 0
)

>0, ∀t ≥ 0.

Since (c, π) ∈ A, we deduce that Xt0 and ht0 are Ft0 measurable. Then the sum of first two terms
and the sum of last two terms of (2.4) are independent. Therefore, choosing t1 = t0 + 1

r ln(1ε ), we
have P(Xt1 < 0) > 0 and the proof is complete.

3 Derivation of the Solution in Dual Form

In this section, we apply the martingale optimality principle to derive the HJB equation of Problem
(2.3) and use the duality method to obtain the solution in dual form.

To begin with, the value function of Problem (2.3) is denoted by

V (x0, h0) , sup
(c,π)∈A

Ex0,h0
∫ ∞
0

e−γtU(ct, ht)dt.

Definition 3.1. An optimal strategy (c∗, π∗) of Problem (2.3) is an admissible strategy which
satisfies

Ex0,h0
∫ ∞
0

e−γtU(c∗t , h
∗
t )dt = V (x0, h0).

The martingale optimality principle shows that the process {Γt, t ≥ 0}

Γt , e−γtV (Xt, ht) +

∫ t

0
e−γsU(cs, hs)ds

is a local supermartingale for all admissible (c, π) and is a local martingale for the optimal (c∗, π∗).
If the value function is smooth enough, applying the Itô’s rule to {Γt, t ≥ 0}, we derive the HJB
equation of Problem (2.3) as follows1:

sup
c∈[0,h],π∈R

{
−γV (x, h) + Vx(x, h)

(
rx+ π(µ− r)−c

)
+

1

2
Vxx(x, h)σ2π2+U(c, h)

}
= 0,

Vh(x, h) = 0 on (x, h) s.t.
dh

dt
6= 0,

(3.1)

1For notational simplicity, we write x, h, c, π instead of Xt, ht, ct, πt in (3.1) and (3.4). dh
dt

in the second line refers

to dht
dt

, which is the derivative of ht in the sense of distribution. Heuristically, dh
dt

6= 0 means that the process {ht}
strictly increases at the instant t.
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and the optimal feedback form of π is

π∗primal(x, h) = −µ− r
σ2

Vx(x, h)

Vxx(x, h)
.

As x
h →

λ
r , the optimal investment should decline to zero to avoid bankruptcy, we have

lim
x
h
→λ

r

+

Vx(x, h)

Vxx(x, h)
= 0. (3.2)

To solve HJB equation (3.1) with the boundary condition (3.2) based on the duality method, we
introduce the conjugate of the value function as follows:

Ṽ (y, h) = sup
x≥0
{V (x, h)− xy}, y > 0.

Then we have the duality transform

x = −Ṽy(y, h),

V (x, h) = Ṽ (y, h)− yṼy(y, h),
Vx(x, h) = y,
Vxx(x, h) = − 1

Ṽyy(y,h)
,

Vh(x, h) = Ṽh(y, h),

(3.3)

and (3.1) is rewritten in dual form as follows:

sup
c∈[0,h],π∈R

{
− γ

[
Ṽ (y, h)− yṼy(y, h)

]
+ y

[
−rṼy(y, h) + π(µ− r)− c

]
− 1

2Ṽyy(y, h)
σ2π2

+ U(c, h)
}

= 0,

Ṽh(y, h) = 0 on (y, h) s.t.
dh

dt
6= 0.

(3.4)

For (3.4), the optimal feedback form π∗ = π∗(y, h) is

π∗(y, h) =
(µ− r)yṼyy(y, h)

σ2
. (3.5)

And the optimal feedback form c∗ = c∗(y, h) maximizing Ū(c) , U(c, h)− cy on [λh, h] is

c∗(y, h) =


λh, e(α−λ)β1h ≤ y,
− 1
β1

ln(y) + αh, 1 ≤ y < e(α−λ)β1h,

− 1
β2

ln(y) + αh, e−(1−α)β2h ≤ y < 1,

h, 0 ≤ y < e−(1−α)β2h.

(3.6)

For the region where c∗(y, h) = h, three sub cases need to be distinguished in order to apply the
second equation of (3.4) to solve the HJB equation. The first case is that the current consumption
just reaches the past consumption peak but does not update it; the second case is that the current
consumption reaches the past consumption peak and updates it; the last case is that the current
consumption exceeds the past consumption peak and forces the running maximum process to jump.
The last case can only happen at t = 0 where the inherited running maximum level is lower but
the initial wealth is abundant, which switches to the former two cases for t > 0. Hence we only
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need to consider the first two cases for t > 0. The second equation of (3.4) refers to the second
case where the running maximum h is updated, which instructs us to further separate the region
according to the above different sub cases. Specifically, the running maximum is updated if and
only if argmax

c
{U(c, c) − cy} ≥ h. Moreover, the running maximum h jumps if strict inequality

holds. As argmax
c
{U(c, c)− cy} ≥ h is equivalent to y ≤ (1− α)e−(1−α)β2h, we deduce that for any

initial point (y0, h0) s.t. y0 < (1− α)e−(1−α)β2h0 , it will jump immediately to
(
y0,

1
(1−α)β2 ln(1−αy0 )

)
which is on the curve y = (1−α)e−(1−α)β2h. Hence we only need to consider initial points (y0, h0) in
the dual region where y ≥ (1− α)e−(1−α)β2h. Meanwhile, the second formula of (3.4) is equivalent
to

Vh(y, h) = 0 for y = (1− α)e−(1−α)β2h. (3.7)

By the duality transform (3.3), the constraint x ≥ λh
γ is equivalent to −Ṽy(y, h) ≥ λh

γ . As such,
the dual effective region Cd can be defined by

Cd ,
{

(y, h)
∣∣y ≥ (1− α)e−(1−α)β2h, −Ṽy(y, h) ≥ λh

γ
, h > 0

}
.

Applying the duality transform again, the effective region C is

C ,
{

(x, h)
∣∣Vx(x, h) ≥ (1− α)e−(1−α)β2h, x ≥ λh

γ
, h > 0

}
. (3.8)

Using the first equation of (3.4), we obtain

−γṼ (y, h) +
(r − µ)2

2σ2
y2Ṽyy(y, h) = −Ũ(y, h), (3.9)

where Ũ(y, h) = sup
λh≤c≤h

{U(c, h)− cy} with

Ũ(y, h) =


1
β1

(1− e(α−λ)β1h)− λhy, e(α−λ)β1h ≤ y,
1
β1

[
1− y + y ln(y)

]
− αhy, 1 ≤ y < e(α−λ)β1h,

1
β2

[
1− y + y ln(y)

]
− αhy, e−(1−α)β2h ≤ y < 1,

1
β2

[
(1− e−(1−α)β2h

)
− hy, (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h.

Define k = (r−µ)2
2σ2 , q1 =

k−
√
k2+4kγ
2k < 0, q2 =

k+
√
k2+4kγ
2k > 1, then the general solution of (3.9) is

Ṽ (y, h)=


C1(h)yq1 + C2(h)yq2 − 1

γλhy + 1
γβ1

[
1− e(α−λ)β1h

]
, e(α−λ)β1h ≤ y,

C3(h)yq1+C4(h)yq2+ 1
γβ1

[
1− y + y ln(y)

]
+ k

γ2β1
y − 1

γαhy, 1 ≤ y < e(α−λ)β1h,

C5(h)yq1+C6(h)yq2+ 1
γβ2

[
1− y + y ln(y)

]
+ k

γ2β2
y − 1

γαhy, e
−(1−α)β2h ≤ y < 1,

C7(h)yq1+C8(h)yq2−1
γhy+

1
γβ2

[
1−e−(1−α)β2h

]
, (1−α)e−(1−α)β2h≤y<e−(1−α)β2h.

(3.10)

Based on the duality transform (3.3), the boundary condition (3.2) can be rewritten as follows:

lim
Ṽy(y,h)→−λhγ

−
yṼyy(y, h) = 0. (3.11)

Then we deduce from (3.11) and (3.10) that Ṽy(y, h) → −λh
γ ⇔ y → ∞ and that C2(h) =

0, C1(h) > 0. Using (3.10), we obtain −Ṽy(y, h) ≥ λh
γ and the dual effective region is simplified to

Cd =
{

(y, h)
∣∣y ≥ (1− α)e−(1−α)β2h, h > 0

}
. (3.12)
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In addition, when y = (1 − α)e−(1−α)β2h and h → ∞, the initial wealth x → ∞ and the utility
keeps near its maximum 1

β2
for infinitely long time. Thus the value function tends to 1

γβ2
. This

boundary condition can be expressed as

lim
h→∞

[
Ṽ (y, h)− yṼy(y, h)

]∣∣∣
y=(1−α)e−(1−α)β2h

=
1

γβ2
.

The above boundary condition together with C2(h) = 0, (3.7) and smooth-fit conditions

Ṽ (y+, h) = Ṽ (y−, h),

Ṽy(y+, h) = Ṽy(y−, h)

leads to

C2(h) =0, C4(h) = − k

γ2β1

1− q1
q2 − q1

e−(α−λ)(q2−1)β1h, (3.13)

C6(h) =C4(h) +
k

γ2
β2 − β1
β1β2

1− q1
q2 − q1

, (3.14)

C8(h) =C6(h) +
k

γ2β2

1− q1
q2 − q1

e(1−α)(q2−1)β2h, (3.15)

C7(h) =
(1− α)q2−q1 k

γ2
1−q1
q2−q1 (α− λ)(q2 − 1)

(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1
e−
[
(1−α)(q2−q1)β2+(α−λ)(q2−1)β1

]
h

+ (1− α)q2−q1
k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h, (3.16)

C5(h) =C7(h)− k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C3(h) =C5(h)− k

γ2
β2 − β1
β1β2

q2 − 1

q2 − q1
, (3.17)

C1(h) =C3(h) +
k

γ2β1

q2 − 1

q2 − q1
e(α−λ)(1−q1)β1h. (3.18)

We can directly show

C1(h) > 0, C4(h) < 0,

C7(h) > 0, C8(h) > 0

and obtain the following order estimates of the coefficients Ci(h), 1 ≤ i ≤ 8, which will later be
used in the proof of the verification theorem.

Lemma 3.2. As h→∞,

C1(h) = O(e(α−λ)(1−q1)β1h),

C3(h) = O(1), C4(h) = O(e−(α−λ)(q2−1)β1h),

C5(h) = O(e−(1−α)(1−q1)β2h), C6(h) = O(1),

C7(h) = O(e−(1−α)(1−q1)β2h), C8(h) = O(e(1−α)(q2−1)β2h).
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4 Verification Theorem and Optimal Strategy

In this section, we establish the verification theorem and apply the duality transform to obtain the
optimal strategy. First, we state the verification theorem which gives the optimal consumption and
investment policy in dual form.

Theorem 4.1 (Verification Theorem). For any (x0, h0) ∈ C, where x0 and h0 are respectively the
initial wealth and initial past spending maximum, and C is the effective region given by (3.8), the
value function V (x0, h0) can be attained by the optimal consumption and investment strategy given
by

(c∗, π∗) =

{(
c∗
(
Yt(y

∗), H†t (y
∗)
)
, π∗
(
Yt(y

∗), H†t (y
∗)
))
, t ≥ 0

}
where Yt(·) is given by

Yt(y) , yeγtMt

with M ,

{
Mt := e−(γ+

(µ−r)2

2σ2
)t−µ−r

σ
Bt , t ≥ 0

}
being the discounted state price density process,{

H†t (·), t ≥ 0
}

is determined by

H†t (y) , h0 ∨ sup
s≤t

c∗
(
Ys(y), H†s(y)

)
,

y∗ = y∗(x0, h0) is the unique solution of

Ex0,h0
∫ ∞
0

c∗
(
Yt(y), H†t (y)

)
Mtdt = x0 (4.1)

and the feedback functions c∗(·, ·) and π∗(·, ·) are respectively given by

c∗(y, h) =


λh, e(α−λ)β1h ≤ y,
− 1
β1

ln(y) + αh, 1 ≤ y < e(α−λ)β1h,

− 1
β2

ln(y) + αh, e−(1−α)β2h ≤ y < 1,

h, (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h.

(4.2)

π∗(y, h) =
µ− r
σ2


r
k

[
C1(h)yq1−1 + C2(h)yq2−1

]
, e(α−λ)β1h ≤ y,

r
k

[
C3(h)yq1−1 + C4(h)yq2−1

]
+ 1

γβ1
, 1 ≤ y < e(α−λ)β1h,

r
k

[
C5(h)yq1−1 + C6(h)yq2−1

]
+ 1

γβ2
, e−(1−α)β2h ≤ y < 1,

r
k

[
C7(h)yq1−1 + C8(h)yq2−1

]
, (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h.

(4.3)

Proof. See Appendix A.

Now, to apply the dual transform to present the primal value function as well as the optimal
consumption and investment policy with the primal variable, we need the following lemma in the
dual transform, and its proof is given in Appendix C.

Lemma 4.2. Ṽyy(y, h) > 0 for (y, h) ∈ Cd and hence the inverse of −Ṽy(·, h) exists.
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Let f(·, h) be the inverse of −Ṽy(·, h) based on Lemma 4.2, then, using dual transform (3.3),
we have {

x = −Ṽy(y, h),
y = f(x, h).

