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Abstract

A numerical analysis of mechanical frictionless contact between rough self-
affine elastic manifolds was carried out. It is shown that the lower cutoff
wavenumber in surface spectra is a key parameter controlling the represen-
tativity of the numerical model. Using this notion we demonstrate that for
representative surfaces the evolution of the real contact area with load is
universal and independent of the Hurst roughness exponent. By introduc-
ing a universal law containing three constants, we extend the study of this
evolution beyond the limit of infinitesimal area fractions.

1 Introduction

Real surfaces are self-affine [1, 2] and the surface heights are distributed nor-
mally [3]. Due to this roughness the real contact area A is often only a
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small fraction of the nominal or apparent contact area A0. The real con-
tact area fraction A/A0 and its evolution determines the contact resistivity,
friction and the transfer of energy (heat and electric charge) through the con-
tact interface. Thus understanding the contact-area evolution has profound
implications in various fundamental (e.g., origin of friction) and engineer-
ing studies (e.g., electro-mechanical contact, tire-road interaction). From
early experiments [4] and analytical theories [3, 5], it has been considered
as an established knowledge that A evolves linearly with the normal load
F at relatively small fractions of contact. It was confirmed by numerical
simulations of normal frictionless elastic contact between rough surfaces [6],
which made considerable progress since then. Nowadays, the most advanced
computations exploit fine surface discretizations (2048 × 2048 [7, 8, 9, 10],
4096 × 4096 [11]) to extract statistically meaningful results valid even for
small fractions of contact. Many of the numerical investigations are based
on synthesized surfaces preserving the aspect of self-affinity. In early studies
[6, 12] the artificial rough surfaces obeyed fractality which scaled down to
the domain discretization [13]. Later it was realized that the surface has to
be smooth enough [7, 14] to represent correctly the mechanics of contact and
to obtain a reliable estimation of the contact area growth comparable with
analytical theories. This smoothness implies a sharp decay of the power spec-
trum density for wavelengths smaller than short cutoff wavelength λs. On
the other hand, to the best of our knowledge, there are no consistent study
on the influence of long cutoff wavelength λl on the response of rough sur-
faces. Despite remarks made in [15] on the importance of λl for mechanics of
rough contact, in almost all investigations of the real-contact-area evolution
[6, 7, 10, 16] λl was limited by the size of the specimen λl = L. In this article
we show that λl plays a crucial role in numerically precise theory of rough
contact, because it controls the representativity of the simulated system.

In the limit of infinitesimal contact, analytical theories predict that the
real contact area A evolves proportionally to the normal force F with coeffi-
cient κ normalized by the root mean squared slope of the surface

√

〈|∇h|2〉
and the effective Young’s modulus E∗ [17], which gives

A = κ/
√

〈|∇h|2〉 F/E∗. (1)

According to asperity-based [3] models (Bush, Gibson, Thomas (BGT) [5],
Greenwood [18], Nayak-Thomas [19]) κ =

√
2π but Eq. (1) is valid only in

an asymptotic limit for infinitesimal fractions of the contact area A/A0 → 0.
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FIG. 1: Representativity of a rough self-affine surface can be estimated accord-
ing to the normality of heights distribution. Here, the criterion of proximity is
an error between the distribution of surface’s heights and the associated normal
distribution; (a) this error is strongly dependent on the cutoff wavenumbers ks
and kl. Every point on the graph represents an error averaged over 30 statis-
tically equivalent surfaces. Examples of rough surfaces and the corresponding
heights distributions for different cutoffs ks = 40 and (b) kl = 1, (c) kl = 4, (d)
kl = 16 are also depicted.

