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The creep compliance of viscoelastic materials such as synthetic polymers is an

established metric of the rate at which strain increases for a constant applied stress and

can, in principle, be implemented at the nanoscale to compare quantitatively bulk or

thin film polymers of different structures or processing histories. Here, we outline the

evolution of contact creep compliance analysis and application for both conical and

spherical indenter geometries. Through systematic experiments on four amorphous

(glassy) polymers, two semi-crystalline polymers and two epoxies, we show that

assumptions of linear viscoelasticity are not maintained for any of these polymers

when creep compliance is measured via conical indentation at the nanoscale, regardless

of the rate of stress application (step or ramp). Further, we show that these

assumptions can be maintained to evaluate the contact creep compliance Jc(t) of these

bulk polymers, regardless of the rate of stress application, provided that the contact

strains are reduced sufficiently through spherical indentation. Finally, we consider the

structural and physical properties of these polymers in relation to Jc(t), and

demonstrate that Jc(t) correlates positively with molecular weight between

entanglements or crosslinks of bulk, glassy polymers.

I. INTRODUCTION

Devices composed of small volumes of time-

dependent materials, such as polymeric thin films, hy-

drated biological scaffolds, and microelectronic packag-

ing, require mechanical characterization not attainable

through well-developed methods suitable for bulk mate-

rials. Several categories of nanomechanical testing exist,

including quasistatic nanoindentation,1 dynamic nanoin-

dentation,2,3 nanomechanical contact creep,4–10 and im-

pulse indentation.11 However, few analytical methods to

interpret time-dependent material responses have been

proposed that do not assume the material to be well-

described as a linear viscoelastic solid. Despite frequent

application of this assumption, this idealized response is

not maintained in most nanomechanical experimental

conditions on polymers, and this assumption can thus

propagate quantitative and qualitative errors in analysis

of polymer deformation. Time-dependent materials will

behave as linear viscoelastic solids below a material-

dependent, limiting elastic strain on the order of 1–2%.

Stress, and thus strain, imposed on the material under

contact loading such as nanoindentation may be reduced

by decreasing the magnitude of the applied force P or by

increasing the area over which P acts on the material.

However, most instrumented nanoindenters have a fixed

load range over which data can be acquired accurately,

such that the indenter geometry and corresponding shape

function are important experimental factors.

Nanomechanical creep testing has significant potential

for interpreting the mechanical responses of polymers

because the material response inherently includes time-

dependent deformation. The shear creep compliance J(t)

is strictly defined as the change in strain as a function

of time under instantaneous application of a constant

stress, or

J�t� =
��t�

�o

, (1)

and provides a means to quantify the capacity of a ma-

terial to flow in response to a sudden applied stress.12

Although conventional measurements of J(t) included

uniaxial or simple shear stress, researchers have increas-

ingly reported creep compliance interpretations of instru-

mented (conical and spherical) indentation experiments

on bulk or thin film polymers. However, due to the non-

linearities in material behavior and contact mechanics,

current experimental investigations of creep compliance
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typically assume particular linear viscoelastic models to

fit the creep response. Figure 1 schematically illustrates

the linear viscoelastic creep response at various applied

stresses. The doubling of the instantaneous and constant

applied stress �1 exactly doubles the strain �(t) for any

time t during creep [Fig. 1(a)]. It is well-established that

the creep compliance J(t) for a linear viscoelastic mate-

rial is invariant with applied stress [Fig. 1(b)] due to the

linear relationship between stress and strain at any time

point for such materials. Referencing Eq. (1), a polymer

for which J(t) changes as a function of maximum instan-

taneous stress � does not conform to the assumptions of

linear viscoelasticity. That is, J(t)/�(t) � k where k is a

constant, due to the nonlinear constitutive relations of

that particular polymer and/or to induced strain in excess

of the linear viscoelastic strain limit for that material. In

either case, polymers that do not exhibit J(t)/�(t) � k for

a given indenter geometry and load/stress range cannot

be characterized accurately by models that implicitly as-

sume a purely linear viscoelastic response. Further, the

models from which most expressions for creep compli-

ance J(t) expressions are derived were developed to de-

termine the pressure distribution for axisymmetric in-

denter contact on viscoelastic solids12,13 and simplified

for the case of step loading. In actuality, few nanome-

chanical instruments can attain the step-load condition

because of limitations in speed of data acquisition and in

force resolution. Thus, “quasi-step” loading, where the

minimum loading time documented thus far for the step-

load experiment is 1 s,5,6,14 is often used. Loading rate

has been demonstrated to have an effect on the creep

response,5,9 and corrections for ramp loading have been

proposed for a specific linear viscoelastic constitutive

relation.10

In attempts to attain the linear viscoelastic deformation

regime during indentation-enabled creep, several studies

have included rounded conical probes (R � 10 and

20 �m,6,14,15) and spherical probes (R � 3.4 �m5 to

150 �m10). However, it is not generally considered or

demonstrated whether polymers conform to the idealized

linear viscoelastic response of Fig. 1(b) under the contact

creep conditions used, with notable exceptions.7,10 Often,

Jc(t) is evaluated among polymers for only a single

Pmax,9,14 such that load dependence cannot be ruled out.

Lu et al. posited that, because indentations below a criti-

cal indentation depth (unique to each of two amorphous

polymers considered) were not observable post-

indentation via scanning electron microscopy, recovery

implied linear viscoelasticity.5 However, such indenta-

tion recovery does not ensure a linear path in either load-

ing or unloading; linear viscoelastic deformation of these

materials under indentation was neither proved nor dis-

proved. Recent approaches to determination of Jc(t) or

linear viscoelastic operators based on the contact creep

response are summarized in Sec. II. C, including those

that also consider the limits of a linear viscoelastic creep

response. As Jc(t) is often interpreted within the frame-

work of phenomenological models of linear viscoelastic

behavior, for which there can be several distinct forms

that reasonably fit a measured contact creep response, it

is useful to also consider how Jc(t) can be related to the

structure and physical properties of polymers.

