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Abstract

Interesting asset pricing properties of consumption volatility have been put forward in

earlier studies, but they were mainly related to the time series dimension of asset returns.

A major contribution of this paper will be to characterize and measure its impact in the

cross-sectional dimension. We establish empirical facts showing the existence of a strong

relationship between macroeconomic uncertainty and stock returns. These facts suggest

that consumption volatility risks are highly correlated to short and long horizon risk

premia. Moreover, these risks can account for the differences in risk premia across size and

book-to-market sorted portfolios, as well as other valuation ratio sorted portfolios. We find

that long-run consumption volatility risk is economically important even in the presence

of long-run consumption level risk, and that value stocks pay high average returns because

they covary more negatively with long-horizon variation in consumption volatility than

other stocks. We argue that long-run volatility risk is relevant for interpreting differences

in risk compensation across assets. We finally propose a reduced-form general equilibrium

model that rationalizes the empirical evidence.
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1 Introduction

The question what do or should investors care about? remains central in Asset Pricing and a

variety of models continue to provide alternative answers. Investment opportunities are risky

and investors face multiple sources of financial and macroeconomic risks that they should

hedge themselves against when constructing their portfolios. This paper provides and sup-

ports the evidence that long-term investors care not only about variation between future and

present consumption levels, but also and perhaps mostly about variation between future and

present macroeconomic uncertainties. As in Bansal and Yaron (2004), macroeconomic un-

certainty here refers to the volatility of aggregate consumption. We answer the following

question: Are differences in risk premia across stocks due to the heterogeneity in their expo-

sure to consumption volatility risk? We find that portfolios with high risk premia have high

negative covariances with long-horizon variation in consumption volatility. This is true for

short-period investments, as well as for long-period investments. Therefore, it suggests that

investors dislike assets paying less for higher future macroeconomic uncertainty relative to the

present. Consequently, they will demand a higher risk premium for holding such assets.

The critical consideration that consumption volatility varies over time is central in this

study. A recent literature emphasizes that the relationship between macroeconomic uncer-

tainty and investment opportunities is crucial to understand the behavior of asset prices (see

for example Bansal and Yaron (2004)). Kandel and Stambaugh (1990) find that consump-

tion volatility is predicted by three financial variables and moreover, it varies in relation with

the business cycle.1 That is, consumption volatility tends to be larger at the end of reces-

sions or immediately after them. Markov-Switching models estimated on consumption data

support that consumption growth volatility varies across different regimes (Kandel and Stam-

baugh (1991), Bonomo and Garcia (1993), Lettau, Ludvigson and Wachter (2006)). Modelling

consumption volatility as a GARCH process, Bansal, Khatchatrian and Yaron (2004) find a

significant ARCH effect. They also show that this measure of consumption volatility is pre-

dicted by the price-dividend ratio.

As choosing a portfolio is equivalent to buying various types of risks, asset pricing models

aim at identifying relevant financial and macroeconomic risks that are priced, and at determin-

1They regress consumption volatility at the quarter t on (a) the difference at the end of quarter t−1 between

Moody’s average yield on bonds rated Baa and bonds rated Aaa, (b) the difference at the end of quarter t− 1

between the Aaa yield and the yield on a U.S. Treasury bill with maturity closest to one month, and (c)

the dividend-price ratio at the quarter t− 1 for the value-weighted portfolio of NYSE stocks. The chi-squared

statistic does not reject the hypothesis that consumption volatility does not depend on the predictive variables.
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ing if these risks justify the observed pattern across historical asset returns. In other words,

they investigate if a relationship between a group of asset returns and the corresponding asset

risks is monotonic, has the right sign and is economically significant. Roughly speaking, these

models try to explain the size and the value premia. The size premium comes from the fact

that stocks of firms with small capitalization (small stocks) have historically paid higher av-

erage returns than those of firms with large capitalization (large stocks). On the other hand,

stocks of firms with a high ratio of book value to market value (value stocks) have historically

paid higher average returns than those of firms with a low ratio of book value to market value

(growth stocks): the difference is known as the value premium.

Since a cross-sectional model with the level of consumption itself has a weak performance

in justifying differences across stock returns, a part of the literature continues to deal with

consumption by motivating higher moments of consumption as possible priced factors. The

volatility of consumption can provide additional information about consumption that should

be taken into account in consumption-based cross-sectional models. However, while some

useful asset pricing implications of models involving time-varying consumption volatility were

put forward in earlier studies (Bansal and Yaron (2004), Tauchen (2005), Eraker (2006)), to

the best of our knowledge, the implications of this measure of macroeconomic uncertainty have

not been investigated for the cross-section of stock returns, and then constitute the focus of

this study.

Empirical studies of asset pricing models typically examine the cross-sectional implica-

tions of macroeconomic factors for short-period investments by focusing only on one-period

returns. However, Bansal, Dittmar and Kiku (2005) show that the risk-return relationship

varies extensively as the investment horizon increases.

We consider multihorizon investments where the investor stays in stocks for the first peri-

ods, then switches to the safe asset and stays on it until the end of the investment period. We

then study how returns on such investments react to the variation in consumption level as well

as the variation in consumption volatility between the end and the beginning of the invest-

ment period. We use a parametric measure of consumption volatility inferred from a GARCH

specification. We examine cross-sectional implications of each of these macroeconomic factors

for short and long-period holding returns. We use the standard measure of the asset risk, the

covariance between asset payoff and risk factor.

Plotting volatility risks against horizon across one-period portfolios sorted on book-to-

market, dividend-to-price, earnings-to-price and cash flows-to-price ratios, we find that there

is a significant difference between portfolio risks as the investment horizon increases. Moreover,

2



these risks exhibit a pattern that generally matches that of risk premia across these dimensions.

This means that growth stocks have a lower volatility risk than value stocks and the volatility

risk of the market portfolio lies between these extreme risks.

We also examine the cross-sectional implications of volatility risks for returns on portfolios

hold more than one period. The pattern of volatility risks across long-period portfolios sorted

on book-to-market, dividend-to-price, earnings-to-price and cash flows-to-price dimensions,

confirms that value is riskier than growth. Moreover, for most of the investment horizons,

volatility risks are more correlated with long-period returns on the Fama and French size and

book-to-market sorted portfolios than consumption risk.

As we show that portfolios with high risk premia covary more negatively with variations

in consumption volatility, we further ask whether this explains their higher average returns.

We estimate linear models which link risk premia to covariances of returns with factors and

find that the price of long-horizon volatility risk is negative and significantly estimated in the

cross-section of long-period returns.

The two macroeconomic factors that we consider in this paper are theoretically motivated

by a consumption-based model with a representative investor who values its payoffs through

a stochastic discount factor that depends log-linearly on both variations in consumption level

and variations in consumption volatility. We further show that it is the case in an affine general

equilibrium model like in Tauchen (2005). While the logarithm of the standard SDF of the

power utility only depends on the level of consumption, that of the recursive utility depends

additionally on consumption volatility through consumption valuation ratios. We model indi-

vidual asset dividends such that their exposures to a weighted sum of past consumption levels

distinguish value from growth stocks. Coupled with Epstein and Zin (1989)’s preference, these

dynamics justify the observed pattern of volatility risk across portfolios sorted from growth to

value.

This paper belongs to the recent literature that examines whether stock returns can be

priced by their exposure to long-run risks. Long-run risks appear to be a key concern in asset

markets (Bansal and Yaron (2004), Bansal, Dittmar and Kiku (2005)). Parker and Julliard

(2005) consider long-run consumption risk, showing that ultimate consumption risk of assets,

measured by the covariance between returns and the long-horizon consumption growth, can

account for the value premium. In addition, we consider long-run volatility risk, measured by

the covariance of returns with the long-horizon volatility variation. We show that this risk is

priced in financial markets and can also account for the value premium.
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This paper also relates to the growing literature that includes volatility factors in cross-

sectional asset pricing models. As well as the volatility of aggregate consumption, the volatil-

ity of the aggregate stock market return provides a measure of macroeconomic uncertainty

through the link between financial markets and the real economy, but is not directly related

to macroeconomic fundamentals, here the consumption flow. Ang, Hodrick, Xing and Zhang

(2006) show that a nonparametric proxy of market volatility is a cross-sectional stock pricing

factor2. In a parametric approach, Adrian and Rosenberg (2006) model the market return as

a GARCH process and decompose its volatility into a short and a long-run component. They

find that these volatility components have negative and significant prices of risk in the cross-

section of stock returns. Their work can be viewed as using additional information provided

by state variables in the market return process to improve the CAPM, while we use addi-

tional information provided by state variables in the consumption growth process to improve

a cross-sectional consumption-based asset pricing model.

This paper finally builds on work that examines the implications of higher moments of

consumption for the cross-section of asset returns. Using household consumption data, Jacobs

and Wang (2004) find that the variance of the cross-sectional distribution of consumption

growth has some potential to explain asset risk premia. Their result points out that assets

with high negative covariance with consumption dispersion also have high returns. We depart

from the work of Jacobs and Wang (2004) in that we examine the risk of the volatility of

aggregate consumption whereas they focus on the risk of the dispersion in idiosyncratic con-

sumption. Second, as they use microdata to construct risk factors, we use macrodata in this

paper. Third, factors differ in what they refer to. While the variance of the cross-sectional

distribution of consumption growth is mostly a degree of heterogeneity across individuals, con-

sumption volatility is mostly the degree of the imprecision that affects agents’s expectations

about future consumption. Fourth as we mention earlier, our factors incorporate long-run

risks in consumption volatility. Finally, their work relates to the literature on market incom-

pleteness, whereas our setup rests upon the complete markets assumption that underlies our

representative agent framework.

The rest of the paper is organized as follows. Section 2 motivates and discusses the cross-

sectional risk-return relationship involving different investment horizons and stock holding

periods. Section 3 presents the data, establishes relevant empirical facts and discusses empirical

risk-return relationships through cross-sectional correlations between mean excess returns and

volatility risks. Section 4 estimates risk prices and provides additional empirical findings and

2To proxy innovations in aggregate market volatility, they use changes in the VIX index from the Chicago

Board Options Exchange (CBOE).
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diagnostics. Section 5 rationalizes the results from the perspective of existing asset pricing

equilibrium models. Section 6 concludes.

2 Consumption Volatility Risk and the Cross-Section of Asset

Returns

The standard consumption-based asset pricing theory states that an investor cares only about

the level of its consumption at each period in time and should then invest in stocks in conse-

quence. However, empirical tests show that the comouvement between one-period asset payoffs

and one-period consumption growth fails to explain differences in one-period average returns

across assets. The literature has grown so far to address the issue of improving the ability of

consumption-based models in understanding risk compensations from asset exposures to good

and bad news about consumption. These news can be related either to the consumption level

or to time-varying consumption moments.

To explain the aggregate stock market behavior and asset pricing puzzles, Bansal and Yaron

(2004) provide a version of the reduced form general equilibrium model in which investors

have concerns about risks from the level of consumption growth, from changes in consumption

growth forecasts and from changes in consumption volatility. This induces a time-varying

equity risk premium which is associated with conditional covariances of return with innovations

in these state variables. In their model, if the representative agent prefers early resolution

of uncertainty, has both the coefficient of risk aversion and the elasticity of intertemporal

substitution greater than one, then volatility carries a positive risk premium. This adds to

the growing set of asset pricing properties of consumption volatility which have so far been

mainly established in the time series dimension of asset returns.

However, while the reduced form general equilibrium model of Bansal and Yaron (2004)

also suggests that consumption volatility could be a cross-sectional pricing factor, the ques-

tion of how it affects the cross-section of expected returns have received less attention. Stocks

with different sensitivities to the volatility of aggregate consumption should have different

expected returns as changes in macroeconomic uncertainty induce changes if investment op-

portunities. Investors’ expectations about future consumption are imprecise, and the degree

of that imprecision is measured by consumption volatility. Since consumption is the claim

on total investor wealth, the imprecision about expected future consumption also reflects the

uncertainty about future wealth. In that sense, movements in consumption volatility provide

additional news about consumption that are likely to influence investment decisions. For this
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reason, consumption volatility is suspected as empirically relevant for explaining asset returns.

