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Abstract 
The Internet of Things (IoT) is a new internet evolution 

that involves connecting billions of sensors and other 

devices to the Internet. Such IoT devices or IoT things 

can communicate directly. They also allow Internet 

users and applications to access and distil their data, 

control their functions, and harness the information 

and functionality provided by multiple IoT devices to 

offer novel smart services. IoT devices collectively 

generate massive amounts of data with an incredible 

velocity. Processing IoT device data and distilling 

high-value information from them presents an Internet-

scale computational challenge. Contextualisation of 

IoT data can help improve the value of information 

extracted from IoT. However, existing 

contextualisation techniques can only handle small 

datasets from a modest number of IoT devices. In this 

paper, we propose a general-purpose architecture and 

related techniques for the contextualisation of IoT 

data. In particular, we introduce a Contextualisation-

as-a-Service (ConTaaS) architecture that incorporates 

scalability improving techniques, as well as a proof-of-

concept implementation of all these that utilises elastic 

cloud-based infrastructure to achieve near real-time 

contextualisation of IoT data. Experimental 

evaluations validating the efficiency of ConTaaS are 

also provided in this paper. 

 
1. Introduction  

 
The Internet of Things (IoT) supports the development 
of smart services via the discovery and integration of 
Internet-connected IoT devices (e.g. sensors, smart 
phones, etc.) and their data. It is estimated that by 2025 
[1, 2] the number of IoT devices will reach 50 billion. 
With such a tremendous increase in number of IoT 
devices getting connected to the Internet, IoT presents 
a novel Big Data challenge to the Internet. For 
example, the emergence of IoT has created 
opportunities for development of IoT services for smart 

factories, smart farms, and smart cities. Such IoT 
applications often require the ability to understand the 
context of data collected from Internet-based sensors 
and use that to support timely and effective decision 
making. For example, consider an IoT application that 
utilises IoT data collected from a specific point of 
interest (e.g. a specific suburb of Melbourne) rather 
than an entire city or country. Contextualisation of IoT 
data permits filtering out data collected from other 
points of interest, and hence reduces the amount to data 
that needs to be processed further. A more general 
description of context can be articulated on the basis of 
a widely used definition of context by Dey et al. [17]: 
Context or contextual information is any information 

about any entity that can be used to effectively reduce 

the amount of reasoning required (via filtering, 

aggregation, and inference) for decision making within 

the scope of a specific application. Contextualisation is 
then the process of identifying the data relevant to an 
entity based on the entity’s contextual information. 

Contextualisation excludes irrelevant data from 
consideration and has the potential to reduce data from 
several aspects including volume, velocity, and variety 
in IoT applications and subsequently improve the data 
processing and knowledge extraction in IoT 
applications.  

The ability to contextualise the stored or streamed 
Internet-scale data from millions and billions of 
devices is a grand challenge. Traditional data 
management approaches such as relational databases 
lack the efficiency required for applications that deal 
with Big Data [4, 5]. Similarly, recent high-
performance processing techniques for Big Data, such 
as MapReduce [6], are not ideal for IoT applications 
because they fall short in supporting IoT’s real-time 
and incremental data processing requirements [7, 8]. 
Moreover, to the best of our knowledge there is no 
specified architecture for contextualisation of Big Data 
reported in the literature.   

Related work includes a plethora  of techniques for 
adaptation of data based on the interest(s) of an 
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application and the use of context information in 
context-aware computing, ubiquitous computing and 
so forth [9, 10]. However, virtually all these techniques 
are application dependent. Furthermore, existing 
contextualisation techniques are not scalable and will 
not support Internet-scale IoT applications.  

In this paper, we propose a novel architecture and 
related techniques for the contextualisation of Internet-
scale IoT data (we collectively refer to all these as 
Contextualisation-as-a-Service or ConTaaS). The 
ConTaaS architecture is realised over scalable and 
distributed cloud computing services that provide 
scalable contextual data processing as needed by IoT 
applications. A proof of concept implementation of 
ConTaaS is also described later in the paper. 

 
The main contributions of this paper include the 

following: 
 
 A novel contextualisation architecture, which we 

refer to as ConTaaS Architecture, for 
contextualising Internet-scale IoT data and 
facilitating the developing of efficient IoT 
applications.  