The contact creep compliance Jc(t) is calculated herein

primarily to demonstrate when the implicit assumption of

linear viscoelastic deformation is obtained experimentally

FIG. 1. (a) Ideal linear viscoelastic behavior is illustrated as strain � as

a function of time during creep tc for three instantaneous and constant

levels of applied stress �i. (b) Creep compliance J(t) for a linear

viscoelastic material is characteristic of that material and independent

of �i.
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and to consider how the material response changes with

both polymer/monomer structure and loading conditions.

Creep compliance formulations for conical and spherical

indenter geometries are outlined and compared, and re-

cent extensions are discussed. The contact creep compli-

ance of eight bulk (semicrystalline and amorphous) poly-

mers is then characterized with a Berkovich indenter that

can be approximated as a conical geometry; none of the

polymers behave as linear viscoelastic materials under

these conditions. In contrast, the creep compliance of a

subset of these same polymers under the same creep

loads exhibits linear viscoelastic behavior for a spherical

indenter of R � 500 �m. These results illustrate the limit

of linear viscoelastic analyses in nanomechanical creep

compliance characterization and also demonstrate the

relative effects of monomer structure, molecular steric

hindrance, and microstructure on the contact creep com-

pliance of bulk polymers.

II. BASIS AND IMPLEMENTATION OF CONTACT

CREEP COMPLIANCE SOLUTIONS

As demonstrated below, although the conditions re-

quired for accurate creep compliance determination ac-

cording to Eq. (1) are typically not maintained in inden-

tation-enabled creep experiments, this characterization of

time-dependent flow can be used to compare materials

and/or consider the microstructural determinants of poly-

mer deformation. For this reason, we delineate creep

measured via instrumented indentation as contact creep

compliance Jc(t), underscoring the fact that load and not

stress is maintained constant in such experiments. The

majority of viscoelastic solutions used to interpret con-

tact creep compliance derive from two independently ob-

tained derivations to the general problem of contact be-

tween a rigid symmetric body and a viscoelastic half-

space. These solutions for creep compliance in shear J(t),

reported by Lee and Radok (1960) and by Ting (1966),

were elegant responses to an analytical challenge: vis-

coelastic deformation for which the Laplace transform

could not be readily applied to predict stress distributions

under contact loading (see Appendix A). Here, we state

the relevant solutions of Lee and Radok (LR-) and Ting

(T-), and summarize recent implementation in experi-

mental investigations of creep for bulk and thin film

polymers.

A. Solutions for spherical indenter geometry

The LR-solution for creep compliance in shear under

spherical indentation where a � R under a constant ap-

plied load Po can be stated as

Jc�t� = �1 − ��J�t� =
8�R

3Po

�h�t��
3�2

� , (2)

whereas the T-solution for the same condition can be

stated as

��t� =
8�R

3Po

�h�t��
3�2

� , (3)

such that �(t) � (1 – �)J(t) for constant �, or �(t) �

1/2J(t) for incompressible materials for which � � 1/2.

Ting states that �(t) is of the general form of creep com-

pliance but does not explicitly equate �(t) to Jc(t). Nei-

ther solution of the pressure distribution actually requires

step-loading of the viscoelastic material, but both solu-

tions are simplified by this constraint and implicit in the

representations of Jc(t) for Eqs. (2) and (3).

B. Solutions for conical indenter geometry

Lee and Radok did not consider conical indenter ge-

ometries, presumably due to the constraint of “small

strains” imposed by linear viscoelastic operators. How-

ever, Ting presented a general solution for any smooth,

axisymmetric indenter profile and provided specific so-

lutions of total contact pressure for conical, spherical,

and paraboloidal (classic sphere for a � R) geometries.

The T-solution for �(t) � 1/2J(t) � Jc(t) under an in-

stantaneously applied and constant depth ho is generally

given by Eq. (A11) of Appendix A. For a conical in-

denter of semi-apex angle 	 � 
/2 – �, where � is the

angle between the material free surface and inclined in-

denter surface assumed by Ting, contact creep compli-

ance Jc(t) is

Jc�t� =
2
a

2
�t = 0�tan�

P�t�
. (4)

For the case more accessible to instrumented indenta-

tion experiments, an instantaneously applied and con-

stant force Po,

Jc�t� =
2
a

2
�t�tan�

Po

=
8tan�	�h2

�t�


Po

. (5)

As stated in Eq. (5), Jc(t) can be calculated directly

from experimentally measured h(t) for a known indenter

semi-apex angle 	. Although this calculation is straight-

forward and the average contact stress for a conical in-

denter is maintained constant by virtue of the self-similar

geometry, the stress singularity at the cone apex imme-

diately violates the assumption of linear (or small strain)

viscoelastic deformation.

Equations (2)–(5) represent the principal relations for

determining creep compliance from contact loading, i.e.,

indentation-enabled creep experiments. Equations (3)

and (5) are used to analyze the experiments in the present

study. These equations assume linear viscoelasticity but

do not assume any particular form of the constitutive

relation in terms of the nature of the linear viscoelastic
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operators. More simply, these solutions do not presup-

pose configurations of springs and dashpot elements that

describe phenomenologically the stress or strain of a real

polymer at short and long times. However, both Lee and

Radok13 and Ting12 illustrate an application for indenta-

tion of a Maxwell solid. Ting thus shows that a decrease

in applied load need not result in a decrease in contact

area for a conical indenter geometry—an analytical pre-

diction of the so-called “nose effect” observed during

indentation unloading of polymers under insufficiently

rapid unloading rates.16,17

C. Extensions and applications of Jc(t) models

Here, we briefly outline the extensions and adaptations

of these solutions by others who have subsequently de-

termined Jc(t) via indentation for specific polymers and

loading conditions. First, we consider approaches that do

not assume a particular form of the linear viscoelastic

operators and compare polymer response directly on the

basis of measured Jc(t).
5,7 Next, we consider approaches

that inherently assume a spring-dashpot constitutive re-

sponse of the polymer (such as the standard linear solid

model6,9,10,14,18) from which model-dependent constants

can be obtained.9,10,14 As discussed, it is possible to dem-

onstrate whether the condition of linear viscoelastic de-

formation is met with either approach.