An investor chooses intertemporally its portfolios to face as better as he can bad states

of the economy. As well as such an investor dislikes low consumption levels, he also dislikes

high uncertainty on future consumption levels. We examine these two concerns of investors

by analyzing empirical risk-return relationships involving asset returns and both consumption

level and consumption volatility risks.

The failures of the standard consumption-based asset pricing theory in empirical tests

brought to researchers to examine relationship between multiperiod returns rather than one-

period returns, or long-horizon changes in macroeconomic variables rather than one-horizon

changes. Parker and Julliard (2005) show that differences in exposure of one-period stock

returns to long-horizon consumption growth account for cross-sectional differences in stock

risk premia. They argue that slow adjustment of consumption to return data is a reason of

why contemporaneous consumption risk fails to explain expected one-period stock returns.

While empirical studies typically deal with one-period returns, Bansal, Dittmar and Kiku

(2005) study the relation between consumption risk and stock return when the stock holding

period is the same as the investment horizon. They show that this risk-return relationship

varies extensively by investment horizon, and that consumption risk almost converges to the

long-run relation between dividend and consumption as the horizon increases. We also vary

the investment horizon and work directly on returns. In addition to the relation with risk

from consumption level, we examine the relation with risk from consumption volatility in

more general cases where stock holding period is less or equal to the investment horizon.

We consider N stocks denoted i = 1, .., N and and the safe asset f . The one-period

return of investing the asset i from t + j − 1 to t + j is denoted Ri,t+j , j ≥ 1. The total

investment horizon is denoted S. An S-period investment in this study starts with a one-

period investment in the first period and payoffs are reinvested at the beginning of each of the

(S − 1) subsequent periods. We are interested in risk-return relationships involving returns

on long-horizon investments which consist in investing in the same stock for the first periods

and then reinvesting payoffs in the safe asset for the remaining periods. Given an investment

horizon S, the gross return on such an investment can be written:

Rit,k,S =
k∏

j=1

Ri,t+j

︸ ︷︷ ︸
Rit,k

S∏

j=k+1

Rf,t+j (2.1)

and defines the S-period gross return formed by investing from time t in the asset i for the first

k periods, and then reinvesting its payoffs from date t+ k in the safe asset, for the remaining
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(S − k) periods.

The excess return with respect to the return on the investment which consists in staying in

the safe asset for the whole period is defined by Re
it,k,S = Rit,k,S−Rft,S . Note that Rft,S is not

the return on a bond that bought at time t will deliver a unit consumption at time t+ S. An

investor who buys at time t an S-horizon investment plan consisting to stay in the safe asset

for the whole period is now making a risky decision if S > 1, since future one-period risk-free

rates Rf,t+j , j > 1 are not known at time t and are affected by macroeconomic factors during

the investment period. Rft,S is unknown at time t and is not the S-period risk-free rate from

t to t+ S.

The risk premium that an investor will require to stay the first k periods in the stock i

and the remaining (S − k) periods in the safe asset, instead of staying in the safe asset for

the whole period, is defined by the expectation of the corresponding excess return E
[
Re

it,k,S

]
.

For a given S, as the risk-free rate part is common for all returns Rit,k,S , i = 1, .., N , the

cross-section of average k-period stock holding returns can be defined by the vector:

E
[
Re

·t,k,S

]
=

(
E

[
Re

1t,k,S

]
· · · E

[
Re

Nt,k,S

])⊤

. (2.2)

We want to examine the relationship between these returns and two main horizon-dependent

macroeconomic factors. Because what guides investors seems to be the comovement between

asset payoffs and risk factors, it is appealing to measure the risk for holding an asset as the

covariance between the payoff and the risk factor. The sign of this covariance indicates if the

asset and the factor move in the same or opposite direction, whereas its magnitude quantifies

the degree of this comovement. The first factor denoted:

∆ct,S = ct+S − ct =
S∑

j=1

∆ct+j

is the variation in the level of consumption between the end and the beginning of the investment

period and also equals the future S-horizon consumption growth. The covariance of this

factor with an asset return measures the S-level risk, or the ultimate consumption risk of the

asset if k = 1, as termed in Parker and Julliard (2005). These authors argue that ultimate

consumption risk is a better asset risk measure than the standard consumption risk in the

CCAPM, for example if consumption reacts with lags to stock returns. Alternatively, the

link between returns and future long-horizon consumption growth can be simply due to the

fact that investors are concerned with long-run risks in consumption. For a given S, the

cross-section of S-level risks for k-period holding stocks is defined by the vector:

Cov
(
∆ct,S , R

e
·t,k,S

)
=

(
Cov

(
∆ct,S , R

e
1t,k,S

)
· · · Cov

(
∆ct,S , R

e
Nt,k,S

))⊤

. (2.3)
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An investor would dislike an asset which the excess return has a positive covariance with the

variation in the level of consumption. Such an asset pays less in bad states of the economy

characterized by low future consumption level relative to the present, and the investor will

require a relatively high premium for holding that asset. On the other hand, the investor will

dislike the asset i2 more than the asset i1 in a situation where both covariances are positive,

and the covariance of asset i1 has the low magnitude. All other things being equal, asset i2

will have a more higher required level risk premium than asset i1.

By a similar reasoning, an investor would prefer an asset which the excess return has a

negative covariance with the variation in the level of consumption. Such an asset pays more

in bad states of the economy characterized by low future consumption level relative to the

present, and the investor will be able to give up a relatively high premium for holding that

asset. On the other hand, the investor will prefer the asset i1 more than the asset i2 in a

situation where both covariances are negative, and the covariance of asset i1 has the high

magnitude. All other things being equal, asset i2 will have a more lower given up level risk

premium than asset i1.

Let ht denotes the volatility of aggregate consumption. The second factor denoted:

∆ht,S = ht+S − ht =
S∑

j=1

∆ht+j

is the change in the volatility of consumption between the end and the beginning of the

investment period. By similarity with the consumption level case, we define its covariance

with an asset return as the S-volatility risk of the asset. The S-horizon volatility variation is

relevant if investors have concerns about long-run risks in consumption volatility. Furthermore,

if consumption level reacts with lags to returns, to some extent it should also be the case for

consumption volatility. In this case, as S increases, the S-volatility risk would provide the

better measure of the volatility risk embodied in asset payoffs. The innovation of this paper

is to show that, in addition to long-horizon consumption growth, long-horizon variation in

consumption volatility captures the cross-sectional dispersion of stock returns as well, and that

long-run volatility risk is economically important even in the presence of long-run consumption

risk. For a given S, the cross-section of S-volatility risks for k-period holding stocks is defined

by the vector:

Cov
(
∆ht,S , R

e
·t,k,S

)
=

(
Cov

(
∆ht,S , R

e
1t,k,S

)
· · · Cov

(
∆ht,S , R

e
Nt,k,S

))⊤

. (2.4)

An agent who faces an increase in macroeconomic uncertainty would fear the repercussion on

its future wealth and then, he would like to increase precautionary savings. This investor would
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dislike an asset which the excess return has a negative covariance with the variation in the

volatility of consumption. Such an asset pays less in bad states of the economy characterized

by high future consumption volatility relative to the present, and the investor will require a

relatively high premium for holding that asset. On the other hand, the investor will dislike

the asset i2 more than the asset i1 in a situation where both covariances are negative, and the

covariance of asset i1 has the low magnitude. All other things being equal, asset i2 will have

a more higher required volatility risk premium that asset i1.

By a similar reasoning, an investor would prefer an asset which the excess return has a

positive covariance with the variation in the volatility of consumption. Such an asset pays

more in bad states of the economy characterized by high future consumption volatility relative

to the present, and the investor will be able to give up a relatively high premium for holding

that asset. On the other hand, the investor will prefer the asset i1 more than the asset i2 in

a situation where both covariances are positive, and the covariance of asset i1 has the high

magnitude. All other things being equal, asset i2 will have a more lower given up volatility

risk premium that asset i1.

At this stage, S-volatility risks cannot be computed since consumption volatility is unob-

servable. To measure this risk from the data, we use a parametric measure of consumption

volatility provided by a GARCH of Heston and Nandi (2000) with no leverage parameter.

That is, we extract consumption volatility from the following dynamics:

∆ct+1 = µc +
√
htǫt+1 (2.5)

ht+1 = (1 − φh)µh + φhht + σh

(
ǫ2t+1 − 1

)
(2.6)

where ǫt+1 ∼ NID (0, 1). We further denote by π the vector π = (µc, µh, φh, σh)⊤ and let

ωh = (1 − φh)µh − σh.

We simply assume a constant expected consumption growth as in Tauchen (2005) since

our aim is mostly to capture risks from consumption volatility. In affine general equilibrium

models, every state variable that enters into the dynamics of consumption growth usually

appears in the stochastic discount factor as a potentially priced factor. It is the case of the time-

varying expected consumption growth in the Bansal and Yaron (2004)’s model. We will further

check that extracting consumption volatility from an alternative specification which allows for

time-varying expected consumption growth has a little influence in parameter estimates of

the volatility dynamics. We have also assume that expected consumption growth is constant

in our specification since it is likely to capture similar long-run risks in consumption level
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that are already captured by long-horizon consumption growth.3 We could have also specified

expected consumption growth as linear in consumption volatility to continue to deal with

macroeconomic uncertainty only, but this will not change either our method or subsequent

results.

We compute empirical volatility risk factors ∆ht,S (π̂) from the recursion:

h0 (π̂) = µ̂h (2.7)

∀t ≥ 0, ht+1 (π̂) =
(
1 − φ̂h

)
µ̂h + φ̂hht (π̂) + σ̂h

[
(∆ct+1 − µ̂c)

2

ht (π̂)
− 1

]
(2.8)

where π̂ is a consistent estimator of π.

We measure the risk-return relationship at each investment horizon S and for each stock

holding period k, through cross-sectional correlations between the vector (2.2) of k-period

stock risk premia and the vectors of S-level and S-volatility risks, (2.3) and (2.4) respectively.

These cross-sectional correlations are denoted:

ρrc (S, k) = Corr
(
E

[
Re

·t,k,S

]
, Cov

(
∆ct,S , R

e
·t,k,S

))
(2.9)

ρrh (S, k) = Corr
(
E

[
Re

·t,k,S

]
, Cov

(
∆ht,S , R

e
·t,k,S

))
(2.10)

According to the theory, the average return of an asset is higher the more positively it covariates

with variations in consumption level, and the more negatively it covariates with variations in

consumption volatility. Moreover, the more negatively asset payoff covariates with variations

in consumption level, and the more positively it covariates with variations in consumption

volatility, the lower will be the asset risk premium. Thus, ρrc (S, k) and ρrh (S, k) are expected

to be respectively positive and negative, and their magnitudes will assess how important are

relationships between k-period holding stock returns and S-horizon variations in consumption

level and in consumption volatility respectively.

Since the square of the correlation between the explained and the explicative variables

measures the R-squared of the projection of the former onto the latter, we note that [ρrh (S, k)]2

also measures the proportion of variations in risk premium across stocks, which is explained

solely by consumption volatility risk. Similarly, [ρrc (S, k)]2 also measures the proportion of

variations in risk premium across stock, which is explained solely by consumption level risk.

3Note that expected consumption growth is usually empirically proxied by a weighted combination of the

lags of consumption growth (see also Bansal, Dittmar and Lundblad (2004)), for example if consumption

growth is an ARMA(1,1).
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3 Data and Empirical Facts

3.1 Data

We use return data constituted with four groups of 5 portfolios sorted on dividend yield, book-

to-market, earnings-to-price, and cash flows-to-price ratios, as well as the 25 Fama and French

size and book-to-market sorted portfolios. Returns are monthly and span the period 1946:4

to 2005:8. They are aggregated to obtain quarterly returns. The attractiveness of these sets

of portfolios in empirical studies comes from that stocks show significant differences in their

average excess returns. Table 1 shows the size and value premia across portfolios sorted from

growth to value and from small to large.

