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Abstract. In this paper we prove some properties of the indefinite
Lorentzian para-Sasakian manifolds. Section 1 is introductory. In Sec-
tion 2 we define D-totally geodesic and D+-totally geodesic contact CR-
submanifolds of an indefinite Lorentzian para-Sasakian manifold and de-
duce some results concerning such a manifold. In Section 3 we state and
prove some results on mixed totally geodesic contact CR-submanifolds
of an indefinite Lorentzian para-Sasakian manifold. Finally, in Section
4 we obtain a result on the anti-invariant distribution of totally umbilic
contact CR-submanifolds of an indefinite Lorentzian para-Sasakian man-
ifold.

1 Introduction

Many valuable and essential results were given on differential geometry with
contact and almost contact structure. In 1970 the geometry of cosymplectic
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manifold was studied by G. D. Ludden [14]. After them, in 1973 and 1974, B. Y.
Chen and K. Ogive introduced the geometry of submanifolds and totally real
submanifolds in [8], [17], [7]. Then K. Ogive expressed the differential geometry
of Kaehler submanifolds in [17]. In 1976 contact manifolds in Riemannian
geometry were discussed by D. E. Blair [5]. Later on, A. Bejancu discussed CR-
submanifolds of a Kaehler manifold [1], [2], [4], and then, K. Yano and M. Kon
gave the notion of invariant and anti invariant submanifold in [13] and [21]. M.
Kobayashi studied CR-submanifolds of a Sasakian manifold in 1981 [12]. New
classes of almost contact metric structures and normal contact manifold in
[18], [6] were studied by J. A. Oubina, C. Calin and I. Mihai. A. Bejancu and
K. L. Duggal introduced (€)-Sasakian manifolds. Lightlike submanifold of semi
Riemannian manifolds was introduced by K. L. Duggal and A. Bejancu [10],
[9]. In 2003 and 2007, lightlike submanifolds and hypersurfaces of indefinite
Sasakian manifolds were introduced [11]. Lastly, LP-Sasakian manifolds were
studied by many authors in [15], [16], [19], [20].

In this paper we define D-totally and D*- totally geodesic contact CR-
submanifolds of an indefinite Lorentzian para-Sasakian manifold and prove
some interesting results.

An n-dimensional differentiable manifold is called indefinite Lorentzian para-
Sasakian manifold if the following conditions hold

O X =X+n(X)E, Mmod=0, ¢&=0, (&) =1, (1)
§(dX, dY) = a(X,Y) — en(Xn(Y), (2)
§(X, &) = en(X), (3)

for all vector fields X,Y on M [5] and where € is 1 or —1 according to & is
space-like or time-like vector field.

An indefinite almost metric structure (¢, &, 1, g) is called an indefinite Lorentzian
para-Sasakian manifold if

(Vxd)Y = g(X, V)& + en(Y)X + 2en(X)n(Y)E, (4)

where V is the Levi-Civita (L — C) connection for a semi-Riemannian metric
g. Also we have

@XE» - €d)X, (5)

where X € TM.
From the definition of contact CR-submanifolds of an indefinite Lorentzian
para-Sasakian manifold we have
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Definition 1 An n-dimensional Riemannian submanifold M of an indefinite
Lorentzian para-Sasakian manifold M is called a contact CR-submanifold if

i) & is tangent to M,

ii) there exists on M a differentiable distribution D : x — Dy C Tx(M),
such that Dy is invariant under ¢; i.e., $Dx C Dy, for each x €
M and the orthogonal complementary distribution D+: x — DL C
T (M) of the distribution D on M is totally real; i.e., ¢D3 C THM),
where Ty (M) and T-(M) are the tangent space and the normal space of
M at x.

D (resp. D*) is the horizontal (resp. vertical) distribution. The contact CR-
submanifold of an indefinite Lorentzian para-Sasakian manifold is called &-
horizontal (resp. &-vertical) if &x € Dy (resp. &x € Dy) for each x € M by
[12].