Lu et al. adapted the solutions of Sneddon,19 Ting,12

and Lee and Radok13 to extract viscoelastic properties

from contact creep experiments via spherical and conical

indenter geometries.5 The authors found less than 10%

error of Jc(t) calculated during quasi-step loading with

conical or spherical indenters [for amorphous poly-

(methyl methacrylate) (PMMA) and polycarbonate

(PC)], in contrast to J(t) measured in separate experi-

ments via conventional uniaxial (PMMA) or shear (PC)

creep compliance measurements. However, the contact

creep conditions were not demonstrated to be indepen-

dent of creep load Po. In contrast, Van Landingham

et al.7 have recently applied Ting’s solution for a con-

stant applied load Po to compute Jc(t) for amorphous

(glassy) polymers and epoxies under conical indentation-

enabled creep experiments. The authors superposed a cy-

clic load during a dwelling period at each of several

distinct Po to obtain the projected contact area Ac(t) for

each data point during the dwelling period rather than

calculate Jc(t) directly from h(t) and found that none of

the polymers analyzed via Berkovich conical indentation

and Eq. (5) were well-described as linear viscoelastic:

Jc(t) was not independent of applied load.

Although Jc(t) can be determined quantitatively with-

out recourse to a particular linear viscoelastic constitu-

tive relations via Eqs. (2)–(5), the experimentally ob-

served h(t) can also be fit to a particular form of the creep

function. Yang et al.9 did not consider the elastic or

viscoelastic contact solutions rigorously but rather ap-

plied the constitutive relations for a Kelvin-type solid (a

series of parallelized springs Ei and and dashpots �i of

established �-� relations) to a flat punch to determine h(t)

and thus

J�t� =
h�t�

�ohin

= �
i

Ji , (6)

where hin is an empirically determined length scale, and

the form of Ji represents the number of Kelvin-type el-

ements in series that exhibit the characteristic depth de-

cay of (1 − et/

i). The authors considered several amor-

phous polymers but could not correlate known physical

or monomer structure/properties with the creep compli-

ance quantified in this way. In contrast, Cheng et al.14

and Oyen10 adapted the Lee and Radok-solution to in-

terpret spherical indentation creep on the basis of a stan-

dard linear solid model (i.e., a spring in series with a

Kelvin–Voigt parallel spring and dashpot), via the

method of Laplace transforms5,14 or direct solution of the

viscoelastic integral equations.10 Defining Jc(t) in terms

of a constitutive model enables tractable solutions of

constants defined by the model, but it is well understood

that the number and magnitude of linear operators (or

Prony series constants) is not unique and that several

such sets can accurately describe a measured creep re-

sponse. The resulting constants or material properties ex-

tracted from these fits necessarily depend on both the

material and the form of the constitutive model that de-

fines the creep function. Within a given study assuming

a specific model, results among polymers can be com-

pared, but it is then difficult to compare among studies or

interpret Jc(t) as a function of the structure and physical

properties of these polymers. Cheng et al. described Jc(t)

generally as

Jc�t� = �
i=1

N

Jie
−t�
i , (7)

where constants were determined through fits to experi-

mental data and represented rather involved algebraic

functions of the simple linear solid constitutive relations

from which element constants E1, E2, and � could ulti-

mately be determined. The authors found that the inden-

tation elastic modulus Ei agreed well with E1 extracted

from the creep-type experiments for amorphous polysty-

rene and semicrystalline polymer poly(vinyl alcohol) at

very low relative humidity (10%) but disagreed signifi-

cantly at higher relative humidity, attributing this dis-

crepancy in part to increased viscoelasticity under higher

humidity. Oyen tested the applicability of the standard

linear solid model to several polymer films by fitting a

different linear viscoelastic creep function for a spherical

indenter geometry (R � 150 �m) under single-ramp and
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multi-step ramp loading to extract associated time con-

stants and instantaneous shear modulus G.10 Successful

prediction of h(t) was demonstrated for an order of mag-

nitude increase in loading time (20 to 200 s) and a factor

of two increase in maximum load (50 to 100 mN), indi-

cating that this linear viscoelastic material model could

be applied to contact creep analysis under specific (load-

ing and environmental) conditions. That is, rather than

showing that measured Jc(t) was independent of load, the

author demonstrated additivity required of linear vis-

coelasticity: the creep function form accurately predicted

the h(t) response measured at multiple creep loads.10

In the present study, we sought to determine the ex-

perimental conditions under which the assumptions im-

plicit in Eqs. (2)–(5) hold, such that Jc(t) can be meas-

ured within the linear viscoelastic regime. Further, rather

than fit Jc(t) to a particular linear viscoelastic constitutive

model, we considered Jc(t) as it relates to the molecular

structure and physical properties of a range of well-

characterized bulk polymers.

III. EXPERIMENTS

A. Materials

Common engineering polymers with relatively simple

monomer structures were chosen for these contact creep

experiments. These materials included four injection-

molded, amorphous polymers [PC, polystyrene (PS), and

PMMA of two different weight-average molecular

weights Mw, commercially named Lucite (LU) and Plexi-

glas (PL)], as well as two epoxies in which the effective

structural length scale is the molecular weight between

crosslinks Mc: E3 (Mc � 380 g/mol) and E8 (Mc �

818 g/mol) as reported by Lesser et al.20 In such chemi-

cally crosslinked, amorphous polymers, molecular chain

mobility, or the ability for a given macromolecular chain

to displace with respect to the network, increases with

increasing Mc.
21 In addition, two injection molded, semi-

crystalline polymers were considered [polyethylene (PE)

of 69% crystallinity and polypropylene (PP) of 58%

crystallinity, as determined by small-angle x-ray diffrac-

tion]. The monomer structure, glass transition tempera-

ture Tg, and Mw for each polymer are listed in Table I. All

polymers were stored and tested at ambient temperature

and relative humidity (T � 22.2 °C, RH < 55%). The Tg

of all polymers excluding epoxies was measured via dif-

ferential scanning calorimetry (DSC) as reported by the

manufacturer (DuPont, Wilmington, DE) and confirmed

in the present study, while the Mw was determined by the

manufacturer via gel permeation chromatography (GPC).