In this paper, we will further be interested in the behavior of dividend shares of consump-

Table 1: Mean One-Quarter Excess Returns for Portfolios Sorted on Various Di-

mensions: 1963:3-1999:4.

This table presents mean quarterly one-period stock returns in excess on the risk-free rate, for 5 port-

folios sorted on book-to-market, dividend-to-price, earnings-to-price and cash flow-to-price in Panel

A, and for the 25 Fama and French size and book-to-market portfolios in Panel B. Values are in

percentage.

Panel A. 5 Valuation Ratio Sorted Portfolios

Low 2 3 4 High High-Low

B/M 1.34 1.60 1.77 2.22 2.61 1.27

D/P 1.61 1.73 1.74 1.87 1.98 0.37

E/P 1.16 1.53 1.58 2.42 2.66 1.50

CF/P 1.29 1.54 1.79 1.92 2.58 1.29

Panel B. 25 FF Size and B/M Sorted Portfolios

Low 2 3 4 High High-Low

Small 1.07 2.69 2.83 3.43 3.84 2.76

2 1.44 2.18 2.94 3.09 3.35 1.91

3 1.45 2.33 2.31 2.72 3.28 1.83

4 1.74 1.64 2.33 2.69 2.81 1.07

Large 1.33 1.47 1.51 1.73 1.82 0.50

Large-Small -0.26 1.22 1.32 1.70 2.02
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tion from the latter set of portfolios. For each portfolio, quarterly price and dividend series

are constructed in the same manner as in Bansal, Dittmar and Lundblad (2005). We observe

the monthly return series4 computed with and without dividend, Rwith
t+1 and Rwout

t+1 . Asset price

and dividend series are then computed as:

Pt+1 = Rwout
t+1 Pt (3.1)

Dt+1 =
(
Rwith

t+1 −Rwout
t+1

)
Pt, (3.2)

with P0 = 1. Since the initial price was normalized to 1, these measures represent the actual

price and dividend up to a multiplicative constant. Monthly prices are averaged within each

quarter to obtain quarterly prices and monthly dividends are summed within each quarter to

obtain quarterly dividends. There is no evidence of a seasonal component in quarterly prices.

On the contrary, quarterly dividends have strong seasonalities that are removed by taking

as measure of dividends in quarter t, an average of the dividends in quarter t and over the

previous three quarters t− 3, t− 2 and t− 1.

We also use quarterly data for consumption of nondurable and services from 1947:1 to

2005:2, taken from the NIPA tables available from the Bureau of Economic Analysis. Return,

price and dividend series are converted into real using the associated PCE deflator. Dividend-

price ratios are then computed. Annualized empirical means and standard deviations for

excess returns, dividend growths and dividend-price ratios of the 25 Fama and French size

and book-to-market sorted portfolios as well as for the market return, the risk-free rate and

the consumption growth are shown in Table 2. Each label SxBy in the table represents one

portfolio. The first digit x refers to the size quintiles (1 indicating the smallest firms, 5 the

largest), and the second digit y refers to book-to-market quintiles (1 indicating the portfolio

with the lowest book-to-market ratio, 5 the highest). Log shares are also constructed as the log

ratio of dividend to consumption and represent the actual shares up to an additive constant.

The pattern of these log shares are plotted in Figure 1.

To establish the observed facts between returns and volatility factors, we estimate the

Heston and Nandi (2000) GARCH(1,1) for consumption growth. The longest sample period

for quarterly consumption growth that we consider spans the second quarter of 1947 to the

second quarter of 2005. We show results for the entire sample and those for a subsample

starting in 1963:3 considered in previous works. Table 3 displays result for estimations over

the two subsamples under study. The GARCH and ARCH coefficients of the dynamics are both

significant and corroborate the central assumption that consumption volatility is time-varying.

4We take return data from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Table 2: Descriptive Statistics for Size and Book-to-Market Sorted Portfolios.

This table presents the annualized descriptive statistics of asset returns from 1963:3 to 2005:2. mean

and standard deviation of excess returns and dividend-price ratios are in are in percentage.

1963:3-2005:2

Asset E [Re] σ [Re] E [∆d] σ [∆d] E
[

D
P

]
σ

[
D
P

]

(1) (2) (3) (4) (5) (6) (7)

S1B1 5.13 33.75 -5.54 29.26 0.60 0.46

S1B2 11.04 28.10 4.60 25.07 1.38 0.83

S1B3 11.65 24.42 5.65 14.70 2.00 0.96

S1B4 14.18 22.97 7.37 16.16 2.35 1.04

S1B5 15.89 25.42 9.74 21.88 1.95 0.93

S2B1 6.00 26.46 -2.96 38.58 0.99 0.63

S2B2 8.97 21.36 2.58 14.78 2.03 1.02

S2B3 11.79 20.83 5.02 12.61 2.72 1.19

S2B4 12.64 20.63 4.93 13.82 3.33 1.39

S2B5 13.88 21.04 7.22 20.00 2.92 1.29

S3B1 6.02 23.12 -0.99 19.53 1.27 0.75

S3B2 9.57 19.43 3.21 14.35 2.32 1.11

S3B3 9.40 17.40 3.12 14.84 3.22 1.34

S3B4 11.21 19.66 4.99 12.73 3.76 1.50

S3B5 13.48 20.07 6.79 19.78 3.64 1.42

S4B1 7.15 20.38 1.06 26.19 1.62 0.77

S4B2 6.76 17.17 0.85 18.14 2.73 1.13

S4B3 9.40 16.51 4.17 16.58 3.53 1.44

S4B4 11.14 18.31 3.46 13.99 4.20 1.57

S4B5 11.57 18.62 5.16 12.19 3.96 1.38

S5B1 5.61 18.00 2.51 11.64 2.14 0.81

S5B2 6.06 15.47 1.93 11.90 3.34 1.18

S5B3 6.32 14.44 1.29 7.70 4.06 1.52

S5B4 7.22 15.16 0.90 10.50 4.65 1.73

S5B5 7.73 18.12 0.45 17.02 4.89 1.87

MKT 6.10 16.14

RF 1.79 1.14

CONS 2.22 1.32

Bansal, Khatchatrian and Yaron (2004) estimate a standard GARCH(1,1) for consumption

growth and find similar conclusions.
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Table 3: Heston and Nandi (2000) GARCH(1,1) Fit of Consumption Growth.

This table presents results for the estimation of model (2.6) for the two samples. In panels A1 and

B1, all four parameters of the model are estimated. In panels A2 and B2, only three parameters are

estimated because we use the variance targeting to determine the other (we set the parameter µh to

the sample value of the variance of consumption growth).

µc µh φh σh

(1) (2) (3) (4) (5)

A1. Sample 1947:2 - 2005:2

Estimate 0.00544 2.698E-5 0.87552 4.430E-6

Std.dev. 0.00031 5.888E-6 0.05799 1.340E-6

A2. Sample 1947:2 - 2005:2 (variance targeting)

Estimate 0.00544 2.544E-5 0.87357 4.206E-6

Std.dev. 0.00031 0.05820 0.987E-6

B1. Sample 1963:3 - 2005:2

Estimate 0.00568 1.954E-5 0.82368 3.502E-6

Std.dev. 0.00034 4.308E-6 0.09328 1.202E-6

B2. Sample 1963:3 - 2005:2 (variance targeting)

Estimate 0.00568 1.909E-5 0.82261 3.415E-6

Std.dev. 0.00034 0.09345 0.839E-6

We use parameter estimates and the extracted consumption volatility to compute estimates

of the demeaned consumption and volatility factors. Following Parker and Julliard (2005), we

stop the sample of returns at 1999:4, so that the horizon S in consumption and volatility factors

can vary up to five years while maintaining the same sample of returns for the study as we vary

S. That is, we use all available consumption and volatility data up to the fourth quarter of

1999 plus S quarters, with S = 23 corresponding to the second quarter of 2005. For each stock,

we compute sample covariances between factors and returns. As these covariances measure

risks across assets, we compute the cross-sectional correlation of each risk with average excess

return across the 25 Fama and French size and book-to-market sorted portfolios, in order to

see if high excess returns are associated with high volatility risks. As discussed previously, the

square of the correlation also measures the fraction of the cross-sectional dispersion in mean

average excess returns explained by level or volatility risk.

We plot the pattern of S-level and S-volatility risks across book-to-market sorted portfolios,
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and also across dividend-to-price, earnings-to-price and cash flows-to-price sorted portfolios.

The figures are similar to those of Hansen, Heaton and Li (2005) which show the pattern

of S-level risk across 5 dividend-to-price sorted portfolios especially when the stock holding

period is one quarter. Next, we describe how consumption level and consumption volatility

risks are correlated with short and long-period returns, and analyse the pattern of these risks

across value and growth portfolios.

3.2 Patterns of S-level and S-volatility Risks

In this subsection, we describe the pattern of consumption volatility risk across stocks. As S

varies, we describe how S-volatility risk ranks portfolios from the less to the more riskier, and

we compare this ranking to that based on the risk premium. We also compare the ranking by

consumption volatility risk to the ranking by consumption level risk. We focus on one-period

(k = 1) and full period (k = S) returns as this makes our findings comparable to results of

previous studies (Parker and Julliard (2005), Bansal, Dittmar and Kiku (2005)). We will say

that volatility or level risk rank stocks well if the more riskier is a portfolio, the more higher

is its volatility or level risk.

Figure 2 shows the pattern of consumption volatility risk by investment horizon when stocks

are hold for one quarter at the beginning of the investment period. At each investment horizon,

the top point represents the less riskier stock and the bottom point the more riskier. It can be

obseved that difference between volatility risks for the extreme value and the extreme growth

portfolios is not apparent for S = 1 and S = 2. However, for S > 2, there is a significant

gap between volatility risks of these portfolios, with the value line on the bottom and the

growth line on the top, which shows that value assets are more riskier than growth assets

when investments are exposed to variations in consumption volatility. Because value stocks

covariate highly and negatively with variations in the volatility of aggregate consumption and

more so than other stocks, this means that their payoffs are lower than those of other stocks

when macroeconomic uncertainty becomes higher in the future relatively to the present. Then

value stocks are disliked more than other stocks and investors require a more higher premium

to hold them. Not surprisingly in Figure 2, the market risk (covariance between aggregate

stock market return and variations in consumption volatility) lies between extreme risks (value

risk and growth risk).

Figure 3 shows the pattern of consumption level risk by investment horizon when stocks

are hold for one quarter at the beginning of the investment period. Contrarily to the pattern of

15



consumption volatility risk across stocks, at each investment horizon, the top point represents

the more riskier stock and the bottom point the less riskier. Compare to the pattern of

consumption volatility risk, on can observe that for smaller investment horizons where volatility

risk sorts stocks as they are ordered according to risk premium, level risk does worst in this

sort. Growth assets appear to be more riskier than other assets when exposed to relatively

short variations in consumption level, and this clearly appears for S < 6 in Figure 3. However,

consistent with a similar pattern plotted in Hansen, Heaton and Li (2005) and with the results

of Parker and Julliard (2005), as the investment horizon increases, differences in consumption

level risk across stocks become significant, with portfolios ranked as they are sorted according

to their risk premium, that is value stocks are more riskier than growth stocks when investment

are exposed to long-horizon variations in consumption level.

Figure 4 shows the pattern of consumption volatility risk by investment horizon when

stocks are hold for the full investment period. This pattern clearly shows that the ranking

between asset risks is the same between assets as the horizon increases, value stocks having

a more pronounced negative covariance with volatility variations than growth stocks. Once

again and not surprisingly, the long-horizon market portfolio risk lies between extreme portfolio

risks. Since value stocks also have higher mean returns than growth stocks, one can expect

that projecting full period stock returns in stock S-volatility risks will give a negative slope

coefficient.

