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Abstract. We prove that the Ricci operator on a contact Riemannian 3-manifold M

is invariant along the Reeb flow if and only if M is Sasakian or locally isometric to SU(2)

(or SO(3)), SL(2,R) (or O(1, 2)), the group E(2) of rigid motions of Euclidean 2-plane with
a contact left invariant Riemannian metric.

1. Introduction. In a contact manifold (M, η), we find a fundamental fact that the
Reeb vector field ξ generates a contact transformation, that is, £ξ η = 0. For an associated
Riemannian metric g , if ξ generates an isometric flow, that is, M satisfies £ξg = 0, then M

is said to be K-contact. We note that a K-contact manifold is already Sasakian in dimension
three. In this paper, we study a 3-dimensional contact Riemannian manifold whose Ricci
operator S is Reeb flow invariant, that is, £ξ S = 0. Then, we have

MAIN THEOREM. Let M be a 3-dimensional contact Riemannian manifold. Then
£ξ S = 0 if and only if M is Sasakian or locally isometric to SU(2) (or SO(3)), SL(2,R)

(or O(1, 2)), E(2) (the group of rigid motions of Euclidean 2-plane) with a left invariant
contact Riemannian metric.

All manifolds in the present paper are assumed to be connected and of class C∞.

2. Preliminaries. A 3-dimensional manifold M is said to be a contact manifold if it
admits a global 1-form η such that η∧(dη) �= 0 everywhere. Given a contact form η, we have
a unique vector field ξ , which is called the characteristic vector field, satisfying η(ξ) = 1
and £ξ η = 0 (or iξdη = 0), where £ξ denotes Lie differentiation for ξ and iξ denotes the
interior product operator by ξ . It is well-known that there exists a Riemannian metric g and a
(1, 1)-tensor field ϕ such that

(1) η(X) = g(X, ξ) , dη(X, Y ) = g(X, ϕY ) , ϕ2X = −X + η(X)ξ ,

where X and Y are vector fields on M . From (1) it follows that

(2) ϕξ = 0 , η ◦ ϕ = 0 , g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) .

A manifold M equipped with structure tensors (ϕ, ξ, η, g) satisfying (1) and (2) is said to be a
contact Riemannian manifold and is denoted by M = (M; η, g). Given a contact Riemannian
manifold M , we define a (1, 1)-tensor field h by h = 1

2 £ξ ϕ. Then h is self-adjoint and satisfies

(3) hξ = 0 and hϕ = −ϕh ,
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(4) ∇Xξ = −ϕX − ϕhX ,

where ∇ is Levi-Civita connection. From (3) and (4) we see that each trajectory of ξ is a
geodesic and div(ξ) = 0. We denote by R the Riemannian curvature tensor defined by

R(X, Y )Z = ∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z
for all vector fields X,Y,Z. Along a trajectory of ξ , the Jacobi operator � = R(·, ξ)ξ is a
symmetric (1, 1)-tensor field, that is, g(�X, Y ) = g(X, �Y ). We have

(5) trace � = ρ(ξ, ξ) = 2n − trace (h2) ,

(6) ∇ξ h = ϕ − ϕ� − ϕh2 ,

(7) g(R(X, Y )ξ, Z) = g((∇Zϕ)X, Y ) + g((∇Y ϕh)X − (∇Xϕh)Y,Z)

for all vector fields X,Y,Z on M , where ρ(X, Y ) = g(SX, Y ). A contact Riemannian man-
ifold for which ξ is Killing is called a K-contact Riemannian manifold. It is easy to see that
a contact Riemannian manifold is K-contact if and only if h = 0. For a contact Riemannian
manifold M one may define naturally an almost complex structure J on M × R;

J

(
X, f

d

dt

)
=

(
ϕX − f ξ, η(X)

d

dt

)
,

where X is a vector field tangent to M , t the coordinate of R and f a function on M × R. If
the almost complex structure J is integrable, M is said to be normal or Sasakian. It is known
that M is normal if and only if M satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0 ,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is characterized by a condition

(8) (∇Xϕ)Y = g(X, Y )ξ − η(Y )X

for all vector fields X and Y on the manifold. For more details about contact Riemannian
manifolds we refer to [1].