B. Instrumented indenter-enabled contact

creep testing

Nanoindentation-enabled creep experiments were con-

ducted on an instrumented nanoindenter (MicroMateri-

als, Ltd., Wrexham, UK) to obtain indenter displacement

into each polymer surface as a function of maximum load

Pmax, loading rate dP/dt, and indenter geometry. Indenter

geometries included a diamond Berkovich (trigonal pyra-

mid) indenter of cone-equivalent semi-apex angle 	 �

71° and a ruby sphere of radius R � 500 �m.

As-processed root-mean-square sample surface rough-

ness was <20 nm for all samples, as measured via con-

tact-mode scanning-probe microscopy (3DMFP, Asylum

Research, Santa Barbara, CA). Samples were stored in

dessicators before and after testing, and surfaces were not

chemically or mechanically modified prior to experimen-

tation. Polymers were aged 2 h prior to testing in an

instrument chamber that maintains humidity at 55% rela-

tive humidity (RH).

Creep tests were conducted to several Pmax (1, 5, 10,

and 15 mN) for each of two dP/dt [ramp loading

TABLE I. Model polymer systems.

Polymer name Structural formula Tg (°C) Mw (g/mol)

Polyethylene −30 85,195

PE

Polypropylene 6 343,326

PP

Polystyrene 103 248,670

PS

Poly(methyl methacrylate)

LU: Lucitea 114 1,042,916

PL: Plexiglasb 117 2,588,744

Polycarbonate 145 18,000

PC

Epoxy ��� Mc:

E3 380

E8 818

aRohm and Haas.
bIneos Acrylics.
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(0.5 mN/s) and rapid “quasi-step” loading (0.5 s to

Pmax)], as well as to Pmax � 30 mN for ramp loading

only. The quasi-step loading over a constant elapsed time

required variation of loading rates to ensure sufficient

data point acquisition at increased speeds (2, 10, 20, and

30 mN/s). For each pair (Pmax, dP/dt), constant load Pmax

� Po was maintained for 10, 60, or 100 s to acquire h(t).

During this holding period approximating creep condi-

tions, P did not vary more than 2%; for “quasi-step”

loads, the overshoot of the desired Po did not exceed 10%

for the range of polymers considered. Indentation depths

ranged between 300 and 2500 nm for experiments with

the Berkovich indenter geometry and between 50 and

300 nm for the spherical indenter geometry. Typical drift

in the displacement signal at room temperature is 0.01

nm/s. Each sample was tested at least in triplicate for

each loading condition for the Berkovich indenter geom-

etry. The two epoxy samples were tested in triplicate to

all loading conditions with both the Berkovich and

spherical indenter geometries. Equation (3) or (5), as

appropriate for the indenter geometry used, was fit to the

acquired h(t) response, where tc is the elapsed time after

attainment of the maximum contact load Po via step or

ramp loading; that is, both step and ramp loading creep

were evaluated from h(tc � 0).

IV. RESULTS AND DISCUSSION

A. Nanoindentation contact creep with a

sharp indenter

1. Nonlinear viscoelastic deformation

Eight common engineering polymers, with monomer

structures and physical properties outlined in Table I,

were evaluated at several distinct Pmax values with a

Berkovich (sharp trigonal pyramid) indenter. The con-

tact creep compliance, calculated using the model-

independent formulation of Jc(t) in Eq. (5), exhibited a

positive dependence on increasing Pmax for all the poly-

mers tested, confirming nonlinear viscoelastic behavior

under these contact creep conditions for structurally

simple amorphous polymers. Similar values for contact

creep compliance of polymeric materials with a Berko-

vich indenter geometry were found in other recent stud-

ies.9,15 Figure 2(a) shows the typical variation of Jc(t)

with Po ranging from 3 to 15 mN, and Fig. 2(b) compares

all polymers for Po � 3 and 15mN at Jc(t � 10 s). Note

that in response to an increase in Pmax by a factor of five,

all amorphous polymers exhibited a marked increase in

Jc(t) at the higher Pmax, and therefore all amorphous

polymers exhibited nonlinear viscoelastic deformation

under these conditions. Although Jc(t) can be calculated

according to Eq. (5), the inherent assumptions of this

calculation are not maintained. Therefore, the data are

discussed in terms of monomer and microstructural

determinants of creep-like resistance to viscoelastoplas-

tic flow in Sec. IV. C.

Plastic flow is a competing deformation mechanism

under indentation-enabled creep compliance.22,23 One

way to assess the extent of plasticity is to subtract the

creep portion of the displacement from the loading-

unloading cycle and determine the extent to which the

corrected, final depth of indentation h�f exceeds the

maximum depth of indentation prior to the creep segment

FIG. 2. Contact creep compliance Jc(t) under ramp loading of 0.5 mN/s

via Berkovich (sharp) probe. (a) PL shows typical dependence on

creep load for Po: 3 mN (light gray), 15 mN (dark gray) and 30 mN

(black). (b) Comparison among all polymers at Jc(t � 10s) for Po: 3 mN

(black) and 15 mN (gray) indicate increasing Jc(t) with decreasing

steric hindrance. Polymer abbreviations are as follows: PMMA PL,

PMMA LU, PS, PC, PP, PE, and two epoxies, E3 and E8.
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hmax. The ratio h�f /hmax is proportional to the percent

plastic work Wp/Wtotal.
24 We found that, for the Berko-

vich indenter geometry, h�f /hmax was as great as 62% in

the amorphous polymers considered herein, indicating

that there was indeed deformation that was not recovered

during the unloading cycle of the indentation experiment.

As we have shown via scanning probe microscopic ex-

amination of post-indentation recovery of Berkovich in-

dentation in these same polymers,25 although the depth

of indentation does continue to recover over the next

48 h post-indentation, the volume of indentation does not

recover appreciably because the material at the indenter

sidewalls (where two facets of the pyramid join) remains

plastically deformed over at least 48 h post-indentation.