 A novel contextualisation technique, which we 
refer to as ConTaaS contextualisation, that 
employs prime factorisation to scale up the 
contextualisation of IoT data. 

 A cloud-based ConTaaS implementation that 
utilises commercially available cloud 
infrastructure services (more specifically Amazon 
EC2). 

 
The remainder of this paper is organized as 

following: Section 2 reviews the background and the 
state-of-the-art in contextualisation. Section 3 
describes the proposed contextualisation-as-a-Service 
(ConTaaS). Section 4, presents an experimental 
scenario for ConTaaS Architecture. Section 5, 
describes the design of a sample ConTaaS 
implementation and presents an evaluation of 
ConTaaS.  Finally, the conclusion and future work are 
presented in Section 6. 

 
2. Background 
 

In this section, we briefly discuss related 
background to IoT contextualisation from the 
following three perspectives:  

 
 Sensors and data semantics  
 Context aspects 
 Querying sensor data  

 

Over the past 10-15 years, sensors have been used 
in several different areas, such as environment 
monitoring, traffic control, healthcare, etc. Sensors are 
typically small devices which are capable of sensing, 
storing, and transmitting data, as well as actuating over 
wired and wireless networks. One of the main 
challenges in sensor networks is to transform the data 
coming from heterogeneous sensing devices that are 
manufactured by different vendors and for different 
applications into homogeneous, discoverable, and 
usable information presented in human and machine 
readable format. There have been several recent efforts 
to tackle this challenge by meta-data tagging or 
semantic annotating sensor data [11]–[13]. While 
meta-data is any sort of informal information attached 
to the data, semantically annotated data is associated 
with ontologies [14] that expressively and formally 
define and describe the type, properties and 
interrelationships of the data. Semantically annotated 
data not only is more understandable, but it can also be 
reasoned to deduce new knowledge and subsequently 
increase the expressiveness of the data. The Sensor 
Web Enablement (SWE) [15] standard from Open 
Geospatial Consortium is an international effort to 
standardize all types of sensors, transducers and sensor 
data repositories accessible and discoverable via the 
Internet. SWE consists of the following: 1) The Sensor 
Model Language that includes a standard model and an 
XML Schema for describing sensor characteristics, 
specification and capabilities, such as the location of 
the sensors. 2) The Observation and Measurements 
standard model and schema for describing observations 
and measurements from sensors and sensor networks. 
3) The Observation interface for entering queries and 
retrieving observation and sensory data.  

SWE standards and XML schemas are able to 
describe sensor data and observations with meta-data 
in some extent but they do not support semantic 
reasoning, abstraction and classification provided by 
semantic technologies. The Semantic Sensor Network 
(SSN) [16] adds semantics describing sensors and 
sensor networks. The SSN ontology is compatible with 
SWE and extends semantic support for SWE.  SSN 
ontology expressively represents sensor and 
observations of the environment.  

 
From the context perspective, several researchers 

attempted to define and use context in developing 
intelligent applications in areas ranging from 
ubiquitous and mobile computing, to artificial 
intelligence [17]–[20]. Context has been introduced by 
several researchers in the literature. The most common 
definition in the literature is by Dey et al. [17] who 
define  context as “any information that can be used to 

characterise the situation of an entity. An entity is a 
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person, place, or object that is considered relevant to 

the interaction between a user and an application, 

including the user and applications themselves."  
While this definition is sufficient for context-aware 
computing it does not necessarily capture context from 
the perspective of IoT or other large-scale and multi-
application environments. Moreover, there is no clear 
separation between data and context in this definition. 
Context in IoT is closely aligned with the notion of 
context in context-aware computing due to the fact that 
context-aware computing and IoT have similarities in 
terms of data. However, they do not have the same 
scale and resource processing demands.  

 
A partially overlapping notion of context has been 

defined for query processing in databases. To explain 
this we first note that the structure of storing data in a 
database is a database model and query is a syntax 
based on a formal language to access the data. Several 
alternative data models have been proposed in the 
literature including flat file, hierarchical, star schema, 
graph databases and so forth. The most common and 
well-established database model is the relational 
database model and SQL [21]. Relational databases are 
based on first-order predicate logic and are sets of 
predicates over a finite set of predicate variables. 
However, relational databases require sophisticated 
resource to deal with complex queries and data 
structures. Moreover, relational databases are not 
necessarily designed to communicate with other 
external data sources and are limited to adapt their 
schema frequently to the new structures. Non-relational 
databases (also referred as noSQL or nonSQL) provide 
data models that are more suitable for Big Data, 

distributed and scalable
1
 data storage [22].  The 

Resource Description Framework (RDF) [23] provides 
a data model and structure to represent data and is the 
most standardized noSQL database model. RDF 
represents data with three parts including Subject, 
Predicate and Object that are commonly referred as 
Triple. Figure 1, depicts a sample Triple.  