(4.4)

As such, based on (4.4) and Lemma 4.2, the function f(·, h) is implicitly and uniquely determined
by

x = −Ṽy
(
f(x, h), h

)
. (4.5)

Plugging (3.10) into (4.5), we obtain the following forms of f(x, h) according to different regions:
(1) For e(α−λ)β1h ≤ f(x, h), we have f(x, h) = f1(x, h) with f1(x, h) satisfying

x = −C1(h)q1
[
f1(x, h)

]q1−1 − C2(h)q2
[
f1(x, h)

]q2−1 +
λh

γ
. (4.6)

Based on Lemma 4.2, Vyy(·, h) > 0, then the inequality e(α−λ)β1h ≤ f(x, h) is equivalent to x ≤
Wlow(h) with

Wlow(h) = −C1(h)q1e
−(α−λ)(1−q1)β1h − C2(h)q2e

(α−λ)(q2−1)β1h +
λh

γ
. (4.7)

(2) For 1 ≤ f(x, h) < e(α−λ)β1h, f(x, h) = f2(x, h) with f2(x, h) satisfying

x = −C3(h)q1
[
f2(x, h)

]q1−1 − C4(h)q2
[
f2(x, h)

]q2−1 − 1

γβ1
ln
[
f2(x, h)

]
− k

γ2β1
+
αh

γ
. (4.8)

The inequality 1 ≤ f(x, h) < e(α−λ)β1h is equivalent to Wlow(h) < x ≤Wref(h), where

Wref(h) = −C3(h)q1 − C4(h)q2 −
k

γ2β1
+
αh

γ
. (4.9)

(3) For e−(1−α)β2h ≤ f(x, h) < 1, f(x, h) = f3(x, h) with f3(x, h) satisfying

x = −C5(h)q1
[
f3(x, h)

]q1−1 − C6(h)q2
[
f3(x, h)

]q2−1 − 1

γβ2
ln
[
f3(x, h)

]
− k

γ2β2
+
αh

γ
. (4.10)

The inequality e−(1−α)β2h ≤ f(x, h) < 1 is equivalent to Wref(h) < x ≤Wpeak(h) with

Wpeak(h) = −C5(h)q1e
(1−α)(1−q1)β2h − C6(h)q2e

−(1−α)(q2−1)β2h − k

γ2β2
+
h

γ
. (4.11)

(4) For (1− α)e−(1−α)β2h ≤ f(x, h) < e−(1−α)β2h, f(x, h) = f4(x, h) with f4(x, h) satisfying

x = −C7(h)q1
[
f4(x, h)

]q1−1 − C8(h)q2
[
f4(x, h)

]q2−1 +
h

γ
. (4.12)

The inequality (1− α)e−(1−α)β2h ≤ f(x, h) < e−(1−α)β2h is equivalent to Wpeak(h) < x ≤Wupdt(h)
with

Wupdt(h) = −C7(h)q1(1− α)q1−1e(1−α)(1−q1)β2h − C8(h)q2(1− α)q2−1e−(1−α)(q2−1)β2h +
h

γ
. (4.13)

We summarize the forms of the primal value function as well as the optimal consumption and
investment policy in terms of primal variable in the following Theorems 4.3 and 4.4:
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Theorem 4.3. For (x, h) ∈ C, where C is the effective region given by (3.8), the value function of
Problem (2.3) is

V (x, h) =



C1(h)
[
f1(x, h)

]q1 + C2(h)
[
f1(x, h)

]q2 − 1
γλhf1(x, h)

+ 1
γβ1

(1− e(α−λ)β1h), λh
γ ≤ x ≤Wlow(h),

C3(h)
[
f2(x, h)

]q1 + C4(h)
[
f2(x, h)

]q2 + 1
γβ1

[
1− f2(x, h) + f2(x, h) ln

[
f2(x, h)

]]
+ k
γ2β1

f2(x, h)− 1
γαhf2(x, h), Wlow(h) < x ≤Wref(h),

C5(h)
[
f3(x, h)

]q1 + C6(h)
[
f3(x, h)

]q2 + 1
γβ2

[
1− f3(x, h) + f3(x, h) ln

[
f3(x, h)

]]
+ k
γ2β2

f3(x, h)− 1
γαhf3(x, h), Wref(h) < x ≤Wpeak(h),

C7(h)
[
f4(x, h)

]q1 + C8(h)
[
f4(x, h)

]q2 − 1
γhf4(x, h)

+ 1
γβ2

[
1− e−(1−α)β2h

]
, Wpeak(h) < x ≤Wupdt(h),

(4.14)
where Wlow(h),Wref(h),Wpeak(h),Wupdt(h) and fi(x, h), 1 ≤ i ≤ 4 are given by (4.6)∼(4.13).

Proof. Applying dual transform (3.3) and (4.4) yields

V (x, h) = Ṽ
(
f(x, h), h

)
+ xf(x, h).

Plugging in (3.10), the desired result follows.

Theorem 4.4. For (x0, h0) ∈ C, where C is the effective region given by (3.8), let c∗primal(·, ·) and
π∗primal(·, ·) be the feedback functions in terms of primal variable given respectively by

c∗primal(x, h) =


λh, λh

γ ≤ x ≤Wlow(h),

− 1
β1

ln
[
f2(x, h)

]
+ αh, Wlow(h) < x ≤Wref(h),

− 1
β2

ln
[
f3(x, h)

]
+ αh, Wref(h) < x ≤Wpeak(h),

h, Wpeak(h) < x ≤Wupdt(h),

π∗primal(x, h) =
µ− r
σ2



r
k

{
C1(h)

[
f1(x, h)

]q1−1 + C2(h)
[
f1(x, h)

]q2−1} , λh
γ ≤ x ≤Wlow(h),

r
k

{
C3(h)

[
f2(x, h)

]q1−1 + C4(h)
[
f2(x, h)

]q2−1}+ 1
γβ1

, Wlow(h) < x ≤Wref(h),

r
k

{
C5(h)

[
f3(x, h)

]q1−1 + C6(h)
[
f3(x, h)

]q2−1}+ 1
γβ2

, Wref(h) < x ≤Wpeak(h),

r
k

{
C7(h)

[
f4(x, h)

]q1−1 + C8(h)
[
f4(x, h)

]q2−1} , Wpeak(h) < x ≤Wupdt(h),

where Wlow(h),Wref(h),Wpeak(h),Wupdt(h) and fi(x, h), 1 ≤ i ≤ 4 are given by (4.6)∼(4.13).
Then SDE{

dXt = rXtdt+ π∗primal(Xt, H
∗
t )(µ− r)dt+ π∗primal(Xt, H

∗
t )σdWt − c∗primal(Xt, H

∗
t )dt,

X0 = x0

with H∗t , h0 ∨ sup
s≤t

c∗primal(Xs, H
∗
s ) and H∗0 = h0, has a unique strong solution {X∗t , t ≥ 0}. The

optimal consumption and investment strategy is{(
c∗primal(X

∗
t , H

∗
t ), π∗primal(X

∗
t , H

∗
t )
)
, t ≥ 0

}
.

Proof. The proof is based on the following Lemmas 4.5 and 4.6. Then, as the proof is similar to
that of Deng et al. (2022), we omit it here.
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Lemma 4.5. The function f is C1 within each sub-region of C: λh
γ ≤ x ≤Wlow(h), Wlow(h) < x ≤

Wref(h), Wref(h) < x ≤ Wpeak(h), Wpeak(h) < x ≤ Wupdt(h), and it is continuous at the boundary
of x = Wlow(h), x = Wref(h), x = Wpeak(h). Moreover, we have

fx(x, h) = − 1

Ṽyy(f, h)

=



k
r

{
−C1(h)

[
f1(x, h)

]q1−2 − C2(h)
[
f1(x, h)

]q2−2}−1 , λh
γ ≤ x ≤Wlow(h),(

r
k

{
−C3(h)

[
f2(x, h)

]q1−2−C4(h)
[
f2(x, h)

]q2−2}− 1
γβ1f2(x,h)

)−1
, Wlow(h)<x≤Wref(h),(

r
k

{
−C5(h)

[
f3(x, h)

]q1−2−C6(h)
[
f3(x, h)

]q2−2}− 1
γβ2f3(x,h)

)−1
, Wref(h)<x≤Wpeak(h),

k
r

{
−C7(h)

[
f4(x, h)

]q1−2 − C8(h)
[
f4(x, h)

]q2−2}−1 , Wpeak(h) < x ≤Wupdt(h),

(4.15)

fh(x, h) = Ṽyh(f, h)fx(x, h). (4.16)

Proof. The proof is similar to Lemma 5.6 in Deng et al. (2022) and omitted here.

Lemma 4.6. The function c∗primal is locally Lipschitz on C and the function π∗primal is Lipschitz on
C.

Proof. See Appendix C.

5 Numerical Analysis with Fixed Parameters

This section aims to illustrate and analyze some properties of the optimal policy and relevant
boundaries by fixing the market parameters and numerically computing the results presented in
Theorems 4.3 and 4.4.

For simplicity, we define the boundary of the lowest wealth level to satisfy the consumption
constraint c > λh as

Wbkrp(h) =
λh

γ
.

The effective region is then between the two boundaries x = Wupdt(h) and x = Wbkrp(h). Using
three boundaries x = Wlow(h), x = Wref(h) and x = Wpeak(h), the effective region is further
separated into four parts where the investor takes different strategies in consumption and portfolio
selection due to different states of wealth and habit. The ineffective region is separated into two
parts Cc1 and Cc2:

Cc1 ,
{

(x, h)
∣∣x < Wbkrp(h), h > 0

}
,

Cc2 ,
{

(x, h)
∣∣x > Wupdt(h), h > 0

}
.

Cc1 defines the region where the wealth is too low to maintain the lowest consumption level c = λh.
The other part Cc2 implies that the wealth is so high w.r.t the current running maximum level (it
can only happen at time t = 0 in the optimal case) that it is optimal to consume at a level strictly
higher than the running maximum and forces (x, h) to jump to x = Wupdt(h).
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Figure 2: Boundary curves x = Wbkrp(h), x = Wlow(h), x = Wref(h), x = Wpeak(h) and x =
Wupdt(h), different sub-regions I∼IV (I:satisfactory, II:recovery, III:depression, IV:gloom) of the
effective region and two sub-regions Cci , i = 1, 2 of the ineffective region with λ = 0.3, α = 0.7, β1 =
1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3.

We fix parameters λ = 0.3, α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3 and compute
all the boundaries that separate the ineffective region and the effective region and different sub-
regions of the effective region. As shown in Figure 2, all boundaries are graphs of increasing
functions w.r.t the variable h. For fixed running maximum level h, if the wealth x is so low that
(x, h) fall into Cc1, the investor is too poor to sustain the lower bound consumption constraint;
if the wealth is a little higher that (x, h) belongs to sub-region IV of the effective region, then
the investor consumes at the lowest level set by the drawdown constraint; if the wealth is higher
but not high enough (sub-region III), the investor chooses to consume at a higher level than the
lowest level but no more than the reference point level αh where risk aversion increases; as the
wealth increase and (x, h) enters sub-region II, the investor has enough wealth to consume above
the reference point level αh but not enough to reach the running maximum level; with some
more wealth than the former case (now in sub-region I), the investor is able the consume at the
running maximum level but not wealthy enough to update it; if the investor has more wealth
than Wupdt(h), then he may update the running maximum immediately by consuming above the
historical running maximum level and causes (x, h) to jump onto the boundary x = Wupdt(h),
where he consumes at the running maximum level and continuously updates it. Based on the
aforementioned economic interpretation, we name the curve Wupdt(h) as “bliss” curve, and four
sub-regions I-IV as “satisfactory”, “recovery”, “depression” and “gloom” region, respectively. As
can be seen from the analysis below, such a division of state space helps to provide a structural
description of both consumption and investment behaviour under our model.

The optimal consumption, shown in Figure 3, is non-decreasing in both the wealth x and the
habit h. In satisfactory region and gloom region, the optimal consumption is indifferent with
respect to x. That is, for the poorest people in effective region (gloom), they consume as little as
possible, while for the wealthiest (satisfactory), they revisit their historical peak of consumption
rate. However, in depression region and recovery region, increasing wealth will lead to an increase
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Figure 3: Optimal consumption with fixed parameters λ = 0.3, α = 0.7, β1 = 1, β2 = 2, r =
0.04, µ = 0.12, σ = 0.3. The left panel plots the optimal consumption as a function of wealth and
consumption peak. The middle panel is the two-dimensional projection of the left panel with the
boundaries shown. The right panel is the contour plot.

in optimal consumption and the increase is more substantial in the region with lower risk aversion
(i.e., more substantial in depression region when β1 < β2, and in recovery region when β1 > β2).
The above analysis suggests that increasing wealth causes one to consume more only in the following
two cases: the first case is when the wealth is at least Wupdt(h), he is so rich that he decides to
consume more even at the cost of raising running maximum h; the other case is when his wealth is
more than Wlow(h) but less than Wpeak(h). There are two sub-cases divided by whether the wealth
is more than Wref(h) in the second case, and the (marginal propensity to consume) MPC out of
wealth is generally higher in the region with lower risk aversion.

Figure 4: Optimal portfolio with fixed parameters λ = 0.3, α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ =
0.12, σ = 0.3. The left panel plots the optimal portfolio as a function of wealth and consumption
peak. The middle panel is the two-dimensional projection of the left panel with the boundaries
shown. The right panel is the contour plot.