2. Effect of loading rate dP/dt

Contact creep experiments conducted with a sharp

conical indenter induce not only a load-dependent re-

sponse but also a loading rate-dependent response. This

point is illustrated in Fig. 3(a) where Jc(t) of the low-Mc

epoxy E3 is shown for three maximum loads (Po � 1, 5,

and 15 mN) for both ramp and step loading. The increase

in loading rates induces an increase in Jc(t) at all Po

considered, as rapid loading to Po minimizes energy dis-

sipation through viscous mechanisms, while slow load-

ing to Po enables concurrent elastic and viscous re-

sponses prior to creep. Figure 3(b) demonstrates the ef-

fects of increased chain mobility on this loading rate

dependence under conical indentation creep, comparing

Jc(t) for E3 (low Mc) and E8 (high Mc) for three Pmax

attained via ramp loading (dP/dt � 0.5 mN/s). As ex-

pected from Fig. 2(b), the increase in Mc causes an in-

crease in the Jc(t) for all conditions. Surprisingly, the

polymer of lower Mc, and thus lower molecular chain

mobility, exhibits a greater dependence on load. This

result is consistent with the pair of amorphous polymers

PC (lower Mw) and PL (greater Mw), in which case the

polymer with fewer entanglements and greater chain mo-

bility (PC) is affected less by changes in load than the

polymer with less chain mobility (PL) during contact

creep. Experiments performed by Van Landingham et

al.15 demonstrated the same trend for PMMA and an

epoxy: creep tests were carried out between Pmax � 0.2

and 10 mN on PMMA and epoxy samples (different from

the epoxies detailed herein). Although the epoxy was

slightly stiffer than the PMMA upon loading, Jc(t) for the

epoxy was more sensitive to changes in Pmax. Together,

these results indicate that contact creep compliance of

polymers with lower chain mobility are more sensitive to

changes in applied load. Here, for the Berkovich indenter

geometry, an increase in Po by an order of magnitude

resulted in a maximum increase in Jc(t � 10 s) of 57%

(E8 epoxy). However, we note that to support this effect

of chain mobility on load dependence rigorously,

complementary experiments are required to maintain a

constant loading time for a range of loads Po. More im-

portantly, although trends with monomer rigidity, Mw,

and Mc are observed in Jc(t) as measured via a sharp

conical indenter geometry, the dependence of this re-

sponse on applied load and loading rate indicate highly

nonlinear behavior that is not interpreted accurately via

standard linear viscoelastic analytical functions.

FIG. 3. (a) Comparison of creep compliance Jc(t) for step (black) and

ramp (gray) loading for a single epoxy (E3) indented with a Berkovich

indenter at three maximum loads: 1 mN, 5 mN and 15 mN. (b) Com-

parison of Jc(t) for two epoxies differing in molecular weight between

crosslinks Mc ramp loaded with a Berkovich indenter to three maxi-

mum loads: 1 mN, 5 mN and 15 mN. The average Mc is twice as high

for E8 (black) than for E3 (gray).
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B. Nanoindentation contact creep with a

spherical indenter

To determine whether it is possible to measure contact

creep responses within the linear viscoelastic regime of

polymer deformation, nanoindentation creep experiments

were conducted with a spherical ruby indenter of R �

500 �m to the same five maximum loads as used in

conical ramp indentation (Pmax � 1, 5, 10, 15, and

30 mN) via ramp and step loading for the two epoxy

samples, E3 and E8. Comparison of the load-

displacement P–h response with the Berkovich and

spherical indenter geometries to the same Pmax (15 mN)

illustrates the difference between the viscoelastic and the

viscoelastoplastic regimes (Fig. 4). The percent of plastic

or absorbed work, expressed as the ratio of final displace-

ment at final unloading h�f to the maximum displacement

hmax, was 39.4% for the Berkovich geometry and only

11.6% for the spherical geometry in E3. This confirms

that the material response to the spherical indentations

was predominantly viscoelastic under the loading rates

considered. This conclusion is supported by the Tabor

contact strain calculated for this spherical indenter ge-

ometry26

� = 0.2
a

R
, (8)

where a is the radius of the contact area and R is the

radius of the spherical indenter. For the Pmax considered,

the strains thus calculated ranged between 0.3% and

0.8%, indicating that the spherical indentations were well

within the elastic limit for these polymers (typically be-

tween 1% and 2%27). Van Landingham et al. noted that

creep compliance measurements on an epoxy (different

from those considered herein) via a 10 �m radius conical

tip appeared to be approaching linear viscoelastic behav-

ior for the lowest loads applied in that study (Pmax �

0.2 mN).15 The corresponding strains in those experi-

ments was �4% and thus apparently exceeded the elastic

limit of those materials under the conditions cited. Inci-

dentally, for polymers with elastic strain limits near 1%

and an instrumented indenter with load resolution on the

order of 0.1 mN, a 500 �m radius is one of the smallest

indenter radii that can be used while remaining within the

elastic deformation regime. (This indenter radius induced

contact strains of 0.8% at a maximum depth of 360 nm

and load Po of 1 mN. For the polymers considered herein,

indenters of smaller radii would require greater load reso-

lution such that Po < 1 mN to maintain contact strains

� < 1%). Although the strains induced by the two in-

denter geometries cannot be directly compared (the

Berkovich induces strains �1% at the cone apex), the

average applied stresses may be estimated as the quotient

of load to projected contact area (�e, akin to indentation

hardness). Average stress imposed by the spherical in-

denter ranged from 5.5 to 18 MPa (depending on Pmax),

while the average stress imposed by the Berkovich in-

denter ranged from 194 to 470 MPa for the same range of

Pmax. Responses to these applied stress ranges are in

agreement with published values of yielding; for ex-

ample, amorphous polycarbonate has a yield strength of

62.1 MPa, which is well above stresses under the spheri-

cal indenter geometry but less than the lowest stress ap-

plied by the Berkovich indenter geometry.28

The low strains attainable with the large spherical in-

denter geometry enable contact creep experiments within

the elastic strain limit of the material. As depicted in

Fig. 5(a), contact creep via the spherical probe demon-

strate Jc(t) that is independent of both Pmax and dP/dt.