3



The convergence of κ with decreasing fraction A/A0 is slow and depends
on the bandwidth parameter α introduced in [20] as α = m0m4/m

2
2, where

mi =
∫ ks
kl

kiC(k)dk is the i-th moment of the power spectrum density C(k)

of the surface. For instance, for α = 10, κ is overestimated by about 12%
for A/A0 = 10−5 and this error reduces only to 4% when A/A0 = 10−10 [18].
Consequently, using a complete numerical model it is not possible to demon-
strate the linearity predicted by Eq. (1) nor to approach its asymptotic limit.
It is also worth noting that in forementioned models the evolution of the real
contact area is strictly nonlinear for realistic fractions of contact [21, 22].
Moreover, this evolution does not depend on the Hurst roughness exponent
H but only on α [21]. A competing theory was proposed by Persson [23, 24],
it also predicts a linear contact area evolution for small contact fractions,
however, the obtained coefficient of proportionality κ =

√

8/π is signifi-
cantly smaller than in the asperity-based models. As in the latter models,
the evolution of the contact area does not depend on the Hurst exponent.
Numerical studies [6, 7, 10, 16] demonstrated an approximately linear evolu-
tion of the contact area with load. But in contrast to the analytical models, κ
was shown to depend on the Hurst exponent and to be confined between the
asymptotic limits of the BGT [5] and Persson [23, 24] theories. In this article,
by introducing the notion of surface representativity, we obtain qualitatively
new numerical results, which we believe correctly represent the mechanical
response of realistic rough surfaces. Moreover, they appeal to a broad in-
terpretation of the data not restricted to a single proportionality coefficient
between contact area and load for infinitesimal contact fractions.

2 Representativity of rough surfaces

A meaningful numerical simulation of rough contact has to be carried out
on a representative self-affine surface element (RSSE) (e.g. [25]) either gen-
erated numerically or chosen from experimental measurements. The reason
to use generated rough surfaces is that they may be obtained for any cutoff
wavelengths and Hurst exponent H . On the one hand, the RSSE has to be
large enough to obtain a similar response for different realizations of statisti-
cally equivalent surfaces. On the other hand, it has to be as small as possible
to retain a numerically solvable contact problem. So the RSSE is defined
according to the permitted error between mechanical responses of surfaces
of different sizes, e.g. L and 2L. This mechanical representativity can be

4
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FIG. 2: Evolution of the real contact area fraction A/A0 with normalized ex-
ternal load p0/E

∗ are plotted for different cutoff wavelengths and Hurst expo-
nents; the rms slope is kept constant for all surfaces

√

〈|∇h|2〉 = 0.1. The re-
sults for representative surfaces (λl = L/16) are in a good agreement with the
asymptotic limit of the Bush, Gibson, Thomas (BGT) theory [5] and are per-
fectly fitted by the suggested contact evolution law Eq. (2) (κ = 1.145

√
2π, µ =

0.55, β = 0.21). Moreover, if the surface is sufficiently smooth λs = L/32 we
do not observe any dependence of results on the Hurst exponent. The evolution
of the real contact area predicted by Greenwood [18] and BGT [5] theories for
spectrum bandwidth m0m4/m

2
2 = 2 (data from [21]) lie in the confidence interval

of the results obtained for non-representative surfaces (λl = L) with high Hurst
exponents H ' 0.5. Asymptotic limit of Persson theory [23, 24] lies below all
obtained results.

5



linked to the geometrical representativity, which we define as the proximity
of the surface heights distribution to a normal distribution [14]. In particular,
this proximity is important in the range of maximal heights corresponding
to the only zones which come in contact at small loads. To analyze how the
representativity depends on the cutoffs, for each pair of cutoff wavenumbers
ks = L/λs and kl = L/λl we generate 30 statistically equivalent surfaces
using FFT filtering algorithm [26]. The size of surfaces is L = 1, the dis-
cretization spacing is ∆L = 1/1024 and H = 0.8. Fig. 1 represents the
average L2 error between the heights distribution function of the generated
surfaces and the corresponding normal distributions G(h, h̄, σ) for different
cutoffs (see appendix for details). The mean value h̄ and the standard devia-