3. Contact 3-manifolds with the Reeb flow symmetry. In this section, we prove the
Main Theorem. First we recall that a contact Riemannian 3-manifold M satisfies

(9) (∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX)

(cf. [5]). From (7) and (9) we have

(10) R(X, Y )ξ = η(Y )(X + hX) − η(X)(Y + hY ) + ϕ((∇Y h)X − (∇Xh)Y )

for all vector fields X and Y . From (8) and (9), we have at once

LEMMA 1. A 3-dimensional contact Riemannian manifold is Sasakian if and only if
h = 0.

Moreover, we have

PROPOSITION 2. A Sasakian 3-manifold is η-Einstein, that is, S = αI +βη⊗ξ , where
α and β are functions with dα(ξ) = dβ(ξ) = 0.
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Since £ξ ξ = £ξ η = 0, we have

COROLLARY 3. For a Sasakian 3-manifold, £ξ S = 0.

Now, we prove the Main Theorem.

PROOF OF MAIN THEOREM. Let M = (M3; η, g) be a 3-dimensional contact Riemannian
manifold. Then it is well-known that the curvature tensor R of a 3-dimensional Riemannian
manifold is expressed by

R(Y,X)Z =ρ(X,Z)Y − ρ(Y,Z)X + g(X,Z)SY − g(Y,Z)SX

− τ

2
{g(X,Z)Y − g(Y,Z)X}(11)

for all vector fields X,Y,Z, where τ denotes the scalar curvature. If h = 0 on M , then from
Lemma 1 we see that M is Sasakian. Moreover, M satisfies £ξ S = 0 (Corollary 3). So, we
consider on M the maximal open subset U1 on which h �= 0 and the maximal open subset
U2 on which h is identically zero. (U2 is the union of all points p in M such that h = 0 in a
neighborhood of p). U1 ∪U2 is open and dense in M . Suppose that M is non-Sasakian. Then
U1 is non-empty and there is a local orthonormal frame field {e1 = e, e2 = ϕe, e3 = ξ} on
U1 such that h(e1) = λe1, h(e2) = −λe2 for some positive function λ. We denote Γijk =
g(∇ei ej , ek), ρij = ρ(ei, ej ) for i, j, k = 1, 2, 3. Then from (4) we get

(12) Γ132 = −Γ123 = −(1 + λ) , Γ231 = −Γ213 = 1 − λ

and

(13) Γ131 = Γ113 = Γ232 = Γ223 = 0 .

Also, from (6) and taking account of (5) and (11), we have

(14) ξλ = ρ12

and

(15) 4λΓ312 = ρ22 − ρ11 .

LEMMA 4. In U1, £ξ S = 0 ⇔ ∇ξ S = 0 and Sξ = σξ , where σ is a function.

PROOF. Suppose that M satisfies £ξ S = 0. Then, we compute

0 = £ξ (SX) − S(£ξX)

= [ξ, SX] − S[ξ,X] .

From this using (4) we get an equivalent equation to £ξ S = 0:

(16) (∇ξ S)X = (Sϕ − ϕS)X + (Sϕh − ϕhS)X .

Since ∇ξ S and Sϕ − ϕS are self-adjoint operators, we get

Sϕh − ϕhS = Shϕ − hϕS .

Since hϕ = −ϕh, it follows that

(17) Sϕh = ϕhS .
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Since hξ = 0, from (17) we see that hSξ = 0. From this and (5), we obtain Sξ = σξ ,
σ = 2 − 2λ2 on U1. And from (16) and (17) we get

(18) ∇ξ S = Sϕ − ϕS .