 
RDF generally can be represented as RDF/XML, 

N-Triples, Turtle, Notation3 and N-Quads. SPARQL 
(SPARQL Protocol and RDF Query Language) [24] is 
a standardized query language for RDF triples. Figure 
2, depicts a SPARQL example. SPARQL scalability 
has been discussed previously [25] and it is believed 
that due to its performance and scalability, it can be 

                                                 
1
 There are typically two broad categories for scaling database 

systems. Horizontal scaling is by adding more nodes such as adding 
a new server or data center. Vertical scaling is adding resource to the 
current server such as increasing processor or memory. Relational 
databases are compatible with vertical scaling while there are limited 
in horizontal scaling 

used for Internet-scale applications. However, 
SPARQL queries are complex in comparison with SQL 
and relational database. 

 

 
 

Figure 1. Triples 

 
 

 
 

Figure 2. SPARQL 
 
 

3. Contextualisation of IoT Data in 

ConTaaS 
 
We define contextualization as the processes of 

contextually filtering, aggregating, and inferring 
(contextual operations) data using context.  
Contextualisation of the internet- scale data is hard as it 
requires algorithms that can process large volumes of 
heterogeneous data arriving at very high velocity. In 
addition, contextualisation involves mapping and 
scheduling contextualisation tasks on cloud resources 
and other high performance data processing 
infrastructure. Due to increasing number of devices in 
IoT, scalability is an important challenge. Therefore, 
contextualisation of IoT data should be scalable in such 
a way that the IoT data input volume, complexity and 
variety can be handled by the available computing 
resources. Several solutions and techniques are 
discussed in the literature that can perform 
contextualisation to some extent, but they are mostly 
designed and developed for a particular application and 
can neither be generalized nor scaled up. In the 
following sections, we conceptually define the process 
of contextualisation of Internet-scale IoT data. First we 
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will present some of our definitions that are used to 
represent context using semantic representation. 

 

3.1. ConTaaS concepts and definitions 
 
Definition 1 (Triples): A triple is a statement 

describing a piece of data in form of three parts 
including <Subject, Predicate, Object>. Subject is the 
identifier of the entity that the data is describing. 
Object is the description of the Subject in terms of the 
relation described in Predicate. For example, a triple 
<RMIT University, hasEmail, info@rmit.edu.au>, 
describes that RMIT University (Subject) has an email 
address (Predicate) which is info@rmit.edu.au 
(Object). 

Definition 2 (RDF Triples): A RDF triple is a 
formal triple in such a way that the Subject can be a 
blank-node or Internationalized Resource Identifier 
(IRI) [26], the Predicates are only IRI and Object can 
be IRI, literals or blank-node. A blank-node in RDF is 
a node in such a way that it does not contain any data, 
but it groups data as a parent node [Figure 3].  

 

 
Figure 3. Blank node 

 
Definition 3 (Context): In this paper we represent 

context as triples where Subject is a specific 
application, Predicates describe the relevancy of the 
entity with the information and the object is the 
information. For example, the context (triple) 

 
<App1, RestaurantType, vegetarian> 

 
represents that App1 is interested in vegetarian 
restaurants. Subsequently, we briefly define context as 
any combinations of the predicates and objects that are 
relevant to a given application.  

 
Definition 4 (Contextualised Data): Contextualised 

data for a particular application is a subset of RDF 
triples that are filtered, aggregated and inferred 
according to the context relevant to the given 
application.  

 
Definition 5 (Context ID): Context ID (CID) is a 

label assigned to each particular context(s) to uniquely 
represent the context. ConTaaS assigns an exclusive 
prime number to each context triple (i.e., to each 
combination of a particular predicate and a particular 
object).  