tion σ =
√

〈(h̄− h)2〉 for the normal distribution G are computed according
to the generated surface. It follows from this figure that a generated surface
becomes more and more representative, when the first cutoff wavenumber kl
increases up to 8 − 16, whereas the variation of ks has a weaker effect on
the surface representativity if the spectrum is sufficiently rich ks ≫ kl. The
choice λl = L leads to a surface with a mechanical response which varies con-
siderably from one surface realization to another. The fact that in average
this response does not correspond to the response of a bigger rough surface
with similar random properties is of crucial importance for the study of rough
contact. The key reasons for this discrepancy are the long-range interactions
(1/r) between contacting asperities and inevitable boundary conditions on
lateral sides of the specimen (periodic, symmetric, free). Accordingly, the re-
sponse of any heterogeneous system with random properties and long-range
interactions should be studied on a representative system element.

3 Smoothness of rough surfaces

Besides the long cutoff wavelength, in generated or experimental surfaces
there is a limitation connected with their inevitable discreteness, either due
to a numerical resolution scheme and/or experimental measurements. In real
self-affine surfaces the power spectrum density decays as a power-law of the
wavenumber k, C(k) ∼ k−2(1+H). This law may be preserved down to wave-
lengths comparable to atomic spacings [2], where the continuum contact me-
chanics is not valid anymore [27]. To remain in the continuum framework and
to capture accurately the mechanics, we introduce a short cutoff wavelength
λs > ∆L, which ensures the smoothness of surfaces at a certain magnifica-
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FIG. 3: Evolution of κ with the real contact area fraction A/A0 is depicted for
different Hurst roughness exponents and cutoff wavelengths λl = L, L/8, L/16,
a) λs = L/32, b) λs = L/128; all results for representative surfaces λl = L/16 are
fitted by the contact evolution law Eq. (2) with κ = 1.145

√
2π, µ = 0.55, β =

0.21 for (a) λl = L/16, λs = L/32; with κ = 1.145
√
2π, µ = 0.56 and β ∈

[1.120, 1.172] for (b) λl = L/16, λs = L/128. For comparison, the asymptotic
limit κBGT =

√
2π from Bush, Gibson, Thomas theory [5] is plotted, while the

asymptotic limit of Persson theory [23, 24] κP =
√

8/π ≈ 1.60 is out of the plot
range.
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tion as, for example, in [7]. The inherent cutoff λs = ∆L used, for example,
in [6, 12] results in a “one node - one asperity” approach, which does not
allow to correctly reproduce the local change of the contact force with sep-
aration [14] nor to estimate a realistic growth of localized contact zones but
only the growth of their number. Considering smooth–rough-surfaces with a
“truncated self-affinity” λs ≫ ∆L eliminates these shortcomings.

4 Description of simulations

Using the algorithm [26] we generate 12 statistically equivalent surfaces for
each pair of cutoff wavelengths L/λl = 1, 2, 8, 16, L/λs = 32, 64, 128, 256, 512
and different Hurst roughness exponents H = 0.2, 0.36, 0.52, 0.68, 0.84. For
all the surfaces the constant root mean squared slope

√

〈|∇h|2〉 = 0.1 is pre-
served; as before L = 1 and ∆L = 1/1024. It is important to note that, in
contrast to geometrical estimations of

√

〈|∇h|2〉 [6], which depend on the sur-
face discretization and thus may underestimate significantly the real value, we
evaluate the rms slope according to the surface power spectrum [20]. To solve
the contact problem between a periodic rigid rough surface and a deformable
flat half-space we use the spectral based boundary element method [28] with
some minor improvements [29]. This method allows to solve accurately the
equations of continuum mechanics under contact constraints and, in contrast
to asperity-based models, takes into account all underlying mechanics: com-
plex shapes of asperities, junction of contact zones associated with different
asperities and long-range deformation of the elastic half-space in response to
contact forces. For each simulation the contact area fraction reaches ≈ 10%
under the external pressure linearly increasing up to p0/E