The Gauss and Weingarten formulae are as follows

VxY = VxY + h(X,Y), (6)
VxN = —AnX + VxN, (7)

for any X,Y € TM and N € T+M, where V- is the connection on the normal
bundle T*M, h is the second fundamental form and Ay is the Weingarten
map associated with N via

g(ANX,Y) = g(h(X,Y),N). (8)
The equation of Gauss is given by
R(X,Y,Z,W) =R(X,Y,Z,W)+g(h(X, Z),h(Y,W)) — g(h(X, W), h(Y, Z)), (9)

where R (resp. R) is the curvature tensor of M (resp. M).
For any x € M, X € TuM and N € T M, we write

X = PX + QX (10)
N = BN + CN, (11)

where PX (resp. BN) denotes the tangential part of X (resp. ¢N) and QX
(resp. CN) denotes the normal part of X (resp. $N) respectively.
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Using (6), (7), (10), (11) in (4) after a brief calculation we obtain on com-
paring the horizontal, vertical and normal parts

PVxbPY — PAyovX = GPVXY + g(PX, V)& + en(Y)PX 4 2en(Y)n(X), (12)
QVx¢PY + QApovX = Bh(X,Y) + g(QX, Y)E + en(Y)QX, (13)
h(X, dPY) + VxdQY = dQVxY + Ch(X,Y). (14)

From (5) we have

VxE = edPX, (15)
h(X, &) = edpQX. (16)

Also we have

h(X,&) =0 if XeD, (17)
Vxé =0, (18)
h(E, &) =0, (19)
ANE € DL (20)

2 D-totally geodesic and D-+-totally geodesic con-
tact CR-submanifolds of an indefinite Lorentzian
para-Sasakian manifold

First we define the D-totally (resp. D*-totally) geodesic contact CR-submanifold
of an indefinite Lorentzian para-Sasakian manifold.

Definition 2 A contact CR-submanifold M of an indefinite Lorentzian para-
Sasakian manifold M is called D-totally geodesic (resp. D*-totally geodesic)
ifh(X,Y) =0,V X,YED (resp. X,Y € D4).

From the above definition, the following propositions follow immediately.

Proposition 1 Let M be a contact CR-submanifold of an indefinite Lorentzian
para-Sasakian manifold. Then M is a D-totally geodesic if and only if
AnX € Dt for each X € D and N a normal vector field to M.

Proof. Let M be D-totally geodesic. Then from (8) we get

g(h(X,Y),N) = g(AnX,Y) =0.
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So if
h(X,Y)=0, V X, Ye D

i.e.,

AnX € DL
Conversely, let AnX € D-. Then for X, Y € D we can obtain

9(ANX,Y) =0 = g(h(X,Y),N)

ie.,

h(X,Y) =0

vV X, Y € D, which implies that M is D-totally geodesic. Thus our proof is
complete. 0

Proposition 2 Let M be a contact CR-submanifold of an indefinite Lorentzian
para-Sasakian manifold M. Then M is D+-totally geodesic if and only if
AnX € D for each X € D+ and N a normal vector field to M.

Proof. The proof follows immediately from the above proposition. O

Concerning the integrability of the horizontal distribution D and vertical
distribution D+ on M, we can state the following theorem:

Theorem 1 Let M be a contact CR-submanifold of an indefinite Lorentzian
para-Sasakian manifold. If M is &-horizontal, then the distribution D is inte-
grable iff

h(X, dY) = h(dX,Y) (21)

YV X, Ye D. If M is &-vertical then the distribution D+ is integrable iff
AgpxY — AgpyX = em(Y)X —n(X)Y] (22)
vV X, Ye Dt
Proof. If M is &-horizontal, then using (14) we get
h(X, dpPY) = dQVxY + Ch(X,Y)
V X, Y& D. Therefore [X,Y] € D iff h(X ¢Y)=nh(Y,PpX)