Definition 6 (Application Context ID):  Application 
Context ID (ACI) is a label that represents all the 
contextual preference of a given application. 
Contextual preference is a set of contexts that are 
relevant to a given application defined by the 
application or the user of the application. ACI is not 
unique for each particular application and can 
dynamically change based on the applications and their 
changing contextual preferences. In this paper, we 
compute and assign the ACI number to each 
application by multiplying the Context IDs relevant to 
this particular application. For example, assume that 
App1 is an application that has two contexts as: 

 
<App1, Location, Melbourne>, CID=7 

<App1, RestaurantType, Vegetarian>, CID=29 

 
ACI number of these two contexts will be 203, i.e., the 
factor of 7 and 29.  Therefore, ACI numbers identify:  
 

1) The contexts of a given application  
2) Applications with similar contextual 

preferences  
 
For any application A with an ACI number n we will 
have:  

   ∏       
    

 
In the above equation,      identifies the number of 
contexts relevant to application A, and each distinct 

prime factors    of   is one of the CIDs relevant to 
that Subject. For example, in order to derive contexts 
of an application with ACI = 77, by prime factorization 
of 77 we will have 7 and 11 that are relevant CIDs, and 
the number of contexts (      ) is 2. If ACI number is 
a prime number it indicates that Subject has only one 
context.  

Definition 7 (Contextual Query): Contextual Query 
is a query that considers CIDs or ACIs in the query 
text. In the rest of this paper N-triples queries are 
referred to as queries and N-quads queries are referred 
to as Contextual Queries. 

  

3.2. ConTaaS Operations  
 
Earlier in this paper we defined contextualisation 

by referring to three primary contextual operations, 
namely: filter, aggregate, and infer. The filter 
operation applies to an input and the output is a subset 
of the input that satisfies the condition. This condition 
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for contextualisation is whether the data has any 
contextual relevancy with any application.  Filter 
operation does not modify the data and it only indicates 
if the data should be considered in queries from the 
application or not. The aggregation operation receives 
several inputs and mathematically or statistically 
processes them to compute the output. For example, in 
a room with multiple temperature sensors an 
aggregation operation can calculate the average as a 
representation of the room temperature. Aggregation in 
contextualisation is any mathematical operation that 
can merge two or more input triples into a single 
output triple. The infer operation is more complex and 
it is used to deduce new knowledge from the input 
data. For example, if RMIT is in Melbourne and 
Melbourne is in Australia, we can deduce that RMIT is 
in Australia.  

In the following paragraphs we describe these 
contextual filtering, aggregation, and inference 
operations in more detail: 

 
Contextual Filter: Processing all the data collected 

by all the sensors is not possible due to the limitations 
and scalability issues in computing resources. The 
Contextual Filtering operation labels triples in such a 
way that only triples that are relevant to at least one 
application will be labelled. Contextual Filter converts 
N-triples to N-quads by adding another part to triples 
which is the CID. In this way, any N-triples can be 
excluded from the Contextual queries because they are 
not contextually relevant to any particular application. 
Contextual Filter can use any labelling approaches as 
long as labels are uniquely defined. In this paper we 
use prime numbers as previously described.  
The CID calculated for triples indicates: 
 
 Triples that satisfy contextual preferences of a   

given application. 
 Triples that identically satisfy the same contextual 

preferences 
 

Contextual Aggregation: This operation aggregates 
two or more context triples based on similarity in 
context preferences of the applications. For example, 
consider the following triples: 
 

<App3, Location, Melbourne, 7> 

< App3, Symptom, “Headache”, 3> 

<App3, Symptom, “Pain”, 5> 

< App2, Symptom, “Headache”, 3> 

<App2, Symptom, “Pain”, 5> 

<App1, Food, “Vegetarian”, 2> 

 
In this set of triples there is no particular application 
interested in both “Headache” or “Pain” individually. 

However, if there are applications that are interested in 
both of them at the same time we generate other triples 
with blank nodes [Figure 3] with new CIDs as follows:  
 

<App3, Location, Melbourne, 7> 

< App2, Aggregated, _:b, 11> 

< App3, Aggregated, _:b, 11> 

< _:b, Symptom, “Pain”, 3> 

< _:b, Symptom, “Headache”, 5> 

<App1, Food, “Vegetarian”, 2> 

 
Then, we update CIDs of the triples that satisfy all 

the aggregated contexts with the appropriate blank 
node. 