The optimal portfolio is shown in Figure 4. The behavior of the optimal portfolio varies signif-
icantly in different regions. For fixed habit h, the optimal portfolio sees a dramatic increase with
respect to the variable x in gloom and depression region where the risk aversion is low. However,
once crossing x = Wref(h) and the risk aversion shifting to the high level, increasing wealth causes
the optimal portfolio to fall instead. The above result indicates that the change of risk aversion has
an overwhelming impact on portfolio selection in our model. For those in gloom and depression
region, earning money which increases his wealth stimulates him to invest more in risky assert;
while for rich people in recovery and satisfactory region, as well as on bliss curve, the more he
earns, the less he is willing to invest in risky assert. Similar conclusions can be obtained from the
analysis of optimal proportion of wealth invested in risky assets, or economically, optimal portfolio
allocation (see Figure 5).
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Figure 5: Optimal risky investment proportion with fixed parameters λ = 0.3, α = 0.7, β1 =
1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3. The left panel plots the optimal risky investment
proportion as a function of wealth and consumption peak. The middle panel is the two-dimensional
projection of the left panel with the boundaries shown. The right panel is the contour plot.

Figure 6: Value function with fixed parameters λ = 0.3, α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ =
0.12, σ = 0.3. The left panel plots the value function as a function of wealth and consumption
peak. The middle panel is the two-dimensional projection of the left panel with the boundaries
shown. The right panel is the contour plot.

The value function shown in Figure 6, is increasing in wealth x and decreasing in habit h, which
suggests that higher initial wealth and lower inherited past spending maximum result in higher
optimal value for Problem (2.3). Meanwhile, for regions below x = Wref(h) where the risk aversion
is low, especially for gloom region, the value function will fall dramatically due to a slight decrease
in x or a slight increase in h. Nevertheless, for regions above x = Wref(h) where the risk aversion is
high, the value function does not vary significantly as x and h vary. The above result indicates that
one can live almost as pleasant as a millionaire with his initial wealth equal to Wref(h0) where h0 is
his historical consumption peak. Another fact shown is that poor people are much more vulnerable
to wealth shocks than the wealthy.

We are particularly interested in the decisions of consumption rate and risky investment pro-
portion in terms of wealth, fixing a standard of living, i.e., the function x 7→ c∗(x, h) and x 7→
π∗(x, h)/x, which we present in Figure 7. As can be seen, the sensitivity of the optimal consump-
tion with respect to the variable x, or economically speaking, the marginal propensity to consume
(MPC) out of wealth, generally decreases with a growing wealth. This is admitted in vast economic
literature. However, a dedicated analysis (see Remarks 3-5) shows that while MPC out of wealth is
indeed decreasing in lower part of the depression-recovery region and at the bliss curve, it is instead
increasing in x in upper part of depression-recovery region. Besides, MPC out of wealth shrinks
or swells by β1/β2 at Wref(h), which is itself an interesting fact2. This fact also indicates that the

2Different from other related papers, the marginal utility of consumption is continuous at the reference point

19



Figure 7: Optimal consumption and risky investment proportion in wealth with h = 3, 4, 5 and
fixed parameters λ = 0.3, α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3. The bliss curve
represents the optimal strategies when x ≥Wupdt(h), and h is updating on this curve.

MPC in recovery region can be globally lower or higher than that in depression region, and it is
lower in our numerical result (left panel of Figure 7). See Figure 1 in the introduction for a more
illustrative version of optimal consumption when fixing h.

Remark 3. Based on Theorem 4.4 and Lemma 4.5, we have for Wlow(h) < x ≤Wpeak(h),

∂c∗(x, h)

∂x
=

{
1
β1

1
f2(x,h)Ṽyy(f2(x,h),h)

, Wlow(h) < x ≤Wref(h),
1
β2

1
f3(x,h)Ṽyy(f3(x,h),h)

, Wref(h) < x ≤Wpeak(h).

r
k (C3(h)+C4(h))+ 1

γβ1
= r

k (C5(h)+C6(h))+ 1
γβ2

leads to the continuity of yṼyy(y, h) at y = 1. Hence
∂c∗(x,h)
∂x |x→Wref(h)+ = β1

β2

∂c∗(x,h)
∂x |x→Wref(h)− , which indicates that the MPC out of wealth shrinks or

swells by β1
β2

when exceeding Wref(h).

Remark 4. The bliss curve for optimal consumption is c = W−1updt(x). Hence the bliss curve is
concave if and only if W ′′updt(h) > 0. Direct computation shows

W ′′updt(h) = e−(1−α)(q2−1)β2h
[
M1e

−(α−λ)(q2−1)β1
]
h −M2

]
where

M1 =

k
γ2β1

(1− q1)(q2 − 1)2(1− α)q2−1
[
(1− α)q2β2 + (α− λ)(q2 − 1)β1

]
(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1

[
(1− α)β2 + (α− λ)β1

]2
,

M2 =
k

γ2
β2 − β1
β1β2

1− q1
q2 − q1

q2(1− α)q2+1(q2 − 1)2β22 .

Hence for β1 < β2, we have M1,M2 > 0 and thus there exists h̄ = ln(M1)−ln(M2)
(α−λ)(q2−1)β1 such that

the bliss curve is concave in x for h ≤ h̄. It implies that the MPC out of wealth decreases when
x ≥Wupdt(h) and h ≤ h̄. With current parameters, the threshold h̄ is approximately 6.6.

c = αh, but we still document such an MPC shrink or MPC swell.
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For β1 ≥ β2, we have M1 > 0,M2 ≤ 0 and thus the bliss curve is concave in x, which implies
that the MPC out of wealth decreases when x ≥Wupdt(h).

Remark 5. With Lemma 4.2, Theorem 4.4 and Lemma 4.5, it can be shown that ∂c∗(x,h)
∂x is

increasing (decreasing) in x if and only if π∗(y, h) is increasing (decreasing) in y, where x and y are
connected by y = f(x, h). As for e−(1−α)β2h ≤ y < e(α−λ)β1h,

∂π∗(y, h)

∂y
=
µ− r
σ2

r

k

{
C3(h)(q1 − 1)yq1−2 + C4(h)(q2 − 1)yq2−2, 1 ≤ y < e(α−λ)β1h,

C5(h)(q1 − 1)yq1−2 + C6(h)(q2 − 1)yq2−2, e−(1−α)β2h ≤ y < 1

and

C3(h)(q1 − 1)e(q1−2)(α−λ)β1h + C4(h)(q2 − 1)e(q2−2)(α−λ)β1h = C1(h)(q1 − 1)e(q1−2)(α−λ)β1h < 0,

C3(h)(q1 − 1) + C4(h)(q2 − 1) = C5(h)(q1 − 1) + C6(h)(q2 − 1),

we conclude that if

C5(h)(q1 − 1)e−(q1−2)(1−α)β2h + C6(h)(q2 − 1)e−(q2−2)(1−α)β2h > 0, (5.1)

then there exists x̄(h) ∈ [Wlow(h),Wpeak(h)] such that the MPC out of wealth is decreasing for
x ∈

[
Wlow(h), x̄(h)

]
\{Wref(h)} and increasing for x ∈

[
x̄(h),Wpeak(h)

]
\{Wref(h)} (Wref(h) needs

to be excluded due to the MPC shrink or swell, see Remark 3). Specifically, x̄(h) = −Ṽy(ȳ(h), h)
with ȳ(h) given by

ȳ(h) =

 (−C3(h)(q1−1)
C4(h)(q2−1))

1
q2−q1 , for h s.t. C3(h)(q1 − 1) + C4(h)(q2 − 1) > 0,

(−C5(h)(q1−1)
C6(h)(q2−1))

1
q2−q1 , for h s.t. C3(h)(q1 − 1) + C4(h)(q2 − 1) ≤ 0

It is straight forward to verify numerically that (5.1) is satisfied for h in a reasonable range (say,
h ≥ 0.2 with the current parameters).

The threshold x̄(h) is above Wref(h) if and only if C3(h)(q1−1)+C4(h)(q2−1) < 0. We observe
two cases: One case is that x̄(h) is always above Wref(h), which is the case for β1 ≥ β2; the other
case is that x̄(h) is above Wref(h) for h above certain threshold ĥ and below Wref(h) for h < ĥ,
which is the case for β1 < β2. Moreover, as the difference β2 − β1 decreases to zero, the threshold
ĥ increases to +∞ and turns into the first case.

From the right panel of Figure 7, it is clear that for sampled h, risky investment proportion is
a hump in variable x, and the peak is around Wref(h) (see also Figure 5) 3. If we interpret the
inverse of risky investment proportion as the so-called implied relative risk aversion (Jeon and Park
(2020)), we find that it will be a smile in wealth: people with intermediate wealth level have lowest
risk aversion, and hence have the highest risk tolerance. People with either very low or very high
level of wealth are much more risk averse. This effect comes intuitively from our model settings.
Poor people need to make their deposit above Wbkrp(h) in order to satisfy the lowest consumption
constraint, hence are very sensitive to risk. It is reasonable for them to keep most part of their
wealth in safe assets. Rich people, on the other hand, have already been satisfied by the current
level of consumption (or even continuously consume more and more) and they tend to avoid the
risk of consumption declining to less than reference αh. A more illustrative version of optimal risky
investment proportion when fixing h can be found in Figure 1.

3Numerical analysis shows that risky investment proportion is indeed a hump in x for h above a relatively small
level. For h below that level (i.e, if h is extremely small), there is an apparent increase on the right end of the hump.
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Figure 8: With fixed parameters λ = 0.2, β1 = 1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3, the four
boundaries varies with different α.

6 Sensitivity Analysis

6.1 Impact of λ and α on Thresholds

The parameter α determines the reference point αh where risk aversion changes. When α equals λ,
our model reduces to the model without the risk aversion related reference point and the boundary
x = Wref(h) coincides with x = Wlow(h). When α approaches 1 from below, the reference point
approaches the running maximum and the boundary x = Wref(h) coincides with x = Wpeak(h). To
figure out the consequences of the ratio α on different boundaries, we fix λ = 0.2, β1 = 1, β2 =
2, r = 0.04, µ = 0.12, σ = 0.3, let α vary from λ to 1 − 10−8 and present the boundaries
separately (we do not consider the boundary Wbkrp(h) since it does not depend on α). As shown
in Figure 8, the boundary x = Wpeak(h) moves downward as α increases, while the other three
boundaries x = Wlow(h),Wref(h) and Wupdt(h) have the tendency to move upward as α increases.
The above phenomenon illustrates that the criterion for the investor to be able to consume at the
historical running maximum level lowers as α increases while other three criteria to enter a higher
consumption level would generally raise up as α increases. The change of α is most influential
on x = Wref(h), which is the boundary of whether to consume more than αh and an important
boundary in our analysis of both optimal portfolio and value function.

Another parameter of interest in our model is λ, which reflects the degree of the drawdown
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Figure 9: With fixed parameters α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3, the four
boundaries varies with different λ.

constraint on consumption. The consumption level is allowed to be relatively lower with smaller λ.
When λ equals 0, our model reduces to the model without drawdown constraint and the boundary
x = Wbkrp(h) coincides with the h axis. When λ equals α, our model reduces to the model without
the risk aversion related reference point and the boundary x = Wref(h) coincides with x = Wlow(h).
We fix α = 0.7, β1 = 1, β2 = 2, r = 0.04, µ = 0.12, σ = 0.3, let λ vary below α and graph the
boundaries separately (boundary x = Wbkrp(h) is not shown here since it is simply linear) in order
to illustrate the impact of λ on the boundaries. As shown in Figure 9, all four thresholds are higher
when λ increases. Among the four boundaries, λ is most influential on the boundary x = Wlow(h),
which suggests that, with larger λ, more wealth is needed for getting rid of gloom. However, λ has
a negligible effect on x = Wpeak(h) and x = Wupdt(h), indicating that whether to consume at the
historical level and whether to update the historical level have almost no reliance on the degree of
drawdown constraint.

6.2 Discussion for β1 and β2

In this subsection, we focus on the sensitivity analysis of the parameters β1 and β2, which are the
risk aversion coefficients below and above the reference αh. The difference β2 − β1 reflects the
magnitude of the risk aversion change over the reference. We mainly illustrate the results with
β1 ≤ β2. The differences in results with β1 ≥ β2 are briefly discussed in 6.2.2. Two limiting cases
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Figure 10: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal consumption with fixed β1.

Figure 11: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal risky investment proportion with fixed β1.

of interest are investigated in 6.2.3.

6.2.1 β1 ≥ β2

In this part, we analyze the influence of β2 − β1 when β1 ≥ β2.
To investigate the influence of β2 − β1, we have to fix either β1 or β2. One approach is fixing

β1, then β2 − β1 is the increase in risk aversion when the consumption exceeds the reference αh.
We first investigate the influence on optimal strategies. When β2 − β1 is enlarges, the main

influence on consumption is the decelerating of consumption increase once across the boundary
x = Wref(h) (see Figure 10), which delays the arrival of consumption peak x = Wpeak(h). The
decelerating effect in consumption increase can be explained by the conservative consumption be-
havior due to higher risk aversion above the reference. Meanwhile, change of β2 even influence the
consumption in the region x < Wref(h), where only β1 seems to be relative. This can be regarded
as an important risk allocation behavior: people suppress the consumption when he can tolerate
less risks to compensate the consumption elsewhere.