So, we get (∇ξ ρ)(ξ, ξ) = 0, and then ξλ = 0, where we have used ∇ξ ξ = 0. Then from (14)
we have

(19) ρ12 = ρ21 = 0 .

Applying e1 to (17) and taking an inner product with e2 (with respect to g), we get

(20) ρ22 = ρ11

on U1. Since Sξ = σξ , together with (19), we have Sϕ = ϕS on U1. Thus, from (18) we
obtain ∇ξ S = 0 on U1. Conversely, we assume that ∇ξ S = 0 and Sξ = σξ on U1. Then, it
follows from (5) that σ = 2 − 2λ2, and

(21) ρ13 = ρ31 = 0 , ρ23 = ρ32 = 0 .

And from (∇ξ ρ)(ξ, ξ) = 0 and ∇ξ ξ = 0 we have

(22) ξλ = 0 ,

which together with (14) yields

(23) ρ12 = ρ21 = 0 .

Using ∇ξ S = 0 again, we obtain from (23)

(24) Γ312(ρ11 − ρ22) = 0 .

By (15) and (24) we find that

(25) ρ11 = ρ22 .

Since Sξ = σξ , equations (23) and (25) give Sϕ = ϕS. Moreover, we see that Sϕh = ϕhS

on U1. Therefore, by (16) we find that £ξ S = 0. This completes the proof of Lemma 4. �

Now we prove

LEMMA 5. λ is constant.

PROOF. Among the proof of Lemma 4, from (15) and (25) we get in addition

(26) Γ312 = Γ321 = 0 .
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From (11) with the help of Lemma 4 we have in U1:

R(e1, e2)e2 = Se1 − (1 − λ2)e1 ,

R(e1, e2)e1 = −Se2 + (1 − λ2)e2 ,

R(e2, e3)e2 = R(e1, e3)e1 = −(1 − λ2)e3 ,

R(e1, e3)e3 = (1 − λ2)e1 ,

R(e2, e3)e3 = (1 − λ2)e2 ,

R(ei , ej )ek = 0 for i �= j �= k �= i .

(27)

Using (12), (13), (26), and (27), we have

(∇e1R)(e2, e3)e2 = e1(λ
2 − 1)e3 ,

(∇e2R)(e3, e1)e2 = (∇e3R)(e1, e2)e2 = 0
(28)

and

(∇e2R)(e1, e3)e1 = e2(λ
2 − 1)e3 ,

(∇e1R)(e3, e2)e1 = (∇e3R)(e2, e1)e1 = 0 .
(29)

By the second Bianchi identity, (28) and (29) yield that e1(λ) = 0 and e2(λ) = 0 respectively.
Hence, together with (22), we see that λ is constant on M , where we have used the continuity
argument of λ. �

On account of (27) we find that R(e1, e2)ξ = 0 in M . Here we use (10). Since λ is
constant, we have

(30) Γ212e1 − Γ121e2 = 0 .

From (30) we get

(31) Γ212 = Γ221 = Γ121 = Γ112 = 0 .

Thus, together with (12), (13), (26), and (31), we have

(32) [e1, e2] = 2e3 , [e2, e3] = (1 − λ)e1 , [e3, e1] = (1 + λ)e2 .

Actually, from (32) we compute the Ricci operator S:

Se1 = 0 ,

Se2 = 0 ,

Se3 = (
2 − 2λ2)e3 .

(33)

Moreover, we can check (£ξ S)e1 = (£ξ S)e2 = 0.

After all, owing to J. Milnor’s result (Section 4 or [2]), we see from (32) that M is locally
isometric to one of the following Lie groups:

(i) SU(2) (or SO(3)) with a left invariant metric when 0 < λ < 1;
(ii) SL(2,R) (or O(1, 2)) with a left invariant metric when λ > 1;

(iii) E(2) when λ = 1.
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Thus we have proved our Main Theorem. �

We see from Proposition 2 that a Sasakian 3-manifold satisfies Sξ = σξ and ∇ξ S = 0,
where σ is a function.