Figure 5 shows the pattern of consumption level risk by investment horizon when stocks are

hold for the full investment period. Compare to the similar pattern of volatility risk, on can

observe that consumption level risk fails to well rank the semi-growth portfolio which in all di-

mensions is riskier than the extreme growth portfolio. In addition, the extreme growth appears

to be more riskier than the medium in dividend-to-price and cash flow-to-price dimensions,

and even more riskier than the semi-value in the dividend-to-price dimension.

We also plot the pattern of S-volatility and S-level risks for book-to-market sorted port-

folios at a less aggregate level, that is when assets are first sorted according to the firm size,

and then according to the firm book-to-market in each size group. Figures 9 and 11 show the

pattern of consumption volatility risk for one-period (k = 1) and full period (k = S) holding

stock returns respectively. Figures 10 and 12 display similar patterns of consumption level

risk. All confirm that the findings at the aggregate level also hold in each size group.

While the pattern of consumption volatility and consumption level risks across stocks

inform how portfolios are ranked from the less to the more riskier (or from the less to the

more preferred), we cannot still assess the strength of the relationship between these risks
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and the total risk premium that investors require to invest in stocks instead of the safe asset.

Even if portfolios are well ranked by volatility risk at horizons S1 and S2, the strength of the

relationship between risk premium and consumption volatility risk at these horizons can differ

widely. In section 2 we defined this strength through cross-sectional correlations between risk

and risk premium whose the analysis follows.

3.3 Analyzing the Risk-Return Relationship

This section examines cross-sectional correlations between risk premium and consumption

volatility risk. As S varies for given k, we analyze the strength of the relationship between

volatility risk and return at lower investment horizons to the strength at longer horizons.

At each horizon, we also compare the relationship between volatility risk and return to the

relationship between level risk and return. On the other hand, as k varies for given S, we

analyze the strength of the relationship between volatility risk and return, and also oppose

volatility risk-return relationship to level risk-return relationship.

For the starting date 1963:3, Table 4 shows correlations between risk premium and con-

sumption level and consumption volatility risks when both the total investment horizon S and

the stock holding period k equal one and two quarters, then one, two, three, four and five

years. The second column of the table measures how much one-period returns are correlated

to variations in consumption volatility, but also in consumption level as in Parker and Jul-

liard (2005). One can observe that one-period stock risk premium is weakly and positively

correlated to one-horizon consumption volatility risk and this is not consistent with the theory

that, when exposed to variations in consumption volatility, riskier investments should have

higher average excess returns. Moreover, while volatility risk-return correlation becomes neg-

ative from the horizon of two quarters, it remains weak. However the volatility risk-return

correlation grows as the investment horizon increases.

The second column of Table 4 also shows the known weak correlation between contempo-

raneous consumption risk (here the level risk at the horizon of one quarter) and risk premium.

This correlation is 0.32 and means that contemporaneous consumption risk explains only

about 10% of variations in average stock returns. The level risk-return correlation is still

weak at the investment horizon of two quarters, then grows as the horizon increases. If the

weak performance of shorter variations in consumption level to explain differences in average

stock returns is due to the slow adjustment of consumption to returns as argue by Parker

and Julliard (2005), then we argue that the same reason could explain why shorter variations
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Table 4: Correlations between Returns and consumption level and consumption

volatility risks: 1963:3-1999:4.

This table presents correlations of the mean excess k-period returns on the 25 Fama and French

portfolios with the S-level and S-volatility risks. Risks are computed as covariances of returns with

factors. For each horizon S, the top line represents correlations with S-level risk and the bottom line

shows correlations with S-volatility risk. Consumption volatility satisfies the Heston and Nandi (2000)

dynamics specified in equation (2.6).

k

S 1 2 4 8 12 16 20

1 0.32

0.23

2 0.30 0.54

-0.38 -0.03

4 0.45 0.56 0.70

-0.77 -0.74 -0.76

8 0.70 0.77 0.76 0.68

-0.72 -0.79 -0.86 -0.88

12 0.80 0.84 0.86 0.82 0.59

-0.68 -0.70 -0.82 -0.87 -0.88

16 0.76 0.79 0.82 0.86 0.73 0.54

-0.63 -0.70 -0.84 -0.87 -0.87 -0.90

20 0.77 0.83 0.85 0.86 0.81 0.67 0.45

-0.50 -0.53 -0.72 -0.84 -0.84 -0.91 -0.89

in consumption volatility also performs weakly in explaining differences across average stock

returns.

The diagonal line of Table 4 measures how much full period returns are correlated to

variations in consumption volatility, but also in consumption level as in Bansal, Dittmar and

Kiku (2005). It shows that consumption volatility risk is highly and negatively correlated to

full period stock risk premium, and so more than one-period stock risk premium. In contrast

consumption level risk is more correlated to one-quarter stock risk premium than to full period

stock risk premium. On the other hand, correlation of average excess S-period returns with

S-volatility risk dominates that with S-level risk at all horizons S > 2. Since the former is

quite constant for all investment horizons, it seems that there is a stable long-run relationship
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between stock returns and variations in consumption volatility. A correlation of −0.88 would

also mean that more than 75% of heterogeneity in average long-period stock returns come

from the heterogeneity in their exposure to permanent movements in consumption volatility.

The latter facts are well shown in Figure 6 which plots consumption volatility risk-return

relationship versus consumption level risk-return relationship for one-quarter and full period

holding stocks. The figure shows that average one-quarter returns are more correlated to

short-horizon volatility risk than to short-horizon level risk. While this correlation is greater

than 0.75 with volatility risk for horizons 2 < S < 7, it is smaller than 0.55 for level risk for

the same horizons. In contrast, average one-period returns are more correlated to long-horizon

consumption level risk than to long-horizon consumption volatility risk. With long-horizon

consumption volatility risk, this correlation has a downward trend from the horizon S = 8,

where it is worth −0.72, to the horizon S = 20, where it is worth −0.50. On the other

hand, with long-horizon consumption level risk, this correlation is close to about 0.80 from

the horizon S = 9 to the horizon S = 20, both of where it is worth 0.77.

Figure 6 also confirms the result in Table 4 that average full period returns are more

correlated to consumption volatility risk than to consumption level risk, with a complete

domination of the volatility risk-return relationship in the long run. While the volatility-risk

return correlation is close to about −0.90 from the horizon S = 7 to the horizon S = 20, the

level risk-return relationship declines from 0.70 to 0.45 for the same horizons.

4 Pricing Consumption Volatility Risk in the Cross-Section

The striking pattern of S-volatility risk across stocks and its high correlation with expected

excess returns motivates our investigation of how this risk is priced in financial markets,

especially when S-level risk is also taken into account. We inquire how much of the cross-

sectional differences in stocks is explained by both S-level and S-volatility risks, and this is

important since variations in consumption level are uncorrelated to variations in consumption

volatility from our GARCH specification. Estimating the volatility risk price in a two-factor

model, and evaluating the amount of premium coming from volatility variations will also

determine how important are long-run volatility risks in the presence of long-run consumption

risks.

We estimate the following two-factor model:

E
[
Re

it,k,S

]
= bu,S + pc,SCov

(
ξ∆c,t,S , R

e
it,k,S

)
+ ph,SCov

(
ξ∆h,t,S , R

e
it,k,S

)
(4.1)
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where ξ∆c,t,S = ∆ct,S−E [∆ct,S ] and ξ∆h,t,S = ∆ht,S−E [∆ht,S ] are respectively the demeaned

S-horizon variations in consumption level and in consumption volatility. The constant bu,S is

introduced to measure by how much the cross-sectional model fails to predict returns.

Equation (4.1) postulates that investors demand or give up both multihorizon consumption

and volatility risk premia to invest in stocks. Each premium is the product of the quantity

of the associated risk with a parameter that measures the price (or the compensation) for

a unit risk. Since investors require a positive risk premium to hold assets that they dislike

and are able to require a negative risk premium (give up a positive risk premium) to hold

asset that they prefer as discussed in Section 2, from an economic point of view, the price

of the volatility risk should therefore be negative and the price of the level risk positive.

Intuitively, the coefficients pc,S and ph,S are expected to be positive and negative respectively.

This section provides details for estimating S-level and S-volatility risk prices in the two-

factor cross-sectional linear covariance model (4.1). It then analyzes the estimation results

and provides some conclusions.

Parker and Julliard (2005) assume an investor whose the intertemporal marginal rate of

substitution depends solely on the level of consumption and they essentially investigate cross-

sectional relations like (4.1), with k = 1 and without S-volatility risk. Bansal, Dittmar and

Kiku (2005) also deal with similar cross-sectional relations which do not involve S-volatility

risk, but in the case k = S. However, they decompose the S-level risk into a trend risk and

a business cycle risk, which they show are compensated by appropriate multiperiod returns.

In addition, since the volatility of aggregate consumption varies in relation with the business

cycle, as stated in Kandel and Stambaugh (1990), it could be said that the S-horizon variation

in consumption volatility appears to be a business cycle risk factor, as well as the S-horizon

variation in consumption level as shown in Parker and Julliard (2005).

4.1 Estimation Methodology

Following recent empirical studies of cross-sectional asset pricing (see for example, Cochrane

(1996), Jagannathan and Wang (1996), and Jacobs and Wang (2004)), we use the generalized

method of moment (GMM, Hansen (1982)) to evaluate the significance of consumption volatil-

ity factors. Cochrane (2001, Chapter 15) demonstrates that the GMM approach works well

for linear asset pricing models. The cross-sectional model (4.1) satisfies a moment condition

of the form:

E
[
−ιb+

(
1 − ξ⊤ (π) p

)
R

]
= 0 (4.2)
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where ξ (π) is the vector of demeaned factors, R is the vector of excess returns, p is the vector

of risk prices and b is the constant term. Demeaned factors depend on the parameter vector π

that govern the processes (2.5) and (2.6) of consumption growth and consumption volatility.

The vector ι is of same length as R and has all its components equal to one. The moment

condition (4.2) holds for a given date and a given horizon. We avoid subscripts in variables and

parameters to simplify notations in this section. The vectors ξ (π) and p have two components

each other.

Equation (4.2) is also equivalent to:

µR = ιb+ ΣRξ (π) p (4.3)

where µR = E [R] and ΣRξ (π) = E
[
Rξ⊤ (π)

]
are respectively the vector of mean excess

returns and the covariance matrix of excess returns with factors. The latter depends on the

parameter vector π of consumption and volatility processes through ξ (π).

Two-Step Estimation With Prespecified Weighting Matrix. If the parameter vector

π were known, then the constant b and the factor risk prices p could be consistently estimated

by GMM based on the moment condition (4.2), by minimizing the distance between average

actual returns µ̂R and average predicted returns ιb + Σ̂Rξ (π) p with respect to a positive

definite matrix W . µ̂R and Σ̂Rξ (π) are the sample counterparts of the mean vector µR and

the covariance matrix ΣRξ (π).