We now consider the risky assets allocation. As β2 − β1 enlarges, there is a decrease in risky
investment proportion once over certain thresholds around Wlow(h). The amount of decrease varies
with different wealth levels x and initial risk aversion β1 (see Figure 11 for more details). It is
reasonably expected that risky investment proportion should decrease due to higher risk aversion
above the reference. Again, the decrease is not constrained to those wealth levels in recovery region
(x > Wref(h)). It instead occurs prior to the threshold Wref(h).

We also investigate the influence of β2−β1 on the wealth thresholds. As is shown in Figure 12,
the increase of β2 − β1 leads to higher threshold Wpeak(h), especially for small h. The influence on
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other thresholds is negligible.

Figure 12: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, impact of β2 − β1 on
x = Wpeak(h) with fixed β1.

Another approach to examine the effect of risk aversion change β2−β1 is fixing β2 and viewing
β2 − β1 as the decrease in risk aversion when consumption falls below the reference αh.

As β2−β1 enlarges, the decrease of consumption decelerates above Wref(h) but accelerates below
Wref(h) (see Figure 13). The acceleration can be reasonably explained by aggressive consumption
behavior due to lower risk aversion below the reference. Again, the effect of β1 is not limited to
x < Wref(h).

The risky investment proportion, on the other hand, sees a significant increase when β2 − β1
increases for wealth in the depression and recovery regions [Wlow(h),Wpeak(h)], especially around
Wref(h) (see Figure 14). This is due to lower risk aversion below the reference.

However, the change in β2 − β1 for fixed β2 does not have a significant impact on wealth
thresholds. We merely observe a decrease in Wref(h) for small values of β2 as β2 − β1 enlarges (see
Figure 15).

Figure 13: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal consumption with fixed β2.

Remark 6. The influence of β2 − β1 can only be studied fixing either β1 or β2. The sensitivity
analyses for the influence of β2−β1 on the optimal controls as well as the thresholds are established
for relatively small β1 or β2 (the fixed one). As numerical results illustrate, When the fixed βi is
sufficiently large, the optimal controls and the thresholds are nearly not affected by β2 − β1. This
phenomenon can already be well observed in the right panels in Figure 10, Figure 12, Figure 13
and Figure 15.

A special case in our model is β2 − β1 = 0, which suggests that risk aversion does not change
over the reference αh. In this case, Wref just exists symbolically but has no economical significance.
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Figure 14: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal risky investment proportion with fixed β2.

Figure 15: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, impact of β2 − β1 on
x = Wref(h) with fixed β2.

The depression region (x ∈ [Wlow(h),Wref(h)]) and recovery region (x ∈ [Wref(h),Wpeak(h)]) share
strategies and one region would merge into another.

6.2.2 β1 > β2

In this part, we consider the case β1 > β2 and briefly discuss on the impact of β1 − β2 on optimal
strategies and boundaries. The impact for β1 > β2 mainly corresponds to that for β1 < β2 and can
be well interpreted. However, it is beyond our expectation to observe a new peak around Wpeak(h)
in risky investment proportion that overtakes the peak around Wref(h).

The optimal consumption for β1 > β2 is still non-decreasing in x. The main difference occurs
between [Wlow(h),Wpeak(h)]. As shown in Figure 16, when β1 > β2, the risk aversion is lower in
the recovery region and the MPC out of wealth is thus generally higher in the recovery region,
which results in an upward turn at Wref(h) (it is a downward turn when β1 < β2). When fixing
β1, as β1 − β2 enlarges, the increase of consumption accelerates over Wref(h), bringing the arrival
of consumption peak Wpeak(h) forward. When fixing β2, as β1 − β2 enlarges, the decrease of
consumption accelerates above Wref(h) and decelerates below Wref(h).

As shown in Figure 17, when β1 − β2 enlarges, the optimal investment proportion sees an
apparent increase over certain threshold around Wlow(h) for fixed β1 while there is an apparent
decrease for wealth in depression and recovery regions for fixed β2. Besides, we observe a new
peak around Wpeak(h) that overtakes the peak around Wref(h) (see the red line in Figure 17). It
suggests that high proportion of risky investment is recommended for wealth in the recovery region,
especially around Wref(h) and Wpeak(h).

The impact of increasing β1−β2 on the boundaries coincides with the case β1 < β2: lower level
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Figure 16: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal consumption with fixed β1 = 1.5 (left) or fixed β2 = 1 (right).

Figure 17: With fixed parameters α = 0.7, r = 0.04, µ = 0.12, σ = 0.3, h = 4, impact of β2 − β1
on optimal risky investment proportion with fixed β1 = 1.5 (left) or fixed β2 = 1 (right).

of Wpeak(h) with fixed β1, higher level of Wref(h) with fixed β2 and negligible effect on others.

6.2.3 Limiting cases

In this subsection, we briefly discuss two limiting cases when one of the βi takes extreme value: fix
β1 and let β2 → 0; fix β2 and let β1 → 0.

Fixing β1 and letting β2 → 0 indicates that the agent becomes risk neutral when c > αh. Since
C1(h) → ∞ as β2 → 0, it is surprising to see that even the lowest constrained threshold Wlow(h)
tends to infinity. The limiting consumption curve is a horizontal line c ≡ λh. It suggests that
the agent always consumes at the lowest constrained level λ

rh. He might be saving money from
consuming as less as possible in order to aggressively invest in risk asset once he reaches Wref(h).
However, the day never comes because Wref(h) tends to infinity as β2 → 0.

Fixing β2 and letting β1 → 0, however, has completely different consequences. This limit
corresponds to the case that the agent becomes risk neutral when c < αh. A dedicated analysis
(see Remark 7) shows that all the thresholds have finite limits as β1 → 0. In particular, Wlow(h)
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and Wref(h) share the same limit. It indicates that the agent never consumes between the lowest
constrained level λhr and the reference level αh in this limiting case. The result is similar to that of
an S-shaped utility in Li et al. (2022) where the agent is risk seeking below the reference. However,
in S-shaped utility, the optimal consumption jumps from 0 to a level that is strictly higher than
reference point αh (see (3.25) in Li et al. (2022)), while our limiting optimal consumption jumps
from the lowest level to exactly the reference point.

Remark 7. From (3.13)∼(3.18), we have, as β1 → 0,

C4(h)→−∞,

C6(h)→− k

γ2β2

1− q1
q2 − q1

+
k

γ2
1− q1
q2 − q1

(α− λ)(q2 − 1)h,

C8(h)→ k

γ2β2

1− q1
q2 − q1

(e(1−α)(q2−1)β2h − 1) +
k

γ2
1− q1
q2 − q1

(α− λ)(q2 − 1)h,

C7(h)→(1− α)q2−q1−1(α− λ)
k

γ2
1− q1
q2 − q1

q2 − 1

q2 − q1
e−(1−α)(q2−q1)β2h

+ (1− α)q2−q1
k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C5(h)→(1− α)q2−q1−1(α− λ)
k

γ2
1− q1
q2 − q1

q2 − 1

q2 − q1
e−(1−α)(q2−q1)β2h

+
[
(1− α)q2−q1 − 1

] k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C3(h)→−∞,

C1(h)→(1− α)q2−q1−1(α− λ)
k

γ2
1− q1
q2 − q1

q2 − 1

q2 − q1
e−(1−α)(q2−q1)β2h

+ (1− α)q2−q1
k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h

+
k

γ2β2

q2 − 1

q2 − q1
+

k

γ2
q2 − 1

q2 − q1
(α− λ)(1− q1)h.

Denote the finite limits of Ci(h), i = 1, 5, 6, 7, 8 by CLi (h). Then we have, as β1 → 0,

Wlow(h)→− CL1 (h)q1 +
λh

γ
,

Wpeak(h)→− CL5 (h)q1e
(1−α)(1−q1)β2h − CL6 (h)q2e

−(1−α)(q2−1)β2h − k

γ2β2
+
h

γ
,

Wupdt(h)→− CL7 (h)q1(1− α)q1−1e(1−α)(1−q1)β2h − CL8 (h)q2(1− α)q2−1e−(1−α)(q2−1)β2h +
h

γ
.

To show that Wref(h) tends to the same limit −CL1 (h)q1 + λh
γ as Wlow(h), we prove Wref(h) −

Wlow(h)→ 0. In fact,
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Wref(h)−Wlow(h) =q1C1(h)
[
e−(α−λ)(1−q1)β1h − 1

]
+

(α− λ)h

γ

+
k

γ2β1

[
q1
q2 − 1

q2 − q1
e(α−λ)(1−q1)β1h + q2

1− q1
q2 − q1

e−(α−λ)(q2−1)β1h − 1

]
→(α− λ)h

γ
+

k

γ2

[
q1
q2 − 1

q2 − q1
(α− λ)(1− q1)h− q2

1− q1
q2 − q1

(α− λ)(q2 − 1)h

]
=0.

7 Conclusion

We establish a new theoretical model focusing on the risky investment and consumption behavior of
a sophisticated decision maker. We solve the optimal consumption and investment problem which
maximizes the expected total discounted utility with running maximum related reference point
and drawdown constraint. Mathematical analysis and computation illustrate that the optimal con-
sumption and investment policy are of semi-explicit forms with five important thresholds classifying
different ranks of people. Theoretical and numerical analysis of the solution and sensitivity analysis
of the parameters are conducted as well. The results are of economic significance in the following
aspects: the MPC out of wealth is generally decreasing but increasing with certain intermediate
wealth levels, and it jumps inversely proportional to the risk aversion at the reference point; both
DRRA and IRRA are possible and the implied relative risk aversion is roughly a smile in wealth;
wealth shocks are more influential on the welfare of the poorer people. As a special feature of our
model, risk aversion change results in significant changes in optimal strategies and the impact of
local risk aversion change turns out to be global.
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A Proof of the Verification Theorem

Proof of Theorem 4.1. Define

Ĥt(y) , h0 ∨
1

(1− α)β2
ln(

1− α
inf
s≤t

Ys(y)
).

Then, for any (x0, h0) ∈ C and any y > 0, we have

Ex0,h0
∫ ∞
0

e−γtU(ct, ht)dt = Ex0,h0
∫ ∞
0

e−γt
(
U(ct, ht)− Yt(y)ct

)
dt+ yEx0,h0

∫ ∞
0

ctMtdt
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≤ Ex0,h0
∫ ∞
0

e−γtŨ
(
Yt(y), H†t (y)

)
dt+ yx0

= Ex0,h0
∫ ∞
0

e−γtŨ
(
Yt(y), Ĥt(y)

)
dt+ yx0

= Ṽ (y, h0) + yx0, (A.1)

where the second, the third and the last line hold thanks to Lemma B.1, Lemma B.2 and Lemma
B.4. And equality holds with ct = c∗(Yt(y), H†t (y)) and y = y∗ .

Using the explicit expressions of c∗(·, ·), Yt(·) and Ĥt(·), we know that c∗
(
Yt(y), Ĥt(y)

)
is strictly

decreasing in y with lim
y→0+

c∗
(
Yt(y), Ĥt(y)

)
= ∞ and lim

y→∞
c∗
(
Yt(y), Ĥt(y)

)
= λh0. As such, there

exists a unique y to solve

Ex0,h0
∫ ∞
0

c∗
(
Yt(y), Ĥt(y)

)
Mtdt = x0.

Hence, we deduce from Lemma B.2 that Eq.(4.1) has a unique solution y∗. Using (A.1) yields

inf
y>0

{
Ṽ (y, h0) + yx0

}
= sup

(c,π)∈A
Ex0,h0

∫ ∞
0

e−γtU(ct, ht)dt.

To make the left hand side in which Ṽ (·, ·) is the solution of (3.9) equal the value function V (x0, h0)
which satisfies (3.1), Ṽ (·, ·) must satisfy (3.4). Recall that (3.4) leads to (3.9) for c = c∗(y, h) and
π = π∗(y, h) where c∗(·, ·) is given by (3.6) which leads to (4.2) when restricted to Cd and π∗(·, ·)
is given by (3.5). Plugging the expression of Ṽ (y, h) and q2i − qi = r

k , i = 1, 2 into (3.5) leads to
(4.3).

Thus, the dual of Ṽ (·, ·) given by (3.10) is actually the value function of (2.3) and that
Ex0,h0

∫∞
0 e−γtU(ct, ht)dt attains its maximum at (c∗, π∗) given in Theorem 4.1.

B Auxiliary Lemmas for Theorem 4.1 and Their Proofs

The following four lemmas are needed in proving Theorem 4.1.

Lemma B.1. The inequality holds in (A.1) and it becomes equality with ct = c∗
(
Yt(y), H†t (y)

)
and

y = y∗.

Lemma B.2. For any y > 0 and any t > 0, we have H†t (y) = Ĥt(y).

Lemma B.3 (Transversality Condition). For any y > 0,

lim
T→∞

Ex0,h0
[
e−γT Ṽ

(
YT (y), ĤT (y)

)]
= 0.

Lemma B.4.

Ṽ (y, h0) = Ex0,h0
∫ ∞
0

e−γtŨ
(
Yt(y), Ĥt(y)

)
dt.