∗ = 0.05 within
30 increments. In Fig. 2 we compare the area-force curves of our numerical
results and several analytical theories, which were computed and summa-
rized in [21]. To demonstrate better the nonlinearity of the area evolution
for surfaces with different cutoffs and Hurst exponents, we present in Fig. 3
the proportionality coefficient κ expressed from Eq. 1 as κ = E∗

√

〈|∇h|2〉/p̄,
where p̄ = F/A is the mean contact pressure.
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5 Results

The value of κ for the observed range (up to 10% of the contact fraction) is
a decreasing function of the area. For non-representative λl < L/16 or too
rough λs < 32∆L surfaces, there is a clear tendency (see Fig. 3, b): a higher
H results in a smaller κ. This dependence of the results on the Hurst expo-
nent corresponds to all up to date numerical investigations of the κ constant
[6, 7, 16, 10]. However, we argue that these results are strongly affected by
non-representativity and an excessive roughness of exploited surfaces. In con-
trast to these results, if the mechanics of contact is well resolved (λs ≫ ∆L)
and the surface is representative (λl ' L/16) the real contact area evolution
does not depend anymore on the Hurst exponent (see dark symbols in Fig. 3,
a). This result is in a good agreement with analytical theories and has never
been obtained before in complete numerical models. Reducing λl reduces the
data scatter, which is one of criteria of mechanical representativity. The data
scatter increases with increasing H , thus, the smoother the surface, the big-
ger RSSE is needed to capture an average mechanical behavior. The rise in
κ with decreasing λl can be interpreted in terms of Persson theory [23, 24]:
reducing λl is equivalent to decreasing magnification which rises κ. Note
that our results for κ are not confined between the asymptotic limits of the
BGT [5] κBGT =

√
2π and Persson theories κP =

√

8/π [23], as was generally
observed by other authors [6, 7, 16, 10].

6 Phenomenological Contact Evolution Law

In light of these results, we propose a new phenomenological contact evolution
law which is based on our observations of the change in the mean contact
pressure p̄ = F/A with respect to the applied pressure p0 = F/A0 depicted
in Fig. 4. For considered interval of contact areas A/A0 ∈ [0.01, 0.11] the
decay of ∂p̄/∂p0 can be approximated by power-law ∂p̄/∂p0 = β(A0/A)

µ,
0 < µ < 1. Therefore, we obtain (for details see appendix the evolution of
the real contact area as

A/A0 =

(

β +
[

κp0/(
√

〈|∇h|2〉E∗)
]µ−1

)1/(µ−1)

(2)

where κ is still a proportionality constant between the area and normalized
force for infinitesimal pressures, two other constants µ and β can be easily

9



and uniquely found from the data analysis. For converged results λl = L/16,
λs = L/32 by fitting the normalized inverse mean pressure (Fig. 3) we found
κ = (1.145 ± 0.002)

√
2π, which is about 15% higher than the asymptotic

limit of the BGT theory [5]. From Fig. 4 we uniquely obtain µ = 0.55±0.02,
β = 0.210± 0.005.

7 Conclusions

To study the growth of the real contact area between rough self-affine man-
ifolds we obtained statistically meaningful results for different cutoff wave-
lengths and Hurst exponents. We demonstrated that the real contact area
evolves nonlinearly with applied force even for reasonably small contact frac-
tions A/A0 < 0.1. Note that an almost linear evolution was observed for
rough contact between elasto-plastic materials [24, 12, 14], however, in this
case the Johnson’s assumption [17] on replacing two deformable solids by
one solid with effective elasto-plastic properties and superposed roughnesses
is not verified and a full simulation of two deformable solids is required.