Minimizing the distance:

dist (b, p) =

√(
µ̂R − ιb− Σ̂Rξ (π) p

)⊤

W
(
µ̂R − ιb− Σ̂Rξ (π) p

)
(4.4)

with respect to b and p gives:

b̂ (π) =
(
ι⊤Wι

)−1

ι⊤W
[
µ̂R − Σ̂Rξ (π) p̂ (π)

]
(4.5)

p̂ (π) =
[
Σ̂ξR (π)AΣ̂Rξ (π)

]−1

Σ̂ξR (π)Aµ̂R (4.6)

where A = W −Wι
(
ι⊤Wι

)−1
ι⊤W . For these solutions, the vector of pricing errors and the

minimum distance value are given by:

ê (π) = W−1B̂ (π) µ̂R (4.7)

d̂ (π) =
√
ê⊤ (π)Wê (π) =

√
µ̂⊤RB̂ (π) µ̂R (4.8)

21



where B̂ (π) = A−AΣ̂Rξ (π)
[
Σ̂ξR (π)AΣ̂Rξ (π)

]−1

Σ̂ξR (π)A. We then compute the adjusted

central R-squared through the formula:

R2 (π) = 1 − N − 1

N −K − 1

ê⊤ (π)Aê (π)

µ̂⊤RAµ̂R

, (4.9)

where N and K are respectively the number of portfolios and the number of factors. If W is

the identity matrix, then the formula (4.9) gives the adjusted central R-squared calculated as

if we were doing a linear regression of the average returns on risks measured by covariances

between returns and factors. In this case, d̂ (π) /
√
N is the square root of the weighted average

of the squared pricing errors and measures how much the expected return based on the fitted

model is off for a typical portfolio.

The matrices A and B̂ (π) have the property that AW−1A = A and B̂ (π)W−1B̂ (π) =

B̂ (π). Let Σ̂bb (π) and Σ̂pp (π) the variances of these estimators. In general, b̂ (π), p̂ (π),

Σ̂bb (π), Σ̂pp (π), ê (π) and d̂ (π) are continuous functions of π. Then, if π is unknown and

if π̂ is a consistent estimator of π, it will hold that b̂ (π̂), p̂ (π̂), Σ̂bb (π̂) and Σ̂pp (π̂) are also

consistent estimates of b, p, Σbb and Σpp. Even if this method of estimation is consistent,

the uncertainty in the estimation of π leads to a larger asymptotic variance than when π is

known. We have consistently estimated π by maximum likelihood in Section 3. We now use

this estimate to compute the estimates b̂ = b̂ (π̂), p̂ = p̂ (π̂), Σ̂bb = Σ̂bb (π̂) and Σ̂pp = Σ̂pp (π̂),

and also the pricing errors ê (π̂), the minimum distance d̂ (π̂) and the R-squared R2 (π̂).

One-Step Estimation With Prespecified Weighting Matrices. Let f (π; ∆c) denotes

the density function of ǫ in the model (2.6) satisfied by consumption growth and consumption

volatility. In the two-stage estimation procedure, L (π; ∆c) =
∑

lnf (π; ∆c) is first maximized

to obtain an estimator of π that is further plugged into the cross-sectional estimation to

obtained estimates of factor risk prices. With the one-step estimation procedure, we estimate

the parameter π, simultaneously with the cross-sectional factor risk prices in a full single-stage

GMM system. Let ℓ (π) =
(
ξ⊤ (π) , ∂lnf

∂π⊤

)⊤

. In addition to the moment condition (4.2) we

consider the moment condition:

E [ℓ (π)] = 0 = µℓ (π) . (4.10)

We perform the GMM estimation by placing the weighting matrices W and λΣ̂−1
ℓℓ (π) respec-

tively on the moments (4.2) and (4.10), and a null matrix on any product of these moments.

This one-step estimation can be seen as practically equivalent to the two-step estimation. In

the first step, choose π̂ to minimize ê⊤ (π)Wê (π) + λµ̂⊤ℓ (π) Σ̂−1
ℓℓ (π) µ̂ℓ (π) where µ̂ℓ (π) is
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the sample counterpart of µℓ (π), and where ê (π) is defined as in (4.7). In the second step,

plug π̂ into (4.5) and (4.6) to obtain b̂ and p̂. The number λ is large enough to ensure that

estimates fit well the consumption growth and volatility processes, match factor conditional

or unconditional means, as well as minimize the gap between actual and fitted returns (See

also Yogo (2005) and Parker and Julliard (2005)).

Choosing the Prespecified Weighting Matrix. As weighting matrix, we use the second

moment matrix of returns W = Σ̂−1
RR. Hansen and Jagannathan (1997) advocate the use of

this matrix instead of the optimal weighting matrix. It has two main economically impor-

tant features. First, it provides estimates that minimize the distance between a stochastic

discount factor that depends in a simple linear way on variations in both consumption level

and consumption volatility, and the space of true stochastic discount factors. Second, as well

as the optimal weighting matrix, the second moment matrix will make the objective function

(4.4) invariant to the initial choice of intertemporal portfolios.5 The portfolios used for the

estimation are formed on economically interesting characteristics (size and book-to-market

ratio). The second moment matrix will also form economically interesting combinations of

these portfolios instead of unusual ones as the optimal matrix will do, and is more likely to

provide small pricing errors (Cochrane 2001, Chap. 11).

The R-squared (4.9) when W = Σ̂−1
RR is not interpretable as explanatory power of initial

stock risk premia by level and volatility risks. Risk-return correlations in Section 2 were

computed giving each portfolio equal weight. For this reason, only the R-squared (4.9) based

on the identity matrix W = I that puts equal weight on initial portfolios, can be used to

compare horizon-dependent models since they are all based on equally weighted pricing errors.

This R-squared is interpretable in terms of explanatory power of level and volatility risks and

is related to squared correlations between risk premium and risks, discussed in Section 3.

4.2 Estimation Results

This section will ask whether variations in consumption level and in consumption volatil-

ity are statistically significant, as well as if model tests of overindentifying restrictions reject

the complete explanation of average stock returns by these factors. However, beyond these

econometric issues, we are also and perhaps mostly interested in the economical significance

of consumption level and consumption volatility risks for the cross-section of average stock

5Kandel and Stambaugh (1995) argue that results of several important asset pricing model tests are portfolio-

dependent.

23



Table 5: Estimation of the price of the S-volatility risk in the Cross-Section of

One-Period Stock Returns: 1963:3-1999:4.

This table presents results from the two-step estimation described in Section 3 and based on the

weighting matrix W = Σ̂−1

RR. The entries of the table are the total investment horizon S, the horizon

k of the investment in stocks, estimates of the constant term b̂u,S , of the price of the S-level risk p̂c,S

and of the price of the S-volatility risk p̂h,S (to be multiplied by 10−4), the model J-statistics JT ,

the cross-sectional R-squared R2 and the square root of the weighted average of square pricing errors

d̂ (π). The two latter statistics are also provided for the identity weighting matrix, namely R2 (I) and

d̂ (I). The numbers below the estimates are standard errors and below the J-statistics is the p-value.

Covariance matrices are calculated using the Newey-West procedure with S lags.

k S b̂u,S p̂c,S p̂h,S JT R2 d̂ R2 (I) d̂ (I)

1 1 1.90 13.09 3.43 60.52 -0.08 0.69 0.11 0.54

(0.52) (37.82) (3.51) [0.000]

1 4 1.94 18.51 -0.48 109.03 -0.07 0.69 0.56 0.39

(0.66) (19.86) (2.51) [0.000]

1 8 2.06 9.87 -1.58 146.40 -0.06 0.69 0.50 0.42

(0.65) (13.54) (2.25) [0.000]

1 12 2.06 7.82 0.58 225.44 -0.08 0.69 0.60 0.38

(0.68) (9.95) (2.03) [0.000]

1 16 2.12 6.86 0.23 282.95 -0.08 0.70 0.63 0.38

(0.77) (10.92) (2.08) [0.000]

returns. This economical significance contains two major points. Are the prices of the con-

sumption level and consumption volatility risks respectively positive and negative as will be

expected from the facts established in Section 2 and consistently with the theory? Do these

risks explain a sizable percentage of variation in average stock returns?

We perform the estimation of the cross-sectional linear covariance model (4.1) for five

values of S, corresponding to investment horizons of one quarter, then one, two, three and

four years (S = 1, 4, 8, 12 and 16). We provide results for the estimation on the sample

starting at 1963:3. We rely results based on two-step estimation since one-step estimation

results are similar. These results are shown in Tables 5 and 6. We report the R-squared based

on the identity matrix as well as the associated minimum distance between actual and fitted

returns.
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Table 5 shows that, both S-level and S-volatility risk prices are estimated insignificantly at

all horizons, in the cross-section of one-period holding stock returns. Estimates of volatility risk

price are even positive at horizons of three and four years. However, while consumption level

and volatility risks appear not statistically significant, they show some economic significance

in explaining the cross-section of average one-period stock risk premiums. Both of these risks

explain 60% of variations in average one-period returns at the horizon of three years, and

63% of these variations at the horizon of four years. This percentage is 11% at the horizon

of one quarter and reflects the well-documented weakness of contemporaneous consumption

risk is explaining differences in stock returns. As discussed in Parker and Julliard (2005), the

fact that the cross-sectional model does not perform as this horizon can be related to the

low adjustment of consumption to returns. However, the fact that it behaves well for longer

horizons, as we can see an increase in the R-squared from the horizon of one quarter, can not

only be related to the fact that consumption and consequently volatility have had time to

adjust to returns. It also reflects the concerns that investors have about long-run risks both

in consumption level and in consumption volatility.

Table 6 shows that, both S-level and S-volatility risk prices are estimated significantly

at longer horizons, in the cross-section of full-period holding stock returns. The price of the

S-volatility risk is everywhere negative but the first horizon. Note from the diagonal of Table

4 that a positive rather than a negative correlation between volatility risk and return was

reported for this horizon. Note also that the estimated magnitude of the price of volatility risk

is almost the same for longer horizons. Consistent with the results of related studies the price

of the S-level risk is almost everywhere positive and significantly estimated. Consumption

level and consumption volatility risks explain 72% of variations in average full-period holding

stock returns at the horizon of one year. This explanatory power increases for longer horizons

and reaches 80% at the horizon of four years. Most of this variability may come from S-

volatility risk since it is more correlated to long-period risk premia than S-level risk. The

RSSE6, which also measures the distance between the vector of actual returns and the vector

of fitted returns, increases from short to long horizons. It shows that the fitted one-period risk

premium departs in average from the actual by 0.32% to 0.42% per quarter.

Estimated positive and negative signs for consumption level and consumption volatility

risk respectively confirms that these risks are correctly priced, in the sense that portfolios

with higher positive covariances of returns with variations in consumption level, and high

negative covariances of returns with variations in consumption volatility, will have high average

6Root Sum Squared Errors
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Table 6: Estimation of the price of the S-volatility risk in the Cross-Section of

Long-Horizon Stock Returns: 1963:3-1999:4.

This table presents results from the two-step estimation described in Section 3 and based on the

weighting matrix W = Σ̂−1

RR. The entries of the table are the total investment horizon S, the horizon

k of the investment in stocks, estimates of the constant term b̂u,S , of the price of the S-level risk p̂c,S

and of the price of the S-volatility risk p̂h,S (to be multiplied by 10−4), the model J-statistics JT ,

the cross-sectional R-squared R2 and the square root of the weighted average of square pricing errors

d̂ (π). The two latter statistics are also provided for the identity weighting matrix, namely R2 (I) and

d̂ (I). The numbers below the estimates are standard errors and below the J-statistics is the p-value.

Covariance matrices are calculated using the Newey-West procedure with S lags.

k S b̂u,S p̂c,S p̂h,S JT R2 d̂ R2 (I) d̂ (I)

1 1 1.90 13.09 3.43 60.52 -0.08 0.69 0.11 0.54

(0.52) (37.82) (3.51) [0.000]

4 4 3.36 66.28 -2.51 67.46 0.05 1.52 0.72 1.29

(2.74) (21.26) (4.01) [0.000]

8 8 -2.52 37.85 -5.91 75.74 0.04 2.51 0.76 2.89

(3.51) (17.52) (2.29) [0.000]

12 12 -1.16 37.22 -5.50 139.85 0.06 3.05 0.75 5.04

(2.67) (13.35) (1.85) [0.000]

16 16 12.84 28.78 -5.21 198.95 0.00 3.96 0.80 6.67

(5.56) (10.65) (2.13) [0.000]

excess returns. Small R2s from the estimation based on W = Σ̂−1
RR, mean that with respect

to the square root of the second moment matrix, the combination of S-level risks and the

combination of S-volatility risks across stocks are not economically important in explaining

the combination of average stock returns. This highlights the fact that the cross-sectional

R2 and the corresponding distance between actual and fitted returns are not invariant to

portfolio formation (Cochrane (2006), Roll and Ross (1994), Kandel and Stambaugh (1995))

and depend a lot on the estimation method.7 However, this does not change the fact that

S-level risk and S-volatility risks themselves are economically important in explaining the

cross-section of average stock returns.