Additionally, the magnitude of Jc(t) is lower by an order

of magnitude as compared with that obtained with a

Berkovich indenter geometry for these polymers. Results

reported by Van Landingham et al. display a similar

trend over the same load range: a decrease in contact

creep compliance obtained with a blunted conical in-

denter as compared with that obtained with a Berkovich

indenter for the same polymers.15 As expected, this de-

crease in Jc(t) for the blunted cone was more subtle, as �e

differed by a factor of two, while in the current study, �e

differs by a factor of 10–20. In contrast with experiments

that use a Berkovich or conical indenter geometry, for

which error in Jc(t) is significantly less than differences

in Jc(t) measured at different Pmax for a given polymer

and loading rate, the error obtained on Jc(t) measured

with spherical indenter geometries indicates no statisti-

cally significant effect of load on Jc(t). Of course, Fig. 5

FIG. 4. Load-displacement response for epoxy (E3) ramp loaded to a

maximum load of 15 mN for both a Berkovich indenter (gray) and a

spherical indenter of radius R � 500 �m (black). Here, the creep

segment at maximum load has been removed.
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also demonstrates that the experimental scatter in h(t)

and thus in Jc(t) is increased for spherical indenters of

large R, in part because the change in load at the point of

initial contact with the surface is less significant than that

for a sharp indenter geometry. As noted, clear demon-

stration of the linear viscoelastic regime implies additiv-

ity; i.e., a given linear viscoelastic model fit to one set of

data for a given material can accurately predict the creep

response under varied loading times and maximum

loads.10

C. Structural and physical determinants of

creep compliance

The interdependence of certain synthesis routes, struc-

tural characteristics, and physical-mechanical properties

of polymers makes correlations of structure-property re-

lations challenging, as demonstrated by the description of

deformation states, including creep via spring-dashpot

continuum models. However, certain subsets of the poly-

mers considered herein enable consideration of structural

determinants for Jc(t) when linear viscoelastic deforma-

tion conditions are met, as well as speculation of micro-

structural determinants of creep and creep compliance

rates when these conditions are not met.

Figure 2(b) illustrates creep compliance via Berkovich

indentation for which the small strain assumptions of

linear viscoelasticity are not met. Despite this quantita-

tive limitation, Jc(t � 10 s) of eight polymers at Pmax �

3 and 15 mN correlates most strongly with monomer

steric hindrance at a given load; it should be noted that

molecular weight among these polymers also differs.

Polyethylene is expected to exhibit the greatest molecu-

lar chain mobility per unit length, due to the extremely

simple monomer structure of this polymer, as shown in

Table I, and this correlates with the fact that PE exhibits

the greatest Jc(t) at all conditions. Polypropylene (PP)

also has a very simple monomer structure and was the

fourth most creep compliant polymer tested. Both the PE

and PP samples were semicrystalline and tested above

their glass transition temperatures. Although it is ex-

pected that the amorphous regions of these materials

would still creep readily, this microstructural heteroge-

neity resulted in rather complex behavior. For example,

while PP shows a slight increase in Jc(t) with Pmax, PE is

the only polymer to exhibit a decrease in Jc(t) with in-

creasing Pmax.

Contact creep response of the six amorphous polymers

indicates the relative importance of monomer steric hin-

drance and molecular weight. The polycarbonate (PC)

backbone contains two benzene rings and has signifi-

cantly reduced chain mobility due to this rigidity. Con-

sequently, amorphous PC exhibits lower Jc(t) than that of

PE or PP, despite the extremely low Mw of PC. This

indicates that steric hindrance is more important than Mw

in determining the magnitude of contract creep compli-

ance Jc(t) for a given applied contact load Pmax. How-

ever, molecular weight does have a modest effect on

Jc(t), as demonstrated by the comparison of the two poly-

(methyl methacrylates) considered, PL and LU. The Mw

of PL is more than twice that of LU, but otherwise these

amorphous polymers are identical; this difference in Mw

FIG. 5. (a) Comparison of creep compliance Jc(t) for step (black) and

ramp (gray) loading measured with a spherical indenter of radius R �

500 �m for a single epoxy (E3). Jc(t) is not dependent on load or

loading rate, as shown in the overlap between step and ramp loading

for three maximum loads: 1, 5, and 15 mN. (b) Comparison of Jc(t) for

two epoxies differing in molecular weight between crosslinks Mc un-

der ramp loading with a spherical indenter of R � 500 �m to three

maximum loads: 1, 5, and 15 mN. Mc of E8 (black) is twice that of E3

(gray).
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correlates with an 8% decrease in Jc(t) for PL with re-

spect to LU. In addition, the two epoxies have different

molecular weight between crosslinks or entanglement

points quantified as Mc, which has a corresponding effect

on Jc(t): E3 (Mc � 380 g/mol) exhibited a Jc(t) signifi-

cantly lower at all loads considered than that of E8

(Mc � 818 g/mol) due to the relatively lower chain mo-

bility of epoxy E3.

The microstructural dependency of Jc(t) is under-

scored by the rankings of the six glassy network poly-

mers depicted in Fig. 6(a) considered at the same Pmax.

While Jc(t � 0) simply reflects the relative stiffness of

these polymers during the loading phase, the rates of

change in the (steady-state) contact creep compliance do

not follow this same trend. Figure 6(b) shows this contact

creep compliance rate over a 60 s dwell for polymers

listed in order of increasing Mw. Figure 6 illustrates two

important points. First, the (steady-state or t > 5 s) rate of

creep compliance is unique to each polymer, as demon-

strated by distinct d{log[Jc(t)]}/d[log(t)] in Fig. 6(b).

Second, unlike material responses during the loading

phase, which correlate positively with steric hindrance to

chain mobility, the primary factor in the rate of creep

compliance (and, by definition, the rate of change of

contact area) is the Mw or entanglement distance of the

polymers.