As the proofs of the first two lemmas are similar to the proofs of Lemma 5.2 and Lemma 5.3 in
Deng et al. (2022), we omit them here and only prove Lemmas B.3 and B.4.
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Proof of Lemma B.3. Based on the definition of Yt(·) and Ĥt(·), we have

lim
T→∞

YT (y) = lim
T→∞

ye−
(µ−r)2

2σ2
T−µ−r

σ
BT = 0, a.s., (B.1)

lim
T→∞

ĤT (y) = lim
T→∞

h0 ∨
1

(1− α)β2
ln(

1− α
inf
s≤T

Ys(y)
) =∞, a.s.. (B.2)

Using the expression of Ṽ (·, ·) yields

lim
T→∞

Ex0,h0
[
e−γT Ṽ

(
YT (y), ĤT (y)

)]
= lim

T→∞
Ex0,h0

{
e−γT

[
C7

(
ĤT (y)

)
YT (y)q1 + C8

(
ĤT (y)

)
YT (y)q2 − 1

γ
ĤT (y)YT (y)

+
1

γβ2

(
1− e−(1−α)β2ĤT (y)

)]
1{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
}

+ e−γT
[
C5

(
ĤT (y)

)
YT (y)q1 + C6

(
ĤT (y)

)
YT (y)q2 +

k

γ2β2
YT (y)

+
1

γβ2

(
1− YT (y) + YT (y) ln

(
YT (y)

))
− 1

γ
αĤT (y)YT (y)

]
1{

e−(1−α)β2ĤT (y)≤YT (y)<1
}}. (B.3)

By Proposition 3.2, we have

C7

(
ĤT (y)

)
= O(e−(1−α)(1−q1)β2ĤT (y)), a.s. as T →∞, as such,

Ex0,h0e
−γTC7

(
ĤT (y)

)
YT (y)q11{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
}

= O
(
e−γTEx0,h0e

−(1−α)(1−q1)β2ĤT (y)YT (y)q11{
(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)

})
= O

(
e−γTEx0,h0YT (y)1−q1+q1

)
= O

(
e−γTEx0,h0e

− (µ−r)2

2σ2
T−µ−r

σ
BT

)
= O

(
e−γT

)
, as T →∞,

then

lim
T→∞

Ex0,h0e
−γTC7

(
ĤT (y)

)
YT (y)q11{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
} = 0. (B.4)

Similarly,

Ex0,h0e
−γTC8

(
ĤT (y)

)
YT (y)q21{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
}

= O
(
e−γTEx0,h0e

(1−α)(q2−1)β2ĤT (y)YT (y)q21{
(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)

})
= O

(
e−γTEx0,h0YT (y)−(q2−1)+q2

)
= O

(
e−γTEx0,h0e

− (µ−r)2

2σ2
T−µ−r

σ
BT

)
= O

(
e−γT

)
, as T →∞,
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then

lim
T→∞

Ex0,h0e
−γTC8

(
ĤT (y)

)
YT (y)q21{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
} = 0. (B.5)

Using (B.2), as T →∞,

e−γT
1

γβ2

(
1− e−(1−α)β2ĤT (y)

)
1{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
} = O

(
e−γT

)
, a.s.,

from which we get

lim
T→∞

Ex0,h0e
−γT 1

γβ2

(
1− e−(1−α)β2ĤT (y)

)
1{

(1−α)e−(1−α)β2ĤT (y)≤YT (y)<e−(1−α)β2ĤT (y)
} = 0. (B.6)

By the same way as in deriving (B.4), we have

lim
T→∞

Ex0,h0e
−γTC5

(
ĤT (y)

)
YT (y)q11{

e−(1−α)β2ĤT (y)≤YT (y)<1
} = 0. (B.7)

By Proposition 3.2, we have C6

(
ĤT (y)

)
= O

(
1
)
, a.s. as T →∞. The facts (B.1) and q2 > 1 yield

lim
T→∞

Ex0,h0e
−γTC6

(
ĤT (y)

)
YT (y)q21{

e−(1−α)β2ĤT (y)≤YT (y)<1
} = 0. (B.8)

and

lim
T→∞

Ex0,h0e
−γT k

γ2β2
YT (y)1{

e−(1−α)β2ĤT (y)≤YT (y)<1
} = 0. (B.9)

Using (B.1) again and the fact lim
y→0+

(1− y + y ln y) = 1, we obtain

lim
T→∞

Ex0,h0e
−γT 1

γβ2

[
1− YT (y) + YT (y) ln

(
YT (y)

)]
1{

e−(1−α)β2ĤT (y)≤YT (y)<1
} = 0. (B.10)

Based on Girsanov’s theorem, we have

e−γTEx0,h0ĤT (y)YT (y)

= O
(
e−γTEx0,h0

[
sup
s≤T

{(µ− r)2

2σ2
s+

µ− r
σ

Bs
}
e−

(µ−r)2

2σ2
T−µ−r

σ
BT
])

= O
(
µ− r
σ

e−γT
{√ T

2π
e−

(µ−r)2

8σ2
T − µ− r

2σ
TΦ(−µ− r

2σ

√
T )

+
σ

µ− r
[
Φ(
µ− r

2σ

√
T )− Φ(−µ− r

2σ

√
T )
]})

.

It follows that
lim
T→∞

Ex0,h0e
−γT ĤT (y)YT (y) = 0. (B.11)

Thus, using (B.3)-(B.11), we have

lim
T→∞

Ex0,h0
[
e−γT Ṽ

(
YT (y), ĤT (y)

)]
= 0.
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Proof of Lemma B.4. Applying Eq. (3.9) and Itô’s rule, we obtain

d
{
e−γtṼ

[
Yt(y), Ĥt(y)

]}
=− e−γtŨ

[
Yt(y), Ĥt(y)

]
dt

− µ− r
σ

e−γtṼy
[
Yt(y), Ĥt(y)

]
Yt(y)dBt

+ e−γtṼh
[
Yt(y), Ĥt(y)

]
dĤt(y). (B.12)

Define the stopping times: ∀n ≥ 1,

τn , inf
{
t ≥ 0

∣∣∣Yt(y) ≥ n or Ĥt(y) ≥ 1

(1− α)β2
ln
[
(1− α)n

]}
.

It follows that lim
n→∞

τn =∞ and for ∀ n > 1
1−αe

(1−α)β2h0 , ∀ κ ≥ 1 and ∀ T > 0,

Ex0,h01{τn≤T} ≤ Px0,h0
({

sup
t∈[0,T ]

Yt(y) ≥ n
}⋃{

sup
t∈[0,T ]

Ĥt(y) ≥ 1

(1− α)β2
ln
[
(1− α)n

]})
≤ Px0,h0

(
sup
t∈[0,T ]

Yt(y) ≥ n
)

+ Px0,h0
(

inf
t∈[0,T ]

Yt(y) ≤ 1

n

)
= Px0,h0

(
sup
t∈[0,T ]

Yt(y) ≥ n
)

+ Px0,h0
(

sup
t∈[0,T ]

Yt(y)−1 ≥ n
)

≤ n−2κEx0,h0 sup
t∈[0,T ]

Yt(y)2κ + n−2κEx0,h0 sup
t∈[0,T ]

Yt(y)−2κ

= O
(
n−2κ(1 + y2κ)eMT

)
(B.13)

for some constants M .
Integrating (B.12) from 0 to T ∧ τn and taking expectation on both sides, we obtain

Ṽ (y, h0) =Ex0,h0
[
e−γT∧τn Ṽ

(
YT∧τn(y), ĤT∧τn(y)

)]
+ Ex0,h0

∫ T∧τn

0
e−γtŨ

(
Yt(y), Ĥt(y)

)
dt

+ Ex0,h0
∫ T∧τn

0

µ− r
σ

e−γtṼy
(
Yt(y), Ĥt(y)

)
Yt(y)dBt

− Ex0,h0
∫ T∧τn

0
e−γtṼh

(
Yt(y), Ĥt(y)

)
dĤt(y). (B.14)

The four terms on the right hand side of (B.14) can be evaluated as follows:
The first term in (B.14) can be split into two parts:

Ex0,h0
[
e−γT∧τn Ṽ

(
YT∧τn(y), ĤT∧τn(y)

)]
= Ex0,h0

[
e−γT Ṽ

(
YT (y), ĤT (y)

)
1{T≤τn}

]
+ Ex0,h0

[
e−γτn Ṽ

(
Yτn(y), Ĥτn(y)

)
1{T>τn}

]
. (B.15)
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Based on Lemma B.3, as n ↑ ∞, the first term in (B.15) tends to Ex0,h0
[
e−γT Ṽ

(
YT (y), ĤT (y)

)]
,

which converges to zero as T ↑ ∞. To handle the second term in (B.15), we first observe from the
definition of τn that either

Yτn(y) ≤ n, Ĥτn(y) =
1

(1− α)β2
ln
(
(1− α)n

)
or

Yτn(y) = n, Ĥτn(y) ≤ 1

(1− α)β2
ln
(
(1− α)n

)
holds. In addition, it follows from the fact

(
Yτn(y), Ĥτn(y)

)
∈ Cd that either

1

n
≤ Yτn(y) ≤ n, Ĥτn(y) =

1

(1− α)β2
ln
(
(1− α)n

)
or

Yτn(y) = n, 0 < Ĥτn(y) ≤ 1

(1− α)β2
ln
(
(1− α)n

)
holds.

Applying Proposition 3.2 with (3.10), we obtain the order estimate of Ṽ
(
Yτn(y), Ĥτn(y)

)
as

follows:
For 1

n ≤ Yτn(y) ≤ n, Ĥτn(y) = 1
(1−α)β2 ln

[
(1− α)n

]
, we have, for sufficiently large n,

Ĥτn(y) = O
(

lnn
)
, eĤτn (y) = O

(
n

1
(1−α)β2

)
.

If (1− α)e−(1−α)β2Ĥτn (y) ≤ Yτn(y) < e−(1−α)β2Ĥτn (y), then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
n−q1

)
.

If e−(1−α)β2Ĥτn (y) ≤ Yτn(y) < 1, then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
n−q1

)
.

If 1 ≤ Yτn(y) < e(α−λ)β1Ĥτn (y), then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
nq2
)
.

If e(α−λ)β1Ĥτn (y) ≤ Yτn(y), then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
n

(α−λ)β1
(1−α)β2

)
.

For Yτn(y) = n, 0 < Ĥτn(y) ≤ 1
(1−α)β2 ln

[
(1− α)n

]
, we have, for sufficiently large n, either

1 ≤ Yτn(y) < e(α−λ)β1Ĥτn (y)

or

e(α−λ)β1Ĥτn (y) ≤ Yτn(y).
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If 1 ≤ Yτn(y) < e(α−λ)β1Ĥτn (y), then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
nq2
)
.

If e(α−λ)β1Ĥτn (y) ≤ Yτn(y), then we have, for sufficiently large n,

Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
n
q1+(1−q1) (α−λ)β1(1−α)β2

)
.

In summary, we have Ṽ
(
Yτn(y), Ĥτn(y)

)
= O

(
n
(−q1)∨q2∨(1−q1) (α−λ)β1(1−α)β2

)
. Applying (B.13) with

κ ≥ 1
2

(
(−q1)∨ q2 ∨ (1− q1) (α−λ)β1(1−α)β2

)
, we deduce that the second term in (B.15) converges to zero as

n ↑ ∞. Hence the first term in (B.14) tends to zero by first letting n ↑ ∞ and then T ↑ ∞. Because
τn tends to ∞ as n → ∞, based on monotone convergence theorem, we obtain that the second
term in (B.14) tends to Ex0,h0

∫∞
0 e−γtŨ

(
Yt(y), Ĥt(y)

)
dt, as n → ∞ and T → ∞. The third term

in (B.14) vanishes because the integral is a martingale. If Ĥt(y) strictly increases, then Yt(y) must
be strictly decreasing, hence

(
Yt(y), Ĥt(y)

)
is on the boundary. Using the boundary condition, we

have Ṽh
(
Yt(y), Ĥt(y)

)
= 0, as such, the last term in (B.14) vanishes. Thus, the proof follows.

C Proofs of Other Results in Section 4

Proof of Lemma 4.2. If e(α−λ)β1h ≤ y, then

Ṽyy(y, h) = C1(h)
r

k
yq1−2 + C2(h)

r

k
yq2−2.

As C1(h) > 0 and C2(h) = 0, we have Ṽyy(y, h) > 0 for e(α−λ)β1h ≤ y.
If 1 ≤ y < e(α−λ)β1h, then

yṼyy(y, h) = C3(h)
r

k
yq1−1 + C4(h)

r

k
yq2−1 +

1

γβ1
.

Let ψ(y) = yṼyy(y, h), then

ψ′(y) = C3(h)
r

k
(q1 − 1)yq1−2 + C4(h)

r

k
(q2 − 1)yq2−2.