7R2 is only well-defined for the estimation with the identity weighting matrix when estimates are equivalent

to OLS estimates.
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The constant term is generally insignificant in all models with k = S. The J-statistics

for the different estimation exercises vary widely. While it is tempting to interpret these

differences, such an interpretation is not possible since the model at a given horizon does

not nest that of the previous or the next horizon. We can only conclude that almost all test

statistics indicate rejection of the null hypothesis at conventional levels of significance.

5 Interpreting the Empirical Evidence

We have shown previously that empirical facts support the evidence of a long-run consumption

volatility pricing factor in the cross-section of stock returns. In this section, we show that this

empirical evidence is consistent with the implications of existing parametric general equilibrium

models. We construct an economy where agents have concern about both consumption level

and consumption volatility, where associated risks carry observed price signs and magnitudes

and where value stocks are more riskier than growth stocks according to consumption volatility

risk. To achieve this aim, we follow the literature that assumes a long-term investor with

recursive preferences (Kreps and Porteus (1978), Epstein and Zin (1989) and Weil (1990)) and

specify the dynamics of economic endowments. We then calibrate the model so that portfolio

returns and other statistics are similar to their actual counterparts and study its implications

for the cross-section of stock returns.

5.1 The Model of the Economic Behavior

The current continuation value of investor’s utility evolves according to:

Vt =

{
(1 − δ)C

1− 1

ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

} 1

1− 1
ψ if ψ 6= 1 (5.1)

= [Ct]
1−δ [Rt (Vt+1)]

δ if ψ = 1, (5.2)

where Rt (Vt+1) =
[
E

(
V 1−γ

t+1

)
| Jt

] 1

1−γ
and Jt is the whole information set of the investor at

time t. The parameter of risk aversion is γ, the elasticity of intertemporal substitution (EIS)

is ψ, the subjective discount factor is δ and the parameter θ ≡ (1 − γ)
(
1 − ψ−1

)−1
helps for

many interpretations. Epstein and Zin (1989) show that for such an investor, consumption

and portfolio choice induces a restriction on the gross return on any asset i that is given by

the Euler equation:

E [Mt,t+1Ri,t+1 | Jt] = 1, (5.3)
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where Mt,t+1 is the standard SDF that values consumption as well as any financial payoff one

period ahead and is given by:

Mt,t+1 =

[
δ

(
Ct+1

Ct

)−
1

ψ

]θ (
1

Rw,t+1

)1−θ

. (5.4)

Rw,t+1 is the gross return to the total consumption claim. The logarithm of the Epstein-Zin

SDF is given by:

mt,t+1 = θ ln δ − θ

ψ
∆ct+1 − (1 − θ) rw,t+1,

where rw,t+1 = lnRw,t+1. The log-linearization of the investor’s budget constraint, defined by

the Campbell and Shiller (1988)’s approximation of the log-return around a suitable benchmark

is:

rw,t+1 = ρ0 +
1

ρ1

xt − xt+1 + ∆ct+1, (5.5)

where xt = lnCt − lnWt is the log consumption-wealth ratio.8

The standard SDF of the power utility does not depend on consumption volatility even if

consumption growth dynamics contains time-varying volatility. It only depends on the level

of consumption growth. On the contrary, an investor with recursive preferences cares about

consumption volatility. For such an investor, the intertemporal marginal rate of substitu-

tion depends on consumption valuation ratios whose movements can be related to that of

consumption volatility (see Bansal, Khatchatrian and Yaron (2004)).

According to (5.4), since consumption growth is observable and the return to total wealth is

not, any state variable that is suspected to have a power to price asset returns and consistently

with the general equilibrium framework should be linked to the unobservable return. In order

to establish this link, researchers assume that equilibrium consumption together with such

state variables follow an exogenous model. Here consumption growth follows the following

dynamics:

∆ct+1 = µc +
√
htǫt+1 (5.6)

ht+1 = (1 − φh)µh + φhht + σhηt+1, (5.7)

where (ǫt+1, ηt+1)
⊤ ∼ N .I.D (0, I). The gaussian dynamics (5.7) for the volatility of aggregate

consumption is also considered by Bansal and Yaron (2004). It is more tractable for analytical

8The constant ρ0 is given by:

ρ0 = ln

„

1 − ρ1

ρ1

«

−
ln (1 − ρ1)

ρ1

.
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issues than the squared root dynamics found in Tauchen (2005). Moreover, it is more closed

to the GARCH specification (2.6) used in Section 2 for empirical purposes (constant volatility

of volatility for example).

Since shocks to consumption and consequently to total investor’s wealth and its marginal

rate of substitution are governed by only one state variable which is the consumption volatility,

then the log consumption-wealth ratio has the form xt = Φ0 + Φhht and the logarithm of the

SDF (5.8) becomes,

mt,t+1 = p1 − pc∆ct+1 − ph

(
ht+1 −

ht

ρ1

)

︸ ︷︷ ︸
≈∆ht+1

, (5.8)

where p1 = θ ln δ − (1 − θ)
(
ρ0 + (1 − ρ1) ρ

−1
1 Φ0

)
is a constant with no special interest at this

stage9. The discount coefficient ρ1 has many asset pricing interpretations, among which those

found in Campbell and Shiller (1988), Campbell (1993, 1996) and Campbell and Vuolteenaho

(2004). The latter papers highlight the link of the coefficient ρ1 to the average consumption-

wealth ratio generated by a portfolio strategy of a mutual-fund investor who saves a fraction

of his mutual fund every period to finance its consumption.

Since ρ1 ≈ 1 as the frequency becomes high, the term
(
ht+1 − ρ−1

1 ht

)
will behave as

∆ht+1 and the logarithm of the SDF will be linear in consumption growth and changes in

consumption volatility, where pc = γ is the standard price of level risk measured by the risk

aversion parameter, and ph = − (1 − θ)Φh is the price of volatility risk. The loading of the

consumption-wealth ratio on consumption volatility and the price of volatility risk are given

by:

Φh = − ρ1

2 (1 − ρ1φh)
(1 − γ)

(
1 − 1

ψ

)
(5.9)

ph =
ρ1

2 (1 − ρ1φh)
(1 − γ)

(
γ − 1

ψ

)
. (5.10)

In the asset pricing literature, authors would agree that γ > 1, whereas there is still no

consensus on ψ > 1 and ψ−1 < γ. Then, the sign of the parameter θ and its position with

respect to one are still crucial for asset pricing results. Bansal, Khatchatrian and Yaron (2004)

argue that a rise in economic uncertainty leads to a fall in asset prices. In particular the total

investor’s wealth will fall due to an increase in consumption volatility. To capture a positive

9The constant Φ0 is given by:

Φ0 = −
ρ1

1 − ρ1

»

ρ0 + ln δ +

„

1 −
1

ψ

«

µc − (1 − φh)µhΦh +
1

2
θσ

2
hΦ

2
h

–

.
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relation between consumption volatility and consumption-wealth ratio, the coefficient Φh that

drives this effect should be positive. On the other hand, only the condition ψ−1 < γ is required

for the volatility risk price to be negative and this can still be the case if ψ ≤ 1. When the

EIS is equal to one, Φh is equal to zero and the consumption-wealth ratio is constant. In this

case, the Campbell and Shiller’s approximation is exact with ρ1 = δ and xt = ln (1 − δ).10

The single horizon Euler condition (5.3) implies the multiple horizon Euler condition:

E [Mt,t+SRit,k,S | Jt] = 1 (5.11)

where Mt,t+S =
S∏

j=1

Mt+j−1,t+j is the multiperiod SDF and Rit,k,S a compound long-horizon

return defined in (2.1). The subscript of Mt,t+S indicates that it is pricing S-period holding

returns from time t to time t + S. One can already observe that the logarithm of Mt,t+S

features the two important economic risk factors defined in Section 2:

mt,t+S = logMt,t+S ≈ Sp1 − pc∆ct,S − ph∆ht,S . (5.12)

Equation (5.11) is also equivalent to:

E
[
Re

it,k,S

]
= Cov

(
− Mt,t+S

E [Mt,t+S ]
, Re

it,k,S

)
. (5.13)

From the equation (5.13), we can then derive the horizon-dependent relationship between risk

premium and covariances between returns and factors. It suffices to replace the SDF Mt,t+S

by one of its log-linear approximations M̃t,t+S where:

M̃t,t+S

E [Mt,t+S ]
= 1 + βS (mt,t+S − E [mt,t+S ]) . (5.14)

The approximated SDF has the same mean as the true SDF and the coefficient βS would be

positive to ensure a positive relationship between the SDF and its approximation. The special

case βS = 1 is similar to the SDF approximation of Yogo (2005). Two other special cases are

given by:

βS =
1

E [Mt,t+S ]

√
V ar [Mt,t+S ]

V ar [mt,t+S ]
if V ar

[
M̃t,t+S

]
= V ar [Mt,t+S ] (5.15)

βS =
1

E [Mt,t+S ]

Cov (Mt,t+S ,mt,t+S)

V ar [mt,t+S ]
if

√
E

[(
Mt,t+S − M̃t,t+S

)2
]

is minimum. (5.16)

10The logarithm of the risk-free rate implied by the model is given by rf,t+1 = q1 − qhht where:

q1 = −p1 + µcpc + (1 − φh)µhph −
1

2
σ

2
hp

2
h

qh =

„

1

ρ1

− φh

«

ph +
1

2
p
2
c .
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Substituting (5.14) in (5.13) yields:

E
[
Re

it,k,S

]
= pc,SCov

(
ξ∆c,t,S , R

e
it,k,S

)
+ ph,SCov

(
ξ∆h,t,S , R

e
it,k,S

)
, (5.17)

where cross-sectional level and volatility risk prices are given by:

pc,S = γβS and ph,S = phβS . (5.18)

These prices are respectively positive and negative as observed, and constant across horizons

if βS = 1. Given estimates and standard deviations of level and volatility risk prices shown

in Table 6 at horizons S > 4, the intersection of conventional confidence intervals for risk

prices at these horizons is nonempty. This point is in favor of arguments which sustain that

risk-price is constant across investment horizons, even if one unit risk is a different quantity

from an horizon to the other.

More generally, choosing model parameters to match observed magnitudes of cross-sectional

level and volatility risk prices will also depends on which approximation of the true SDF is

used. It can be shown that the values of βS in special cases (5.15) and (5.16) are greater

than one so that the magnitudes of cross-sectional level and volatility risk prices are respec-

tively greater than the magnitudes of the risk aversion γ and the loading ph. From (5.10) it

is straightforward that the magnitude of volatility risk price increases for a more risk-averse

investor and/or a more persistent volatility process.