The most striking illustration of this point is the com-

parison of the two PMMA samples, PL and LU. Al-

though PL and LU have the same monomer structure and

Tg, the Mw of PL is nearly 2.5 times greater than that of

LU. The local steric hindrance of a given polymer seg-

ment is equivalent, so these polymers would be expected

to deform to approximately the same depth h for a given

load P. By extension, the magnitude of Jc(t � 0) would

be expected to be quite similar, and this is what is ob-

served experimentally [Fig. 6(a)]. However, these poly-

mers of differing Mw show dramatic differences in the

creep compliance rate, with the PMMA of greater Mw

demonstrating the higher rate of contact creep compli-

ance. Another clear example of the apparent effect of Mw

on contact creep compliance rate is demonstrated by PC;

the fourth stiffest polymer tested, PC exhibits the lowest

creep compliance rate. We hypothesize that this is due to

the low Mw of PC, which signifies very little structural

continuity/connectivity between the deformed and unde-

formed regions of material. As shown schematically in

Fig. 7, when contact stress is applied to a material com-

prising many short macromolecules, such as PC, the de-

formation is likely to translate entire chains to new lo-

cations without requiring storage of large internal strains

within molecules that bridge deformed and undeformed

regions in the material. In contrast, when contact stress is

applied to a material composed of long macromolecules,

it is likely that a single polymer chain may reside both in

surface regions of high strain (near the indenter) and low

or zero strain (far from the indenter). In fact, the contact

radii a ranged from 0.8 to 4.8 �m for contact creep

experiments on the amorphous polymers considered

herein, while the contour lengths L of the amorphous

polymers of highest and lowest Mw were 0.7 �m (PS)

and 7.3 �m (PMMA), respectively. (Contour length L29

was estimated as the product of the number of segments

n and monomer length l, given published radii of gyra-

tion for PS30 and PMMA.31) While increased Mw causes

FIG. 6. (a) Contact creep compliance Jc(t) under ramp loading

(0.5 mN/s) to 30 mN via Berkovich (sharp) probe for six polymers as

a function of tc. (b) Rate of creep compliance dJc(t)/dt increases with

molecular weight Mw for the amorphous polymers tested in (a): PC,

PS, LU, and PL. Though monomer structure and physical properties

also differ among these polymers, LU and PL differ principally in Mw.
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a modest increase in stiffness during the loading phase,

this structural connectivity between highly strained and

unstrained material regions has a more dominant effect

during contact creep. Under constant applied load, as

during indentation creep, it is hypothesized that a long-

chained or high Mw material will decrease the intramo-

lecular tension induced by the applied creep load by ei-

ther displacing the portion of the molecule under low

strain toward the highly strained region of the contact

zone or by displacing the highly strained region of the

molecule toward the “anchored” region of low strain. In

either scenario, the connectivity decreases the resistance

of the material to further indenter penetration and results

in a faster rate of change in the creep compliance. In the

case of the short-chained polymer, such a driving force to

reduce intramolecular strain would be decreased by the

lack of long-range molecular continuity/connectivity be-

tween the highly strained and unstrained material re-

gions.

Although there is no clear dependence of Jc(t) on Pmax

or dP/dt for these polymers evaluated with a sphere of

R � 500 µm, there remains a clear effect of polymer

structure on Jc(t) within the linear viscoelastic deforma-

tion regime. Figure 5(b) compares Jc(t) for expoxies E3

and E8 to Pmax � 5, 10, and 15 mN under ramp loading.

Although there is no direct dependence on Pmax, almost

all Jc(t) measured for the polymer of greater Mc and thus

higher chain mobility (E8) exceeded those of the lower

Mc polymer (E3). This result indicates that the contact

creep response of a polymer, measured in the linear vis-

coelastic regime, will reflect changes in polymer struc-

ture while remaining independent of loading conditions.

V. CONCLUSIONS

Contact creep compliance is a useful metric that quan-

tifies a unique mechanical response of time-dependent

materials. The analysis of contact creep compliance ex-

periments to quantify the mechanical response of poly-

mers is conceptually straightforward but includes several

important experimental and analytical caveats. Herein,

we have detailed the evolution and assumptions of the

contact creep compliance analysis in the context of linear

viscoelastic deformation and have experimentally deter-

mined the conditions under which such analysis may be

reasonably applied by identifying contact strains for

which Jc(t) is not a function of creep load. In addition, we

have considered the extent to which the molecular de-

scription of amorphous polymers defines the extent and

rate of contact creep compliance.

There are two main conclusions to be drawn from

these findings. First, nanoscale contact creep experi-

ments conducted with sharp and/or conical indenter ge-

ometries on polymeric surfaces cannot be interpreted ac-

curately through recourse to current linear viscoelastic

analyses of contact. However, linear viscoelastic re-

sponses may be obtained via a spherical indenter geom-

etry of sufficiently large R that induce maximum strains

less than the elastic strain limit. This limitation should be

considered for contact creep analysis of thin films, for

which finite thickness also requires small indentation

depths. We note that linear viscoelastic solutions can be

applied to indentation creep analysis under large strains,

such as in conical indentation, provided that the nonlin-

ear and plastic deformations can be analytically de-

coupled from the total creep response. Second, although

monomer steric hindrance correlates strongly with poly-

mer stiffness [and the initial magnitude of the contact

creep compliance Jc(t � 0)], molecular weight or mo-

lecular weight between crosslinks correlates strongly

with contact creep compliance rate.
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APPENDIX A: GENERAL FRAMEWORK OF

EXISTING SOLUTIONS FOR J(t)

Lee and Radok first recognized the difficulty in ob-

taining a solution to calculate the stress distribution for

Hertzian (elastic, spherical) contact between a rigid in-

denter and a viscoelastic body. This complication arises

because conventional approaches to linear viscoelastic

deformation had applied the Laplace transform (i.e.,

solving for linear operators) to map this time-dependent

solution to the corresponding elastic solution.32 Although

this approach could be used to determine, for example,

C.A. Tweedie et al.: Contact creep compliance of viscoelastic materials via nanoindentation

J. Mater. Res., Vol. 21, No. 6, Jun 2006 1587



the viscoelastic solution to creep of a viscoelastic mate-

rial under a uniform uniaxial stress [Fig. 1(a)], the

Laplace transform is not necessarily valid when both the

boundary position and boundary conditions change with

time, as is characteristic of spherical or conical contact

for increasing/decreasing displacement, because neither

the stress nor the strain can be uniquely determined at

each deformation time point and thereafter transformed

to time-space.