Noting that C4(h) < 0, ψ(y) is either increasing, decreasing or first increasing then decreasing, we
only need to show ψ(1) > 0 and ψ(e(α−λ)β1h) > 0. Precisely, using C7(h) > 0,

ψ(1) =C3(h)
r

k
+ C4(h)

r

k
+

1

γβ1

=
r

k
C7(h) +

1

γβ1

1− q1
q2 − q1

[
1− e−(α−λ)(q2−1)β1h

]
+

1

γβ2

q2 − 1

q2 − q1

[
1− e−(1−α)(1−q1)β2h

]
>0

and
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ψ(e(α−λ)β1h) =C3(h)
r

k
e(q1−1)(α−λ)β1h + C4(h)

r

k
e(q2−1)(α−λ)β1h +

1

γβ1

=
r

k
C7(h)e(q1−1)(α−λ)β1h +

1

γβ1

q2 − 1

q2 − q1

[
1− e−(α−λ)(1−q1)β1h

]
+

1

γβ2

q2 − 1

q2 − q1

[
1− e−(1−α)(1−q1)β2h

]
e(q2−1)(α−λ)β1h

>0.

Thus Ṽyy(y, h) > 0 for 1 ≤ y < e(α−λ)β1h.

If e−(1−α)β2h ≤ y < 1, then

yṼyy(y, h) =C5(h)
r

k
yq1−1 + C6(h)

r

k
yq2−1 +

1

γβ2

=

[
C5(h)

r

k
yq1−1 +

1

γβ2

q2 − 1

q2 − q1

]
+

[
C6(h)

r

k
yq2−1 +

1

γβ2

1− q1
q2 − q1

]
.

For any fixed h > 0, if C5(h) ≥ 0, then C5(h) rky
q1−1 + 1

γβ2
q2−1
q2−q1 > 0; If C5(h) < 0, then

C5(h) rky
q1−1 + 1

γβ2
q2−1
q2−q1 is increasing in y and

C5(h)
r

k
yq1−1 +

1

γβ2

q2 − 1

q2 − q1

≥C5(h)
r

k
e(1−α)(1−q1)β2h +

1

γβ2

q2 − 1

q2 − q1

=
(1− α)q2−q1 1

γ
1−q1
q2−q1 (α− λ)(q2 − 1)

(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1
e−[(1−α)(q2−1)β2+(α−λ)(q2−1)β1]h

+ (1− α)q2−q1
1

γβ2

q2 − 1

q2 − q1
>0.

Similarly, we have

C6(h)
r

k
yq2−1 +

1

γβ2

1− q1
q2 − q1

> 0.

It follows that Ṽyy(y, h) > 0 for e−(1−α)β2h ≤ y < 1.

Finally, If (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h, then

Ṽyy(y, h) = C7(h)
r

k
yq1−2 + C8(h)

r

k
yq2−2.

As C7(h) > 0 and

C8(h) =
k

γ2β1

1− q1
q2 − q1

[
1− e−(α−λ)(q2−1)β1h

]
+

k

γ2β2

1− q1
q2 − q1

[
e(1−α)(q2−1)β2h − 1

]
> 0,

we have Ṽyy(y, h) > 0 for (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h. Thus the proof is complete.
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Proof of Lemma 4.6. By Lemma 4.5, f is C1 and continuous at the boundaries, as such, using the
fact that Ci(h), 1 ≤ i ≤ 8, are C1, we conclude that c∗primal and π∗primal given in Theorem 4.4 are
locally Lipschitz on C.

Now to prove that π∗primal is Lipschitz, we only need to show that
∂π∗

primal

∂x and
∂π∗

primal

∂h are both
bounded.

Step 1:
∂π∗

primal

∂x is bounded:
By definition of π∗primal given in Theorem 4.4, we have

∂π∗primal

∂x
=
µ− r
σ2

r

k



C1(h)(q1 − 1)
[
f1(x, h)

]q1−2 ∂f1(x,h)
∂x

+C2(h)(q2 − 1)
[
f1(x, h)

]q2−2 ∂f1(x,h)
∂x , λh

γ ≤ x ≤Wlow(h),

C3(h)(q1 − 1)
[
f2(x, h)

]q1−2 ∂f2(x,h)
∂x

+C4(h)(q2 − 1)
[
f2(x, h)

]q2−2 ∂f2(x,h)
∂x , Wlow(h) < x ≤Wref(h),

C5(h)(q1 − 1)
[
f3(x, h)

]q1−2 ∂f3(x,h)
∂x

+C6(h)(q2 − 1)
[
f3(x, h)

]q2−2 ∂f3(x,h)
∂x , Wref(h) < x ≤Wpeak(h),

C7(h)(q1 − 1)
[
f4(x, h)

]q1−2 ∂f4(x,h)
∂x

+C8(h)(q2 − 1)
[
f4(x, h)

]q2−2 ∂f4(x,h)
∂x , Wpeak(h) < x ≤Wupdt(h).

Differentiating (4.6), we obtain

1 = −C1(h)q1(q1 − 1)
[
f1(x, h)

]q1−2∂f1(x, h)

∂x

−C2(h)q2(q2 − 1)
[
f1(x, h)

]q2−2∂f1(x, h)

∂x
. (C.1)

It follows from (4.15) and (C.1) that, for λh
γ ≤ x ≤Wlow(h),

∂π∗primal

∂x
=

µ− r
σ2

[
(1− q2) +

r

k
(q1 − q2)C1(h)

[
f1(x, h)

]q1−2∂f1(x, h)

∂x

]
=

µ− r
σ2

[
(1− q2) +

A1(x, h)

B1(x, h)

]
,

where

A1(x, h) =
r

k
(q1 − q2)C1(h) [f1(x, h)]q1−2 ,

B1(x, h) =
r

k

{
−C1(h)

[
f1(x, h)

]q1−2 − C2(h)
[
f1(x, h)

]q2−2} .
As C2(h) = 0,

∂π∗
primal

∂x is constant for λh
γ ≤ x ≤Wlow(h). Differentiating (4.8), we obtain

1 = −C3(h)q1(q1 − 1)
[
f2(x, h)

]q1−2∂f2(x, h)

∂x

−C4(h)q2(q2 − 1)
[
f2(x, h)

]q2−2∂f2(x, h)

∂x
− 1

γβ1f2(x, h)

∂f2(x, h)

∂x
. (C.2)
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Using (4.15) and (C.2), we have, for Wlow(h) ≤ x ≤Wref(h),

∂π∗primal

∂x
=

µ− r
σ2

{
(1− q2) +

r

k
(q1 − q2)C3(h)

[
f2(x, h)

]q1−2∂f2(x, h)

∂x

+(1− q2)
1

γβ1f2(x, h)

∂f2(x, h)

∂x

}
=

µ− r
σ2

[
(1− q2) +

A2(x, h)

B2(x, h)

]
,

where

A2(x, h) =
r

k
(q1 − q2)C3(h) [f2(x, h)]q1−1 + (1− q2)

1

γβ1
,

B2(x, h) = − r
k
C3(h)

[
f2(x, h)

]q1−1 − r

k
C4(h)

[
f2(x, h)

]q2−1 − 1

γβ1
.

As e(α−λ)β1h > f2(x, h) ≥ 1 forWlow(h) ≤ x ≤Wref(h) and C3(h) = O(1), there exists a constant Ā2

such that |A2(x, h)| ≤ Ā2 for Wlow(h) ≤ x ≤Wref(h). As Ṽyy(y, h) > 0, we know that B2(x, h) < 0
for any h ≥ h̄. Using C4 < 0 and q1 < 0 < 1 < q2 implies that r

kC3(h)yq1−1 + r
kC4(h)yq2−1 + 1

γβ1
as a function of y is either decreasing, or increasing, or first increasing then decreasing. Hence for
Wlow(h) ≤ x ≤Wref(h),

−B2(x, h) ≥ min

{
r

k
C3(h) +

r

k
C4(h) +

1

γβ1
,
r

k
C3(h)e−(1−q1)(α−λ)β1h

+
r

k
C4(h)e(q2−1)(α−λ)β1h +

1

γβ1

}
(C.3)

> 0.

Plugging the expressions of C3(h) and C4(h) in (3.13) and (3.17) into (C.3), we obtain that the
expression in (C.3) is continuous in h with a limit 1

γβ1
q2−1
q2−q1 > 0 as h → ∞. Hence there exists a

constant B̄2 > 0 such that −B2(x, h) > B̄2 > 0, i.e.,
∂π∗

primal

∂x is bounded for Wlow(h) ≤ x ≤Wref(h).

Similarly,
∂π∗

primal

∂x is also bounded for the rest two regions Wref(h) ≤ x ≤Wpeak(h) and Wpeak(h) ≤
x ≤Wupdt(h).

Step 2:
∂π∗

primal

∂h is bounded:

By definition of π∗primal, denote c11 ,
µ−r
σ2

r
k , we obtain

∂π∗primal

∂h
= c11



C1(h)(q1 − 1)
[
f1(x, h)

]q1−2 ∂f1(x,h)
∂h + C ′1(h)

[
f1(x, h)

]q1−1
+C2(h)(q2 − 1)

[
f1(x, h)

]q2−2 ∂f1(x,h)
∂h + C ′2(h)

[
f1(x, h)

]q2−1, λh
γ ≤ x ≤Wlow(h),

C3(h)(q1 − 1)
[
f2(x, h)

]q1−2 ∂f2(x,h)
∂h + C ′3(h)

[
f2(x, h)

]q1−1
+C4(h)(q2 − 1)

[
f2(x, h)

]q2−2 ∂f2(x,h)
∂h + C ′4(h)

[
f2(x, h)

]q2−1, Wlow(h) ≤ x ≤Wref(h),

C5(h)(q1 − 1)
[
f3(x, h)

]q1−2 ∂f3(x,h)
∂h + C ′5(h)

[
f3(x, h)

]q1−1
+C6(h)(q2 − 1)

[
f3(x, h)

]q2−2 ∂f3(x,h)
∂h + C ′6(h)

[
f3(x, h)

]q2−1, Wref(h) ≤ x ≤Wpeak(h),

C7(h)(q1 − 1)
[
f4(x, h)

]q1−2 ∂f4(x,h)
∂h + C ′7(h)

[
f4(x, h)

]q1−1
+C8(h)(q2 − 1)

[
f4(x, h)

]q2−2 ∂f4(x,h)
∂h + C ′8(h)

[
f4(x, h)

]q2−1, Wpeak(h) ≤ x ≤Wupdt(h).

Differentiating (4.6),
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0 = −C1(h)q1(q1 − 1)
[
f1(x, h)

]q1−2∂f1(x, h)

∂h
− C ′1(h)q1

[
f1(x, h)

]q1−1
−C2(h)q2(q2 − 1)

[
f1(x, h)

]q2−2∂f1(x, h)

∂h
− C ′2(h)q2

[
f1(x, h)

]q2−1 +
λ

γ
. (C.4)

Then, using C2(h) = 0, we have for λh
γ ≤ x ≤Wlow(h),

∂π∗primal

∂h
= c11

λ

γq1
.

Hence
∂π∗

primal

∂h is constant for λh
γ ≤ x ≤Wlow(h).

Differentiating (4.8),

0 = −C3(h)q1(q1 − 1)
[
f2(x, h)

]q1−2∂f2(x, h)

∂h
− C ′3(h)q1

[
f2(x, h)

]q1−1
−C4(h)q2(q2 − 1)

[
f2(x, h)

]q2−2∂f2(x, h)

∂h
− C ′4(h)q2

[
f2(x, h)

]q2−1
− 1

γβ1f2(x, h)

∂f2(x, h)

∂h
+
α

γ
. (C.5)

Using (C.5), we have for Wlow(h) ≤ x ≤Wref(h),

∂π∗primal

∂h
= c11

{
C ′3(h)

[
f2(x, h)

]q1−1(1− q1
q2

) +
α

γq2

+
[
C3(h)

[
f2(x, h)

]q1−1(q1 − q2)− 1

γβ1q2

] 1

f2

∂f2(x, h)

∂h

}
=

µ− r
σ2

r

k

{
C ′3(h)

[
f2(x, h)

]q1−1(1− q1
q2

) +
α

γq2

+
k

r
A2(x, h)

C ′3(h)q1[f2(x, h)]q1−1 + C ′4(h)q2[f2(x, h)]q2−1 − α
γ

B2(x, h)

}
.

Thus, using the expression of C3(h) and C4(h) in (3.13) and (3.17), we obtain that C ′3(h) and C ′4(h)
are both bounded. Moreover, we have 1 ≤ f2(x, h) < e(α−λ)β1h for Wlow(h) < x ≤Wref(h). Apply-

ing the estimates of A2(x, h) and B2(x, h) again, we know that
∂π∗

primal

∂h is bounded for Wlow(h) <
x ≤ Wref(h). For the rest two regions Wref(h) ≤ x ≤ Wpeak(h) and Wpeak(h) ≤ x ≤ Wupdt(h), the
proof is similar and omitted.

D Results with general reference

We consider the alternative endogenous reference point α[ϕ(h)c+ (1− ϕ(h))h], which is a fraction
α of the convex combination of the current consumption and consumption peak. ϕ(h) is the
proportion assigned to current consumption (it is a function of h) and we assume that the proportion
function ϕ is non-decreasing and smooth with values in [0, 1]. The non-decreasing property suggests
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that once the maximum is updated, its weight decreases. This assumption aims to capture the
insight that, upon updating the consumption peak, the agent tends to put more emphasis on the
current consumption c instead of the past peak. We further assume that ϕ′(h)h+ ϕ(h) ≤ 1 for all
h ≥ h0, which implies the non-increasing property of the utility U(c, h) w.r.t h.