Hence, if M is &-horizontal, [X,Y] € D iff h(X, dY) = h(dX,Y).
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Again using (14) we get
Vx®dY = Ch(X,Y) + $QVxY (23)
for X, Y € DL

After some calculations we see that

VxdY = g(X, )&+ en(Y)X + 2en(YIn(X)E + PVxY

(24)
+ dQVxY + Bh(X,Y) + Ch(X,Y).
Again from (7) and (24) we get
VY = AgyX + g(X, )& + en(Y)X + 2en(YV)n(X)E (25)

+ dPVXY + dQVXY + Bh(X,Y) + Ch(X,Y)
for X,Y € D+. From (24) and (25) we can write
PPVXY = —AgpyX — g(X,Y)E — en(Y)X — Zen(YIn(X)E — Bh(X,Y).  (26)
Interchanging X and Y in (26) we get
PPVYX = —AgxY — g(X, Y)E — en(X)Y — 2en(Ym(X)& — BR(X,Y).  (27)
Substracting (27) from (26) we have
GPIX, Y] = —AgyX + ApxY — en(Y)X + en(X)Y. (28)
Now since M is &-vertical, [X,Y] € DL iff
ApxY — ApyX = eMm(Y)X —n(X)Y].

So the proof is complete. O

D-umbilic (resp. D+-umbilic) contact CR-submanifold of indefinite Lorentzian
para-Sasakian manifold is defined as follows:

Definition 3 A contact CR-submanifold M of an indefinite Lorentzian para-
Sasakian manifold is said to be D-umbilic (resp. Dt-umbilic) if h(X,Y) =
g(X,Y)L holds for all X,Y € D (resp. X,Y € D+), L being some normal vector
field.
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In view of the above definition we state and prove the following proposition:

Proposition 3 Suppose M is a D-umbilic contact CR-submanifold of an in-
definite Lorentzian para-Sasakian manifold M. If M is &-horizontal (resp. &-
vertical) then M is D-totally geodesic (resp. D+-totally geodesic).

Proof. Consider M as D-umbilic &-horizontal contact CR-submanifold. Then
we have from Definition 3

h(X,Y)=g(X,Y)L V X,Ye D,

L being some normal vector field on M. By putting X =Y = & and using (19)
we have

h(, &) =g(& &)L

le. L=0,
and consequently we get h(X,Y) = 0, which proves that M is D-totally
geodesic.

Similarly, it can be easily shown that if M is D+-umbilic &-vertical contact
CR-submanifold then it is D-'-totally geodesic. O

3 Mixed totally geodesic contact CR-submanifolds
of indefinite Lorentzian para-Sasakian manifold

In this section we define mixed totally geodesic contact CR-submanifolds of
an indefinite Lorentzian para-Sasakian manifold (followed [12]).

Definition 4 A contact CR-submanifold M of an indefinite Lorentzian para-
Sasakian manifold M is said to be mized totaly geodesic if h(X,Y) =0V X €D
and Y € Dt

Then we extract the following lemma and theorem

Lemma 1 Let M be a contact CR-submanifold of an indefinite Lorentzian
para-Sasakian manifold. Then M is mized totally geodesic iff

AnX € D, VYV XeD, and V normal vector field N, (29)
AnX € Dt V Xe Dt and V normal vector field N. (30)
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Proof. If M is mixed totally geodesic, then from (8), we get
h(X,Y) =0,

ie, iff AnNX € D,V X € D and V normal vector field N. Conversely, if M
is mixed totally geodesic, then using (8) we easily observe that AxX € D+,
¥ X € D+ and V normal vector field N.