5.2 Consumption Shares, Dividends, Price-Dividend Ratios and Returns

Here we describe how we generate portfolio returns in the economy. Lettau and Wachter

(2006) provide a model where benchmark assets are zero-coupon equities paying the aggregate

dividend. Here we extend benchmark assets to zero-coupon securities paying dividends on

long-lived assets. Let P a
n,t the price at date t of the zero-coupon security paying n periods

later from t, the dividend on an arbitrary long-lived asset a. The arbitrary long-lived asset a

can be any long-lived primitive asset, any long-lived portfolio or the consumption claim. The

Euler equation that requires the no-arbitrage condition for zero coupon securities is given by:

P a
n,t = E

[
Mt,t+1P

a
n−1,t+1 | Jt

]
, (5.19)

with the trivial boundary condition P a
0,t = Da

t . Equation (5.19) can also be written:

P a
n,t

Da
t

= E

[
Mt,t+1

Sa
t+1

Sa
t

Ct+1

Ct

P a
n−1,t+1

Da
t+1

| Jt

]
, (5.20)
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with the boundary condition:

P a
0,t

Da
t

= 1,

and where Sa
t denotes the dividend share of total consumption of the asset a up to a multiplica-

tive constant. Equation (5.20) is the same for all long-lived assets, and its solution depends on

the dynamics of the dividend shares. Log dividend shares are usually modelled as stationary

processes (see for example Menzly, Santos and Veronesi (2004)). This assumption has two

main critical implications in discrete time setting. First, all asset dividends are cointegrated

with consumption, with the same normalized cointegration vector (1,−1). Second and more

importantly, the stationarity of dividend shares implies that all dividends grow at the same

rate as consumption. We assume instead that dividends are cointegrated with consumption

and an asset specific random walk variable driven by consumption volatility, and that the

cointegration vector is also specific to the asset. Furthermore, we assume that the right hand

side of cointegration equations are linear combinations of a deterministic trend and a com-

mon stationary and persistent variable that helps capturing the predictable part of dividend

growth. Formally, we write:

da
t − (1 + λa

c ) ct − va
t = λa

0t+ λa
zzt (5.21)

zt+1 = φzzt + σz

√
htεt+1 (5.22)

va
t+1 = va

t + λa
h (ht − µh) + σa

v

√
htu

a
t+1, (5.23)

where
(
ǫt+1, ηt+1, εt+1, u

a
t+1

)⊤ ∼ N




0,




1 0 ρ 0

0 1 0 0

ρ 0 1 0

0 0 0 1







with ρ > 0.

Even if the choice of such a process can be justified on various grounds, the first reason

why we depart from the common specification of stationary dividend share is an empirical one.

Consumption growth and portfolio dividend growth series are very different in terms of mean

as well as variance and other moments. Cointegration tests often reject the hypothesis of a

cointegration between dividends and consumption (Hansen, Heaton and Li (2005)). However,

if the cointegration is strongly assumed, it seems therefore empirically sound to choose a model

that does not impose the same cointegration vector between consumption and all dividends

as the majority of models do. The pattern of the log shares of the 25 Fama and French size

and book-to-market sorted portfolios plotted in Figure 1 show the evidence of a trend either

in variables or the cointegration equation. Table 2 confirms that mean dividend growths are
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very different across these portfolios.11

The imply dynamics of the asset dividend growth is given by:

∆da
t = λa

0 + (1 + λa
c )µc − λa

z (1 − φz) zt + λa
h (ht − µh)

+
√
ht

[
(1 + λa

c ) ǫt+1 + λa
zσzεt+1 + σa

vu
a
t+1

]
. (5.24)

Our model can then generate predictable dividend growths with different means, thanks to the

cointegration coefficients of dividend and consumption. Moreover, if λa
0 = 0, λa

c = 0, λa
h = 0

and σa
v = 0, then the dividend share is identified by zt up to an additive and a multiplicative

constant. In this case, equation (5.24) implies that the dividend share captures the predictable

component of the dividend growth. This last point is consistent with the view expressed in

Lettau and Ludvigson (2005) that, if consumption follows a random walk like (5.6) and if the

consumption-dividend ratio is stationary, then the consumption-dividend ratio captures the

predictable component of the dividend growth.12 On the other hand,

if ρ = 1 then zt = σz

∞∑

j=0

φj
z (∆ct−j − µc) . (5.25)

Then, in this particular case of our setting, the process zt almost plays a similar role as expected

consumption growth in the Bansal and Yaron (2004)’s model in predicting the dividend growth

using a variable that depends on past consumption levels. The coefficients λz and λh are

negative so that dividends will increase following an increase in expected consumption growth

and/or a fall in macroeconomic uncertainty.

Lettau and Wachter (2006) advocate the fact that if primitive assets are long-lived, then

it is not easy to model their dividend shares stochastically in a discrete time setting, in a

way similar to the continuous time setting of Menzly, Santos and Veronesi (2004), because of

the difficulty to keep the shares between zero and one as well as their sum to one. However,

equation (5.20) shows that we don’t need to model the dividend share itself in order to compute

the price-dividend ratio of a long-lived asset or portfolio. It is just sufficient to model the share

up to a multiplicative constant. This constant is of no particular interest unless we need to

completely characterize asset prices and not only asset valuation ratios (such as price-dividend

ratios in our case). The fact is that when the shares are known up to a multiplicative constant,

dividends and prices are also known up to the same multiplicative constant and that does not

11Equation (5.21) denotes the cointegration equation of asset a up to an additive constant and specifies that

the dividend share of the asset is stationary if and only if λa0 = 0, λac = 0, λah = 0 and σah = 0.
12In general, a model that aims at explaining only the aggregate market behavior will not require additional

ingredients as for the complete cross-section of asset returns.
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affect the price-dividend ratio since the constant simplifies. For this reason, we drop the

constant term in the cointegration equation (5.21) such that sa
t measures the share up to this

constant in our study.13

For solving for zero-coupon security valuation ratios in this model, one conjectures that:

P a
n,t

Da
t

= exp (Aa (n) +Aa
z (n) zt +Aa

h (n)ht) . (5.27)

The solution (5.27) for zero-coupon security valuation ratios then hold with:

Aa (n) = p1 + µc (1 + λa
c − pc) + λa

0 − λa
hµh + (1 − φh)µh [Aa

h (n− 1) − ph]

+
1

2
σ2

h [Aa
h (n− 1) − ph]2 +Aa (n− 1) (5.28)

Aa
z (n) = −λa

z (1 − φz) + φzA
a
z (n− 1) (5.29)

Aa
h (n) = λa

h +
1

2
(σa

v)2 +
1

2
(1 + λa

c − pc)
2 + ρ (1 + λa

c − pc)σz [λa
z +Aa

z (n− 1)]

+
1

2
σ2

z [λa
z +Aa

z (n− 1)]2 +

(
1

ρ1

− φh

)
ph + φhA

a
h (n− 1) , (5.30)

where Aa (0) = 0, Aa
z (0) = 0 and Aa

h (0) = 0. The A (·) functions of all long-lived assets have

the same recursion and differ only through the asset’s specific parameter values λa
0, λ

a
c , λ

a
z , λ

a
h

and σa
v . The parameters λa

c and λa
z are constrained by the equation:

(1 + λa
c ) + ρσzλ

a
z = χa,c

where χa,c is the ratio of the covariance between consumption growth and the dividend growth

of the asset a to the mean of consumption volatility. This ensures that, increasing λa
z will rise

the asset premium by reducing the price-dividend ratio, so that value stocks will be assets

with high magnitude of λa
z .

The price P a
t of the asset a at date t is the sum of prices of zero coupon securities paying

future dividends on asset a. Then, the asset price-dividend ratio is given by the formula:

P a
t

Da
t

=
∞∑

n=1

exp (Aa (n) +Aa
z (n) zt +Aa

h (n)ht) , (5.31)

where the A (·) functions are defined in (5.28), (5.29) and (5.30). The formula (5.31) is a nice

way to compute the price-dividend ratio without a further analytical approximation of the

13Formally, if A is the set of all primitive long-lived assets, then there are positive constants βa such that:
X

a∈A

β
a
S
a
t < 1. (5.26)

The complement to one of the sum in (5.26) can then account for the shares of short-lived primitive assets as

well as the share of labor income.
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asset return to asset a, similar to the approximation (5.5) of the return on the claim to the

aggregate consumption.14 The gross return on asset a is then given by:

Ra
t+1 =

P a
t+1 +Da

t+1

P a
t

=

(
P a

t+1

Da
t+1

+ 1

) (
P a

t

Da
t

)−1 (
Da

t+1

Da
t

)
, (5.32)

where the price-dividend ratio is given by (5.31) and the dividend growth by (5.24).

To understand how consumption volatility risks affect the more complex long-lived asset

a, we follow Lettau and Wachter (2006) by concentrating on how these risks influence simple

zero-coupon securities paying future dividends on the asset a. Let Ra
n,t+1 denote the one-period

return on the zero-coupon security with the price P a
nt at the date t, that is:

Ra
n,t+1 =

P a
n−1,t+1

P a
nt

=
P a

n−1,t+1

Da
t+1

(
P a

nt

Da
t

)−1 Da
t+1

Da
t

. (5.33)

Consumption level and consumption volatility risks of this zero-coupon security at one horizon

are given by:

Cov
(
ra
n,t+1 − rf,t+1,∆ct+1

)
= [χa,c + ρσzA

a
z (n− 1)]µh (5.34)

Cov
(
ra
n,t+1 − rf,t+1,∆ht+1

)
= [Aa

h (n− 1) +Aa
h (n) − λa

h − qh]
σ2

h

1 + φh
. (5.35)

These equations also defined the term structure of one-horizon consumption level and con-

sumption volatility risks of zero-coupon securities. Increasing the magnitude of λa
h rises the

volatility risk. Increasing the magnitude of λa
z will increase both consumption level and con-

sumption volatility risks. Assets with high magnitude of λa
z will then have high risk premia.

These assets with high risk premia will also be value stocks since increasing the magnitude

of λa
z also lowers the price-dividend ratio. This is consistent with an empirical result from

Bansal, Dittmar and Lundblad (2005) that the coefficient of the projection of the dividend

growth into an empirical proxy of expected consumption growth explains differences in risk

compensation across assets. Since we find that consumption volatility is economically relevant

as well for the cross-section, the innovation here is that to take macroeconomic uncertainty

into account, the dividend growth can be projected into both an empirical proxy of expected

consumption growth and that of consumption volatility. In addition to the coefficient λa
z ,

the resulting coefficient λa
h then gives the possibility to explain cross-sectional differences in

asset returns with further information about consumption which is provided by consumption

volatility.

14The coefficients of the Campbell and Shiller (1988)’s approximation depend on preference parameters and

empirical studies do not usually address this point. Garcia, Meddahi and Tedongap (2006) show how this

approximation can affect some asset pricing statistics and their framework provide closed-form formulas of the

Campbell and Shiller’s coefficients.
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5.3 Model Calibration and Implications for Stock Returns

In this section, we follow previous studies by choosing reasonable parameter values which

calibrate the model such that it reproduces important features of asset markets. We want the

model to produce as possible portfolios whose return cross-section mimic that of the observed

portfolios. However, since the model does not account for the size dimension, we concentrate

on large portfolios to illustrate the empirical findings and choose parameters to match usual

statistics.15 We calibrate the model at the quarterly frequency. Our value of the mean of the

consumption growth corresponds to its sample counterpart µc = 0.00555. To calibrate the

consumption volatility h, we convert the monthly volatility of Bansal and Yaron (2004) into a

quarterly volatility, and use the corresponding parameter values.16 The resulting parameters

for the consumption volatility are φh = 0.962, σh = 1.18×10−5 and µh = 1.83×10−4. We use

ρ = 1 so that the process z is a weighted combination of past consumption growth levels. Since

in the Bansal and Yaron (2004)’s model demeaned expected consumption growth captures the

predictable component of dividend growth, we convert it into a quarterly process and use the

corresponding parameter values to calibrate the process z that then plays a similar role in our

model as we argue earlier. The procedure is similar to what we follow for the consumption

volatility. The resulting parameters are φz = 0.938 and σz = 0.129.

Our values of preference parameters are γ = 20 for the risk aversion and ψ = 1 for

the EIS. These values are also used by Hansen, Heaton and Li (2005). We use δ = 0.997

and this quarterly value of the subjective discount factor corresponds to a monthly value of

0.999 also considered in previous studies. The parameters of the volatility process are higher

than those estimated in the data. Higher values of the mean and the standard deviation of

consumption volatility are necessary to generate actual risk premia as stated in Eraker (2006).