In conclusion, we state that to obtain realistic results in rough contact
analysis, one needs to construct representative surfaces. This representativity
necessarily requires the long wavelength cutoff to be significantly smaller
than the specimen size λl ' L/16. The Hurst exponent does not change
the evolution of the real contact area with load if both the representativity
and the smoothness of surfaces are maintained. To describe the evolution
of the real contact area we proposed a new phenomenological law which
describes well our results for moderate pressures and reduces to the classical
BGT law [5] in the limit of infinitesimal contact fractions. However, further
work is required to verify the universality of this law. In perspective we aim
to study the pressure distribution and the evolution of the contact area up
to the full contact, for which the numerical results should be in a better
agreement with Persson theory [23, 24]. An important question, which we
could not answer in our study, is how the bandwidth parameter influences the
mechanical behavior of rough surfaces. To address it, one needs to carry out
numerical simulations on a considerably finer discretization of surfaces than
was reported here. We hope that our results will motivate new simulations
based on the notion of representativity and taking into account friction, visco-
plasticity, adhesion and surface energy.

The financial support from the European Research Council (ERCstg
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∂p̄/∂p0 decreases nonlinearly with increasing fraction of the real contact area
A/A0. We plot its evolution for different Hurst roughness exponents and cut-
off wavelengths λl = L, L/8, L/16 and (a) λs = L/32, (b) λs = L/128. For
representative surfaces the results can be roughly approximated by a power law
∂p̄/∂p0 = β(A0/A)

µ; solid line corresponds to parameters β = 0.21, µ = 0.55,
which fit well our results for representative λl = L/16 smooth surfaces.
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8 Appendix: representativity of rough sur-

faces

The generation of realistic surfaces is the basis for a numerical analysis of
the contact interaction between solids. It is widely acknowledged that real
surfaces obey the property of self-affinity [17, 2] over many spatial scales.
Self-affine surfaces can be described by a power spectrum density (PSD)
C(k) following a power law of a wavenumber k = L/λ

C(k) ∼ k−2(H+1) (3)

where H is the so-called Hurst roughness exponent H ∈ (0, 1). In reality the
PSD may be considered confined between two cutoff wavenumbers: ks and
kl corresponding to short and long wavelengths λs and λl, respectively. To
be representative, a surface has to obey a statistically relevant distribution
of heights so that, its global mechanical response computed with periodic
boundary conditions is equivalent to the response of any statistically similar
rough surface. Since the mechanical response of the generated surfaces is
affected by their height distributions and the PSD, the surface generation
procedure has to include both of them into consideration. While the typ-
ical PSD of self-affine surfaces is easily obtained using a random midpoint
algorithm [13] or by filtering a white noise [26], the normality of the height
distribution of simulated surfaces was, to the best of our knowledge, often
ignored.

We will demonstrate that even if available numerical techniques permit
to generate a self-affine surface with a small error on the resulting PSD, the
distribution of heights strongly depends on the range of wavelengths [λs, λl]
included in the spectrum. In order to quantify the deviation from a Gaussian
distribution of heights we introduce the integral L2 error:

ε(S,N) =

√

√

√

√

√

+∞
∫

−∞

∣

∣G(h, h̄(S), σ(S))− P S
N(h)

∣

∣

2
dh

where the mean height h̄(S), the standard deviation σ(S), and the probability
density function (PDF) of heights P S

N are extracted from surface S and where

12



N is the number of bins used to evaluate the PDF of the surface. The function
G stands for the normal distribution

G(h, h̄, σ) =
1√
2πσ

exp

[−(h− h̄)2

2σ2

]

This measure of the surface representativity has been used in a parametric
study to identify the effect of the selected wavelength band [λs, λl].
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FIG. 5: Mean deviation from the Gaussian distribution (computed over 30
surfaces) with respect to the high cutoff wavenumber ks. Various low cutoff
wavenumber kl are presented by several curves. The Hurst roughness exponent
for all surfaces is H = 0.8 and the root mean squared height is rms = 0.1, each
surface consists of 10242 points.