COROLLARY 6. Let M be a 3-dimensional contact Riemannian manifold. Then Sξ =
σξ and ∇ξ S = 0 if and only if M is Sasakian or locally isometric to SU(2) (or SO(3)),
SL(2, R) (or O(1, 2)), the group E(2) of rigid motions of Euclidean 2-plane with a left in-
variant contact Riemannian metric.

We can not remove the condition Sξ = σξ in Corollary 6. Indeed, we have a counter
example. See Remark 2 in the next section.

4. 3-dimensional Lie groups. By a theorem due to K. Sekigawa [4] and the classifi-
cation due to J. Milnor [2] of 3-dimensional Lie groups with a left invariant metric, Perrone
[3] classified all simply connected homogeneous contact Riemannian 3-manifolds. Recall that
M is called unimodular if its left invariant Haar measure is also right invariant. In terms of the
Lie algebra m, M is unimodular if and only if the adjoint transformation adX has trace zero
for every X ∈ m. Then we have

PROPOSITION 7 ([5]). Let M be a 3-dimensional unimodular Lie group with a left
invariant contact Riemannian structure, then there exists an orthonormal basis {e1, e2 =
ϕe1, e3 = ξ} ∈ m such that

(34) [e1, e2] = 2e3, [e2, e3] = c2e1, [e3, e1] = c3e2 .

REMARK 1 ([3]). In fact, every three-dimensional unimodular Lie group, with only
exception of the commutative Lie group R3, admits a left-invariant contact metric structure.

We put
Γijk = g (∇ei ej , ek) for i, j, k = 1, 2, 3 .

Then by using the Koszul formula we have

(35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ123 = 1

2
(c3 − c2 + 2) ,

Γ213 = 1

2
(c3 − c2 − 2) ,

Γ312 = 1

2
(c3 + c2 − 2) ,

all others are zero.

From (35) we easily see that M is K-contact (or Sasakian) if and only if c2 = c3. Then, using
(35), we find by a direct calculation
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R(e1, e2)e2 =
(

1

4
(c3 − c2)

2 − 3 + c3 + c2

)
e1

R(e1, e3)e3 =
(

−1

4
(c3 − c2)

2 − 1

2
(c3

2 − c2
2) + 1 − c2 + c3

)
e1

R(e2, e1)e1 =
(

1

4
(c3 − c2)

2 − 3 + c3 + c2

)
e2

R(e2, e3)e3 =
(

1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)
e2

R(e3, e1)e1 =
(

−1

4
(c3 − c2)

2 − 1

2
(c3

2 − c2
2) + 1 − c2 + c3

)
e3

R(e3, e2)e2 =
(

1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)
e3 .

(36)

By using (36) we get

Se1 =
(

−1

2
(c3

2 − c2
2) − 2 + 2c3

)
e1

Se2 =
(

1

2
(c3

2 − c2
2) − 2 + 2c2

)
e2

Se3 =
(

−1

2
(c3 − c2)

2 + 2

)
e3 .

(37)

Since c1 = 2 > 0, the possible combinations of the signs of c1, c2 and c3 and the
associated Lie groups are indicated in the following table (see [2]):

Signature of (c1, c2, c3) Associated Lie group
(+, +, +) SU(2) or SO(3)

(+, +, −) SL(2,R) or O(1, 2)

(+, +, 0) E(2)

(+, −, −) SL(2,R) or O(1, 2)

(+, −, 0) E(1, 1)

(+, 0, 0) Heisenberg group Nil3
SU(2): group of 2 × 2 unitary matrices of determinant 1; homeomorphic to the unit

3-sphere.
SO(3): rotation group of Euclidean 3-space, isomorphic to SU(2)/{±I }.
SL(2,R): group of 2 × 2 real matrices of determinant 1.
O(1, 2): Lorentz group consisting of linear transformations preserving the quadratic

form t2 − x2 − y2. Its identity component is isomorphic to SL(2,R)/{±I }, or to the group
of rigid motions of hyperbolic 2-space.