Hence the lemma is proved. ]

Using condition (29) we obtain the following theorem

Theorem 2 If M is a mized totally geodesic contact CR-submanifold of an
indefinite Lorentzian para-Sasakian manifold, then

ApnX = —PpANX, (31)
VXN = pVLN (32)

V X € D andV normal vector field N.
Proof. We get from (29), (6), (7) and after having some calculations we derive
VxdN = pVxN — pANX, (33)
VxdN = —ApnX + Vi ON. (34)

Comparing the above two equations we have the required theorem. Hence the
proof follows. O

Again we have the following definition

Definition 5 A contact CR-submanifold M of an indefinite Lorentzian para-
Sasakian manifold M is called foliate contact CR-submanifold M if D is invo-
lute. If M is a foliate &-horizontal contact CR-submanifold, we know from [3]

h($X, dY) = h(d?X,Y) = —h(X,Y). (35)
Considering the above definition we give the following proposition.

Proposition 4 If M is a foliate &-horizontal mixed totally geodesic contact
CR-submanifold M of an indefinite Lorentzian para-Sasakian manifold, then

PANX = AnDX (36)
for all X € D and normal vector field N.
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Proof. From (21) and (8) we compute the following:

i.e.
g(h(pX,Y),N) = g(ANnGX,Y).
Therefore
GANX = ANDX.
Hence the proof follows. O

4 Anti-invariant distribution D+ on totally umbili-
cal contact CR-submanifold of an indefinite
Lorentzian para-Sasakian manifold

Here we consider a contact CR-submanifold M of an indefinite Lorentzian
para-Sasakian manifold M. Then we establish the following theorem.

Theorem 3 Let M be a totally umbilical contact CR-submanifold of an in-
definite Lorentzian para-Sasakian manifold M. Then the anti invariant distri-
bution D+ is one dimensional, i.e. dimD+=1.

Proof. For an indefinite Lorentzian para-Sasakian structure we have
(VZP)W = g(Z,W)E + en(W)Z + 2en(W)n(Z)E. (37)

Also by the covariant derivative of tensor fields (for any Z,W € TI'(D+) we
know B B .
V26W = (V20)W + VW, (38)

Using (37), (38), (6), (7) and (4) we obtain
VW — g(H, dW)Z = Gp[V W + g(Z, W)H] + g(Z, W)E

(39)
+en(W)Z + 2en(Wn(Z)¢&
for any Z, W € I'(D14).
Taking the inner product with Z € T'(D+) in (39) we obtain
—g(H, dW)|I1ZII* = g(Z, W)g(dH, Z) + en(W)[|Z|I* + 9(Z, W)g(E, Z) (40)

+2n(Wn(Z)g(Z, &).
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Using (2) after a brief calculation we have

g(Z,W)g(dH,Z) g(Z,W)g(§, Z)
H, pW) = — -
9, oW 1z 122
9(Z,£)%g(W, &)

1Z]1?

—eg(W, &) -2

Interchanging Z and W we have

g(Z,W)g(dH,W)  g(Z,W)g(E, W)
H,¢Z) =— —
91, ¢2) w2 w2
g(vv,a)zg(z,a)_
wl*

Substituting (41) in (40) and simplifying we get

(42)

- eg(z)a) _2

—9(Z,8)]

2
g(H, W) [1 9(Z,W) ]_Q(Z»W) 9(Z,W)g(E, W)

1Z]1%[wW? 1Z)? W2

6(Z,W)gl£, 2)
—€|———————gW, &
) [ 1ZIP ( )]

9(Z,W)g(W,&) g(Z,W)
—29(z, w, _
oz Elol E’)[ Wz 1ZIP

The equation (43) has a solution if Z || W, i.e. dim D+=1.
Hence the theorem is proved. ]

Example 1 Let R3 be a 3-dimensional Euclidean space with rectangular co-
ordinates (x,y,z). In R3 we define
N =—dz—ydx &E==

PR =5 GG =g v olF)=0

The Lorentzian metric g is defined by the matriz:

—ey? 0 ey
0 0 0 .
ey 0 —e
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Then it can be easily seen that (§, &,1, g) forms an indefinite Lorentzian para-
Sasakian structure in R3 and the above results can be verified for this example.
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