We have synthesized a large set of self-affine rough surfaces (30 per each
combination of λl and λs) containing 1024×1024 points by using the filtering
technique described in [26]. Fig. 5 represents the average error over generated
surfaces for Hurst exponent H = 0.8 and the number of bins N = 500. It can
be observed that the error decreases with increasing ks for all kl. However, the
value of kl dictates the order of magnitude of the error for all ks. Therefore
we may assume that for kl = 16 and ks ≥ 32 the heights distributions of
generated surfaces do not deviate significantly (in average) from the normal
one.
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9 Appendix: contact evolution law

According to the simulations, the change of the mean contact pressure p̄ =
F/A with external pressure p0 = F/A0 decreases approximately as a power
law of the real contact area fraction A/A0:

∂p̄

∂p0
= β

(

A0

A

)µ

, β > 0, 0 < µ < 1 (4)

In the limit of small contact we suppose the classical linear relation between
A/A0 and p0

A

A0
=

κ
√

|∇h|2E∗
p0.

However, in contrast to the Bush-Gibson-Thomas model [5] there is no need
to analyze unreachably small fractions of the real contact area. In the limit
of the full contact the smoothness of the function is lost

{

∂p̄
∂p0

= β, when A → A0 and A0 − A > 0,
∂p̄
∂p0

= 1, when A = A0

(5)

In other words the slope of the real contact area is inversely proportional to
the contact pressure pfull

0 needed to establish full contact with the coefficient of
proportionality d(A/A0)/dp0 = (1− β)/pfull

0 however, this theory is supposed
to be valid only in the range of moderate forces, far from the full contact
range. Solving Eq. (4) gives the following law for the evolution of the real
contact area

A

A0

=
1

[

β +

(√
|∇h|2E∗

κp0

)1−µ
]1/(1−µ)

,

for the considered case we found κ = (1.145 ± 0.002)
√
2π ≈ 2.870 ± 0.005,

µ = 0.55± 0.02, β = 0.210± 0.005.

9.1 Details of the CEL derivation

Starting with the observation that

∂p̄

∂p0
= β

(

A0

A

)µ

(6)

14



Developing the left part gives

p̄ = F/A, p0 = F/A0 ⇒ ∂p̄

∂p0
= A0

A− F∂A/∂F

A2

Substituting this expression in the left part of (6) gives

A− F ∂A
∂F

A2
=

β

A0

(

A0

A

)µ

(7)

Grouping terms gives

F
∂A

∂F
= A− βA0

(

A0

A

)µ−2

Separating variables and integration of both sides reads as

A
∫

Ac

d(A/A0)

A/A0 − β (A/A0)
2−µ =

F
∫

Fc

dF

F
(8)

1

µ− 1
ln

(

(A/A0)
µ−1 − β

(Ac/A0)
µ−1 − β

)

= ln(F/Fc)

Let Fc → 0, Ac → 0 and if at very small pressures the real contact area is
proportional to the normal force with coefficient κ, then

Ac =
κ

√

|∇h|2E∗
Fc

Substituting this limit in the bottom boundary of the left integral in Eq. (8)
and integrating, one obtains

1

µ− 1
ln











(A/A0)
µ−1 − β

(

κ√
|∇h|2E∗

Fc/A0

)µ−1

− β











= ln(F/Fc)

Since µ− 1 < 0 and Fc tends to zero we can neglect β in the denominator

1

µ− 1
ln











(A/A0)
µ−1 − β

(

κ√
|∇h|2E∗

Fc/A0

)µ−1











= ln(F/Fc)
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Taking the exponential of both parts one gets:

(A/A0)
µ−1 − β

(

κ√
|∇h|2E∗

Fc/A0

)µ−1 = (F/Fc)
µ−1

Now we can express the real contact area fraction A/A0 as a function of the
applied pressure p0 = F/A0:

A

A0
=



β +

(

κp0
√

|∇h|2E∗

)µ−1




1/(µ−1)
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[9] A. Almqvist, C. Campañá, N. Prodanov, and B. N. J. Persson. Inter-
facial separation between elastic solids with randomly rough surfaces:
Comparison between theory and numerical techniques. J Mech Phys

Solids, 59:2355–2369, 2011.

[10] R. Pohrt and V. L. Popov. Normal contact stiffness of elastic solids with
fractal rough surfaces. Phys Rev Lett, 108:104301, 2012.
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