E(2): group of rigid motions of Euclidean 2-space.
E(1, 1): group of rigid motions of Minkowski 2-space.
Finally, the Heisenberg group can be described as the group of all 3 × 3 real matrices of

the form
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⎛
⎝1 ∗ ∗

0 1 ∗
0 0 1

⎞
⎠ .

PROPOSITION 8 ([3]). Let M be a 3-dimensional non-unimodular Lie group with left
invariant contact Riemannian structure. Then there exists an orthonormal basis {e1, e2 =
ϕe1, e3 = ξ} ∈ m such that

(38) [e1, e2] = αe2 + 2e3 , [e2, e3] = 0 , [e3, e1] = γ e2 ,

where α �= 0. Moreover, M is Sasakian if and only if γ = 0.

By using the Koszul formula we see from (38)

(39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ123 = γ + 2

2
Γ212 = −α

Γ213 = γ − 2

2

Γ312 = γ − 2

2
all others are zero.

Then, using (39), we obtain by a direct calculation

R(e1, e2)e2 =
(

γ 2 + 4γ − 12

4
− α2

)
e1

R(e1, e3)e3 =
(−3γ 2 + 4γ + 4

4

)
e1

R(e2, e1)e1 =
(

γ 2 + 4γ − 12

4
− α2

)
e2 + αγ e3

R(e2, e3)e3 = (γ − 2)2

4
e2

R(e3, e1)e1 = αγ e2 +
(−3γ 2 + 4γ + 4

4

)
e3

R(e3, e2)e2 = (γ − 2)2

4
e3 ,

(40)

and thus

Se1 =
(

−α2 − 2 + 2γ − γ 2

2

)
e1

Se2 =
(

−α2 − 2 + γ 2

2

)
e2 + αγ e3

Se3 = αγ e2 +
(

2 − γ 2

2

)
e3 .

(41)
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THEOREM 9. Let M be a 3-dimensional Lie group with left invariant contact Riemann-
ian structure. Suppose that M satisfies ∇ξ S = 0.
(a) If M is unimodular, then M is isometric to one of the following Lie groups:

(i) SU(2) (or SO(3)) with Sasakian metric or (non−Sasakian) contact Riemannian
metric,

(ii) SL(2,R) (or O(1, 2)) with Sasakian metric or (non−Sasakian) contact Riemann-
ian metric,

(iii) Heisenberg group with Sasakian metric,
(iv) E(2) with contact Riemannian metric.

(b) If M is non-unimodular, then the Lie algebra structure is given by (38) with γ = 0
(Sasakian) or γ = 2.

PROOF. (a) By using (35) and (37), we obtain

(∇e3S)e1 = 1

2
(c2 − c3)(c3 + c2 − 2)2e2

and

(∇e3S)e2 = 1

2
(c2 − c3)(c3 + c2 − 2)2e1,

(∇e3S)e3 = 0 .

Thus we see that ∇ξ S = 0 if and only if c3 = c2 or c3 + c2 = 2. Then, referring the Table
we obtain (a).

(b) By using (39) and (41), we obtain

(∇e3S)e1 = −1

2
γ (γ − 2)2e2 − 1

2
αγ (γ − 2)e3 ,

(∇e3S)e2 = −1

2
γ (γ − 2)2e1 ,

(∇e3S)e3 = −1

2
αγ (γ − 2)e1 .

Since α �= 0 from the above equations, we see that ∇ξ S = 0 if and only if γ = 0 or γ = 2.
�

REMARK 2. From Theorem 9, we find that the non-unimodular Lie group whose Lie
algebra structure is given by (38) with γ = 2 satisfies ∇ξ S = 0, but Sξ �= σξ . In fact, we see
from (41) that Sξ = 2αe2 (α �= 0).
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