Remark 8. ϕ(h) = 0 reduces to the case in the main part of the paper. ϕ(h) = 1 reduces to a
non-habit model. A non-trivial choice of ϕ(h) satisfying the mentioned assumptions might be the
fractional function ϕ(h) = ϕ̄ h

h+ĥ
where constant ĥ > 0 is a benchmark level and ϕ̄ ∈ [0, 1] is a

scaling constant.

The optimal dual feedback form c∗(y, h) is replaced by

c∗(y, h) =


λh, 1 ∨ (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h ≤ y,
− 1
β1

1
1−αϕ(h) ln( y

1−αϕ(h)) + αh 1−ϕ(h)
1−αϕ(h) , 1 ≤ y < 1 ∨ (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h,

− 1
β2

1
1−αϕ(h) ln( y

1−αϕ(h)) + αh 1−ϕ(h)
1−αϕ(h) , (1− αϕ(h))e−(1−α)β2h ≤ y < 1,

h, (1− α)e−(1−α)β2h ≤ y < (1− αϕ(h))e−(1−α)β2h.

We need the following assumption on the upper bound of ϕ(h).

Assumption 1. ϕ(∞) < α−λ
α(1−λ) .

This assumption is reasonable. On the one hand, we give a lower bound of the weight given to h
in the reference point, so that consumption peak is always taken into consideration by the agent. On
the other hand, under Assumption 1, for large h we always have (1−αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h > 1
so that every region in the expression of optimal consumption is not null, indicating that people
with higher standard of living have more complicated behavior. Finally, it is interesting that
Assumption 1 also serves as a convenient sufficient condition for verification theorem. See Remark
9.

The general solution to the dual HJB equation becomes

Ṽ (y, h)=



C1(h)yq1+C2(h)yq2−1
γλhy+

1
γβ1

[
1− e[(α−λ)−(1−λ)αϕ(h)]β1h

]
, 1 ∨ (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h ≤ y,
C3(h)yq1+C4(h)yq2+ 1

γβ1
(1− y

1−αϕ(h))+
y
γβ1

1
1−αϕ(h) ln( y

1−αϕ(h))−
αhy
γ

1−ϕ(h)
1−αϕ(h)

+ k
γ2β1

1
1−αϕ(h)y, 1 ≤ y < 1 ∨ (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h,

C5(h)yq1+C6(h)yq2+ 1
γβ2

(1− y
1−αϕ(h))+

y
γβ2

1
1−αϕ(h) ln( y

1−αϕ(h))−
αhy
γ

1−ϕ(h)
1−αϕ(h)

+ k
γ2β2

1
1−αϕ(h)y, (1− αϕ(h))e−(1−α)β2h ≤ y < 1,

C7(h)yq1+C8(h)yq2−1
γhy+

1
γβ2

[
1−e−(1−α)β2h

]
, (1− α)e−(1−α)β2h ≤ y < (1− αϕ(h))e−(1−α)β2h.

By the same approach, we obtain the expressions of Ci(h), 1 ≤ i ≤ 8 in the following two cases:
Case 1. For h such that 1 < (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h,

C2(h) =0, C4(h) = − k

γ2β1

1− q1
q2 − q1

1

(1− αϕ(h))q2
e−[(α−λ)−(1−λ)αϕ(h)](q2−1)β1h,

C6(h) =C4(h) +
k

γ2
β2 − β1
β1β2

1− q1
q2 − q1

1

1− αϕ(h)
+

1

γ

β2 − β1
β1β2

q1
q2 − q1

αϕ(h)

1− αϕ(h)

+
1

γ

β2 − β1
β1β2

1− q1
q2 − q1

1

1− αϕ(h)
ln(

1

1− αϕ(h)
),
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C8(h) =C6(h) +
k

γ2β2

1− q1
q2 − q1

1

(1− αϕ(h))q2
e(1−α)(q2−1)β2h,

C7(h) =
(1− α)q2−q1 k

γ2
1−q1
q2−q1 (α− λ)(q2 − 1)

(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1
e−
[
(1−α)(q2−q1)β2+(α−λ)(q2−1)β1

]
h

+ (1− α)q2−q1
k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C5(h) =C7(h)− k

γ2β2

q2 − 1

q2 − q1
1

(1− αϕ(h))q1
e−(1−α)(1−q1)β2h,

C3(h) =C5(h)− k

γ2
β2 − β1
β1β2

q2 − 1

q2 − q1
1

1− αϕ(h)
+

1

γ

β2 − β1
β1β2

q2
q2 − q1

αϕ(h)

1− αϕ(h)

− 1

γ

β2 − β1
β1β2

q2 − 1

q2 − q1
1

1− αϕ(h)
ln(

1

1− αϕ(h)
),

C1(h) =C3(h) +
k

γ2β1

q2 − 1

q2 − q1
1

(1− αϕ(h))q1
e[(α−λ)−(1−λ)αϕ(h)](1−q1)β1h.

In this case, as ϕ(h) ∈ [0, 1] and e−[(α−λ)−(1−λ)αϕ(h)]β1h < 1−αϕ(h) ≤ 1, the estimates of Ci(h), 1 ≤
i ≤ 8 is the same as Section 3 except that the order estimate of C4(h) is replaced by C4(h) = O(1).

Case 2. For h such that 1 ≥ (1 − αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h (the second region 1 ≤ y <
1 ∨ (1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h is null), we have:

C2(h) =0,

C6(h) =− 1− q1
q2 − q1

λh

γ
− q1
q2 − q1

1

γβ1
(1− e[(α−λ)−(1−λ)αϕ(h)]β1h)− 1− q1

q2 − q1
1

γβ2

1

1− αϕ(h)
ln(

1

1− αϕ(h)
)

+
q1

q2 − q1
1

γβ2
(1− 1

1− αϕ(h)
) +

1− q1
q2 − q1

αh

γ

1− ϕ(h)

1− αϕ(h)
− 1− q1
q2 − q1

k

γ2β2

1

1− αϕ(h)
,

C8(h) =C6(h) +
k

γ2β2

1− q1
q2 − q1

1

(1− αϕ(h))q2
e(1−α)(q2−1)β2h,

C7(h) =
(1− α)q2−q1 k

γ2
1−q1
q2−q1 (α− λ)(q2 − 1)

(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1
e−
[
(1−α)(q2−q1)β2+(α−λ)(q2−1)β1

]
h

+ (1− α)q2−q1
k

γ2β2

q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C5(h) =C7(h)− k

γ2β2

q2 − 1

q2 − q1
1

(1− αϕ(h))q1
e−(1−α)(1−q1)β2h,

C1(h) =C5(h) +
q2 − 1

q2 − q1
λh

γ
− q2
q2 − q1

1

γβ1
(1− e[(α−λ)−(1−λ)αϕ(h)]β1h) +

q2 − 1

q2 − q1
1

γβ2

1

1− αϕ(h)
ln(

1

1− αϕ(h)
)

+
q2

q2 − q1
1

γβ2
(1− 1

1− αϕ(h)
)− q2 − 1

q2 − q1
αh

γ

1− ϕ(h)

1− αϕ(h)
+
q2 − 1

q2 − q1
k

γ2β2

1

1− αϕ(h)
.

Under Assumption 1, Case 2 does not happen for sufficiently large h so that the asymptotic esti-
mates are not necessary. In Case 2, we still have

C1(h) > 0, C7(h) > 0,

C8(h) > 0.

Assumption 1 is actually a sufficient condition for C8(h) > 0.
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Remark 9. Under Assumption 1, the proof of C8(h) > 0 in Case 2 is as follows:
We write C8(h) as the sum of three terms given by

C8(h) =
k

γ2β2

1− q1
q2 − q1

1

(1− αϕ(h))q2
[e(1−α)(q2−1)β2h − (1− αϕ(h))q2−1]

+ [
1− q1
q2 − q1

h

γ

(α− λ)− (1− λ)αϕ(h)

1− αϕ(h)
− q1
q2 − q1

1

γβ1
(1− e[(α−λ)−(1−λ)αϕ(h)]β1h)]

+ [− 1− q1
q2 − q1

1

γβ2

1

1− αϕ(h)
ln(

1

1− αϕ(h)
) +

q1
q2 − q1

1

γβ2
(1− 1

1− αϕ(h)
)].

The first term is positive due to e(1−α)(q2−1)β2h > 1 ≥ (1− αϕ(h))q2−1.
For the second term, it can be directly verified that

f(x) :=
1− q1
q2 − q1

h

γ

x

1− αϕ(h)
− q1
q2 − q1

1

γβ1
(1− exβ1h)

is increasing for x ≥ 0. Thus f((α− λ)− (1− λ)αϕ(h)) > f(0) = 0, which implies that the second
term is positive.

For the last term, let

g(x) := −(1− q1)x ln(x) + q1(1− x),

then one can directly show that g(x) is decreasing for x ∈ [1, 1
1−α ]. Hence g( 1

1−αϕ(h)) ≥ g(1) = 0
and the last term is non-negative.

Under all the aforementioned assumptions on ϕ, we can establish the verification theorem and
apply duality to obtain the optimal strategy given in the following theorem.

Theorem D.1. For (x0, h0) ∈ C, where C is the effective region given by (3.8), let c∗primal(·, ·) and
π∗primal(·, ·) be the feedback functions in terms of primal variable given respectively by

c∗primal(x, h) =


λh, λh

γ ≤ x ≤Wlow(h) ∧Wref(h),

− 1
β1

1
1−αϕ(h) ln( f2(x,h)

1−αϕ(h)) + αh 1−ϕ(h)
1−αϕ(h) , Wlow(h) ∧Wref(h) < x ≤Wref(h),

− 1
β2

1
1−αϕ(h) ln( f3(x,h)

1−αϕ(h)) + αh 1−ϕ(h)
1−αϕ(h) , Wref(h) < x ≤Wpeak(h),

h, Wpeak(h) < x ≤Wupdt(h).

π∗primal(x, h)=
µ− r
σ2



r
k

{
C1(h)

[
f1(x, h)

]q1−1+C2(h)
[
f1(x, h)

]q2−1} , λh
γ ≤x≤Wlow(h)∧Wref(h),

r
k

{
C3(h)

[
f2(x, h)

]q1−1+C4(h)
[
f2(x, h)

]q2−1}+ 1
γβ1

1
1−αϕ(h) , Wlow(h)∧Wref(h)<x≤Wref(h),

r
k

{
C5(h)

[
f3(x, h)

]q1−1+C6(h)
[
f3(x, h)

]q2−1}+ 1
γβ2

1
1−αϕ(h) , Wref(h)<x≤Wpeak(h),

r
k

{
C7(h)

[
f4(x, h)

]q1−1+C8(h)
[
f4(x, h)

]q2−1} , Wpeak(h)<x≤Wupdt(h).

where fi(x, h), 1 ≤ i ≤ 4 are uniquely determined by
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x =− C1(h)q1
[
f1(x, h)

]q1−1 − C2(h)q2
[
f1(x, h)

]q2−1 +
λh

γ
,

x =− C3(h)q1
[
f2(x, h)

]q1−1 − C4(h)q2
[
f2(x, h)

]q2−1 − 1

γβ1

1

1− αϕ(h)
ln
[ f2(x, h)

1− αϕ(h)

]
− k

γ2β1

1

1− αϕ(h)
+
αh

γ

1− ϕ(h)

1− αϕ(h)
,

x =− C5(h)q1
[
f3(x, h)

]q1−1 − C6(h)q2
[
f3(x, h)

]q2−1 − 1

γβ2

1

1− αϕ(h)
ln
[ f3(x, h)

1− αϕ(h)

]
− k

γ2β2

1

1− αϕ(h)
+
αh

γ

1− ϕ(h)

1− αϕ(h)
,

x =− C7(h)q1
[
f4(x, h)

]q1−1 − C8(h)q2
[
f4(x, h)

]q2−1 +
h

γ
,

and Wlow(h),Wref(h),Wpeak(h) and Wupdt(h) are given by

Wlow(h) =− C1(h)q1
[
(1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h

]q1−1
− C2(h)q2

[
(1− αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h

]q2−1 +
λh

γ
,

Wref(h) =− C3(h)q1 − C4(h)q2 −
1

γβ1

1

1− αϕ(h)
ln
[ 1

1− αϕ(h)

]
− k

γ2β1

1

1− αϕ(h)
+
αh

γ

1− ϕ(h)

1− αϕ(h)
,

Wpeak(h) =− C5(h)q1
[
(1− αϕ(h))e−(1−α)β2h

]q1−1 − C6(h)q2
[
(1− αϕ(h))e−(1−α)β2h

]q2−1
+
h

γ

1− α
1− αϕ(h)

− k

γ2β2

1

1− αϕ(h)
+
αh

γ

1− ϕ(h)

1− αϕ(h)
,

Wupdt(h) =− C7(h)q1
[
(1− α)e−(1−α)β2h

]q1−1 − C8(h)q2
[
(1− α)e−(1−α)β2h

]q2−1 +
h

γ
.

Then SDE{
dXt = rXtdt+ π∗primal(Xt, H

∗
t )(µ− r)dt+ π∗primal(Xt, H

∗
t )σdWt − c∗primal(Xt, H

∗
t )dt,

X0 = x0
(D.1)

with H∗t , h0 ∨ sup
s≤t

c∗primal(Xs, H
∗
s ) and H∗0 = h0, has a unique strong solution {X∗t , t ≥ 0}. The

optimal consumption and investment policy is{(
c∗primal(X

∗
t , H

∗
t ), π∗primal(X

∗
t , H

∗
t )
)
, t ≥ 0

}
.