 
Contextual Inference: Inference is the process of 

deducing new knowledge. Contextual inference takes 
contexts as input to deduce new knowledge. For 
example, suppose that application App1 has ACI 
number 210 and application App2 has ACI number 30. 
We can infer that all the contextual data relevant to 
App2 are also relevant to App1. Furthermore, dividing 
210 by 30 and prime factorization of the result we can 
infer that the data relevant to App2 are relevant to 
App1 if they also satisfy CID=7.  

 

3.3. ConTaaS Architecture  
 
Figure 4, presents the proposed ConTaaS 

Architecture. Contextualisation using the depicted 
ConTaaS Architecture is performed in a sequence of 
steps. In the first step, the raw data from IoT devices 
are annotated using semantic representations such as 
the Semantic Sensor Network Ontology (SSN) [15]. 
This aspect is independent of the underlying semantic 
framework used and is capable of supporting any other 
metadata representation schemes (e.g. SensorML). 
Semantically annotated IoT data is then converted to 
RDF triples and then stored for further processing. 
Further processing involves: 1) The application context 
that is specified and represented in the system as 
domain context (this may also include user context 
such as user preferences), and 2) the filter, aggregate, 
and infer operations we described in section 3.2. The 
output of this step is the contextualised data that is 
presented to the application. 
 

 4. Experimental Scenario  
 
In this paper, we describe our proposed architecture 

in a Smart city scenario. Smart cities rely on current 
advances in technologies, such as IoT, networking, 
data analytics, recommendations, and decision support, 
to deliver better quality of life to citizens.  The smart 
city vision is made up of many building blocks around 
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a combination of application and services such as 
smart health, smart grid, smart traffic control, smart 
transport system, etc. Although, the ConTaaS 
architecture proposed in this paper is general-purpose 
and can be used to realise IoT contextualisation in any 
domain, in this section we focus on a smart health 
application. Consider an outbreak of Ebola virus 
disease that originated in March 2014 from the west of 
Africa. After 5 months and more than 4500 death 
reports, the World Health Organization declared this 
outbreak an international public health emergency. To 
stop Ebola virus transmission that occurs via physical 
contact, it is necessary to do the following: 1) diagnose 
the virus as soon as possible, 2) isolate the patients by 
limiting contact with other people, and finally 3) start 
infection control and treatment. Ebola virus disease’s 
most common symptoms are fever, fatigue, loss of 
appetite, vomiting, diarrhoea and headache [27]. 
Speeding up diagnosis by identifying any person who 
has all or most of these symptoms and determining if 
this person has been travelling in a high-risk area 
during a particular time period could be potentially 
lifesaving. In particular, countries dealing with Ebola 
must solve the following problems:  

 
1. Check all the residents or travellers to their 

countries to see if they have been in Africa 
during the first few months of 2014 and if 
they have the symptoms.  

2. Determine if those who were identified in (1) 
had any physical contact with anybody known 
to be infected.   

3. Transfer those identified in (2) to a hospital.  

 
Just like Ebola, the World Health Organization has 

also identified Zika as an international public health 
emergency. Zika mainly transfers with a bite of 

infected Aedes mosquito and have symptoms such as 
fever, conjunctivitis, joint pain and skin rash. Zika was 
originally considered to be a mild disease [28]. 
However, recent scientific research showed that Zika 
virus can cause microcephaly on unborn babies of 
mothers who are infected by the virus during their 
pregnancy. The first step in Zika mitigation is similar 
to (1) for Ebola, as we need to know if any residents or 
tourists of any country has visited Brazil or other Zika 
high-risk areas and at the same time they manifested 
the Zika symptoms. However, as Zika is a mild virus 
and does not have any particular treatment, the only 
concern for infected people is to rest and avoid 
pregnancy until the virus disappears completely from 
the body, which is approximately a 6 month period.  