The preference parameters consider in this study were not able to generate an annual equity

premium larger than 1% using volatility parameters estimated in the data. Table 7 displays

the complete parameter values used for the calibration assessment and the model implied

statistics. The reported statistics are based on 1, 000 Monte Carlo experiments, each with 252

15The model can account for the book-to-market dimension since it does for the dividend-to-price dimension

which is similar. As this type of model performs well in explaining the aggregate stock market behavior (Bansal

and Yaron (2004), Eraker (2006)), it will also perform well in the class of large portfolios which is the most

closest to the market portfolio.
16To do so, we first represent monthly consumption volatility with a two-state Markov chain as in Garcia,

Meddahi and Tedongap (2006). Then, we convert the monthly chain into a quarterly one by multiplying

conditional mean and variance by three and compounding three times the transition probability matrix. Finally,

we determine the coefficients of the AR(1) process represented by the quarterly Markov chain.
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Table 7: Simulation: Parameter Values and Model Implied Statistics for Large

Book-to-Market Sorted Portfolios.

This table presents portfolio parameters as well as the annualized statistics of asset returns from

simulated samples. Mean and standard deviation of excess returns, dividend growths and dividend-

price ratios are in percentage.

Parameters Statistics

Asset λa
0

λa
c λa

z λa
h σa

v E [Re] σ [Re] E [∆d] σ [∆d] E
[

D
P

]
σ

[
D
P

]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

S5B1 -0.006 1.16 -16 -330 4.16 4.93 22.72 2.53 12.39 1.81 0.54

S5B2 -0.013 2.16 -24 -370 4.21 6.16 24.50 1.92 12.88 3.26 1.06

S5B3 -0.015 2.22 -25 -460 2.38 6.69 26.70 1.35 9.73 3.82 1.49

S5B4 -0.018 2.69 -28 -475 3.52 7.17 28.16 0.88 12.19 4.38 1.74

S5B5 -0.023 3.34 -32 -485 6.06 8.07 31.84 0.51 18.19 4.60 1.84

RF 2.00 0.29

CONS 2.22 2.67

quarterly observations. Increasing the size of the Monte Carlo makes little difference in the

results.

We start with the analysis on implications for zero-coupon securities. Zero-coupon secu-

rities guaranteeing dividends on different assets have the same behavior but with different

intensity since this intensity depends on the specific parameters of any asset. We illustrate

the implications in the case of zero-coupon securities paying future dividends on the large

value portfolio. Figure 13 displays the pattern of the A (·) functions characterizing the price-

dividend ratio of a zero-coupon security. The function Aa
z (n) is positive and increasing, and

converges to −λa
z . The intuition behind this behavior is that higher levels of zt correspond to

higher expected dividend growth, hence the price of the security that pays the asset dividend

in the future will also be higher. The function Aa
h (n) is negative so that a rise in macroeco-

nomic uncertainty induces a fall in asset prices, and decreasing as well as the function Aa (n)

so that zero-coupon security prices diminish when the maturity increases. The decreasing

and the convergence to −∞ of the function Aa (n) also constitutes a necessary condition for

the convergence of the price-dividend ratio (5.31). Since zero-coupon securities with higher

maturities have low prices, they are similar to value stocks and should be more riskier.

The term structure of consumption level and consumption volatility risks plotted in Fig-
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ure 14 confirms that risks are higher for longer maturities. Volatility risks are negative and

decreasing so that long-maturity securities have higher negative covariances with variations in

consumption volatility, as well as higher positive covariances with variations in consumption

level than short-maturity securities. The model can then explain the differences in volatility

risk premia across short-lived low-price securities and high-price securities in the maturity

dimension.

We now examine the ability of the model to explain differences in volatility risk premia

across long-lived low price-to-dividend stocks and high price-to-dividend stocks. We illustrate

the implications in the set of large book-to-market sorted portfolios. While the overall fit of

the statistics of these portfolios is reasonable as shown in Table 7, the model produces returns

that are more volatile than in the data. This arise because the larger is the magnitude of the

parameter λa
h, the larger is the return and its volatility. It is possible to simplify the model

by setting the parameter λa
h to zero for all assets. This will lower returns and their volatility

and either a more higher parameter of risk aversion or elasticity of intertemporal substitution,

or a more higher magnitude of the parameter λa
z will be necessary for the model to generate

actual returns. In consequence, it will produce low price-dividend ratios than in the data.17

Figure 15 shows the pattern of volatility risks computed via simulation across large book-

to-market sorted portfolios and for one-period holding returns. Figure 16 shows the same

pattern for full-period returns. S-volatility risks for one-period and full-period holding stocks

respectively are negative with a downward trend as the horizon increases, a pattern observed

in Figures 9 and 11 which plots the similar measure of volatility risk in the data. On the

other hand, S-volatility risk for full-period portfolios computed from the model is negative

and displays a similar pattern as the same measure computed from the data. The most

important point shown in Figure 16 is the gap between volatility risks for the extreme value

and the extreme growth portfolios. The large value is more riskier as in the data. The slightly

difference between the data and the model occurs for the semi-growth and the semi-value

portfolios. Their volatility risks are more closer to that of the extreme value portfolio than

in the data. However, as in the data, there is just a little gap between these risks. The

more pronounced trend of all these patterns in the model are explained with the fact that

consumption volatility is more persistent in the model than in the data. However, the overall

message is clear and states that the model replicates the findings in the data that consumption

17The results of Bansal and Yaron (2004) also suggest that increase the magnitude of the risk aversion lowers

the price-dividend ratio and rises the equity premium. With a risk aversion parameter of 7.5 in their model,

they report a price-dividend ratio of 25.02 and an equity premium of 4.01 for the aggregate stock. With a risk

aversion parameter of 10, the reported values are respectively 19.98 and 6.84.
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volatility risks account for the differences in risk premia across portfolios sorted from growth

to value.

6 Conclusion

Investors have concerns about consumption volatility because they fear the repercussion of

macroeconomic uncertainty on their future wealth. We establish empirical facts supporting

that short-period returns are mostly correlated to short-horizon variation in consumption

volatility, and that there is a stable long-run relationship between returns and consumption

volatility. The estimation of long-run consumption volatility risk price in the cross-section of

long-period returns provides a significant estimate with a negative sign. We have also shown

that this uncertainty on macroeconomic growth has the potential to explain differences in risk

premia across the 25 Fama and French size and book-to-market sorted portfolios, even in the

presence of long-run consumption risk. We finally show that a reduced form consumption-

based general equilibrium model similar to those considered in previous studies for explaining

the aggregate stock market behavior can also rationalize the empirical findings.
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Figure 1: Log Shares for Size and Book-to-Market Sorted Portfolios: 1963:2-2005:2.

This figure presents the pattern of log shares for the 25 Fama and French size and book-to-market

sorted portfolios.
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Figure 2: S-volatility Risk for One-Period Growth and Value Portfolios (k = 1).

This figure presents the pattern of S-volatility risk across growth and value portfolios. Risks are

computed as covariances of returns with variations in consumption volatility.

2 4 6 8 10 12

−0.15

−0.1

−0.05

0

0.05

0.1

investment horizon S

S
−

v
o

la
ti

li
ty

 r
is

k
5 book−to−market sorted portfolios + market

2 4 6 8 10 12
−0.15

−0.1

−0.05

0

0.05

0.1

investment horizon S

S
−

v
o

la
ti

li
ty

 r
is

k

5 dividend−to−price sorted portfolios + market

2 4 6 8 10 12

−0.2

−0.1

0

0.1

investment horizon S

S
−

v
o

la
ti

li
ty

 r
is

k

5 earnings−to−price sorted portfolios + market

2 4 6 8 10 12

−0.15

−0.1

−0.05

0

0.05

0.1

investment horizon S

S
−

v
o

la
ti

li
ty

 r
is

k

5 cash flow−to−price sorted portfolios + market

Low 2 3 4 High MktLow 2 3 4 High Mkt

Low 2 3 4 High Mkt Low 2 3 4 High Mkt

Figure 3: S-level Risk for One-Period Growth and Value Portfolios (k = 1).

This figure presents the pattern of S-level risk across growth and value portfolios. Risks are computed

as covariances of returns with variations in consumption level.
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Figure 4: S-volatility Risk for Long-Horizon Growth and Value Portfolios (k = S).

This figure presents the pattern of S-volatility risk across long-horizon growth and value portfolios.

Risks are computed as covariances of returns with variations in consumption volatility.
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Figure 5: S-level Risk for Long-horizon Growth and Value Portfolios (k = S).

This figure presents the pattern of S-level risk across long-horizon growth and value portfolios. Risks

are computed as covariances of returns with variations in consumption level.

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

investment horizon S

S
−

le
v
e
l 
ri

s
k

5 book−to−market sorted portfolios + market

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

investment horizon S

S
−

le
v
e
l 
ri

s
k

5 dividend−to−price sorted portfolios + market

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

investment horizon S

S
−

le
v
e
l 
ri

s
k

5 earnings−to−price sorted portfolios + market

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

investment horizon S

S
−

le
v
e
l 
ri

s
k

5 cash flow−to−price sorted portfolios + market

Low 2 3 4 High Mkt Low 2 3 4 High Mkt

Low 2 3 4 High Mkt

Low 2 3 4 High Mkt

46



Figure 6: Cross-Sectional Correlations, by Investment Horizon, Between Risk Pre-

mium and Consumption Level and Consumption Volatility Risks.

This figure presents the patterns of ρrc (S, k) and ρrh (S, k) for k = 1 and k = S, while S varies from

1 to 20.
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Figure 7: Cross-Sectional Correlations, by Investment Horizon, Between Risk Pre-

mium and Consumption Level and Consumption Volatility Risks.

This figure presents the patterns of ρrc (S, k) and ρrh (S, k) when k is fixed to 4, 8 and 12, while S

varies from k to 20.
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Figure 8: Cross-Sectional Correlations, by Stock Holding Period, Between Risk

Premium and Consumption Level and Consumption Volatility Risks.

This figure presents the patterns of ρrc (S, k) and ρrh (S, k) when S is fixed to 8, 12, 16 and 20, while

k varies from 1 to S.
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Figure 9: S-volatility risk for One-Period Book-to-Market Sorted Portfolios in Size Dimension (k = 1).

This figure presents the pattern of S-volatility risk across one-period book-to-market sorted portfolios in size dimension. Risks are computed as

covariances of returns with variations in consumption volatility.
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Figure 10: S-level risk for One-Period Book-to-Market Sorted Portfolios in Size Dimension (k = 1).

This figure presents the pattern of S-level risk across one-period book-to-market sorted portfolios in size dimension. Risks are computed as

covariances of returns with variations in consumption level.
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Figure 11: S-volatility risk for Long-Horizon Book-to-Market Sorted Portfolios in Size Dimension (k = S).

This figure presents the pattern of S-volatility risk across long-horizon book-to-market sorted portfolios in size dimension. Risks are computed

as covariances of returns with variations in consumption volatility.
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Figure 12: S-level risk for Long-Horizon Book-to-Market Sorted Portfolios in Size Dimension (k = S).

This figure presents the pattern of S-level risk across long-horizon book-to-market sorted portfolios in size dimension. Risks are computed as

covariances of returns with variations in consumption level.
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Figure 13: Plot of the A (·) Functions

This figure presents the pattern of the A (·) functions for the case of the large value portfolio.
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Figure 14: Term Structure of consumption level and consumption volatility risks.

This figure presents the term of consumption level and consumption volatility risks for zero-coupon

security paying future dividends on the large value portfolio.
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Figure 15: Simulation: Volatility Risk for Large Book-to-Market Sorted Portfolios

(k = 1).

This figure presents the pattern of volatility risks across large book-to-market sorted portfolios.
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Figure 16: Simulation: Volatility Risk for Large Book-to-Market Sorted Portfolios

(k = S).

This figure presents the pattern of volatility risks across large book-to-market sorted portfolios.
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