Remark 10. It is interesting to notice that the depression region can possibly vanish under the
current model. As has been mentioned, Assumption 1 ensures that this will not happen for large
h. Specific characterizations of scenarios depends crucially on the form of ϕ. There are similar
phenomena in Li et al. (2022), though due to completely different reasons.

Remark 11. The proofs of main results in this generalization are similar and thus omitted. The
difference in proofs mainly lies in the proof of Lemma 4.2 and Lemma 4.6. In the proof of Lemma
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4.2 for this generalization, we need to apply a similar decomposition as in Remark 9 to show
that r

kC6(h)yq2−1 + 1
γβ2

1−q1
q2−q1

1
1−αϕ(h) > 0 for (1 − αϕ(h))e−(1−α)β2h ≤ y < 1 in case 1 ≥ (1 −

αϕ(h))e[(α−λ)−(1−λ)αϕ(h)]β1h. While in the proof of Lemma 4.6, we need to apply the boundedness

of ϕ(h) and ϕ′(h) ( 0 ≤ ϕ′(h) < 1−ϕ(h)
h ≤

1− α−λ
α(1−λ)
h0

) to show that C ′i(h), 1 ≤ i ≤ 8 are bounded.

E Results for r 6= γ

For r 6= γ, equation (3.9) should be replaced by

−γṼ (y, h) + (γ − r)yṼy(y, h) +
(r − µ)2

2σ2
y2Ṽyy(y, h) = −Ũ(y, h), (E.1)

and qi, i = 1, 2 should be defined instead by q1 =
k+r−γ−

√
(k+r−γ)2+4kγ

2k , q2 =
k+r−γ+

√
(k+r−γ)2+4kγ

2k .
It still holds that q1 < 0 < 1 < q2.

The general solution to (E.1) is

Ṽ (y, h)=


C1(h)yq1 + C2(h)yq2 − 1

rλhy + 1
γβ1

[
1− e(α−λ)β1h

]
, e(α−λ)β1h ≤ y,

C3(h)yq1+C4(h)yq2+ 1
rβ1
y ln(y)+γ−2r+k

r2β1
y−αhr y+

1
γβ1

, 1 ≤ y < e(α−λ)β1h,

C5(h)yq1+C6(h)yq2+ 1
rβ2
y ln(y)+γ−2r+k

r2β2
y−αhr y+

1
γβ2

, e−(1−α)β2h ≤ y < 1,

C7(h)yq1+C8(h)yq2−1
rhy+

1
γβ2

[
1−e−(1−α)β2h

]
, (1−α)e−(1−α)β2h≤y<e−(1−α)β2h.

We can obtain Ci(h), 1 ≤ i ≤ 8 in the same way as in Section 3.

C2(h) =0, C4(h) =
1

(q2 − q1)β1

[q1
γ
− 1

r
+
γ − 2r + k

r2
(q1 − 1)

]
e−(α−λ)(q2−1)β1h,

C6(h) =C4(h) +
β2 − β1

(q2 − q1)β1β2

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

]
,

C8(h) =C6(h) +
1

(q2 − q1)β2

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

]
e(1−α)(q2−1)β2h,

C7(h) =
1

q2 − q1

(1− α)q2−q1
[
− q1

γ + 1
r −

γ−2r+k
r2

(q1 − 1)
]
(α− λ)(q2 − 1)

(1− α)(q2 − q1)β2 + (α− λ)(q2 − 1)β1
e−
[
(1−α)(q2−q1)β2+(α−λ)(q2−1)β1

]
h

+ (1− α)q2−q1
− q1

γ + 1
r −

γ−2r+k
r2

(q1 − 1)

(1− q1)β2
q2 − 1

q2 − q1
e−(1−α)(1−q1)β2h,

C5(h) =C7(h) +
1

(q2 − q1)β2

[
− q2
γ

+
1

r
− γ − 2r + k

r2
(q2 − 1)

]
e−(1−α)(1−q1)β2h,

C3(h) =C5(h) +
β2 − β1

(q2 − q1)β1β2

[
− q2
γ

+
1

r
− γ − 2r + k

r2
(q2 − 1)

]
,

C1(h) =C3(h) +
1

(q2 − q1)β1

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

]
e(α−λ)(1−q1)β1h.

It can verified that q1 <
γ−2r+k

r2
+ 1
r

γ−2r+k

r2
+ 1
γ

< q2. In fact, an equivalent condition is k(
γ−2r+k

r2
+ 1
r

γ−2r+k

r2
+ 1
γ

)2 −

(k + r − γ)
γ−2r+k

r2
+ 1
r

γ−2r+k

r2
+ 1
γ

− γ < 0, which is equivalent(by direct computation) to the trivial inequality

− k2

γr2( γ−2r+k

r2
+ 1
γ
)2
< 0. Then we obtain from q1 <

γ−2r+k

r2
+ 1
r

γ−2r+k

r2
+ 1
γ

< q2 that
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− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1) > 0,

− q2
γ

+
1

r
− γ − 2r + k

r2
(q2 − 1) < 0.

The difference of Ci(h), 1 ≤ i ≤ 8 between r = γ and r 6= γ is that certain positive coefficients

such as k
γ2

q2−1
q2−q1 in case r = γ are replaced by other positive coefficients such as 1

q2−q1

[
q2
γ −

1
r +

γ−2r+k
r2

(q2− 1)
]

in case r 6= γ. As a result, the estimates of Ci(h), 1 ≤ i ≤ 8 is completely the same

as in Section 3 and the main results are similar. The optimal strategy is as follows.

Theorem E.1. For (x0, h0) ∈ C, where C is the effective region given by (3.8), let c∗primal(·, ·) and
π∗primal(·, ·) be the feedback functions in terms of primal variable given respectively by

c∗primal(x, h) =


λh, λh

γ ≤ x ≤Wlow(h),

− 1
β1

ln
[
f2(x, h)

]
+ αh, Wlow(h) < x ≤Wref(h),

− 1
β2

ln
[
f3(x, h)

]
+ αh, Wref(h) < x ≤Wpeak(h),

h, Wpeak(h) < x ≤Wupdt(h),

π∗primal(x, h) =
µ− r
σ2



q1(q1−1)C1(h)
[
f1(x, h)

]q1−1+q2(q2−1)C2(h)
[
f1(x, h)

]q2−1
, λh

γ ≤ x ≤Wlow(h),

q1(q1−1)C3(h)
[
f2(x, h)

]q1−1+q2(q2−1)C4(h)
[
f2(x, h)

]q2−1+ 1
rβ1

, Wlow(h) < x ≤Wref(h),

q1(q1−1)C5(h)
[
f3(x, h)

]q1−1+q2(q2−1)C6(h)
[
f3(x, h)

]q2−1+ 1
rβ2

, Wref(h) < x ≤Wpeak(h),

q1(q1−1)C7(h)
[
f4(x, h)

]q1−1+q2(q2−1)C8(h)
[
f4(x, h)

]q2−1
, Wpeak(h) < x ≤Wupdt(h),

where fi(x, h), 1 ≤ i ≤ 4 are uniquely determined by

x =− C1(h)q1
[
f1(x, h)

]q1−1 − C2(h)q2
[
f1(x, h)

]q2−1 +
λh

r
,

x =− C3(h)q1
[
f2(x, h)

]q1−1 − C4(h)q2
[
f2(x, h)

]q2−1 − 1

rβ1
ln[f2(x, h)]− γ − r + k

r2β1
+
αh

r
,

x =− C5(h)q1
[
f3(x, h)

]q1−1 − C6(h)q2
[
f3(x, h)

]q2−1 − 1

rβ2
ln[f3(x, h)]− γ − r + k

r2β2
+
αh

r
,

x =− C7(h)q1
[
f4(x, h)

]q1−1 − C8(h)q2
[
f4(x, h)

]q2−1 +
h

r
,

and Wlow(h),Wref(h),Wpeak(h) and Wupdt(h) are given by

Wlow(h) =− C1(h)q1e
−(α−λ)(1−q1)β1h − C2(h)q2e

(α−λ)(q2−1)β1h +
λh

r
,

Wref(h) =− C3(h)q1 − C4(h)q2 −
γ − r + k

r2β1
+
αh

r
,
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Wpeak(h) =− C5(h)q1e
(1−α)(1−q1)β2h − C6(h)q2e

−(1−α)(q2−1)β2h − γ − r + k

r2β1
+
h

r
,

Wupdt(h) =− C7(h)q1(1− α)q1−1e(1−α)(1−q1)β2h − C8(h)q2(1− α)q2−1e−(1−α)(q2−1)β2h +
h

γ
.

Then SDE{
dXt = rXtdt+ π∗primal(Xt, H

∗
t )(µ− r)dt+ π∗primal(Xt, H

∗
t )σdWt − c∗primal(Xt, H

∗
t )dt,

X0 = x0

with H∗t , h0 ∨ sup
s≤t

c∗primal(Xs, H
∗
s ) and H∗0 = h0, has a unique strong solution {X∗t , t ≥ 0}. The

optimal consumption and investment policy is{(
c∗primal(X

∗
t , H

∗
t ), π∗primal(X

∗
t , H

∗
t )
)
, t ≥ 0

}
.

Here we just give the proof of Lemma 4.2 with r 6= γ. The proofs of other results with r 6= γ
are very similar to those with r = γ.

Proof of Lemma 4.2 with r 6= γ. If e(α−λ)β1h ≤ y, then

Ṽyy(y, h) = C1(h)q1(q1 − 1)yq1−2 + C2(h)q2(q2 − 1)yq2−2.

As C1(h) > 0 and C2(h) = 0, we have Ṽyy(y, h) > 0 for e(α−λ)β1h ≤ y.
If 1 ≤ y < e(α−λ)β1h, then

yṼyy(y, h) = C3(h)q1(q1 − 1)yq1−1 + C4(h)q2(q2 − 1)yq2−1 +
1

rβ1
.

Let ψ(y) = yṼyy(y, h), then

ψ′(y) = C3(h)q1(q1 − 1)2yq1−2 + C4(h)q2(q2 − 1)2yq2−2.

Noting that C4(h) < 0, ψ(y) is either increasing, decreasing or first increasing then decreasing, we
only need to show ψ(1) > 0 and ψ(e(α−λ)β1h) > 0. Precisely, using C7(h) > 0 and the fact that

1

r
=
q1(q1 − 1)

q2 − q1

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

]
+
q2(q2 − 1)

q2 − q1

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

]
,

we have

ψ(1) =C3(h)q1(q1 − 1) + C4(h)q2(q2 − 1) +
1

rβ1

=q1(q1 − 1)C7(h) +
q1(q1 − 1)

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

] [
1− e−(1−α)(1−q1)β2h

]
+

q2(q2 − 1)

(q2 − q1)β1

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

] [
1− e−(α−λ)(q2−1)β1h

]
>0

and
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ψ(e(α−λ)β1h) =C3(h)q1(q1 − 1)e(q1−1)(α−λ)β1h + C4(h)q2(q2 − 1)e(q2−1)(α−λ)β1h +
1

rβ1

=q1(q1 − 1)C7(h)e(q1−1)(α−λ)β1h

+
q1(q1 − 1)

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

] [
1− e−(1−α)(1−q1)β2h

]
e(q1−1)(α−λ)β1h

+
q1(q1 − 1)

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

] [
1− e−(α−λ)(1−q1)β1h

]
>0.

Thus Ṽyy(y, h) > 0 for 1 ≤ y < e(α−λ)β1h.

If e−(1−α)β2h ≤ y < 1, then

yṼyy(y, h) =C5(h)q1(q1 − 1)yq1−1 + C6(h)q2(q2 − 1)yq2−1 +
1

rβ2

=q1(q1 − 1)

{
C5(h)yq1−1 +

1

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

]}
+ q2(q2 − 1)

{
C6(h)yq2−1 +

1

(q2 − q1)β2

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

]}
.

For any fixed h > 0, if C5(h) ≥ 0, then C5(h)yq1−1 + 1
(q2−q1)β2

[
q2
γ −

1
r + γ−2r+k

r2
(q2 − 1)

]
> 0; If

C5(h) < 0, then C5(h)yq1−1 + 1
(q2−q1)β2

[
q2
γ −

1
r + γ−2r+k

r2
(q2 − 1)

]
is increasing in y and

C5(h)yq1−1 +
1

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

]
≥C5(h)e(1−α)(1−q1)β2h +

1

(q2 − q1)β2

[q2
γ
− 1

r
+
γ − 2r + k

r2
(q2 − 1)

]
=C7(h)e(1−α)(1−q1)β2h

>0.

Similarly, we have

C6(h)yq2−1 +
1

(q2 − q1)β2

[
− q1
γ

+
1

r
− γ − 2r + k

r2
(q1 − 1)

]
> 0.

It follows that Ṽyy(y, h) > 0 for e−(1−α)β2h ≤ y < 1.

Finally, If (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h, then

Ṽyy(y, h) = C7(h)q1(q1 − 1)yq1−2 + C8(h)q2(q2 − 1)yq2−2.

As C7(h) > 0 and C8(h) > 0, we have Ṽyy(y, h) > 0 for (1− α)e−(1−α)β2h ≤ y < e−(1−α)β2h. Thus,
the proof is complete.
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