Lee and Radok proposed to instead adopt a single

elastic solution for the boundary conditions of the actual

viscoelastic problem and then substitute elastic constants

with viscoelastic operators. They verified this approach

for the specific problem of spherical elastic contact load-

ing, i.e., increasing contact area as would be expected

during loading or creep. As Ting’s more general analy-

sis—the linear viscoelastic analogue to the solutions of

Sneddon19—extends this approach to other indenter ge-

ometries and loading conditions, it is necessary to outline

the assumptions common to both solutions, hereafter re-

ferred to as the LR- or T-solution. Both the LR- and

T-solutions assume linear viscoelasticity in that the func-

tions that define the constitutive relation of the viscoelas-

tic material are linear operators:

Asij = Beij , (A1)

A��ii = B��ii , (A2)

where sij and eij are the deviatoric stress and strain com-

ponents, respectively, and �ij and �ij are the total stress

and strain, respectively. This restriction enables mapping

of a linear elastic solution or inversion of integral forms

of such solutions, where the shear elastic modulus G is

exactly equal to B/2A for an incompressible material (i.e.,

� � 1/2) and implies several characteristics of material

behavior and of J(t) as a function of loading conditions.

LR then adopts the solution of Hertz33 for a contact

pressure distribution that varies not only with radial dis-

tance from the central loading axis r but also with time t:

p�r,t� =
4Q


R
f�r� , (A3)

where f(r) is the indenter shape function relating h(r, a)

(see Appendix B) and a(t) is the contact radius at the free

surface of the indented material. The assumption of � �

1/2 is assumed by LR for simplicity but is not required of

the solution. The LR-solution determines J(t) based on

the deviatoric strain eij. The two key equations of the

LR-solution are the inverse transform to real time of the

total indentation force P:

A�P�t�� =
8B�Rh�t��

3�2

3R
, (A4)

where A and B are the linear viscoelastic operators, R is

the spherical indenter radius, and the creep compliance in

shear is determined as a function of the transform of

deviatoric strain eij in terms of the transform variable s:

A =
1

2
J�s�s, B = 1 . (A5)

For any given P(t) such that a(t) is increasing, J(t) can

then be determined as

�
0

t 1

2
J�t − 
�

dP

d

d
 =

8

3
�R�h�t��

3�2
. (A6)

In contrast, the T-solution maintains and inverts the

integral form of p(r, t) in terms of elastic indentation

depth h(t). As a result, this is a more general viscoelastic

solution of contact pressure distribution that can be ex-

pressed for any loading history [a(t) increasing or de-

creasing]and indenter geometry; Ting explicitly demon-

strates that the pressure distribution solution of Lee and

Radok13 is recovered for identical conditions. The two

key equations of the T-solution are the relation between

surface displacement along the loading axis u(z � 0) and

the first of two linear viscoelastic operators Ting calls

�(t):

u�r, 0, t� = �
0−

t

��t − s�
�

�s �
a�t�0

��r,x�xp�x,s�dsd
 ,

(A7)

where � is a Bessel function of the first kind [typically

denoted by J but modified here to avoid confusion with

J(t)] and r is radial distance along the free surface. The

elastic solution to Eq. (A7) is

ue�r,0,t� = h�t� − f�r�H�t�

=
1 − �

G �
0−

a�t�

��r,x�xpe�x,t�dx , (A8)

where f(r) is the indenter shape function relating h(r, a)

(see Appendix A), and H(t) is the Heaviside step function

defining the edge of the contact zone. By separating any

loading history into integrals of the form of Eq. (A8), the

solution for the actual pressure distribution p(r, t) can be

determined as a function of the elastic solution and �(l),

the second of Ting’s linear viscoelastic operators. Ting

notes that for constant Poisson’s ratio �, �(t) has the form

of the relaxation modulus in shear G(t):

p�r,t� = f�1 − �

G
pe�r,t���t�� . (A9)

and �(t) � 1/�(t) has the form of creep compliance in

shear J(t). Ting states that for a monotonic increase in
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contact radius a(t), �(t) can be related to the elastic ex-

pression of total pressure (1 − �)Pe(t)/G as

�1 − ��Pe �t�

G
= P�0���t�H�t� , (A10)

where G is the shear elastic modulus. Then, for a constant

and instantaneously applied load P(0) � Po, the left hand

side of Eq. (A10) can be expressed as an integral of the

shape function f(r),34 such that �(t) can be determined

generally as

��t� =

4�
0

a�t� r
2

�a
2
�t� − r

2

d

dr
f�r�dr

PoH�t�
. (A11)

For this constant load and changing contact area, �(t)

does not identically (or necessarily) represent J(t), which

assumes a constant applied stress �o but rather the history

of this contact area evolution. In fact, �(t) � (1 − �)J(t)

for constant � [see Eqs. (2) and (3)]. Here, we denote this

as contact creep compliance Jc(t). As creep compliance

implies deformation in the linear (visco)elastic regime

and we discuss deviation from this response for a range

of indentation-enabled measurements of creep compli-

ance, Jc(t) is more generally an apparent creep compli-

ance.

APPENDIX B: INDENTER SHAPE FUNCTIONS

AND h(a)

As stated by Ting, the displacement along the loading

axis uz can be expressed as:

uz = h�t� − f�r�H�t� , (A12)

where f(r) is an indenter shape (or geometric) function

that relates the depth of indentation h(t) to a(t) under the

condition that Eq. (A12) is zero at r � a(t). [Note that

h(t) is actually the contact depth of indentation, typically

denoted as hc(t).] As a result, the relationship between

h(t) and a(t) includes but not is identical to f(r). For

example, for a spherical indenter of radius R,

f�r� = R − �R
2

− r
2

(A13)

and reduces to f(r) � r2/2R for r � R as is typically

assumed for “small strain” applications, such that

h�t� =
�a�t��

2

R
, (A14)

and thus there is a difference of a factor of 2 between f(r)

and h(t) in this particular case. This point must be con-

sidered when applying solutions expressed in terms of

a(t) which must be calculated from instrumented inden-

tation data as a function of h(t), which is measured ex-

perimentally.
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