With current advances in mobile smart phone and 
wearable technology, we assume the possibility of 
collection data from people including their location 
[29] (with due concerns to privacy and security). 
Additionally, assume that we have the records of the 
symptoms of people that are manually entered into a 
database via health applications, collected from 
hospitals and during medical checks, or from sensors 
and wearable devices such as smart watches.  Such 
data from citizens will be massive. Furthermore, for 
any particular application we may need to frequently 
repeat the data analysis process on the entire dataset. 
Managing a dataset of this kind is resource demanding 
and its analysis requires sophisticated computing 
resources.  
ConTaaS has the potential to solve this problem by 
reducing the complexity of the data analysis query and 
extract valuable knowledge from such data. In this 
scenario we describe two data analysis applications for 
Ebola and Zika namely EbolaApp and ZikaApp. 
Subsequently we define the context triples for  
 

 

Figure 4: ConTaaS Architecture 
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EbolaApp as follows: 
 
 <EbolaApp, Location, Australia >  
 <EbolaApp, Symptom, “fever”> 
 <EbolaApp, Symptom, “fatigue”>  
 <EbolaApp, Symptom, “loss of appetite”>  
 <EbolaApp, Symptom, “vomiting”>  
 <EbolaApp, Symptom, “diarrhoea” >  
 <EbolaApp, Symptom, “headache”>  
 <EbolaApp, Visited, Africa>  

 
ZikaApp context triples include: 
 

  <ZikaApp, Location, Australia>  
  <ZikaApp, Symptom, “fever”>  
  <ZikaApp, Symptom, “conjunctivitis”>  
  <ZikaApp, Symptom, “joint pain” >  
  <ZikaApp, Symptom, “skin rash”>  
 <ZikaApp, Visited, Brazil>  

 
Table 1, shows the data records from a sample of 5 
persons. The CIDs of data records [Figure 5] have been 
assigned by the Contextual Filter. Ava does not have 
any CIDs. Lack of CIDs indicates that this person is 
not relevant to any of the two applications. The next 
step, which is performed via Contextual Aggregation 
and based on Aggregated CIDs [Figure 6], determines 
that Sophia will not need to be considered further as 
she is not relevant to EbolaApp or ZikaApp.  
 

 
Figure 5. CIDs 

Finally, the ACI number for these applications are 
calculated as EbolaApp = 5863 and ZikaApp = 6721.  
The ACI numbers for remaining persons are computed 
(i.e. John=143, Jacob=6721 and Emily=611), and 
based on this, we determine that Jacob is the only 
person that satisfies the ZikaApp context and no one 
satisfies the EbolaApp context.   

 

 
 Figure 6. Aggregated CIDs 

 
Contextual Inference can determine that Emily is a 

suspect for a Zika infection as the only contexts she 
does not meet is the fact that her current location is not 
Australia. Subsequently, a list of triples with ACI=611 
can be used in Australia’s borders to detect suspicious 
passengers.  

 

 
Figure 7. Contextualisation Process Time 

Figure 8. Data Reduction 
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5. Implementation and Evaluation 
 
We developed a proof-of-concept implementation 

of ConTaaS and evaluated its performance on an 
“m4.xlarge” instance of  Amazon’s Elastic Cloud 
Computing (EC2) platform [30] running the Ubuntu 
14.04 operating system. The hardware configuration of 
the servers included four vCPUs 3.3GHZ Intel Xeon 
processors and 16 GB of RAM memory. To implement 
and run the ConTaaS test-bed we employed Java 
version 1.8, Apache Jena [31] and PHP 5.2.  Our 
dataset included synthetic triples generated randomly 
based on the previously described experimental 
scenarios. Our evaluation assumed that the data points 
have been generated by IoT sensors deployed on 
patients in hospitals and/or data collected by medical 
personnel. 

Figure 7, shows the performance of contextual filter 
when processing different numbers of triples. Figure 8, 
shows the number (data reduction) of triples after each 
operation. 

 

6. Conclusion and Future Work 

 
Scalable and real-time contextualisation of IoT data 

has the potential to significantly improve the value of 
information extracted and data processing efficiency 
for large scale IoT applications. In this paper, we 
proposed a general-purpose architecture and techniques 
for scalable contextualisation of IoT data. We also 
performed experimental evaluation of the proposed 
architecture and related techniques using synthetic data 
from a smart health application to validate their ability 
to collect and process high-volume IoT sensor data. 

Though, the volume of Internet-scale data would be 
larger than the dataset used in this evaluation, the 
performance outcomes indicate that the proposed 
ConTaaS architecture and contextualisation techniques 

will scale well for Internet-scale datasets. In future 
work, we aim to investigate dynamic contexts and the 
application of MapReduce to distributed 
contextualisation operations. The architecture 
described in this paper is designed to be incremental, 
but in this paper we didn’t address incremental 
functionalities of the algorithms. We also plan to 
investigate more complex reasoning by using other 
ontologies. 
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